1
|
Basu P, Taylor BK. Neuropeptide Y Y2 receptors in acute and chronic pain and itch. Neuropeptides 2024; 108:102478. [PMID: 39461244 DOI: 10.1016/j.npep.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Pain and itch are regulated by a diverse array of neuropeptides and their receptors in superficial laminae of the spinal cord dorsal horn (DH). Neuropeptide Y (NPY) is normally expressed on DH neurons but not sensory neurons. By contrast, the Npy2r receptor (Y2) is expressed on the central and peripheral terminals of sensory neurons but not on DH neurons. Neurophysiological slice recordings indicate that Y2-selective agonists inhibits spinal neurotransmitter release from sensory neurons. However, behavioral pharmacology studies indicate that Y2 agonists exert minimal changes in nociception, even after injury. Additional discrepancies in the behavioral actions of the Y2-antagonist BIIE0246 - reports of either pronociception or antinociception - have now been resolved. In the normal state, spinally-directed (intrathecal) administration of BIIE0246 elicits ongoing nociception, hypersensitivity to sensory stimulation, and aversion. Conversely, in the setting of nerve injury and inflammation, intrathecal BIIE024 reduced not only mechanical and thermal hypersensitivity, but also a measure of the affective dimension of pain (conditioned place preference). When administered in chronic pain models of latent sensitization, BIIE0246 produced a profound reinstatement of pain-like behaviors. We propose that tissue or nerve injury induces a G protein switch in the action of NPY-Y2 signaling from antinociception in the naïve state to the inhibition of mechanical and heat hyperalgesia in the injured state, and then a switch back to antinociception to keep LS in a state of remission. This model clarifies the pharmacotherapeutic potential of Y2 research, pointing to the development of a new non-opioid pharmacotherapy for chronic pain using Y2 antagonists in patients who do not develop LS.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, United States of America; Department of Pharmacology and Chemical Biology, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
2
|
Cattaneo S, Bettegazzi B, Crippa L, Asth L, Regoni M, Soukupova M, Zucchini S, Cantore A, Codazzi F, Valtorta F, Simonato M. Gene therapy for epilepsy targeting neuropeptide Y and its Y2 receptor to dentate gyrus granule cells. EMBO Rep 2024; 25:4387-4409. [PMID: 39251828 PMCID: PMC11467199 DOI: 10.1038/s44319-024-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Gene therapy is emerging as an alternative option for individuals with drug-resistant focal epilepsy. Here, we explore the potential of a novel gene therapy based on Neuropeptide Y (NPY), a well-known endogenous anticonvulsant. We develop a lentiviral vector co-expressing NPY with its inhibitory receptor Y2 in which, for the first time, both transgenes are placed under the control of the minimal CamKIIa(0.4) promoter, biasing expression toward excitatory neurons and allowing autoregulation of neuronal excitability by Y2 receptor-mediated inhibition. Vector-induced NPY and Y2 expression and safety are first assessed in cultures of hippocampal neurons. In vivo experiments demonstrate efficient and nearly selective overexpression of both genes in granule cell mossy fiber terminals following vector administration in the dentate gyrus. Telemetry video-EEG monitoring reveals a reduction in the frequency and duration of seizures in the synapsin triple KO model. This study shows that targeting a small subset of neurons (hippocampal granule cells) with a combined overexpression of NPY and Y2 receptor is sufficient to reduce the occurrence of spontaneous seizures.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Crippa
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Regoni
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alessio Cantore
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20123, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Flavia Valtorta
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Pavlenko D, Todurga-Seven ZG, Sanders K, Markan A, Verpile R, Ishida H, Costo D, Akiyama T. Activation of NPY2R-expressing amygdala neurons inhibits itch behavior in mice without lateralization. Sci Rep 2024; 14:22125. [PMID: 39333236 PMCID: PMC11437048 DOI: 10.1038/s41598-024-73483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The central amygdala (CeA) is a crucial hub in the processing of affective itch, containing a diverse array of neuronal populations. Among these components, Neuropeptide Y (NPY) and its receptors, such as NPY2R, affect various physiological and psychological processes. Despite this broad impact, the precise role of NPY2R+ CeA neurons in itch modulation remains unknown, particularly concerning any potential lateralization effects. To address this, we employed optogenetics to selectively stimulate NPY2R+ CeA neurons in mice, investigating their impact on itch modulation. Optogenetic activation of NPY2R+ CeA neurons reduced scratching behavior elicited by pruritogens without exhibiting any lateralization effects. Electrophysiological recordings confirmed increased neuronal activity upon stimulation. However, this modulation did not affect thermal sensitivity, mechanical sensitivity, or formalin-induced hyperalgesia. Additionally, no alterations in anxiety-like behaviors or locomotion were observed upon stimulation. Projection tracing revealed connections of NPY2R+ CeA neurons to brain regions implicated in itch processing. Overall, this comprehensive study highlights the role of NPY2R+ CeA neurons in itch regulation without any lateralization effects.
Collapse
Affiliation(s)
- Darya Pavlenko
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Zeynep Gizem Todurga-Seven
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kristen Sanders
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Anika Markan
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Rebecca Verpile
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Hirotake Ishida
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Dylan Costo
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, 1600 NW 10th Ave., RMSB 2063, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
5
|
Zhang Y, Shen J, Xie F, Liu Z, Yin F, Cheng M, Wang L, Cai M, Herzog H, Wu P, Zhang Z, Zhan C, Liu T. Feedforward inhibition of stress by brainstem neuropeptide Y neurons. Nat Commun 2024; 15:7603. [PMID: 39217143 PMCID: PMC11365948 DOI: 10.1038/s41467-024-51956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.
Collapse
Grants
- the National Key R&D Program of China (2019YFA0801900, 2018YFA0800300), the National Natural Science Foundation of China (9235730017, 92249302, 32150610475, 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Faculty Resources Project of College of Life Sciences, Inner Mongolia University (2022-102)
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the National Natural Science Foundation of China (32171144) and Shanghai Pujiang Program (22PJD007).
- the STI2030-Major Projects (2021ZD0203900),the National Natural Science Foundation of China (32271063, 31822026, 31500860), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY20220018)
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiayi Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiwei Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Liang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiting Cai
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Cheng Zhan
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
6
|
Wulff BS, Kuhre RE, Selvaraj M, Rehfeld JF, Niss K, Fels JJ, Anna S, Raun K, Gerstenberg MK. Improved leptin sensitivity and increased soluble leptin receptor concentrations may underlie the additive effects of combining PYY [, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ] and exendin-4 on body weight lowering in diet-induced obese mice. Heliyon 2024; 10:e32009. [PMID: 39183855 PMCID: PMC11341243 DOI: 10.1016/j.heliyon.2024.e32009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 08/27/2024] Open
Abstract
Objective Co-treatment with long acting PYY and the GLP-1 receptor agonists has potential as an efficient obesity treatment. This study investigates whether the mechanisms behind additive reduction of food intake and weight loss depends on complementary effects in brain areas regulating food intake and if restoration of leptin sensitivity is involved. Methods Diet-induced obese (DIO) mice were co-treated with PYY(3-36) and exendin-4 (Ex4, GLP-1R agonist) for 14 days using minipumps. Leptin responsiveness was evaluated by measuring food intake and body weight after leptin injection, and gene expression profile was investigated in various of brain regions and liver. Results We show that weight loss associated with co-treatment of PYY(3-36) and Ex4 and Ex4 mono-treatment in DIO mice increased expression of several genes in area postrema (AP) known to be involved in appetite regulation and Cart, Pdyn, Bdnf and Klb were synergistically upregulated by the co-treatment. The upregulations were independent of weight loss, as shown by inclusion of a weight matched control. Moreover, PYY(3-36) and Ex4 co-treatment resulted in synergistically upregulated plasma concentrations of soluble leptin receptor (SLR) and improved sensitivity to exogenous leptin demonstrated by food intake lowering. Conclusion The study results suggest that synergistic upregulation of appetite-regulating genes in AP and improved leptin sensitivity are important mediators for the additive weight loss resulting from PYY and Ex4 co-treatment.
