1
|
Amaya JM, Sips HCM, Viho EMG, Kroon J, Meijer OC. Restricted effects of androgens on glucocorticoid signaling in the mouse prefrontal cortex and midbrain. Front Endocrinol (Lausanne) 2024; 14:1292024. [PMID: 38303978 PMCID: PMC10830692 DOI: 10.3389/fendo.2023.1292024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Glucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid treatment in white and brown adipocytes and in the liver. In the brain, we observed that chronic hypercorticism induced changes in gene expression that tended to be more pronounced in male mice. In the present study, we investigated if glucocorticoid signaling in the brain could be modulated by androgen. After chronic treatment with corticosterone, dihydrotestosterone, a combination of both, and corticosterone in combination with the AR antagonist enzalutamide, we compared the expression of glucocorticoid receptor (NR3C1, also abbreviated GR) target genes in brain regions where AR and GR are co-expressed, namely: prefrontal cortex, hypothalamus, hippocampus, ventral tegmental area and substantia nigra. We observed that androgen affected glucocorticoid signaling only in the prefrontal cortex and the substantia nigra. Dihydrotestosterone and corticosterone independently and inversely regulated expression of Sgk1 and Tsc22d3 in prefrontal cortex. AR antagonism with enzalutamide attenuated corticosterone-induced expression of Fkbp5 in the prefrontal cortex and of Fkbp5 and Sgk1 in the substantia nigra. Additionally, in the substantia nigra, AR antagonism increased expression of Th and Slc18a1, two genes coding for key components of the dopaminergic system. Our data indicate that androgen influence over glucocorticoid stimulation in the brain is not a dominant phenomenon in the context of high corticosterone levels, but can occur in the prefrontal cortex and substantia nigra.
Collapse
Affiliation(s)
- Jorge Miguel Amaya
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hetty C. M. Sips
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eva M. G. Viho
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Onno C. Meijer
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
3
|
Kelly AM. A consideration of brain networks modulating social behavior. Horm Behav 2022; 141:105138. [PMID: 35219166 DOI: 10.1016/j.yhbeh.2022.105138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
4
|
Rybka KA, Sturm KL, De Guzman RM, Bah S, Jacobskind JS, Rosinger ZJ, Taroc EZM, Forni PE, Zuloaga DG. Androgen regulation of corticotropin releasing factor receptor 1 in the mouse brain. Neuroscience 2022; 491:185-199. [DOI: 10.1016/j.neuroscience.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022]
|
5
|
Romero-Morales L, García-Saucedo B, Martínez-Torres M, Cárdenas-Vázquez R, Álvarez-Rodríguez C, Carmona A, Luis J. PATERNAL AND INFANTICIDAL BEHAVIOR IN THE MONGOLIAN GERBIL (Meriones unguiculatus): AN APPROACH TO NEUROENDOCRINE REGULATION. Behav Brain Res 2021; 415:113520. [PMID: 34389425 DOI: 10.1016/j.bbr.2021.113520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
This study aimed to provide evidence on estrogen and androgen pathways regulating the Mongolian gerbil's paternal and infanticidal behaviors (Meriones unguiculatus). We analyzed estrogen receptor alpha (ERα) and androgen receptor (AR) distribution in the medial preoptic area (mPOA), the bed nucleus of stria terminalis (BNST), as well as the anterior hypothalamic nucleus (AHN), the ventromedial hypothalamus nucleus (VMH), and the periaqueductal gray area (PAG) nuclei activated when males interact paternally or aggressively with the pups, respectively. Twenty aggressive males towards the pups and 10 paternal were selected through a screen paternal behavior test. Three groups of 10 males each were formed: paternal males (PAT), males with testosterone (T)-induced paternal behavior (T-PAT), and aggressive males (AGG). Male gerbils could interact with a pup for a few minutes, and their brains were removed and dissected for ERα and AR immunoreactivity (ir). The results showed that in T-PAT and PAT males, the number of ERα-ir and AR-ir cells in the mPOA/BNST was significantly higher than in AGG males. In AGG males, the number of ERα-ir and AR-ir cells in the AHN/VMH/PAG was significantly higher than PAT and T-PAT males. This difference in the presence of ERα and AR in nuclei activated in paternal interactions in the Mongolian gerbil supports the idea that these receptors participate in regulating paternal behavior. Also, these results suggest, for the first time, that they could be involved in the infanticidal behavior in this rodent.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - René Cárdenas-Vázquez
- Laboratorio de Biología Animal Experimental, Depto. de Biología Celular, Facultad de Ciencias, UNAM, Mexico.
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | | | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
6
|
Tong WH, Abdulai-Saiku S, Vyas A. Testosterone Reduces Fear and Causes Drastic Hypomethylation of Arginine Vasopressin Promoter in Medial Extended Amygdala of Male Mice. Front Behav Neurosci 2019; 13:33. [PMID: 30863290 PMCID: PMC6399424 DOI: 10.3389/fnbeh.2019.00033] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
Testosterone reduces anxiety-like behaviors in rodents and increases exploration of anxiogenic parts of the environment. Effects of testosterone on innate defensive behaviors remain understudied. Here, we demonstrate that exogenous testosterone reduces aversion to cat odor in male mice. This is reflected as increased exploration of area containing cat urine when castrated male mice are supplied with exogenous testosterone. We also report that exogenous testosterone leads to DNA hypomethylation of arginine vasopressin (AVP) promoter in posterodorsal medial amygdala (MePD) and medial bed nucleus of stria terminalis (BNST). Our observations suggest that testosterone acting on AVP system within extended medial amygdala might regulate defensive behaviors in mice.
Collapse
Affiliation(s)
- Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Samira Abdulai-Saiku
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
8
|
Moghadami S, Jahanshahi M, Sepehri H, Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat's hippocampus: testosterone replacement compensates it. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2016; 12:5. [PMID: 26822779 PMCID: PMC4730763 DOI: 10.1186/s12993-016-0089-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/18/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the present study, the role of gonadectomy on memory impairment and the density of androgen receptor-immunoreactive neurons in rats' hippocampus as well as the ability of testosterone to compensate of memory and the density of androgen receptors in the hippocampus was evaluated. METHODS Adult male rats (except intact-no testosterone group) were bilaterally castrated, and behavioral tests performed 2 weeks later. Animals bilaterally cannulated into lateral ventricles and then received testosterone (10, 40 and 120 µg/0.5 µl DMSO) or vehicle (DMSO; 0.5 µl) for gonadectomized-vehicle group, 30 min before training in water maze test. The androgen receptor-immunoreactive neurons were detected by immunohistochemical technique in the hippocampal areas. RESULTS In the gonadectomized male rats, a memory deficit was found in Morris water maze test on test day (5th day) after DMSO administration. Gonadectomy decreased density of androgen receptor-immunoreactive neurons in the rats' hippocampus. The treatment with testosterone daily for 5 days attenuated memory deficits induced by gonadectomy. Testosterone also significantly increased the density of androgen receptor-immunoreactive neurons in the hippocampal areas. The intermediate dose of this hormone (40 µg) appeared to have a significant effect on spatial memory and the density of androgen receptor-immunoreactive neurons in gonadectomized rats' hippocampus. CONCLUSIONS The present study suggests that testosterone can compensate memory failure in gonadectomized rats. Also testosterone replacement can compensate the reduction of androgen receptor-immunoreactive neurons density in the rats' hippocampus after gonadectomy.
Collapse
Affiliation(s)
- Sajjad Moghadami
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Km 4 Gorgan-Sari Road (Shastcola), P.O. Box 4934174515, Gorgan, Iran.
| | - Hamid Sepehri
- Neuroscience Research Center, Department of Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hossein Amini
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
9
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
10
|
Yahr P. Sex difference and response to testosterone in gabaergic cells of the medial preoptic nucleus and ventral bed nuclei of the stria terminalis in gerbils. Horm Behav 2011; 59:473-6. [PMID: 21281643 PMCID: PMC3081379 DOI: 10.1016/j.yhbeh.2011.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/16/2011] [Accepted: 01/22/2011] [Indexed: 11/23/2022]
Abstract
The medial preoptic nucleus (MPN) and ventral bed nuclei of the stria terminalis (BST) are needed to maintain mating in sexually experienced male gerbils and rats. The gerbil ventral BST is also activated with mating, as assessed by Fos expression, as is the medial MPN (MPNm) of both species. In gerbils, many of those mating-activated cells contain glutamic acid decarboxylase (GAD), the enzyme that synthesizes γ-aminobutyric acid (GABA). Some of those cells are projection neurons, but others may release GABA locally. Through actions in the medial preoptic area, GABA inhibits and testosterone (T) promotes male sex behavior. Thus, T may promote mating, in part, by decreasing GAD in MPNm or ventral BST cells. In rats, T increases GAD mRNA in the central MPN (MPNc), where MPN GABAergic cells are densest, but mating behavior does not change in sexually experienced males when the MPNc is ablated. Therefore, this study focused on the MPNm and ventral BST to ask whether their GABAergic cells respond to T or are sexually dimorphic. This was done by visualizing cells immunoreactive (IR) for GAD(67), an isoform found primarily in cell bodies, in male and female gerbils and in castrated males with and without T. At both sites, males had more GAD(67)-IR cells than females, and T decreased GAD(67)-IR cell numbers in males. Thus, the MPNm and ventral BST have GABAergic cells that are sexually dimorphic and in which T decreases GAD, consistent with local effects of T and GABA on mating.