Collapse
Affiliation(s)
| | | | - Madhan Selvaraj
- Translational Research, Global Translation, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Jens F. Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Kristoffer Niss
- Biomarker Discovery, R&ED Digital Science and Innovation, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Johannes J. Fels
- Research Bioanalysis, Global Research Technologies, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Secher Anna
- Global Drug Discovery, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Kirsten Raun
- Global Drug Discovery, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | |
Collapse
|
7
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Prakash N, Matos HY, Sebaoui S, Tsai L, Tran T, Aromolaran A, Atrachji I, Campbell N, Goodrich M, Hernandez-Pineda D, Jesus Herrero M, Hirata T, Lischinsky J, Martinez W, Torii S, Yamashita S, Hosseini H, Sokolowski K, Esumi S, Kawasawa YI, Hashimoto-Torii K, Jones KS, Corbin JG. Connectivity and molecular profiles of Foxp2- and Dbx1-lineage neurons in the accessory olfactory bulb and medial amygdala. J Comp Neurol 2024; 532:e25545. [PMID: 37849047 PMCID: PMC10922300 DOI: 10.1002/cne.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Heidi Y Matos
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Luke Tsai
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Adejimi Aromolaran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Isabella Atrachji
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Nya Campbell
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tsutomu Hirata
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Wendolin Martinez
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shisui Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Hassan Hosseini
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Katie Sokolowski
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Kevin S Jones
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| |
Collapse
|
9
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
10
|
Caffrey A, Lavecchia E, Merkel R, Zhang Y, Chichura KS, Hayes MR, Doyle RP, Schmidt HD. PYY 3-36 infused systemically or directly into the VTA attenuates fentanyl seeking in male rats. Neuropharmacology 2023; 239:109686. [PMID: 37572954 PMCID: PMC10528880 DOI: 10.1016/j.neuropharm.2023.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
More effective treatments for fentanyl use disorder are urgently needed. An emerging literature indicates that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate voluntary opioid taking and seeking in rodents. However, GLP-1R agonists produce adverse malaise-like effects that may limit patient compliance. Recently, we developed a dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs) that attenuates fentanyl taking and seeking at doses that do not produce malaise-like effects in opioid-experienced rats. Whether activating Y2Rs alone is sufficient to reduce opioid taking and seeking, however, is not known. Here, we investigated the efficacy of the Y2R ligand PYY3-36 to reduce fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, a model of relapse in humans. Male rats were allowed to self-administer fentanyl (2.5 μg/kg, i.v.) for 21 days on a fixed-ratio 5 (FR5) schedule of reinforcement. Rats were then pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA) prior to fentanyl self-administration test sessions. There were no effects of systemic or intra-VTA PYY3-36 on intravenous fentanyl self-administration. Opioid taking was then extinguished. Prior to subsequent reinstatement test sessions, rats were pretreated with vehicle or PYY3-36 (50 μg/kg s.c.; 0.1 and 1.0 μg/100 nL intra-VTA). Both systemic and intra-VTA administration of PYY3-36 attenuated fentanyl reinstatement in male rats at doses that did not affect food intake or produce adverse malaise-like effects. These findings indicate that Y2R agonism alone is sufficient to decrease fentanyl-seeking behavior during abstinence in opioid-experienced rats and further support strategies aimed at targeting Y2Rs for treating opioid use disorders.
Collapse
Affiliation(s)
- A Caffrey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - E Lavecchia
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Merkel
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Y Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - K S Chichura
- Department of Chemistry, Syracuse University, NY, 13244, USA
| | - M R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R P Doyle
- Department of Chemistry, Syracuse University, NY, 13244, USA; Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - H D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
12
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
13
|
Smith NK, Kondev V, Hunt TR, Grueter BA. Neuropeptide Y modulates excitatory synaptic transmission and promotes social behavior in the mouse nucleus accumbens. Neuropharmacology 2022; 217:109201. [PMID: 35917875 PMCID: PMC9836361 DOI: 10.1016/j.neuropharm.2022.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/14/2023]
Abstract
Social interactions define the human experience, but these integral behaviors are disrupted in many psychiatric disorders. Social behaviors have evolved over millennia, and neuromodulatory systems that promote social behavior in invertebrates are also present in mammalian brains. One such conserved neuromodulator, neuropeptide Y (NPY), acts through several receptors including the Y1r, Y2r, and Y5r. These receptors are present in brain regions that control social behavior, including the nucleus accumbens (NAc). However, whether NPY modulates NAc neurotransmission is unknown. Using whole-cell patch-clamp electrophysiology of NAc neurons, we find that multiple NPY receptors regulate excitatory synaptic transmission in a cell-type specific manner. At excitatory synapses onto D1+ MSNs, Y1r activity enhances transmission while Y2r suppresses transmission. At excitatory synapses onto D1- MSNs, Y5r activity enhances transmission while Y2r suppresses transmission. Directly infusing NPY or the Y1r agonist [Leu31, Pro34]-NPY into the NAc significantly increases social interaction with an unfamiliar conspecific. Inhibition of an enzyme that breaks down NPY, dipeptidyl peptidase IV (DPP-IV), shifts the effect of NPY on D1+ MSNs to a Y1r dominated phenotype. Together, these results increase our understanding of how NPY regulates neurotransmission in the NAc and identify a novel mechanism underlying the control of social behavior. Further, they reveal a potential strategy to shift NPY signaling for therapeutic gain.
Collapse
Affiliation(s)
- Nicholas K. Smith
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Veronika Kondev
- Neuroscience Graduate Program, Vanderbilt University; Nashville, TN 37232, USA
| | - Thomas R. Hunt
- College of Arts and Sciences, Vanderbilt University; Nashville, TN 37232, USA
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Vanderbilt University; Nashville, TN 37232, USA,Department of Anesthesiology, Vanderbilt University Medical Center; Nashville, TN 37232, USA,Vanderbilt Center for Addiction Research, Vanderbilt University; Nashville, TN 37232, USA,Department of Molecular Physiology and Biophysics, Vanderbilt University; Nashville, TN 37232, USA,Department of Pharmacology, Vanderbilt University; Nashville, TN, 37232, USA,Corresponding author. 1161 21st Avenue South * T4202-MCN Nashville, TN, 37232-2520, USA, (B.A. Grueter)
| |
Collapse
|
14
|
Kocamaz D, Franzke C, Gröger N, Braun K, Bock J. Early Life Stress-Induced Epigenetic Programming of Hippocampal NPY-Y2 Receptor Gene Expression Changes in Response to Adult Stress. Front Cell Neurosci 2022; 16:936979. [PMID: 35846564 PMCID: PMC9283903 DOI: 10.3389/fncel.2022.936979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early Life Stress (ELS) can critically influence brain development and future stress responses and thus represents an important risk factor for mental health and disease. Neuropeptide Y (NPY) is discussed to be a key mediator of resilient vs. vulnerable adaptations and specifically, the NPY-Y2 receptor (Y2R) may be involved in the pathophysiology of depression due to its negative regulation of NPY-release. The present study addressed the hypotheses that ELS and adult stress (AS) affect the expression of hippocampal Y2R and that exposure to ELS induces an epigenetically mediated programming effect towards a consecutive stress exposure in adulthood. The specific aims were to investigate if (i) ELS or AS as single stressors induce changes in Y2 receptor gene expression in the hippocampus, (ii) the predicted Y2R changes are epigenetically mediated via promoter-specific DNA-methylation, (iii) the ELS-induced epigenetic changes exert a programming effect on Y2R gene expression changes in response to AS, and finally (iv) if the predicted alterations are sex-specific. Animals were assigned to the following experimental groups: (1) non-stressed controls (CON), (2) only ELS exposure (ELS), (3) only adult stress exposure (CON+AS), and (4) exposure to ELS followed by AS (ELS+AS). Using repeated maternal separation in mice as an ELS and swim stress as an AS we found that both stressors affected Y2R gene expression in the hippocampus of male mice but not in females. Specifically, upregulated expression was found in the CON+AS group. In addition, exposure to both stressors ELS+AS significantly reduced Y2R gene expression when compared to CON+AS. The changes in Y2R expression were paralleled by altered DNA-methylation patterns at the Y2R promoter, specifically, a decrease in mean DNA-methylation in the CON+AS males compared to the non-AS exposed groups and an increase in the ELS+AS males compared to the CON+AS males. Also, a strong negative correlation of mean DNA-methylation with Y2R expression was found. Detailed CpG-site-specific analysis of DNA-methylation revealed that ELS induced increased DNA-methylation only at specific CpG-sites within the Y2R promoter. It is tempting to speculate that these ELS-induced CpG-site-specific changes represent a “buffering” programming effect against elevations of Y2R expression induced by AS.
Collapse
Affiliation(s)
- Derya Kocamaz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Caroline Franzke
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nicole Gröger
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Jörg Bock
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- PG “Epigenetics and Structural Plasticity,” Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Jörg Bock,
| |
Collapse
|
15
|
Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022]
Abstract
Independent from homeostatic needs, the consumption of foods originating from hyperpalatable diets is defined as hedonic eating. Hedonic eating can be observed in many forms of eating phenotypes, such as compulsive eating and stress-eating, heightening the risk of obesity development. For instance, stress can trigger the consumption of palatable foods as a type of coping strategy, which can become compulsive, particularly when developed as a habit. Although eating for pleasure is observed in multiple maladaptive eating behaviours, the current understanding of the neurobiology underlying hedonic eating remains deficient. Intriguingly, the combined orexigenic, anxiolytic and reward-seeking properties of Neuropeptide Y (NPY) ignited great interest and has positioned NPY as one of the core neuromodulators operating hedonic eating behaviours. While extensive literature exists exploring the homeostatic orexigenic and anxiolytic properties of NPY, the rewarding effects of NPY continue to be investigated. As deduced from a series of behavioural and molecular-based studies, NPY appears to motivate the consumption and enhancement of food-rewards. As a possible mechanism, NPY may modulate reward-associated monoaminergic pathways, such as the dopaminergic and serotoninergic neural networks, to modulate hedonic eating behaviours. Furthermore, potential direct and indirect NPYergic neurocircuitries connecting classical homeostatic and hedonic neuropathways may also exist involving the anti-reward centre the lateral habenula. Therefore, this review investigates the participation of NPY in orchestrating hedonic eating behaviours through the modulation of monoaminergic pathways.
Collapse
|
16
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
17
|
Domin H. Neuropeptide Y Y2 and Y5 receptors as potential targets for neuroprotective and antidepressant therapies: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110349. [PMID: 33991587 DOI: 10.1016/j.pnpbp.2021.110349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/22/2022]
Abstract
There is currently no effective treatment either for neurological illnesses (ischemia and neurodegenerative diseases) or psychiatric disorders (depression), in which the Glu/GABA balance is disturbed and accompanied by significant excitotoxicity. Therefore, the search for new and effective therapeutic strategies is imperative for these disorders. Studies conducted over the last several years indicate that the neuropeptide Y (NPY)-ergic system may be a potential therapeutic target for neuroprotective or antidepressant compounds. This review focuses on the neuroprotective roles of Y2 and Y5 receptors (YRs) in neurological disorders such as ischemia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and in psychiatric disorders such as depression. It summarizes current knowledge on the possible mechanisms underlying the neuroprotective or antidepressant-like actions of Y2R and Y5R ligands. The review also discusses ligands acting at Y2R and Y5R and their limitations as in vivo pharmacological tools. The results from the preclinical studies discussed here may be useful in developing effective therapeutic strategies to treat neurological diseases on the one hand and psychiatric disorders on the other, and may pave the way for the development of novel Y2R and Y5R ligands as candidate drugs for the treatment of these diseases.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Kraków, 12 Smętna Street, Poland.
| |
Collapse
|
18
|
Birdogan A, Salur E, Tuzcu F, Gokmen RC, Ozturk Bintepe M, Aypar B, Keser A, Balkan B, Koylu EO, Kanit L, Gozen O. Chronic oral nicotine administration and withdrawal regulate the expression of neuropeptide Y and its receptors in the mesocorticolimbic system. Neuropeptides 2021; 90:102184. [PMID: 34425507 DOI: 10.1016/j.npep.2021.102184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and its receptors are involved in the regulation of mood, stress, and anxiety. In parallel, NPY signaling may play a vital role in the negative affective state induced by drug withdrawal. This study examined the changes in the transcript levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system during chronic nicotine exposure and withdrawal. Rats were administered with nicotine (initial dose: 25 μg/ml, maintenance dose: 50 μg/ml, free base) in drinking water for 12 weeks. Control group received only tap water. In the final week of the study, some of the nicotine-treated animals continued to receive nicotine (0-W), whereas some were withdrawn for either 24 (24-W) or 48 (48-W) h. All animals were decapitated after the evaluation of somatic signs (frequency of gasps, eye blinks, ptosis, shakes, teeth chatter) and the duration of locomotor activity and immobility. mRNA levels of NPY, Y1, Y2, and Y5 receptors in the mesocorticolimbic system were measured by quantitative real-time PCR (qRT-PCR). Results showed that nicotine withdrawal increased overall somatic signs. Moreover, chronic nicotine treatment increased the duration of locomotor activity, whereas withdrawal increased the duration of immobility. qRT-PCR analysis revealed that chronic nicotine treatment increased NPY mRNA levels in the hippocampus. On the other hand, 24- and 48-h withdrawals increased NPY mRNA levels in the amygdala and medial prefrontal cortex (mPFC), Y1 and Y2 mRNA levels in the nucleus accumbens and mPFC, and Y5 mRNA levels in the mPFC. These findings suggest that nicotine withdrawal enhances NPY signaling in the mesocorticolimbic system, which could be an important mechanism involved in regulating the negative affective state triggered during nicotine withdrawal.
Collapse
Affiliation(s)
- Ali Birdogan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey
| | - Elif Salur
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey
| | - Fulya Tuzcu
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Ramazan C Gokmen
- Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | | | - Buket Aypar
- Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey
| | - Aysegul Keser
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Burcu Balkan
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Ersin O Koylu
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Lutfiye Kanit
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey
| | - Oguz Gozen
- Ege University, Institute of Health Sciences, Department of Physiology, Izmir, Turkey; Ege University, Institute of Health Sciences, Department of Neuroscience, Izmir, Turkey; Ege University, School of Medicine, Department of Physiology, Izmir, Turkey; Ege University, Center for Brain Research, Izmir, Turkey.
| |
Collapse
|
19
|
Méndez-Couz M, González-Pardo H, Arias JL, Conejo NM. Hippocampal neuropeptide Y 2 receptor blockade improves spatial memory retrieval and modulates limbic brain metabolism. Neurobiol Learn Mem 2021; 187:107561. [PMID: 34838984 DOI: 10.1016/j.nlm.2021.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The neuropeptide Y (NPY) is broadly distributed in the central nervous system (CNS), and it has been related to neuroprotective functions. NPY seems to be an important component to counteract brain damage and cognitive impairment mediated by drugs of abuse and neurodegenerative diseases, and both NPY and its Y2 receptor (Y2R) are highly expressed in the hippocampus, critical for learning and memory. We have recently demonstrated its influence on cognitive functions; however, the specific mechanism and involved brain regions where NPY modulates spatial memory by acting on Y2R remain unclear. METHODS Here, we examined the involvement of the hippocampal NPY Y2R in spatial memory and associated changes in brain metabolism by bilateral administration of the selective antagonist BIIE0246 into the rat dorsal hippocampus. To further evaluate the relationship between memory functions and neuronal activity, we analysed the regional expression of the mitochondrial enzyme cytochrome c oxidase (CCO) as an index of oxidative metabolic capacity in limbic and non-limbic brain regions. RESULTS The acute blockade of NPY Y2R significantly improved spatial memory recall in rats trained in the Morris water maze that matched metabolic activity changes in spatial memory processing regions. Specifically, CCO activity changes were found in the dentate gyrus of the dorsal hippocampus and CA1 subfield of the ventral hippocampus, the infralimbic region of the PFC and the mammillary bodies. CONCLUSIONS These findings suggest that the NPY hippocampal system, through its Y2R receptor, influences spatial memory recall (retrieval) and exerts control over patterns of brain activation that are relevant for associative learning, probably mediated by Y2R modulation of long-term potentiation and long-term depression.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Dept. Neurophysiology. Medical Faculty, Ruhr-University Bochum. Universitätsstraße, 150. Building MA 01/551, 44780 Bochum, Germany.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Pl. Feijoo s/n, 33003 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
20
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
21
|
Comeras LB, Hörmer N, Mohan Bethuraj P, Tasan RO. NPY Released From GABA Neurons of the Dentate Gyrus Specially Reduces Contextual Fear Without Affecting Cued or Trace Fear. Front Synaptic Neurosci 2021; 13:635726. [PMID: 34122036 PMCID: PMC8187774 DOI: 10.3389/fnsyn.2021.635726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/20/2021] [Indexed: 11/15/2022] Open
Abstract