Collapse
Affiliation(s)
- Pauline Yahr
- Department of Neurobiology and Behavior University of California, Irvine, CA 92697-4550, USA.
| |
Collapse
|
11
|
Simmons DA, Yahr P. Nitric oxidergic cells related to ejaculation in gerbil forebrain contain androgen receptor and respond to testosterone. J Comp Neurol 2011; 519:900-15. [PMID: 21280043 PMCID: PMC3863384 DOI: 10.1002/cne.22557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two clusters of forebrain neurons-one in the posterodorsal preoptic nucleus (PdPN) and one in the lateral part of the posterodorsal medial amygdala (MeApd)-are activated at ejaculation in male rats and gerbils as seen with Fos immunocytochemistry. To understand the functions of these cells and how they respond synchronously, it may be useful to identify their neurotransmitters. Nitric oxide (NO) was of interest because its levels in the preoptic area affect ejaculation, and it could synchronize clustered neurons through paracrine/volume transmission. Thus, we determined whether the ejaculation-related cells produce NO by assessing Fos co-localization with NO synthase (NOS) in recently mated male gerbils. We also studied NOS-Fos co-localization in the medial part of the medial preoptic nucleus (MPNm), where half of the neurons that express Fos after mating reflect ejaculation. We also quantified NOS co-localization with androgen receptor (AR) and NOS sensitivity to androgens at these sites. Without quantification, we extended these analyses throughout the hypothalamus and amygdala. Many mating-activated PdPN, lateral MeApd, and MPNm cells contained NOS (32-54%), and many NOS neurons at these sites expressed Fos (34-51%) or AR (25-69%). PdPN and MPNm NOS cells were sensitive to testosterone but not its androgenic metabolite dihydrotestosterone. The overall distribution of NOS and NOS-AR cells was similar to that in rats. These data suggest that NO may help to synchronize the activation of PdPN and lateral MeApd neurons at ejaculation and that NOS in PdPN and MPNm cells is regulated by testosterone acting via estradiol or without undergoing metabolism.
Collapse
Affiliation(s)
- Danielle A. Simmons
- Department of Neurology, Stanford University School of Medicine, Stanford, California 94305-5235
| | - Pauline Yahr
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550
| |
Collapse
|
12
|
Holmes MM, Goldman BD, Forger NG. Social status and sex independently influence androgen receptor expression in the eusocial naked mole-rat brain. Horm Behav 2008; 54:278-85. [PMID: 18455726 PMCID: PMC2630401 DOI: 10.1016/j.yhbeh.2008.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.
Collapse
Affiliation(s)
- Melissa M Holmes
- Center for Neuroendocrine Studies and Department of Psychology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
13
|
Balthazart J, Ball GF. Topography in the preoptic region: differential regulation of appetitive and consummatory male sexual behaviors. Front Neuroendocrinol 2007; 28:161-78. [PMID: 17624413 PMCID: PMC2100381 DOI: 10.1016/j.yfrne.2007.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 11/29/2022]
Abstract
Several studies have suggested dissociations between neural circuits underlying the expression of appetitive (e.g., courtship behavior) and consummatory components (i.e., copulatory behavior) of vertebrate male sexual behavior. The medial preoptic area (mPOA) clearly controls the expression of male copulation but, according to a number of experiments, is not necessarily implicated in the expression of appetitive sexual behavior. In rats for example, lesions to the mPOA eliminate male-typical copulatory behavior but have more subtle or no obvious effects on measures of sexual motivation. Rats with such lesions still pursue and attempt to mount females. They also acquire and perform learned instrumental responses to gain access to females. However, recent lesions studies and measures of the expression of the immediate early gene c-fos demonstrate that, in quail, sub-regions of the mPOA, in particular of its sexually dimorphic component the medial preoptic nucleus, can be specifically linked with either the expression of appetitive or consummatory sexual behavior. In particular more rostral regions can be linked to appetitive components while more caudal regions are involved in consummatory behavior. This functional sub-region variation is associated with neurochemical and hodological specializations (i.e., differences in chemical phenotype of the cells or in their connectivity), especially those related to the actions of androgens in relation to the activation of male sexual behavior, that are also present in rodents and other species. It could thus reflect general principles about POA organization and function in the vertebrate brain.
Collapse
Affiliation(s)
- Jacques Balthazart
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, 1 Avenue de 1'Hôpital (Bat. B36), B-4000 Liège 1, Belgium.
| | | |
Collapse
|
14
|
McEwen BS, Milner TA. Hippocampal formation: shedding light on the influence of sex and stress on the brain. ACTA ACUST UNITED AC 2007; 55:343-55. [PMID: 17395265 PMCID: PMC2101766 DOI: 10.1016/j.brainresrev.2007.02.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 02/12/2007] [Accepted: 02/20/2007] [Indexed: 02/05/2023]
Abstract
The hippocampus is a malleable brain region that responds to external agents such as hormones and stressors. Investigations that began in our laboratories with the Golgi technique and an appreciation of hippocampal neuroanatomy at the light and electron microscopic levels have led us down a path that has uncovered unexpected structural plasticity in the adult brain along with unanticipated cellular and molecular mechanisms of this plasticity and of hormone mediation of these effects. This chapter reviews the history of discoveries in our two laboratories involving the actions of estradiol and stress hormones on neuronal structure and function and then discusses the insight to hormone-brain interactions that this has engendered. These discoveries have led us to a new view of brain structural plasticity and the role and mechanism of steroid hormone action involving both genomic and non-genomic pathways. This new view is consistent with the predictions of Cajal in his book "The Structure of Ammon's horn", 1892.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1300 York Ave., New York, NY 10021
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1300 York Ave., New York, NY 10021
- Department of Neurology and Neuroscience, Weill-Cornell Medical College, 411 East 69th St., New York, NY 10021
| |
Collapse
|
15
|
Abstract
In the late 1980s, the finding that the dentate gyrus contains more granule cells in the male than in the female of certain mouse strains provided the first indication that the dentate gyrus is a significant target for the effects of sex steroids during development. Gonadal hormones also play a crucial role in shaping the function and morphology of the adult brain. Besides reproduction-related processes, sex steroids participate in higher brain operations such as cognition and mood, in which the hippocampus is a critical mediator. Being part of the hippocampal formation, the dentate gyrus is naturally involved in these mechanisms and as such, this structure is also a critical target for the activational effects of sex steroids. These activational effects are the results of three major types of steroid-mediated actions. Sex steroids modulate the function of dentate neurons under normal conditions. In addition, recent research suggests that hormone-induced cellular plasticity may play a larger role than previously thought, particularly in the dentate gyrus. Specifically, the regulation of dentate gyrus neurogenesis and synaptic remodeling by sex steroids received increasing attention lately. Finally, the dentate gyrus is influenced by gonadal hormones in the context of cellular injury, and the work in this area demonstrates that gonadal hormones have neuroprotective potential. The expression of estrogen, progestin, and androgen receptors in the dentate gyrus suggests that sex steroids, which could be of gonadal origin and/or synthesized locally in the dentate gyrus, may act directly on dentate cells. In addition, gonadal hormones could also influence the dentate gyrus indirectly, by subcortical hormone-sensitive structures such as the cholinergic septohippocampal system. Importantly, these three sex steroid-related themes, functional effects in the normal dentate gyrus, mechanisms involving neurogenesis and synaptic remodeling, as well as neuroprotection, have substantial implications for understanding normal cognitive function, with clinical importance for epilepsy, Alzheimer's disease and mental disorders.
Collapse
Affiliation(s)
- Tibor Hajszan
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Teresa A Milner
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, New York, NY, USA
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Csaba Leranth
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol 2006; 491:81-95. [PMID: 16127691 DOI: 10.1002/cne.20724] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several lines of evidence indicate that estrogen affects hippocampal synaptic plasticity through rapid nongenomic mechanisms, possibly by binding to plasma membrane estrogen receptors (ERs). We have previously shown that ERalpha immunoreactivity (ir) is in select interneuron nuclei and in several extranuclear locations, including dendritic spines and axon terminals, within the rat hippocampal formation (Milner et al., [2001] J Comp Neurol 429:355). The present study sought to determine the cellular and subcellular locations of ERbeta-ir. Coronal hippocampal sections from diestrus rats were immunolabeled with antibodies to ERbeta and examined by light and electron microscopy. By light microscopy, ERbeta-ir was primarily in the perikarya and proximal dendrites of pyramidal and granule cells. ERbeta-ir was also in a few nonprincipal cells and scattered nuclei in the ventral subiculum and CA3 region. Ultrastructural analysis revealed ERbeta-ir at several extranuclear sites in all hippocampal subregions. ERbeta-ir was affiliated with cytoplasmic organelles, especially endomembranes and mitochondria, and with plasma membranes primarily of principal cell perikarya and proximal dendrites. ERbeta-ir was in dendritic spines, many arising from pyramidal and granule cell dendrites. In both dendritic shafts and spines, ERbeta-ir was near the perisynaptic zone adjacent to synapses formed by unlabeled terminals. ERbeta-ir was in preterminal axons and axon terminals, associated with clusters of small, synaptic vesicles. ERbeta-labeled terminals formed both asymmetric and symmetric synapses with dendrites. ERbeta-ir also was detected in glial profiles. The cellular and subcellular localization of ERbeta-ir was generally similar to that of ERalpha, except that ERbeta was more extensively found at extranuclear sites. These results suggest that ERbeta may serve primarily as a nongenomic transducer of estrogen actions in the hippocampal formation.
Collapse
Affiliation(s)
- Teresa A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The effects of estrogen on the morphology of the pyramidal neurons of the parietal cortex of female rats. ACTA VET-BEOGRAD 2006. [DOI: 10.2298/avb0603215d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Goodson JL. The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 2005; 48:11-22. [PMID: 15885690 PMCID: PMC2570781 DOI: 10.1016/j.yhbeh.2005.02.003] [Citation(s) in RCA: 548] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Revised: 01/29/2005] [Accepted: 02/01/2005] [Indexed: 11/17/2022]
Abstract
Based on a wide variety of data, it is now clear that birds and teleost (bony) fish possess a core "social behavior network" within the basal forebrain and midbrain that is homologous to the social behavior network of mammals. The nodes of this network are reciprocally connected, contain receptors for sex steroid hormones, and are involved in multiple forms of social behavior. Other hodological features and neuropeptide distributions are likewise very similar across taxa. This evolutionary conservation represents a boon for experiments on phenotypic behavioral variation, as the extraordinary social diversity of teleost fish and songbirds can now be used to generate broadly relevant insights into issues of brain function that are not particularly tractable in other vertebrate groups. Two such lines of research are presented here, each of which addresses functional variation within the network as it relates to divergent patterns of social behavior. In the first set of experiments, we have used a sexually polymorphic fish to demonstrate that natural selection can operate independently on hypothalamic neuroendocrine functions that are relevant for (1) gonadal regulation and (2) sex-typical behavioral modulation. In the second set of experiments, we have exploited the diversity of avian social organizations and ecologies to isolate species-typical group size as a quasi-independent variable. These experiments have shown that specific areas and peptidergic components of the social behavior network possess functional properties that evolve in parallel with divergence and convergence in sociality.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, 0109, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Razzoli M, Valsecchi P, Palanza P. Chronic exposure to low doses bisphenol A interferes with pair-bonding and exploration in female Mongolian gerbils. Brain Res Bull 2005; 65:249-54. [PMID: 15811588 DOI: 10.1016/j.brainresbull.2004.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Estrogenic endocrine disruptors, synthetic or naturally occurring substances found in the environment, can interfere with the vertebrate endocrine system and, mimicking estrogens, interact with the neuroendocrine substrates of behavior. Since species vary in their sensitivity to steroids, it is of great interest to widen the range of species included in the researches on neurobehavioral effects of estrogenic endocrine disruptors. We examined socio-sexual and exploratory behavior of Mongolian gerbil females (Meriones unguiculatus), a monogamous rodent, in response to chronic exposure to the estrogenic endocrine disruptor bisphenol A. Paired females were daily administered with one of the following treatments: bisphenol A (2 or 20 microg/kg body weight/day); 17alpha-ethynil estradiol (0.04 microg/kg body weight/day 17alphaE); oil (vehicle). Females were treated for 3 weeks after pairing. Starting on day of pairing, social interactions within pairs were daily recorded. Three weeks after pairing, females were individually tested in a free exploratory paradigm. Bisphenol A and 17alphaE affected male-female social interactions by increasing social investigation. Bisphenol A reduced several exploratory parameters, indicating a decreased exploratory propensity of females. These results highlight the sensitivity of adult female gerbils to bisphenol A during the hormonally sensitive period of pair formation, also considering that the bisphenol A doses tested are well below the suggested human tolerable daily intake.
Collapse
Affiliation(s)
- M Razzoli
- Dipartimento di Biologia Evolutiva e Funzionale, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|
20
|
Tabori NE, Stewart LS, Znamensky V, Romeo RD, Alves SE, McEwen BS, Milner TA. Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation. Neuroscience 2005; 130:151-63. [PMID: 15561432 DOI: 10.1016/j.neuroscience.2004.08.048] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2004] [Indexed: 11/18/2022]
Abstract
Like estrogens in female rats, androgens can affect dendritic spine density in the CA1 subfield of the male rat hippocampus [J Neurosci 23:1588 (2003)]. Previous light microscopic studies have shown that androgen receptors (ARs) are present in the nuclei of CA1 pyramidal cells. However, androgens may also exert their effects through rapid non-genomic mechanisms, possibly by binding to membranes. Thus, to investigate whether ARs are at potential extranuclear sites of ARs, antibodies to ARs were localized by light and electron microscopy in the male rat hippocampal formation. By light microscopy, AR immunoreactivity (-ir) was found in CA1 pyramidal cell nuclei and in disperse, punctate processes that were most dense in the pyramidal cell layer. Additionally, diffuse AR-ir was found in the mossy fiber pathway. Ultrastructural analysis revealed AR-ir at several extranuclear sites in all hippocampal subregions. AR-ir was found in dendritic spines, many arising from pyramidal and granule cell dendrites. AR-ir was associated with clusters of small, synaptic vesicles within preterminal axons and axon terminals. Labeled preterminal axons were most prominent in stratum lucidum of the CA3 region. AR-containing terminals formed asymmetric synapses or did not form synaptic junctions in the plane of section analyzed. AR-ir also was detected in astrocytic profiles, many of which apposed terminals synapsing on unlabeled dendritic spines or formed gap junctions with other AR-labeled or unlabeled astrocytes. Collectively, these results suggest that ARs may serve as both a genomic and non-genomic transducer of androgen action in the hippocampal formation.
Collapse
Affiliation(s)
- N E Tabori
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Lu A, Ran RQ, Clark J, Reilly M, Nee A, Sharp FR. 17-beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab 2002; 22:183-95. [PMID: 11823716 DOI: 10.1097/00004647-200202000-00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Estradiol reduces brain injury from many diseases, including stroke and trauma. To investigate the molecular mechanisms of this protection, the effects of 17-beta-estradiol on heat shock protein (HSP) expression were studied in normal male and female rats and in male gerbils after global ischemia. 17-beta-estradiol was given intraperitoneally (46 or 460 ng/kg, or 4.6 microg/kg) and Western blots performed for HSPs. 17-beta-estradiol increased hemeoxygenase-1, HSP25/27, and HSP70 in the brain of male and female rats. Six hours after the administration of 17-beta-estradiol, hemeoxygenase-1 increased 3.9-fold (460 ng/kg) and 5.4-fold (4.6 microg/kg), HSP25/27 increased 2.1-fold (4.6 microg/kg), and Hsp70 increased 2.3-fold (460 ng/kg). Immunocytochemistry showed that hemeoxygenase-1, HSP25/27,and HSP70 induction was localized to cerebral arteries in male rats, possibly in vascular smooth muscle cells. 17-beta-estradiol was injected intraperitoneally 20 minutes before transient occlusion of both carotids in adult gerbils. Six hours after global cerebral ischemia, 17-beta-estradiol (460 ng/kg) increased levels of hemeoxygenase-1 protein 2.4-fold compared with ischemia alone, and HSP25/27 levels increased 1.8-fold compared with ischemia alone. Hemeoxygenase-1 was induced in striatal oligodendrocytes and hippocampal neurons, and HSP25/27 levels increased in striatal astrocytes and hippocampal neurons. Finally, Western blot analysis confirmed that estrogen induced heat shock factor-1, providing a possible mechanism by which estrogen induces HSPs in brain and other tissues. The induction of HSPs may be an important mechanism for estrogen protection against cerebral ischemia and other types of injury.