Disproportionate, maladapted, and generalized fear are essential hallmarks of posttraumatic stress disorder (PTSD), which develops upon severe trauma in a subset of exposed individuals. Among the brain areas that are processing fear memories, the hippocampal formation exerts a central role linking emotional-affective with cognitive aspects. In the hippocampus, neuronal excitability is constrained by multiple GABAergic interneurons with highly specialized functions and an extensive repertoire of co-released neuromodulators. Neuropeptide Y (NPY) is one of these co-transmitters that significantly affects hippocampal signaling, with ample evidence supporting its fundamental role in emotional, cognitive, and metabolic circuitries. Here we investigated the role of NPY in relation to GABA, both released from the same interneurons of the dorsal dentate gyrus (DG), in different aspects of fear conditioning. We demonstrated that activation of dentate GABA neurons specifically during fear recall reduced cue-related as well as trace-related freezing behavior, whereas inhibition of the same neurons had no significant effects. Interestingly, concomitant overexpression of NPY in these neurons did not further modify fear recall, neither under baseline conditions nor upon chemogenetic stimulation. However, potentially increased co-release of NPY substantially reduced contextual fear, promoted extinction learning, and long-term suppression of fear in a foreground context–conditioning paradigm. Importantly, NPY in the dorsal DG was not only expressed in somatostatin neurons, but also in parvalbumin-positive basket cells and axoaxonic cells, indicating intense feedback and feedforward modulation of hippocampal signaling and precise curtailing of neuronal engrams. Thus, these findings suggest that co-release of NPY from specific interneuron populations of the dorsal DG modifies dedicated aspects of hippocampal processing by sharpening the activation of neural engrams and the consecutive fear response. Since inappropriate and generalized fear is the major impediment in the treatment of PTSD patients, the dentate NPY system may be a suitable access point to ameliorate PTSD symptoms and improve the inherent disease course.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Noa Hörmer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Ueda D, Yonemochi N, Kamata T, Kamei J, Waddington JL, Ikeda H. Neuropeptide Y and glutamatergic mechanisms in the amygdala and ventral hippocampus differentially mediate impaired social behavior in diabetic mice. Behav Brain Res 2021; 405:113195. [PMID: 33617904 DOI: 10.1016/j.bbr.2021.113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023]
Abstract
Though patients with diabetes mellitus are reported to show deficits in social interaction, the mechanisms of these impairments are unclear. The present study investigated the role of AMPA and neuropeptide Y (NPY) receptors in the ventral hippocampus (vHC) and basolateral amygdala (BLA) in the social behavior of diabetic mice. In the three-chamber test, streptozotocin (STZ)-induced diabetic mice showed impairment in social novelty preference, but not in sociability. Injection of the AMPA receptor antagonist NBQX into vHC or BLA each restored social novelty preference in STZ-induced diabetic mice. NPY content in amygdala, but not in vHC, of STZ-induced diabetic mice was increased relative to non-diabetic mice. In STZ-induced diabetic mice, injection of the NPY Y2 receptor antagonist BIIE 0246 into BLA restored social novelty preference, whereas injection of BIIE 0246 into vHC was without effect. Finally, in non-diabetic mice social novelty preference was impaired by the NPY Y2 receptor agonist NPY 13-36 injected into BLA and restored by co-injection of NBQX. These results indicate that in diabetic mice glutamatergic function is enhanced in both vHC and BLA, which impairs social novelty preference through AMPA receptors. In addition, they indicate that NPYergic function in BLA, but not vHC, is enhanced in diabetic mice, which impairs social novelty preference through NPY Y2 receptors.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomohiro Kamata
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 111 St Stephen's Green, Dublin 2, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
23
|
Cattaneo S, Verlengia G, Marino P, Simonato M, Bettegazzi B. NPY and Gene Therapy for Epilepsy: How, When,... and Y. Front Mol Neurosci 2021; 13:608001. [PMID: 33551745 PMCID: PMC7862707 DOI: 10.3389/fnmol.2020.608001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is a neuropeptide abundantly expressed in the mammalian central and peripheral nervous system. NPY is a pleiotropic molecule, which influences cell proliferation, cardiovascular and metabolic function, pain and neuronal excitability. In the central nervous system, NPY acts as a neuromodulator, affecting pathways that range from cellular (excitability, neurogenesis) to circuit level (food intake, stress response, pain perception). NPY has a broad repertoire of receptor subtypes, each activating specific signaling pathways in different tissues and cellular sub-regions. In the context of epilepsy, NPY is thought to act as an endogenous anticonvulsant that performs its action through Y2 and Y5 receptors. In fact, its overexpression in the brain with the aid of viral vectors can suppress seizures in animal models of epilepsy. Therefore, NPY-based gene therapy may represent a novel approach for the treatment of epilepsy patients, particularly for pharmaco-resistant and genetic forms of the disease. Nonetheless, considering all the aforementioned aspects of NPY signaling, the study of possible NPY applications as a therapeutic molecule is not devoid of critical aspects. The present review will summarize data related to NPY biology, focusing on its anti-epileptic effects, with a critical appraisal of key elements that could be exploited to improve the already existing NPY-based gene therapy approaches for epilepsy.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Verlengia
- San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Pietro Marino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy.,Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy.,San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Wang L, Yu CC, Li J, Tian Q, Du YJ. Mechanism of Action of Acupuncture in Obesity: A Perspective From the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:632324. [PMID: 33868169 PMCID: PMC8050351 DOI: 10.3389/fendo.2021.632324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is a prevalent metabolic disease caused by an imbalance in food intake and energy expenditure. Although acupuncture is widely used in the treatment of obesity in a clinical setting, its mechanism has not been adequately elucidated. As the key pivot of appetite signals, the hypothalamus receives afferent and efferent signals from the brainstem and peripheral tissue, leading to the formation of a complex appetite regulation circuit, thereby effectively regulating food intake and energy homeostasis. This review mainly discusses the relationship between the hypothalamic nuclei, related neuropeptides, brainstem, peripheral signals, and obesity, as well as mechanisms of acupuncture on obesity from the perspective of the hypothalamus, exploring the current evidence and therapeutic targets for mechanism of action of acupuncture in obesity.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yan-Jun Du,
| |
Collapse
|
25
|
Cheon M, Park H, Chung C. Protein kinase C mediates neuropeptide Y-induced reduction in inhibitory neurotransmission in the lateral habenula. Neuropharmacology 2020; 180:108295. [PMID: 32882226 DOI: 10.1016/j.neuropharm.2020.108295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is one of peptide neuromodulators, well known for orexigenic, anxiolytic and antidepressant effects. We previously reported that NPY decreases GABAergic transmission in the lateral habenula (LHb). In the current study, we aim to investigate the underlying signaling pathways that mediate inhibitory action of NPY in the LHb by employing whole-cell patch clamp recording with pharmacological interventions. Here, we revealed that Y1 receptors (Y1Rs) but not Y2Rs mediate NPY-induced decrease of GABAergic transmission in the LHb. Surprisingly, NPY-induced decrease of inhibitory transmission in the LHb was not dependent on adenylyl cyclase (AC)/protein kinase A (PKA)-dependent pathway as reported in other brain areas. Instead, pharmacological blockade of phospholipase C (PLC) or protein kinase C (PKC) activity abolished the decrease of GABAergic transmission by NPY in the LHb. Our findings suggest that Y1Rs in the LHb may trigger the activation of PLC/PKC-dependent pathway but not the classical AC/PKA-dependent pathway to decrease inhibitory transmission of the LHb.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
26
|
Méndez-Couz M, Manahan-Vaughan D, Silva AP, González-Pardo H, Arias JL, Conejo NM. Metaplastic contribution of neuropeptide Y receptors to spatial memory acquisition. Behav Brain Res 2020; 396:112864. [PMID: 32827566 DOI: 10.1016/j.bbr.2020.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is highly abundant in the brain and is released as a co-transmitter with plasticity-related neurotransmitters such as glutamate, GABA and noradrenaline. Functionally, its release is associated with appetite, anxiety, and stress regulation. NPY acting on Y2 receptors (Y2R), facilitates fear extinction, suggesting a role in associative memory. Here, we explored to what extent NPY action at Y2R contributes to hippocampus-dependent spatial memory and found that dorsal intrahippocampal receptor antagonism improved spatial reference memory acquired in a water maze in rats, without affecting anxiety levels, or spontaneous motor activity. Water maze training resulted in an increase of Y2R, but not Y1R expression in the hippocampus. By contrast, in the prefrontal cortex there was a decrease in Y2R, and an increase of Y1R expression. Our results indicate that neuropeptide Y2R are significantly involved in hippocampus-dependent spatial memory and that receptor expression is dynamically regulated by this learning experience. Effects are consistent with a metaplastic contribution of NPY receptors to cumulative spatial learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain; Ruhr University Bochum, Medical Faculty, Dept. Neurophysiology, Bochum, Germany.
| | | | - Ana Paula Silva
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Jorge Luis Arias
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Spain
| |
Collapse
|
27
|
Neuropeptide Y Expression Defines a Novel Class of GABAergic Projection Neuron in the Inferior Colliculus. J Neurosci 2020; 40:4685-4699. [PMID: 32376782 DOI: 10.1523/jneurosci.0420-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice of both sexes, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphologic reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcre and Ai14 Cre-reporter mice, we found that NPY Y1 receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostrocaudal extent of the IC. In whole-cell recordings, application of a high-affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.SIGNIFICANCE STATEMENT The identification of neuron types is a fundamental question in neuroscience. In the inferior colliculus (IC), the hub of the central auditory pathway, molecular markers for distinct classes of inhibitory neurons have remained unknown. We found that neuropeptide Y (NPY) expression identifies a class of GABAergic principal neurons that constitute one-third of the inhibitory neurons in the IC. NPY neurons fire spontaneously, have a stellate morphology, and project to the auditory thalamus. Additionally, we found that NPY signaling hyperpolarized the membrane potential of a subset of excitatory IC neurons that express the NPY Y1 receptor. Thus, NPY neurons are a novel class of inhibitory neurons that use GABA and NPY signaling to regulate activity in the IC and auditory thalamus.
Collapse
|
28
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
29
|
Bello NT, Yeh CY, James MH. Reduced Sensory-Evoked Locus Coeruleus-Norepinephrine Neural Activity in Female Rats With a History of Dietary-Induced Binge Eating. Front Psychol 2019; 10:1966. [PMID: 31551861 PMCID: PMC6737582 DOI: 10.3389/fpsyg.2019.01966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022] Open
Abstract
Noradrenergic pathways have been implicated in eating pathologies. These experiments sought to examine how dietary-induced binge eating influences the neuronal activity of the locus coeruleus (LC)-norepinephrine (NE) system. Young adult female Sprague Dawley rats (7-8 weeks old) were exposed to a repeated intermittent (twice weekly) cycle of 30-min access to a highly palatable sweetened fat (i.e., vegetable shortening with 10% sucrose) with or without intermittent (24 h) calorie restriction (Restrict Binge or Binge groups, respectively). Age- and weight-matched female control rats were exposed to standard chow feeding (Naive group) or intermittent chow feeding (Restrict group). The Binge and Restrict Binge groups demonstrated an escalation in sweet-fat food intake after 2.5 weeks. On week 3, in vivo single-unit LC electrophysiological activity was recorded under isoflurane anesthesia. Restrict Binge (20 cells from six rats) and Binge (27 cells from six rats) had significantly reduced (approximate 20% and 26%, respectively) evoked LC discharge rates compared with naive rats (22 cells, seven rats). Spontaneous and tonic discharge rates were not different among the groups. Signal-to-noise ratio was reduced in the groups with intermittent sweetened fat exposure. In order to investigate the neuropeptide alterations as a consequence of dietary binge eating, relative gene expression of neuropeptide Y (NPY), glucagon-like peptide 1 receptor (GLP-1r), prodynorphin, and related genes were measured in LC and hypothalamic arcuate (Arc) regions. Glp-1r, Npy2r, and Pdyn in LC region were reduced with repeated intermittent restriction. Npy1r was reduced by approximately 27% in ARC of Restrict compared with Naive group. Such data indicate that dietary-induced binge eating alters the neural response of LC neurons to sensory stimuli and dampens the neural stress response.
Collapse
Affiliation(s)
- Nicholas T. Bello
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Chung-Yang Yeh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Morgan H. James
- Rutgers Brain Health Institute, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ, United States
- Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
30
|
Cheon M, Park H, Rhim H, Chung C. Actions of Neuropeptide Y on Synaptic Transmission in the Lateral Habenula. Neuroscience 2019; 410:183-190. [PMID: 31082535 DOI: 10.1016/j.neuroscience.2019.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y is a peptide neuromodulator with protective roles including anxiolytic and antidepressant-like effects in animal models of depression and post-traumatic stress disorder. The lateral habenula (LHb) is a brain region that encodes aversive information and is closely related with mood disorders. Although LHb neurons express NPY receptors, the physiological roles of NPY in this region remain uninvestigated. In this study, we examined the actions of NPY on synaptic transmission in the LHb using whole cell patch clamp recording. We observed that NPY inhibited excitatory neurotransmission in a subset of LHb neurons whereas potentiating in a small population of neurons. Inhibitory transmission remained unchanged by NPY application in a subset of neurons but was reduced in the majority of LHb neurons recorded. The overall outcome of NPY application was a decrease in the spontaneous firing rate of the LHb, leading to hypoactivation of the LHb. Our observations indicate that although NPY has divergent effects on excitatory and inhibitory transmission, NPY receptor activation decreases LHb activity, suggesting that the LHb may partly mediate the protective roles of NPY in the central nervous system.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Hyewon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 139-791, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea.
| |
Collapse
|
31
|
NPY Receptor 2 Mediates NPY Antidepressant Effect in the mPFC of LPS Rat by Suppressing NLRP3 Signaling Pathway. Mediators Inflamm 2019; 2019:7898095. [PMID: 31736656 PMCID: PMC6815592 DOI: 10.1155/2019/7898095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/28/2019] [Indexed: 01/13/2023] Open
Abstract
Accumulated evidences show that neuroinflammation play a pivotal role in the pathogenesis of depression. Neuropeptide Y (NPY) and its receptors have been demonstrated to have anti-inflammative as well as antidepressant effects. In the present study, the ability of NPY to modulate depressive-like behaviors induced by lipopolysaccharides (LPS) in rats and the receptors and signaling mechanisms involved were investigated. Continuous injection LPS (i.p) for 4 days led to development of depressive-like behaviors in rats, accompanied with M1-type microglia activation and increased levels of IL-1β as well as decreased levels of NPY and Y2R expression in the mPFC selectively. Local injection of NPY into the medial prefrontal cortex (mPFC) ameliorated the depression-like behaviors and suppressed the NLRP3 inflammasome signaling pathway. Y2R agonist PYY (3-36) mimicked and Y2R antagonist BIIE0246 abolished the NPY effects in the mPFC. All these results suggest that NPY and Y2R in the mPFC are involved in the pathophysiology of depression and NPY plays an antidepressant role in the mPFC mainly via Y2R, which suppresses the NLRP3 signaling pathway, in LPS-induced depression model rats.
Collapse
|
32
|
NPY 2 Receptors Reduce Tonic Action Potential-Independent GABA B Currents in the Basolateral Amygdala. J Neurosci 2019; 39:4909-4930. [PMID: 30971438 DOI: 10.1523/jneurosci.2226-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Although NPY has potent anxiolytic actions within the BLA, selective activation of BLA NPY Y2 receptors (Y2Rs) acutely increases anxiety by an unknown mechanism. Using ex vivo male rat brain slice electrophysiology, we show that the selective Y2R agonist, [ahx5-24]NPY, reduced the frequency of GABAA-mediated mIPSCs in BLA principal neurons (PNs). [ahx5-24]NPY also reduced tonic activation of GABAB receptors (GABABR), which increased PN excitability through inhibition of a tonic, inwardly rectifying potassium current (KIR ). Surprisingly, Y2R-sensitive GABABR currents were action potential-independent, persisting after treatment with TTX. Additionally, the Ca2+-dependent, slow afterhyperpolarizing K+ current (IsAHP ) was enhanced in approximately half of the Y2R-sensitive PNs, possibly from enhanced Ca2+ influx, permitted by reduced GABABR tone. In male and female mice expressing tdTomato in Y2R-mRNA cells (tdT-Y2R mice), immunohistochemistry revealed that BLA somatostatin interneurons express Y2Rs, as do a significant subset of BLA PNs. In tdT-Y2R mice, [ahx5-24]NPY increased excitability and suppressed the KIR in nearly all BLA PNs independent of tdT-Y2R fluorescence, consistent with presynaptic Y2Rs on somatostatin interneurons mediating the above effects. However, only tdT-Y2R-expressing PNs responded to [ahx5-24]NPY with an enhancement of the IsAHP Ultimately, increased PN excitability via acute Y2R activation likely correlates with enhanced BLA output, consistent with reported Y2R-mediated anxiogenesis. Furthermore, we demonstrate the following: (1) a novel mechanism whereby activity-independent GABA release can powerfully dampen BLA neuronal excitability via postsynaptic GABABRs; and (2) that this tonic inhibition can be interrupted by neuromodulation, here by NPY via Y2Rs.SIGNIFICANCE STATEMENT Within the BLA, NPY is potently anxiolytic. However, selective activation of NPY2 receptors (Y2Rs) increases anxiety by an unknown mechanism. We show that activation of BLA Y2Rs decreases tonic GABA release onto BLA principal neurons, probably from Y2R-expressing somatostatin interneurons, some of which coexpress NPY. This increases principal neuron excitability by reducing GABAB receptor (GABABR)-mediated activation of G-protein-coupled, inwardly rectifying K+ currents. Tonic, Y2R-sensitive GABABR currents unexpectedly persisted in the absence of action potential firing, revealing, to our knowledge, the first report of substantial, activity-independent GABABR activation. Ultimately, we provide a plausible explanation for Y2R-mediated anxiogenesis in vivo and describe a novel and modulatable means of damping neuronal excitability.