Collapse
Affiliation(s)
- Aigang Lu
- Department of Neurology and Neurosciences Program, Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
22
|
Autoradiographic topography of estrogen receptors in the amygdala of the male rat. ACTA VETERINARIA 2002. [DOI: 10.2298/avb0203107m] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Heeb MM, Yahr P. Cell-body lesions of the posterodorsal preoptic nucleus or posterodorsal medial amygdala, but not the parvicellular subparafascicular thalamus, disrupt mating in male gerbils. Physiol Behav 2000; 68:317-31. [PMID: 10716541 DOI: 10.1016/s0031-9384(99)00182-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In gerbils, the posterodorsal preoptic nucleus (PdPN) and the lateral part of the posterodorsal medial amygdala (MeApd) express Fos with ejaculation. In contrast, the medial/central part of the MeApd expresses Fos when a sexually experienced male reenters the environment associated with mating. The parvicellular part of the subparafascicular thalamic nucleus (SPFp) of gerbils expresses Fos under both conditions. To study the role of the PdPN and MeApd in male sex behavior, male gerbils were tested for mating before and after these areas were bilaterally lesioned by infusions of N-methyl-D-aspartate (NMDA). Controls received the vehicle or inactive isomer, NMLA. Lesions in either area reduced mounting, but MeApd lesions, which were more complete than PdPN lesions, also delayed ejaculation when males intromitted. To determine if the MeApd and PdPN affect mating via a common pathway, they were bilaterally disconnected by lesioning them unilaterally, contralateral to each other. Other groups received ipsilateral lesions, NMLA, or bilateral lesions of the PdPN or MeApd. In addition, the SPFp was studied using bilateral lesions. MeApd and PdPN lesions again decreased mounting, and this time both lesions, which were quite complete, delayed ejaculation when males intromitted. Contralateral lesions that bilaterally disconnected these cell groups from each other mimicked both effects. Thus, the MeApd and PdPN affect mounting and ejaculation, at least in part, via their connections with each other. In contrast, SPFp lesions did not affect mating. Thus, SPFp cells activated at ejaculation may react to ejaculation rather than trigger it, possibly initiating preparations for paternity.
Collapse
Affiliation(s)
- M M Heeb
- Department of Neurobiology and Behavior, University of California, Irvine 92697-4550, USA
| | | |
Collapse
|
24
|
Newman SW. The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci 1999; 877:242-57. [PMID: 10415653 DOI: 10.1111/j.1749-6632.1999.tb09271.x] [Citation(s) in RCA: 781] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hormonal and chemosensory signals regulate social behaviors in a wide variety of mammals. In the male Syrian hamster, these signals are integrated in nuclei of the medial extended amygdala, where olfactory and vomeronasal system transmission is modulated by populations of androgen- and estrogen-sensitive neurons. Evidence from behavioral changes following lesions and from immediate early gene expression supports the hypothesis that the medial extended amygdala and medial preoptic area belong to a circuit that functions selectively in male sexual behavior. However, accumulated behavioral, neuroanatomical, and neuroendocrine data in hamsters, other rodents, and other mammals indicate that this circuit is embedded in a larger integrated network that controls not only male mating behavior, but female sexual behavior, parental behavior, and various forms of aggression. In this context, perhaps an individual animal's social responses can be more easily understood as a repertoire of closely interrelated, hormone-regulated behaviors, shaped by development and experience and modulated acutely by the environmental signals and the hormonal milieu of the brain.
Collapse
Affiliation(s)
- S W Newman
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
25
|
Matthews Felton T, Linton LN, Rosenblatt JS, Morrell JI. Estrogen implants in the lateral habenular nucleus do not stimulate the onset of maternal behavior in female rats. Horm Behav 1999; 35:71-80. [PMID: 10049605 DOI: 10.1006/hbeh.1998.1498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natural onset of maternal behavior in the rat is hormonally mediated. Estrogen, progesterone, and prolactin administered to ovariectomized females in amounts and sequences that produce circulating levels similar to those found during pregnancy stimulate the onset of maternal behavior. In fact, maternal behavior can be stimulated by estrogen alone, administered either peripherally or by implant in the central nervous system. The lateral habenula (Lhb), which is a necessary component in the neural circuit that supports maternal behavior, contains a subset of neurons with estrogen receptors. The present study investigated whether estradiol implants directly in the Lhb are sufficient to stimulate maternal behavior. Female rats, hysterectomized and ovariectomized on day 16 of pregnancy, received estrogen implants in the Lhb or, as a positive control, in the medial preoptic area (MPOA). An additional control group received cholesterol implants in the Lhb. All females were tested for pup retrieval, nest building, crouching behavior, locomotor activity, and carrying behavior. Estradiol implants into the Lhb did not stimulate the onset of maternal behavior. Females with estrogen implants in the Lhb scored significantly lower in pup retrieval and crouching behavior compared to females with implants in the MPOA and were not significantly different from females with cholesterol implants in the Lhb. There were also no significant differences in overall activity or carrying behavior among the groups.
Collapse
Affiliation(s)
- T Matthews Felton
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, New Jersey, 07102, USA
| | | | | | | |
Collapse
|
26
|
Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 1998; 19:323-62. [PMID: 9799588 DOI: 10.1006/frne.1998.0171] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A wide variety of sexual dimorphisms, structural differences between the sexes, have been described in the brains of many vertebrate species, including humans. In animal models of neural sexual dimorphism, gonadal steroid hormones, specifically androgens, play a crucial role in engendering these differences by masculinizing the nervous system of males. Usually, the androgen must act early in life, often during the fetal period to masculinize the nervous system and behavior. However, there are a few examples of androgen, in adulthood, masculinizing both the structure of the nervous system and behavior. In the modal pattern, androgens are required both during development and adulthood to fully masculinize brain structure and behavior. In rodent models of neural sexual dimorphism, it is often the aromatized metabolites of androgen, i.e., estrogens, which interact with estrogen receptors to masculinize the brain, but there is little evidence that aromatized metabolites of androgen play this role in primates, including humans. There are other animal models where androgens themselves masculinize the nervous system through interaction with androgen receptors. In the course of masculinizing the nervous system, steroids can affect a wide variety of cellular mechanisms, including neurogenesis, cell death, cell migration, synapse formation, synapse elimination, and cell differentiation. In animal models, there are no known examples where only a single neural center displays sexual dimorphism. Rather, each case of sexual dimorphism seems to be part of a distributed network of sexually dimorphic neuronal populations which normally interact with each other. Finally, there is ample evidence of sexual dimorphism in the human brain, as sex differences in behavior would require, but there has not yet been any definitive proof that steroids acting early in development directly masculinize the human brain.
Collapse
Affiliation(s)
- B Cooke
- Department of Psychology, University of California, Berkeley, California 94720-1650, USA
| | | | | | | |
Collapse
|
27
|
Jones D, Gonzalez-Lima F, Crews D, Galef BG, Clark MM. Effects of intrauterine position on the metabolic capacity of the hypothalamus of female gerbils. Physiol Behav 1997; 61:513-9. [PMID: 9108569 DOI: 10.1016/s0031-9384(96)00494-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intrauterine position that a rodent fetus occupies relative to members of the same or opposite gender affects both its reproductive physiology and behavior when adult. Cytochrome oxidase histochemistry was used to assess regional differences in the oxidative metabolic capacity of the hypothalamus of female Mongolian gerbils that developed in utero between 2 female fetuses (n = 15) or between 2 male fetuses (n = 14). Cytochrome oxidase reactivity was measured densitometrically by experimenters unaware of subject intrauterine position. Gray-to-white matter ratios of optical density in 11 brain regions were used as a normalized index of metabolic capacity. Significant group differences in the metabolic capacity of the medial and the posterior parts of the anterior hypothalamus were revealed. Females that developed in utero between 2 male fetuses showed significant increases (19-22%) in cytochrome oxidase reactivity in these brain regions compared to that in females that developed between 2 female fetuses. The medial part of the anterior hypothalamus contributes to copulatory behavior, whereas the posterior part of the anterior hypothalamus may be involved in the control of pituitary gonadotropin secretion. Both these functions are influenced by intrauterine position during fetal life. To our knowledge, this is the first demonstration of metabolic changes in hypothalamic areas of the adult related to the differences in intrauterine position.
Collapse
Affiliation(s)
- D Jones
- Institute for Neuroscience, University of Texas, Austin 78712, USA
| | | | | | | | | |
Collapse
|
28
|
McGinnis MY, Kahn DF. Inhibition of male sexual behavior by intracranial implants of the protein synthesis inhibitor anisomycin into the medial preoptic area of the rat. Horm Behav 1997; 31:15-23. [PMID: 9109595 DOI: 10.1006/hbeh.1997.1367] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Castrated male rats received testosterone (T) via silastic capsules and bilateral implants of either anisomycin (ANI) in a cocoa butter/beeswax mixture or cocoa butter/beeswax alone as a control. Cannulae were placed directly into the medial preoptic area (MPOA) to determine if protein synthesis in this brain region is required for the expression of male sexual behavior. In the first experiment, using a restoration paradigm, it was found that a 25% mixture of ANI prevented restoration of male sexual behavior, whereas 4% ANI was only partially effective. In a second experiment, the ability of 25% ANI to suppress male sexual behavior in a maintenance paradigm was tested and found to be completely ineffective. In a third experiment, a 50% ANI dose was used and this dose significantly suppressed male sexual behavior by the fourth week. Sexual behavior returned following ANI discontinuation. Males receiving 50% ANI were also tested for sexual motivation (measured in a place preference test), as well as for scent marking and vocalizations. ANI implanted into the MPOA did not affect sexual motivation, as males in both ANI and control groups spent more time with a sexually receptive female than with a nonreceptive female. ANI in the MPOA did not affect scent marking, but significantly decreased ultrasonic vocalizations. These results suggest that, in rats, protein synthesis in the MPOA is required for the expression of male sexual behavior and vocalizations, but not for sexual preference or scent marking.
Collapse
Affiliation(s)
- M Y McGinnis
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, CUNY, New York, New York 10029, USA
| | | |
Collapse
|
29
|
Kashon ML, Arbogast JA, Sisk CL. Distribution and hormonal regulation of androgen receptor immunoreactivity in the forebrain of the male European ferret. J Comp Neurol 1996; 376:567-86. [PMID: 8978471 DOI: 10.1002/(sici)1096-9861(19961223)376:4<567::aid-cne6>3.0.co;2-#] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution and hormonal regulation of androgen-receptor-immunoreactive (AR-ir) cells in the male European ferret forebrain were examined. AR-ir cells were found in many limbic and hypothalamic structures, and their distribution was similar to that reported for cells that either bind androgen or contain AR protein or mRNA in other species. Regulation of brain AR immunoreactivity by gonadal steroids was brain-region dependent. In most regions examined, including the preoptic area, amygdala, and several hypothalamic nuclei, castration reduced the density of AR-ir profiles and the intensity of immunocytochemical staining, and long-term (days) androgen, but not estrogen, replacement restored these parameters of AR immunoreactivity. Other areas, such as the bed nucleus of the stria terminalis, appeared to be relatively resistant to modulation of AR immunoreactivity by castration and long-term androgen treatment. The ability of testosterone to increase AR-ir profile density is not a simple consequence of translocation of AR from the cytoplasm to the nucleus, because short-term (hours) treatment with testosterone did not result in an increase in AR-ir profile density equivalent to that seen after 10 days of testosterone treatment. Thus, androgens appear to be able to increase AR levels within certain brain cell groups, thereby altering target tissue responsiveness to their own action.
Collapse
Affiliation(s)
- M L Kashon
- Neuroscience Program, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
30
|
Heeb MM, Yahr P. c-Fos immunoreactivity in the sexually dimorphic area of the hypothalamus and related brain regions of male gerbils after exposure to sex-related stimuli or performance of specific sexual behaviors. Neuroscience 1996; 72:1049-71. [PMID: 8735229 DOI: 10.1016/0306-4522(95)00602-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The sexually dimorphic area of the gerbil hypothalamus is essential for male sex behavior. To determine which aspects of mating activate its cells, or cells near or connected to it, we visualized c-Fos in the brains of male gerbils that had been exposed to various types of sex-related stimuli or that had displayed various aspects of sex behavior. Five groups of males were placed in familiar arenas containing sex-related odors. All subjects had previously mated in these arenas. For four groups, a female was introduced and remained with the male until he ejaculated, intromitted, mounted or sniffed her. Males in the fifth group remained in the arena alone. Males in a sixth group were placed in a clean arena in another room. These males were also familiar with this arena but had never encountered a female there. The seventh group remained in their home cages. The posterodorsal preoptic nucleus, the lateral part of the posterodorsal medial amygdala, the medial part of the sexually dimorphic area and the parvicellular part of the subparafascicular nucleus of the thalamus expressed c-Fos after ejaculation. Whether these cells triggered ejaculation or responded to it is not clear. The latter two areas also expressed c-Fos whenever males were exposed to the sex arena, but the sexually dimorphic area pars compacta did not express c-Fos under any condition. The medial core of the nucleus accumbens, the ventrolateral septum, the caudomedial bed nucleus of the stria terminalis, the medial/central part of the posterodorsal medial amygdala and the lateral part of the sexually dimorphic area also expressed c-Fos when males entered the sex arena. The ventrolateral part of the ventromedial nucleus of the hypothalamus expressed c-Fos whenever males were with females. None of the 31 areas studied responded to mounting or intromission, but the zona incerta, the amygdalohippocampal area, the lateral part of the sexually dimorphic area and the area lateral to the medial part of the sexually dimorphic area showed progressive increases in c-Fos expression as mating progressed. The area dorsal to the medial part of the sexually dimorphic area, the paraventricular nucleus of the hypothalamus, the ventral premammillary nucleus and the retrorubral field showed the same level of c-Fos expression when males were exposed to the non-sexual context as when they were exposed to the sexual one. While a projection to the retrorubral field from the sexually dimorphic area is critical for male sex behavior, the retrorubral field did not show a sex-related c-Fos response. The data suggest that brain regions involved in male sex behavior are involved in different aspects of it and that this can also apply to different subsets of cells in each area. The data also indicate that cells involved in mating do not necessarily show mating-related patterns of c-Fos expression. Thus, while c-Fos is useful for identifying areas involved in mating, or other behaviors, its characteristics could cause relevant areas to be overlooked.
Collapse
Affiliation(s)
- M M Heeb
- Department of Psychobiology, University of California, Irvine 92717-4550, USA
| | | |
Collapse
|
31
|
Zhou JN, Hofman MA, Gooren LJ, Swaab DF. A sex difference in the human brain and its relation to transsexuality. Nature 1995; 378:68-70. [PMID: 7477289 DOI: 10.1038/378068a0] [Citation(s) in RCA: 353] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transsexuals have the strong feeling, often from childhood onwards, of having been born the wrong sex. The possible psychogenic or biological aetiology of transsexuality has been the subject of debate for many years. Here we show that the volume of the central subdivision of the bed nucleus of the stria terminals (BSTc), a brain area that is essential for sexual behaviour, is larger in men than in women. A female-sized BSTc was found in male-to-female transsexuals. The size of the BSTc was not influenced by sex hormones in adulthood and was independent of sexual orientation. Our study is the first to show a female brain structure in genetically male transsexuals and supports the hypothesis that gender identity develops as a result of an interaction between the developing brain and sex hormones.