Collapse
|
33
|
Huston NJ, Brenner LA, Taylor ZC, Ritter RC. NPY2 receptor activation in the dorsal vagal complex increases food intake and attenuates CCK-induced satiation in male rats. Am J Physiol Regul Integr Comp Physiol 2019; 316:R406-R416. [PMID: 30726118 DOI: 10.1152/ajpregu.00011.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuropeptide Y (NPY), peptide YY (PYY), and their cognate receptors (YR) are expressed by subpopulations of central and peripheral nervous system neurons. Intracerebroventricular injections of NPY or PYY increase food intake, and intrahypothalamic NPY1 or NPY5 receptor agonist injections also increase food intake. In contrast, injection of PYY in the periphery reduces food intake, apparently by activating peripheral Y2R. The dorsal vagal complex (DVC) of the hindbrain is the site where vagal afferents relay gut satiation signals to the brain. While contributions of the DVC are increasingly investigated, a role for DVC YR in control of food intake has not been examined systematically. We used in situ hybridization to confirm expression of Y1R and Y2R, but not Y5R, in the DVC and vagal afferent neurons. We found that nanoinjections of a Y2R agonist, PYY-(3-36), into the DVC significantly increased food intake over a 4-h period in satiated male rats. PYY-(3-36)-evoked food intake was prevented by injection of a selective Y2R antagonist. Injection of a Y1R/Y5R-preferring agonist into the DVC failed to increase food intake at doses reported to increase food intake following hypothalamic injection. Finally, injection of PYY-(3-36) into the DVC prevented reduction of 30-min food intake following intraperitoneal injection of cholecystokinin (CCK). Our results indicate that activation of DVC Y2R, unlike hypothalamic or peripheral Y2R, increases food intake. Furthermore, in the context of available electrophysiological observations, our results are consistent with the hypothesis that DVC Y2R control food intake by dampening vagally mediated satiation signals in the DVC.
Collapse
Affiliation(s)
- Nathaneal J Huston
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Lynne A Brenner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Zachary C Taylor
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Robert C Ritter
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
34
|
Kjaergaard M, Salinas CBG, Rehfeld JF, Secher A, Raun K, Wulff BS. PYY(3-36) and exendin-4 reduce food intake and activate neuronal circuits in a synergistic manner in mice. Neuropeptides 2019; 73:89-95. [PMID: 30471778 DOI: 10.1016/j.npep.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
Abstract
Peptide YY(3-36) ((PYY(3-36)) and glucagon like peptide 1 (GLP-1) in combination reduce food intake and body weight in an additive or synergistic manner in animal models and in humans. Nevertheless, the mechanisms behind are not completely understood. The present study aims to investigate the effect of combining PYY(3-36) and the GLP-1 receptor agonist exendin-4 (Ex4) by examining acute food intake and global neuronal activation as measured by c-fos in C57BL/6 J mice. An additive reduction in food intake was found 1.5 h after s.c dosing with the combination of PYY(3-36) (200 μg/kg) and Ex4 (2.5 μg/kg). This was associated with a synergistic enhancement of c-fos reactivity in central amygdalar nucleus (CeA), rostral part of the mediobasal arcuate nucleus (ARH), supratrigeminal nucleus (SUT), lateral parabrachial nucleus (PB), area postrema (AP) and nucleus tractus solitarius (NTS) compared to vehicle, PYY(3-36) and Ex4 individually dosed mice. The regions activated by Ex4 individually and PYY(3-36) and Ex4 in combination resembled each other, but the combination group had a significantly stronger c-fos response. Twenty-five brain areas were activated by PYY(3-36) and Ex4 in combination compared to vehicle versus nine brain areas by Ex4 individually. No significant increase in c-fos reactivity was found by PYY(3-36) compared to vehicle dosed mice. The neuronal activation of ARH and the AP/NTS to PB to CeA pathway is important for appetite regulation while SUT has not previously been reported in the regulation of energy balance. As PYY(3-36) and Ex4 act on different neurons leading to recruitment of different signalling pathways within and to the brain, an interaction of these pathways may contribute to their additive/synergistic action. Thus, PYY(3-36) boosts the effect of Ex4 possibly by inducing less inhibition of neuronal activity leading to an enhanced neuronal activity induced by Ex4.
Collapse
Affiliation(s)
- Marina Kjaergaard
- Histology and Imaging, Novo Nordisk A/S, 2760 Måløv, Denmark.; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark..
| | | | - Jens F Rehfeld
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anna Secher
- Histology and Imaging, Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Kirsten Raun
- Obesity Research, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | |
Collapse
|
35
|
Hippocampal NPY Y2 receptors modulate memory depending on emotional valence and time. Neuropharmacology 2018; 143:20-28. [DOI: 10.1016/j.neuropharm.2018.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
|
36
|
Cork SC. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J Neuroendocrinol 2018; 30:e12643. [PMID: 30203877 DOI: 10.1111/jne.12643] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
The communication between the gut and the brain is important for the control of energy homeostasis. In response to food intake, enteroendocrine cells secrete gut hormones, which ultimately suppress appetite through centrally-mediated processes. Increasing evidence implicates the vagus nerve as an important conduit in transmitting these signals from the gastrointestinal tract to the brain. Studies have demonstrated that many of the gut hormones secreted from enteroendocrine cells signal through the vagus nerve, and the sensitivity of the vagus to these signals is regulated by feeding status. Furthermore, evidence suggests that a reduction in the ability of the vagus nerve to respond to the switch between a "fasted" and "fed" state, retaining sensitivity to orexigenic signals when fed or a reduced ability to respond to satiety hormones, may contribute to obesity. This review draws together the evidence that the vagus nerve is a crucial component of appetite regulation via the gut-brain axis, with a particular emphasis on experimental techniques and future developments.
Collapse
Affiliation(s)
- Simon C Cork
- Section of Endocrinology and Investigative Medicine, Division of Endocrinology, Diabetes and Metabolism, Imperial College London, London, UK
| |
Collapse
|
37
|
Theisen CC, Reyes BA, Sabban E, Van Bockstaele EJ. Ultrastructural Characterization of Corticotropin-Releasing Factor and Neuropeptide Y in the Rat Locus Coeruleus: Anatomical Evidence for Putative Interactions. Neuroscience 2018; 384:21-40. [DOI: 10.1016/j.neuroscience.2018.04.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
|
38
|
Peptide YY Causes Apathy-Like Behavior via the Dopamine D2 Receptor in Repeated Water-Immersed Mice. Mol Neurobiol 2018; 55:7555-7566. [PMID: 29429048 PMCID: PMC6096978 DOI: 10.1007/s12035-018-0931-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Apathy is observed across several neurological and psychiatric conditions; however, its pathogenesis remains unclear. We clarified the involvement of brain–gut signaling in the disruption of goal-directed behavior. Male C57BL/6J mice were exposed to water immersion (WI) stress for 3 days. Food intake and nesting behavior were measured as indexes of motivation. Repeated WI caused decrease in food intake and nesting behavior. Plasma levels of peptide YY (PYY), IL-6, and ratio of dopamine metabolites in the striatum were significantly elevated after WI. PYY and IL-6 administration significantly decreased nesting behavior. The reductions in feeding and nesting behavior were blocked by PYY receptor (Y2R) antagonist or dopamine agonist. The ameliorative effect of the Y2R antagonist was diminished by the dopamine D2 receptor (D2R) antagonist. The reduction in goal-directed behavior is associated with dysfunction of D2R signaling via increased peripheral PYY, suggesting that PYY antagonism is a novel candidate for decline of motivation in several depressive diseases.