Collapse
Affiliation(s)
- J N Zhou
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | | | |
Collapse
|
32
|
Ulibarri C, Popper P, Micevych PE. Motoneurons dorsolateral to the central canal innervate perineal muscles in the Mongolian gerbil. J Comp Neurol 1995; 356:225-37. [PMID: 7629316 DOI: 10.1002/cne.903560207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Mongolian gerbil provides a model in which sexually dimorphic areas in the hypothalamus are correlated with sociosexual behaviors such as scent marking and male copulatory behavior. To extend this model, investigations were conducted to determine whether sexually dimorphic areas existed in the spinal cord that could be relevant to male sexual behavior. The focus of these investigations was the perineal muscles associated with the penis. Therefore, this research identified the spinal motoneurons that innervate the bulbocavernosus, levator ani, anal sphincter, and ischiocavernosus muscles of Mongolian gerbils. The motoneuron pool that innervates the bulbocavernosus, levator ani, and anal sphincter was designated the spinal nucleus of the bulbocavernosus (SNB), as for other species of rodents. The motoneuron pool innervating the ischiocavernosus was identified as the dorsolateral nucleus, again, to be consistent with the designation for other rodents. The motoneurons of the gerbil SNB were distributed dorsolateral to the central canal in the lumbosacral transition zone of the spinal column. These motoneurons are located in the region classically defined as area X of the spinal cord. The number of SNB motoneurons was sexually dimorphic, with male gerbils having about five times as many SNB motoneurons as do female gerbils. The size of SNB motoneurons was also sexually dimorphic. The SNB motoneurons of males were 1.5 times larger than the SNB motoneurons of females. The effects of adult castration on the male SNB were also studied. After castration, the size, but not the number, of SNB motoneurons in males was significantly decreased. This decrease was prevented by testosterone treatment. The percentage of calcitonin gene-related peptide (CGRP)-immunoreactive SNB motoneurons was also affected by adult castration. The percentage of CGRP-immunoreactive motoneurons was significantly decreased after adult castration. Again, this decrease was reversed by testosterone treatment. These findings suggest that the SNB of gerbils is sexually dimorphic and is sensitive to circulating levels of gonadal steroids. The unique placement of the SNB motoneurons suggests that an alternative laminar organizational scheme may be necessary for Mongolian gerbil.
Collapse
Affiliation(s)
- C Ulibarri
- Department of Anatomy and Cell Biology, UCLA School of Medicine 90024-1763, USA
| | | | | |
Collapse
|
33
|
Smollich A, Grossmann J. [Age-dependent sexual dimorphism of the hypothalamic medial preoptic nucleus in swine]. Anat Histol Embryol 1995; 24:67-72. [PMID: 7645753 DOI: 10.1111/j.1439-0264.1995.tb00011.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The medial preoptic nucleus of the porcine hypothalamus is characterized by an age-dependent sexual dimorphism in the postnatal period of the development. It manifests itself as sexual differences in the density and volume of the perikarya. A transient concentration of perikarya in the centre of the medial preoptic nucleus, especially distinctive in male piglets, is somewhat similar to the 'sexually dimorphic nucleus of the preoptic area' of Gorski, as characterized in rats.
Collapse
Affiliation(s)
- A Smollich
- Institut für Anatomie des Fachbereichs Veterinärmedizin (Standort Mitte), Freien Universität Berlin, Deutschland
| | | |
Collapse
|
34
|
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Portugal
| | | |
Collapse
|
35
|
Yahr P, Finn PD, Hoffman NW, Sayag N. Sexually dimorphic cell groups in the medial preoptic area that are essential for male sex behavior and the neural pathways needed for their effects. Psychoneuroendocrinology 1994; 19:463-70. [PMID: 7938347 DOI: 10.1016/0306-4530(94)90033-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The research summarized here shows that the two major cell groups of the sexually dimorphic area (SDA) of the gerbil hypothalamus are essential for male sex behavior. Bilateral cell-body lesions of either the medial or lateral SDA virtually eliminate mating in sexually experienced male gerbils given exogenous testosterone. Similar deficits occur when the SDA is bilaterally disconnected from the retrorubral field (RRF) as a result of unilateral cell-body lesions in the SDA and contralateral RRF. The A8 cells of the RRF do not account for this effect. Bilaterally disconnecting the SDA from the caudomedial part of the bed nucleus of the stria terminalis (caudal BSTm) also eliminates sexual activity. Disconnecting the SDA from the medial amygdala does not mimic this effect. Neither does disconnecting the medial amygdala from the caudal BSTm. Thus, caudal BSTm neurons that are essential for mating via connections with the SDA do not simply relay information from the medial amygdala.
Collapse
Affiliation(s)
- P Yahr
- Department of Psychobiology, University of California, Irvine 92717-4550
| | | | | | | |
Collapse
|
36
|
Cooper HM, Parvopassu F, Herbin M, Magnin M. Neuroanatomical pathways linking vision and olfaction in mammals. Psychoneuroendocrinology 1994; 19:623-39. [PMID: 7938360 DOI: 10.1016/0306-4530(94)90046-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retinal projections to several telencephalic structures have been demonstrated in a wide range of mammalian species following intraocular injections of tritiated amino acids and cholera toxin subunit-B conjugated to horseradish peroxidase. Since these regions are also innervated by olfactory fibers, we investigated the distribution of convergent projections using simultaneous injections of different anterograde tracers in the eye and olfactory bulbs. Convergent projections from the retina and from the olfactory bulbs were observed in the piriform cortex, olfactory tubercle, the cortical region of the medial amygdala, lateral hypothalamus, and the bed nucleus of the stria terminalis. A few retinal fibers also invade the nucleus of the lateral olfactory tract, the bed nucleus of the accessory olfactory bulb and the diagonal band of Broca. Injections of retrograde tracers in the medial amygdala, the bed nucleus or the lateral hypothalamus shows that the visuo-olfactory convergence mainly involves projections originating from the accessory olfactory bulb, and to a lesser extent from the ventromedial region of the main olfactory bulb. Fewer than 20 retinotelencephalic ganglion cells were identified in the retina, mainly located contralateral to the injection site. Ganglion cells were medium sized and possessed two long slender opposing dendrites. These retinal and olfactory projections could provide an anatomical substrate for the modulation of gonadotropin hormone levels and the olfactory influence on light mediated rhythms related to reproductive physiology.
Collapse
Affiliation(s)
- H M Cooper
- Cerveau et Vision, INSERM U-371, Bron, France
| | | | | | | |
Collapse
|
37
|
Yahr P, Gregory JE. The medial and lateral cell groups of the sexually dimorphic area of the gerbil hypothalamus are essential for male sex behavior and act via separate pathways. Brain Res 1993; 631:287-96. [PMID: 8131057 DOI: 10.1016/0006-8993(93)91547-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Male reptiles, birds and mammals do not copulate if the medial preoptic area (MPOA) is destroyed but the MPOA cell groups necessary for male sexual behavior were not known. Here, two cell groups essential for copulation are identified in the sexually dimorphic area (SDA) of the gerbil (Meriones unguiculatus) MPOA. Bilateral cell-body lesions of either the medial or lateral SDA eliminated mating in sexually experienced male gerbils given testosterone. Nearby MPOA lesions did not. The medial and lateral SDA affect sex behavior via separate pathways since lesioning the medial SDA on one side of the brain and the lateral SDA on the other did not stop sexual behavior.
Collapse
Affiliation(s)
- P Yahr
- Department of Psychobiology, University of California at Irvine 92715
| | | |
Collapse
|
38
|
Finn PD, De Vries GJ, Yahr P. Efferent projections of the sexually dimorphic area of the gerbil hypothalamus: anterograde identification and retrograde verification in males and females. J Comp Neurol 1993; 338:491-520. [PMID: 7510729 DOI: 10.1002/cne.903380403] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Outputs of the sexually dimorphic area (SDA) of the gerbil hypothalamus were identified by injecting Phaseolus vulgaris-leucoagglutinin into the medial or lateral SDA (mSDA, lSDA) in males and females. They were verified by injecting Fluoro-Gold or rhodamine-labeled beads into over half the areas that contained labeled fibers. Both anterograde and retrograde tracing showed that the mSDA and lSDA project to many of the same sites but often to differing degrees. The mSDA projects more heavily than the lSDA to many of their forebrain targets including the ventral part of the lateral septal nucleus, the bed nucleus of the stria terminalis, the medial tuberal area, and the anteroventral periventricular, arcuate, ventromedial and ventral premammillary nuclei of the hypothalamus. The lSDA projects more heavily than the mSDA to many of their mid- and hindbrain targets including the caudal, ventrolateral part of the periaqueductal gray, the retrorubral field, the pedunculopontine tegmental nucleus, and the locus coeruleus. In many other areas of the brain, the projections of the mSDA and lSDA are similar in size. These areas include the substantia innominata, the vascular organ of the lamina terminalis, the anterior amygdala, the posterior hypothalamus, the reuniens and paraventricular nuclei of the thalamus, and the pontine periaqueductal gray lateral to the fourth ventricle. The SDA pars compacta (SDApc), a small cell group embedded in the mSDA of males, projects to many fewer areas than the surrounding mSDA. It was strongly labeled when retrograde tracers were injected into the encapsulated part of the bed nucleus of the stria terminalis, the anteroventral periventricular nucleus, or the mSDA. It was also labeled from the vascular organ of the lamina terminalis, the caudal part of the lateral bed nucleus of the stria terminalis, the lSDA, the area lateral to the mSDA, the arcuate nucleus, the ventral premammillary nucleus, and the ventrolateral part of the ventromedial nucleus of the hypothalamus. Nothing resembling an SDApc was identified during retrograde tracing in females.