Collapse
|
39
|
Hansen MG, Ledri LN, Kirik D, Kokaia M, Ledri M. Preserved Function of Afferent Parvalbumin-Positive Perisomatic Inhibitory Synapses of Dentate Granule Cells in Rapidly Kindled Mice. Front Cell Neurosci 2018; 11:433. [PMID: 29375319 PMCID: PMC5767181 DOI: 10.3389/fncel.2017.00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin- (PV-) containing basket cells constitute perisomatic GABAergic inhibitory interneurons innervating principal cells at perisomatic area, a strategic location that allows them to efficiently control the output and synchronize oscillatory activity at gamma frequency (30–90 Hz) oscillations. This oscillatory activity can convert into higher frequency epileptiform activity, and therefore could play an important role in the generation of seizures. However, the role of endogenous modulators of seizure activity, such as Neuropeptide Y (NPY), has not been fully explored in at PV input and output synapses. Here, using selective optogenetic activation of PV cells in the hippocampus, we show that seizures, induced by rapid kindling (RK) stimulations, enhance gamma-aminobutyric acid (GABA) release from PV cells onto dentate gyrus (DG) granule cells (GC). However, PV-GC synapses did not differ between controls and kindled animals in terms of GABA release probability, short-term plasticity and sensitivity to NPY. Kinetics of gamma-aminobutyric acid A (GABA-A) mediated currents in postsynaptic GC were also unaffected. When challenged by repetitive high-frequency optogenetic stimulations, PV synapses in kindled animals responded with enhanced GABA release onto GC. These results unveil a mechanism that might possibly contribute to the generation of abnormal synchrony and maintenance of epileptic seizures.
Collapse
Affiliation(s)
- Marita G Hansen
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Litsa N Ledri
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain. Best Pract Res Clin Endocrinol Metab 2017; 31:561-571. [PMID: 29224668 DOI: 10.1016/j.beem.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food intake and sleep are two mutually exclusive behaviors and both are normally confined to opposing phases of the diurnal cycle. The temporal coordination of behavior and physiology along the 24-h day-night cycle is organized by a network of circadian clocks that orchestrate transcriptional programs controlling cellular physiology. Many of the peptide hormones of the gastrointestinal tract are not only secreted in a circadian fashion, they can also affect circadian clock function in peripheral metabolic tissues and the brain, thus providing metabolic feedback to metabolic and neurobehavioral circuits. In this review, we summarize the current knowledge on this gastrointestinal peptide crosstalk and its potential role in the coordination of nutrition and the maintenance of metabolic homeostasis.
Collapse
Affiliation(s)
- Dominic Landgraf
- Department of Psychiatry, Ludwig Maximilian University of Munich, Germany
| | - Anne-Marie Neumann
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany.
| |
Collapse
|
41
|
Abstract
UNLABELLED Obesity and its related complications remain a major threat to public health. Efforts to reduce the prevalence of obesity are of paramount importance in improving population health. Through these efforts, our appreciation of the role of gut-derived hormones in the management of body weight has evolved and manipulation of this system serves as the basis for our most effective obesity interventions. PURPOSE OF THE REVIEW We review current understanding of the enteroendocrine regulation of food intake and body weight, focusing on therapies that have successfully embraced the physiology of this system to enable weight loss. RECENT FINDINGS In addition to the role of gut hormones in the regulation of energy homeostasis, our understanding of the potential influence of enteroendocrine peptides in food reward pathways is evolving. So too is the role of gut derived hormones on energy expenditure. Gut-derived hormones have the ability to alter feeding behavior. Certain obesity therapies already manipulate this system; however, our evolving understanding of the effects of enteroendocrine signals on hedonic aspects of feeding and energy expenditure may be crucial in identifying future obesity therapies.
Collapse
|
42
|
Rosholm KR, Leijnse N, Mantsiou A, Tkach V, Pedersen SL, Wirth VF, Oddershede LB, Jensen KJ, Martinez KL, Hatzakis NS, Bendix PM, Callan-Jones A, Stamou D. Membrane curvature regulates ligand-specific membrane sorting of GPCRs in living cells. Nat Chem Biol 2017; 13:724-729. [DOI: 10.1038/nchembio.2372] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/02/2017] [Indexed: 11/09/2022]
|
43
|
Dum E, Fürtinger S, Gasser E, Bukovac A, Drexel M, Tasan R, Sperk G. Effective G-protein coupling of Y2 receptors along axonal fiber tracts and its relevance for epilepsy. Neuropeptides 2017; 61:49-55. [PMID: 27847128 DOI: 10.1016/j.npep.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 01/11/2023]
Abstract
Neuropeptide Y (NPY)-Y2 receptors are G-protein coupled receptors and, upon activation, induce opening of potassium channels or closing of calcium channels. They are generally presynaptically located. Depending on the neuron in which they are expressed they mediate inhibition of release of NPY and of the neuron's classical transmitter GABA, glutamate or noradrenaline, respectively. Here we provide evidence that Y2 receptor binding is inhibited dose-dependently by GTPγS along Schaffer collaterals, the stria terminalis and the fimbria indicating that Y2 receptors are functionally coupled to G-proteins along these fiber tracts. Double immune fluorescence revealed coexistence of Y2-immunoreactivity with β-tubulin, a marker for axons in the stria terminalis, but not with synaptophysin labeling presynaptic terminals, supporting the localization of Y2 receptors along axonal tracts. After kainic acid-induced seizures in rats, GTPγS-induced inhibition of Y2 receptor binding is facilitated in the Schaffer collaterals but not in the stria terminalis. Our data indicate that Y2 receptors are not only located at nerve terminals but also along fiber tracts and are there functionally coupled to G-proteins.
Collapse
Affiliation(s)
- Elisabeth Dum
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | - Sabine Fürtinger
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| | - Elisabeth Gasser
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Anneliese Bukovac
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Meinrad Drexel
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Ramon Tasan
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria
| | - Günther Sperk
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, 6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
45
|
Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:321-9. [PMID: 25689818 PMCID: PMC4537397 DOI: 10.1016/j.pnpbp.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022]
Abstract
The hypothalamus is now known to regulate alcohol intake in addition to its established role in food intake, in part through neuromodulatory neurochemicals termed neuropeptides. Certain orexigenic neuropeptides act in the hypothalamus to promote alcohol drinking, although they affect different aspects of the drinking response. These neuropeptides, which include galanin, the endogenous opioid enkephalin, and orexin/hypocretin, appear to stimulate alcohol intake not only through mechanisms that promote food intake but also by enhancing reward and reinforcement from alcohol. Moreover, these neuropeptides participate in a positive feedback relationship with alcohol, whereby they are upregulated by alcohol intake to promote even further consumption. They contrast with other orexigenic neuropeptides, such as melanin-concentrating hormone and neuropeptide Y, which promote alcohol intake under limited circumstances, are not consistently stimulated by alcohol, and do not enhance reward. They also contrast with neuropeptides that can be anorexigenic, including the endogenous opioid dynorphin, corticotropin-releasing factor, and melanocortins, which act in the hypothalamus to inhibit alcohol drinking as well as reward and therefore counter the ingestive drive promoted by orexigenic neuropeptides. Thus, while multiple hypothalamic neuropeptides may work together to regulate different aspects of the alcohol drinking response, excessive signaling from orexigenic neuropeptides or inadequate signaling from anorexigenic neuropeptides can therefore allow alcohol drinking to become dysregulated.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA
,Corresponding author at: Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, Box 278, New York, NY, 10065 USA. Tel.: +1 212 327 8378; fax: +1 212 327 8447
| |
Collapse
|
46
|
Zhang MD, Barde S, Szodorai E, Josephson A, Mitsios N, Watanabe M, Attems J, Lubec G, Kovács GG, Uhlén M, Mulder J, Harkany T, Hökfelt T. Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Struct Funct 2016; 221:3803-23. [DOI: 10.1007/s00429-016-1191-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
|
47
|
Tasan RO, Verma D, Wood J, Lach G, Hörmer B, de Lima TCM, Herzog H, Sperk G. The role of Neuropeptide Y in fear conditioning and extinction. Neuropeptides 2016; 55:111-26. [PMID: 26444585 DOI: 10.1016/j.npep.2015.09.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 12/23/2022]
Abstract
While anxiety disorders are the brain disorders with the highest prevalence and constitute a major burden for society, a considerable number of affected people are still treated insufficiently. Thus, in an attempt to identify potential new anxiolytic drug targets, neuropeptides have gained considerable attention in recent years. Compared to classical neurotransmitters they often have a regionally restricted distribution and may bind to several distinct receptor subtypes. Neuropeptide Y (NPY) is a highly conserved neuropeptide that is specifically concentrated in limbic brain areas and signals via at least 5 different G-protein-coupled receptors. It is involved in a variety of physiological processes including the modulation of emotional-affective behaviors. An anxiolytic and stress-reducing property of NPY is supported by many preclinical studies. Whether NPY may also interact with processing of learned fear and fear extinction is comparatively unknown. However, this has considerable relevance since pathological, inappropriate and generalized fear expression and impaired fear extinction are hallmarks of human post-traumatic stress disorder and a major reason for its treatment-resistance. Recent evidence from different laboratories emphasizes a fear-reducing role of NPY, predominantly mediated by exogenous NPY acting on Y1 receptors. Since a reduction of fear expression was also observed in Y1 receptor knockout mice, other Y receptors may be equally important. By acting on Y2 receptors, NPY promotes fear extinction and generates a long-term suppression of fear, two important preconditions that could support cognitive behavioral therapies in human patients. A similar effect has been demonstrated for the closely related pancreatic polypeptide (PP) when acting on Y4 receptors. Preliminary evidence suggests that NPY modulates fear in particular by activation of Y1 and Y2 receptors in the basolateral and central amygdala, respectively. In the basolateral amygdala, NPY signaling activates inhibitory G protein-coupled inwardly-rectifying potassium channels or suppresses hyperpolarization-induced I(h) currents in a Y1 receptor-dependent fashion, favoring a general suppression of neuronal activity. A more complex situation has been described for the central extended amygdala, where NPY reduces the frequency of inhibitory and excitatory postsynaptic currents. In particular the inhibition of long-range central amygdala output neurons may result in a Y2 receptor-dependent suppression of fear. The role of NPY in processes of learned fear and fear extinction is, however, only beginning to emerge, and multiple questions regarding the relevance of endogenous NPY and different receptor subtypes remain elusive. Y2 receptors may be of particular interest for future studies, since they are the most prominent Y receptor subtype in the human brain and thus among the most promising therapeutic drug targets when translating preclinical evidence to potential new therapies for human anxiety disorders.
Collapse
Affiliation(s)
- R O Tasan
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - D Verma
- Institute of Physiology I, University of Münster, D-48149 Münster, Germany
| | - J Wood
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; Capes Foundation, Ministry of Education of Brazil, 70040-020 Brasília/DF, Brazil
| | - B Hörmer
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - T C M de Lima
- Department of Pharmacology, Federal University of Santa Catarina, 88049-970 Florianópolis, Brazil
| | - H Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
48
|
Wagner L, Wolf R, Zeitschel U, Rossner S, Petersén Å, Leavitt BR, Kästner F, Rothermundt M, Gärtner UT, Gündel D, Schlenzig D, Frerker N, Schade J, Manhart S, Rahfeld JU, Demuth HU, von Hörsten S. Proteolytic degradation of neuropeptide Y (NPY) from head to toe: Identification of novel NPY-cleaving peptidases and potential drug interactions in CNS and Periphery. J Neurochem 2015; 135:1019-37. [PMID: 26442809 DOI: 10.1111/jnc.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application. The bioactivity of neuropeptide Y (NPY) is either N-terminally modulated with respect to receptor selectivity by dipeptidyl peptidase 4 (DP4)-like enzymes or proteolytic degraded by neprilysin or meprins, thereby abrogating signal transduction. However, neither the subcellular nor the compartmental differentiation of these regulatory mechanisms is fully understood. Using mass spectrometry, selective inhibitors and histochemistry, studies across various cell types, body fluids, and tissues revealed that most frequently DP4-like enzymes, aminopeptidases P, secreted meprin-A (Mep-A), and cathepsin D (CTSD) rapidly hydrolyze NPY, depending on the cell type and tissue under study. Novel degradation of NPY by cathepsins B, D, L, G, S, and tissue kallikrein could also be identified. The expression of DP4, CTSD, and Mep-A at the median eminence indicates that the bioactivity of NPY is regulated by peptidases at the interphase between the periphery and the CNS. Detailed ex vivo studies on human sera and CSF samples recognized CTSD as the major NPY-cleaving enzyme in the CSF, whereas an additional C-terminal truncation by angiotensin-converting enzyme could be detected in serum. The latter finding hints to potential drug interaction between antidiabetic DP4 inhibitors and anti-hypertensive angiotensin-converting enzyme inhibitors, while it ablates suspected hypertensive side effects of only antidiabetic DP4-inhibitors application.
Collapse
Affiliation(s)
- Leona Wagner
- Deutschsprachige Selbsthilfegruppe für Alkaptonurie (DSAKU) e.V., Stuttgart, Germany.,Probiodrug AG, Halle, Germany.,Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Ulrike Zeitschel
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Steffen Rossner
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Lund University, Lund, Sweden
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, BC, Canada
| | - Florian Kästner
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - Matthias Rothermundt
- Department of Psychiatry, University of Muenster, Muenster, Germany.,St. Rochus-Hospital Telgte, Telgte, Germany
| | | | - Daniel Gündel
- Julius Bernstein Institute for Physiology, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Dagmar Schlenzig
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Nadine Frerker
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jutta Schade
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Jens-Ulrich Rahfeld
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer-Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
49
|
Alhadeff AL, Golub D, Hayes MR, Grill HJ. Peptide YY signaling in the lateral parabrachial nucleus increases food intake through the Y1 receptor. Am J Physiol Endocrinol Metab 2015; 309:E759-66. [PMID: 26330345 PMCID: PMC4609877 DOI: 10.1152/ajpendo.00346.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/26/2015] [Indexed: 11/22/2022]
Abstract
Although central PYY delivery potently increases food intake, the sites of action and mechanisms mediating these hyperphagic effects are not fully understood. The present studies investigate the contribution of lateral parabrachial nucleus (lPBN) PYY-Y receptor signaling to food intake control, as lPBN neurons express Y receptors and receive PYY fibers and are known to integrate circulating and visceral sensory signals to regulate energy balance. Immunohistochemical results identified a subpopulation of gigantocellular reticular nucleus PYY-producing neurons that project monosynaptically to the lPBN, providing an endogenous source of PYY to the lPBN. lPBN microinjection of PYY-(1-36) or PYY-(3-36) markedly increased food intake by increasing meal size. To determine which receptors mediate these behavioral results, we first performed quantitative real-time PCR to examine the relative levels of Y receptor expression in lPBN tissue. Gene expression analyses revealed that, while Y1, Y2, and Y5 receptors are each expressed in lPBN tissue, Y1 receptor mRNA is expressed at fivefold higher levels than the others. Furthermore, behavioral/pharmacological results demonstrated that the hyperphagic effects of PYY-(3-36) were eliminated by lPBN pretreatment with a selective Y1 receptor antagonist. Together, these results highlight the lPBN as a novel site of action for the intake-stimulatory effects of central PYY-Y1 receptor signaling.
Collapse
Affiliation(s)
- Amber L Alhadeff
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Danielle Golub
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harvey J Grill
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
50
|
Wood J, Verma D, Lach G, Bonaventure P, Herzog H, Sperk G, Tasan RO. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Struct Funct 2015; 221:3373-91. [PMID: 26365505 PMCID: PMC4696156 DOI: 10.1007/s00429-015-1107-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022]
Abstract
The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.
Collapse
Affiliation(s)
- J Wood
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - D Verma
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Institute of Physiology I (Neurophysiology), Westfälische Wilhelms-Universität, Munster, Germany
| | - G Lach
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.,Capes Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - P Bonaventure
- Janssen Research & Development, LLC, San Diego, CA, USA
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
| | - G Sperk
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - R O Tasan
- Department of Pharmacology, Medical University Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria.
| |
Collapse
|