Collapse
Affiliation(s)
- P D Finn
- Department of Psychobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
39
|
Ulibarri CM, Yahr P. Ontogeny of the sexually dimorphic area of the gerbil hypothalamus. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:14-24. [PMID: 8403369 DOI: 10.1016/0165-3806(93)90078-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The sexually dimorphic area (SDA) of the gerbil hypothalamus is a set of cell groups in the medial preoptic area that is essential for masculine sexual behavior and implicated in the hormonal control of scent making and ultrasound production. The adult SDA shrinks after gonadectomy unless the gerbils receive testosterone. So does the SDA pars compacta, a small cell group in the SDA of males that is seldom seen in females. Here, development of the SDA and SDApc, and of a second, small, compact cell group, the cmSDApc, that lies caudal and medial to the SDApc, is described. Development of the SDApc and cmSDApc was studied quantitatively by assessing their incidence and volume in both sexes from birth (PND 1) to adulthood (PND 150). The volume of the entire SDA was studied from PND 45 to 150. In male gerbils, puberty begins around PND 40 and is complete by PND 90-120. The male SDA enlarged relative to the cross-sectional area of the hypothalamus as puberty began, but the female SDA did not. The SDApc was present in virtually all gerbils at birth and was the same size in both sexes. Over the next two weeks, the SDApcs of females disappeared while those of males persisted and doubled in size. Like the SDApc, the cmSDApc was larger and more common in males than in females, but it became smaller and less prevalent in both sexes during the first two weeks after birth.
Collapse
Affiliation(s)
- C M Ulibarri
- Department of Psychobiology, University of California, Irvine 92717
| | | |
Collapse
|
40
|
Wood RI, Newman SW. Intracellular partitioning of androgen receptor immunoreactivity in the brain of the male Syrian hamster: effects of castration and steroid replacement. JOURNAL OF NEUROBIOLOGY 1993; 24:925-38. [PMID: 8228970 DOI: 10.1002/neu.480240706] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of castration and steroid replacement on the intracellular partitioning of the androgen receptor in the brain of the male Syrian hamster was determined using immunocytochemistry. Androgen receptors were visualized using the PG-21 antibody (G. S. Prins) on 40-microns coronal brain sections from hamsters perfused with 4% paraformaldehyde with or without 0.4% glutaraldehyde. Control studies confirmed antibody specificity in gonad-intact and castrate males. In the normal adult male, androgen receptor immunocytochemistry reveals intense staining confined to the cell nucleus. Castration caused a gradual increase in cytoplasmic labelling within 2 weeks, accompanied by a reduction in nuclear staining intensity in androgen receptor-containing neurons throughout the brain. Cytoplasmic androgen receptor staining was eliminated after treatment of orchidectomized males for only 8 h with exogenous testosterone. Likewise, long-term exposure to testosterone and dihydrotestosterone, a nonaromatizable androgen, maintained nuclear androgen receptor immunoreactivity. However, exposure to low physiologic concentrations of estrogen was not effective in this regard. In addition, we determined that nuclear androgen receptor immunoreactivity decreases in response to inhibitory short-day photoperiod, but without an increase in cytoplasmic immunostaining. This appears to be due to the decrease in androgen production by the testis, rather than a direct photoperiodic effect, because testosterone supplementation to short-day males restored the intensity of nuclear androgen receptor immunoreactivity to levels comparable to those in the intact male. These findings are compatible with a new model for the intracellular localization of androgen receptors, in which a subset of unoccupied receptors is located in the cell cytoplasm in the absence of ligand. They further demonstrate the repartitioning of such cytoplasmic receptors, thereby confirming and extending previous observations using biochemical techniques on the regulation of neuronal androgen receptors.
Collapse
Affiliation(s)
- R I Wood
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | |
Collapse
|
41
|
Wood RI, Newman SW. Mating activates androgen receptor-containing neurons in chemosensory pathways of the male Syrian hamster brain. Brain Res 1993; 614:65-77. [PMID: 8348332 DOI: 10.1016/0006-8993(93)91019-o] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fos-immunoreactivity is induced during mating in the male Syrian hamster in limbic areas that relay chemosensory information and contain receptors for gonadal steroid hormones. The induction of Fos is an index of neuronal activation. After mating, c-fos expression is greatest in subnuclei of the medial amygdaloid nucleus (Me), bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). The present study determined if individual neurons in these activated subnuclei contain androgen receptors. We aim to understand how essential chemosensory and hormonal signals are integrated to control copulation. Adult male hamsters (n = 6) were allowed to mate with a sexually receptive female for 30 min. They were perfused 1 h later with 4% paraformaldehyde and 40 microns frozen sections were processed for immunocytochemistry using antisera against Fos (Cambridge Research Biochemicals) and the androgen receptor (G.S. Prins). The brains of three non-mated males were also processed for Fos immunocytochemistry. Mating significantly increased the number of Fos-immunoreactive neurons within subnuclei of Me, BNST, and MPOA relative to non-mated males (P < 0.05). These nuclei contained abundant androgen receptors. In the corticomedial amygdala, 20-40% of Fos-immunoreactive neurons in mated hamsters expressed androgen receptors. Although few androgen receptors are found in the anteromedial and postero-intermediate subdivisions of the BNST, these areas exhibited 26% and 47% co-localization, respectively. In posteromedial BNST, which contains large numbers of steroid receptor-containing neurons, androgen receptors were identified in 48% of Fos-immunoreactive neurons. In the MPOA, 54% of Fos-immunoreactive neurons expressed the androgen receptor throughout the rostrocaudal extent of the medial preoptic nucleus (MPN).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R I Wood
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | |
Collapse
|
42
|
Segovia S, Guillamón A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1993; 18:51-74. [PMID: 8467350 DOI: 10.1016/0165-0173(93)90007-m] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Several years ago we hypothesized that the vomeronasal system (VNS), a complex neural network involved in the control of reproductive behavior, might be sexually dimorphic. This hypothesis sprung from several facts; (a) the existence of steroid receptors in the VNS; (b) sexual dimorphism was already described in some structures that receive vomeronasal input, such as the medial preoptic area, the ventromedial hypothalamic nucleus, the ventral region of the premammillary nucleus and the medial amygdaloid nucleus; and (c) the vomeronasal organ, which is the receptor organ of the VNS, was also sexually dimorphic. After that point, the accessory olfactory bulb (AOB), the bed nucleus of the accessory olfactory tract (BAOT) and the bed nucleus of the stria terminalis were found to be sexually dimorphic. The aim of the present review is to show the experimental facts that confirm our earlier hypothesis and, consequently, to present the existence of a sexually dimorphic multisynaptic pathway for the first time in mammals. Sexual dimorphism in the VNS might provide a comprehensive approach to understanding the neural bases of sexually dimorphic reproductive behavior and it is suggested here that the greater number of neurons which male rats present in relation to females in most VNS structures might contribute to the inhibition of the expression of feminine copulatory behavior (lordosis) and maternal behavior in males. In addition, the mechanisms that control the development of sexual dimorphism in the VNS are discussed. The discussion takes into account the two patterns of sexual dimorphism found in the rat brain. Estrogens seem to promote the development of sexual dimorphism in both male and female rats. However, an inhibitory role of androgens might be necessary to hypothesize when males or females present a lower number of neurons and/or volume than the opposite sex. There are experimental data supporting this hypothesis in the female, since dihydrotestosterone seems to facilitate neuronal death in VNS structures, such as the AOB and the BAOT, in which females present a lower number of neurons and volume than male rats. Finally, since the lateral division of the bed nucleus of the stria terminalis, which belongs to the main olfactory system (MOS), is sexually dimorphic and presents anatomical relationships with some VNS structures the MOS might be sexually dimorphic.
Collapse
Affiliation(s)
- S Segovia
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | |
Collapse
|
43
|
Wood RI, Brabec RK, Swann JM, Newman SW. Androgen and estrogen concentrating neurons in chemosensory pathways of the male Syrian hamster brain. Brain Res 1992; 596:89-98. [PMID: 1468005 DOI: 10.1016/0006-8993(92)91536-n] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), and medial amygdaloid nucleus (Me) are essential for male sexual behavior in the Syrian hamster. These nuclei received chemosensory stimuli and gonadal steroid signals, both of which are required for mating behavior. The objective of this study was to compare the distribution of androgen- and estrogen-concentrating neurons in MPOA, BNST, and Me in the adult male hamster using steroid autoradiography for estradiol (E2), testosterone (T) and dihydrotestosterone (DHT). Adult males (n = 4 per group) received two i.p. injections of tritiated steroid 4-7 days after castration. Six-microns frozen sections through the brain were mounted onto emulsion-coated slides, and exposed for 11-16 months. In MPOA, BNST, and Me, neurons were more abundant and heavily labelled after [3H]E2 treatment than after either [3H]T or [3H]DHT. Tritiated estradiol- and DHT-labeled cells were found throughout the rostrocaudal extent of Me, with a high concentration in posterodorsal Me. Tritiated testosterone treatment labelled cells largely within posterodorsal Me. In MPOA, the majority of E2-, T-, and DHT-labelled neurons were in the medial preoptic nucleus (MPN) and the preoptic continuation of the posteromedial bed nucleus of the stria terminalis (BNSTpm). Few T-labelled cells were present outside these subdivisions. In the BNST, E2- and DHT-labelled neurons were present in all subdivisions, whereas T labelling was confined to the antero- and posteromedial subdivisions of BNST. These results suggest that the distribution of androgen- and estrogen receptor-containing neurons overlap considerably in nuclei which transmit chemosensory signals in the control of mating behavior.
Collapse
Affiliation(s)
- R I Wood
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616
| | | | | | | |
Collapse
|
44
|
Crenshaw BJ, De Vries GJ, Yahr P. Vasopressin innervation of sexually dimorphic structures of the gerbil forebrain under various hormonal conditions. J Comp Neurol 1992; 322:589-98. [PMID: 1401252 DOI: 10.1002/cne.903220412] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of vasopressin-immunoreactive fibers in the forebrain of male and female gerbils was studied, focusing on the lateral septum and the sexually dimorphic area (SDA) found at the border between the medial preoptic area and the anterior hypothalamus. To study hormonal influences on the densities of these fibers, some animals of each sex were gonadectomized or gonadectomized and given testosterone. Others were given sham operations. High densities of vasopressin-immunoreactive fibers were found in the lateral septum. In the SDA, the densities of these fibers varied considerably. Many were found in the medial half of the medial SDA, but few in the lateral SDA. Vasopressin-immunoreactive fibers were also sparse in the lateral half of the medial SDA, except for a dense cluster in the SDA pars compacta of males. Similar but smaller clusters were seen in the same location in females although the SDA pars compacta could not be detected in Nissl-stained sections from the female brains. Fiber densities in two areas, the lateral septum and the lateral SDA, were sensitive to gonadal steroids. In both cases, castration reduced fiber density and testosterone enhanced it. In addition, fiber densities in two areas, the lateral septum and the medial SDA, were sexually dimorphic. In each case, fiber density was greater in males. There was no hormonal effect, however, on the fiber densities in the medial SDA. The fact that the fiber plexuses in the lateral septum and the medial SDA respond differently to gonadal steroids suggests that they arise from different cells and possibly from different areas of the brain. The vasopressin-immunoreactive fibers in the lateral septum probably come from steroid-sensitive vasopressin neurons in the bed nucleus of the stria terminalis. Those in the medial SDA may originate in the dorsal aspect of the suprachiasmatic nucleus where vasopressin-immunoreactive cell bodies were seen.
Collapse
Affiliation(s)
- B J Crenshaw
- Department of Psychology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
45
|
Affiliation(s)
- G J De Vries
- Department of Psychology, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
46
|
Hermkes A, Probst B. Neural androgen receptors and scent marking of male gerbils: modulation by females. Physiol Behav 1992; 51:1179-82. [PMID: 1641418 DOI: 10.1016/0031-9384(92)90305-l] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The involvement of brain cytosolic androgen receptors in the female-induced increase in scent-marking behavior of male Mongolian gerbils was studied. Scent-marking activities and serum testosterone concentrations were measured in low-marking control males and in males with increased scent-marking activities, stimulated by the presence of conspecific females in the same room. For every individual male the concentrations and affinities of androgen receptors were determined in four parts of the brain, which contained the hippocampus, septum, corpus striatum, amygdala, stria terminalis, and the hypothalamus. Compared to the basal unstimulated period, the marking activities of male gerbils significantly increased 58% during the presence of female conspecifics in their housing room. The serum testosterone concentrations did not change significantly during female presence. The association constants of the cytosolic androgen receptors were higher in the female-stimulated males compared to isolated control males. In contrast, the cytosolic receptor concentration was reduced. The difference reached significance in one of the brain parts. Individual levels in scent-marking activities could not be explained by correlation with individual androgen receptor parameters. The present results suggest that increased androgen binding in the brain may be involved in the elevation of scent-marking activities in male gerbils, caused by urinary chemical signals of female conspecifics.
Collapse
Affiliation(s)
- A Hermkes
- Department of Animal Physiology, University of Bayreuth, Germany
| | | |
Collapse
|
47
|
Hines M, Allen LS, Gorski RA. Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Brain Res 1992; 579:321-6. [PMID: 1352729 DOI: 10.1016/0006-8993(92)90068-k] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sex differences are described in subregions of two nuclei of the rat brain: the medical nucleus of the amygdala (MA) and the bed nucleus of the stria terminalis (BNST). The volume of the posterodorsal region of the medial nucleus of the amygdala (MApd) is approximately 85% greater and the volume of the encapsulated region of the bed nucleus of the stria terminalis (BNSTenc) is approximately 97% greater in males than in females. The MApd and BNSTenc are distinct subregions of the MA and BNST. They exhibit intense uptake of gonadal hormones and are anatomically connected to each other and to other sexually dimorphic nuclei. The MA and BNST in general are involved in regulation of several sexually dimorphic functions, including aggression, sexual behavior, gonadotropin secretion and integration of olfactory information. Precise localization of sex differences in subregions of the MA and BNST, such as the MApd and BNSTenc, may facilitate understanding of the neural basis of such functions.
Collapse
Affiliation(s)
- M Hines
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine 90024
| | | | | |
Collapse
|
48
|
Tobet SA, Fox TO. Sex Differences in Neuronal Morphology Influenced Hormonally throughout Life. SEXUAL DIFFERENTIATION 1992. [DOI: 10.1007/978-1-4899-2453-7_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Tobet SA, Baum MJ. Estradiol binding in the sexually dimorphic nucleus of the preoptic/anterior hypothalamic area of adult male ferrets and in the equivalent region of females. Brain Res 1991; 546:345-50. [PMID: 2070266 DOI: 10.1016/0006-8993(91)91500-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large number of estradiol-concentrating cells were visualized by autoradiography in a subpopulation of large neurons located in and around the sexually dimorphic male nucleus of the preoptic/anterior hypothalamic area (MN-POA/AH) of castrated male ferrets and in a comparable dorsal portion of the POA/AH of ovariectomized females. Considerably fewer estradiol-labelled cells were seen in the non-dimorphic ventral POA/AH nucleus of both sexes. Estrogen binding in cells in or around the MN-POA/AH may contribute to the formation of this sexually dimorphic nucleus in fetal males and may mediate specific estrogen-dependent behavioral functions in adulthood.
Collapse
Affiliation(s)
- S A Tobet
- Department of Biochemistry, E.K. Shriver Center, Waltham, MA 02254
| | | |
Collapse
|
50
|
Tang YP, Sisk CL. Testosterone in MPOA elicits behavioral but not neuroendocrine responses in ferrets. Brain Res Bull 1991; 26:373-8. [PMID: 2049603 DOI: 10.1016/0361-9230(91)90009-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amount of time male ferrets were engaged in neck gripping, mounting, and thrusting was quantified in 30-min tests with a receptive female before and after castration. Bilateral cannulae containing a total of approximately 2 mg testosterone propionate (TP) in cocoa butter were then stereotaxically aimed at the medial preoptic area (MPOA). Tests for sexual behavior were conducted on days 3, 7, 14, and 21 postimplantation. Ferrets were histologically categorized as either 1) Miss (implants not in MPOA), 2) Unilateral implant in MPOA, or 3) Bilateral implants in MPOA. The mean amount of time spent neck gripping, mounting, and thrusting increased significantly over castrate levels on postimplantation day 14 in the Bilateral group, but not in the Miss or Unilateral groups. In all groups, mean plasma testosterone concentrations were below or near the lower limit of detectability on the day before TP implantation and on postimplantation test days. In the same plasma samples, luteinizing hormone concentrations were within the normal range of castrated ferrets, and did not significantly decline after TP implantation. These results suggest that the MPOA is a neural site for androgen activation of certain components of reproductive behavior but not for negative feedback on gonadotropin secretion in male ferrets.
Collapse
Affiliation(s)
- Y P Tang
- Department of Psychology, Michigan State University, East Lansing 48824
| | | |
Collapse
|