1
|
Natsuaki Y, Leynes A, Wangerin K, Hamdi M, Rajagopal A, Kinahan PE, Laforest R, Larson PEZ, Hope TA, James SS. Assessment of lesion insertion tool in pelvis PET/MR data with applications to attenuation correction method development. J Appl Clin Med Phys 2024; 25:e14507. [PMID: 39231184 PMCID: PMC11539964 DOI: 10.1002/acm2.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In modern positron emission tomography (PET) with multi-modality imaging (e.g., PET/CT and PET/MR), the attenuation correction (AC) is the single largest correction factor for image reconstruction. One way to assess AC methods and other reconstruction parameters is to utilize software-based simulation tools, such as a lesion insertion tool. Extensive validation of these simulation tools is required to ensure results of the study are clinically meaningful. PURPOSE To evaluate different PET AC methods using a synthetic lesion insertion tool that simulates lesions in a patient cohort that has both PET/MR and PET/CT images. To further demonstrate how lesion insertion tool may be used to extend knowledge of PET reconstruction parameters, including but not limited to AC. METHODS Lesion quantitation is compared using conventional Dixon-based MR-based AC (MRAC) to that of using CT-based AC (CTAC, a "ground truth"). First, the pre-existing lesions were simulated in a similar environment; a total of 71 lesions were identified in 18 pelvic PET/MR patient images acquired with a time-of-flight simultaneous PET/MR scanner, and matched lesions were inserted contralaterally on the same axial slice. Second, synthetic lesions were inserted into four anatomic target locations in a cohort of four patients who didn't have any observed clinical lesions in the pelvis. RESULTS The matched lesion insertions resulted in unity between the lesion error ratios (mean SUVs), demonstrating that the inserted lesions successfully simulated the original lesions. In the second study, the inserted lesions had distinct characteristics by target locations and demonstrated negative max-SUV%diff trends for bone-dominant sites across the patient cohort. CONCLUSIONS The current work demonstrates that the applied lesion insertion tool can simulate uptake in pelvic lesions and their expected SUV values, and that the lesion insertion tool can be extended to evaluate further PET reconstruction corrections and algorithms and their impact on quantitation accuracy and precision.
Collapse
Affiliation(s)
- Yutaka Natsuaki
- Keck School of Medicine of USC, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | | - Mahdjoub Hamdi
- Washington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | | | | | - Richard Laforest
- Washington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | | | - Thomas A. Hope
- University of California, San FranciscoSan FranciscoCaliforniaUSA
| | | |
Collapse
|
2
|
Jerban S, Barrere V, Namiranian B, Wu Y, Alenezi S, Dorthe E, Dlima D, Shah SB, Chung CB, Du J, Andre MP, Chang EY. Ultrasound attenuation of cortical bone correlates with biomechanical, microstructural, and compositional properties. Eur Radiol Exp 2024; 8:21. [PMID: 38316687 PMCID: PMC10844174 DOI: 10.1186/s41747-023-00418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND We investigated the relationship of two commonly used quantitative ultrasound (QUS) parameters, speed of sound (SoS) and attenuation coefficient (α), with water and macromolecular contents of bovine cortical bone strips as measured with ultrashort echo time (UTE) magnetic resonance imaging (MRI). METHODS SoS and α were measured in 36 bovine cortical bone strips utilizing a single-element transducer with nominal 5 MHz center frequency based on the time of flight principles after accommodating for reflection losses. Specimens were then scanned using UTE MRI to measure total, bound, and pore water proton density (TWPD, BWPD, and PWPD) as well as macromolecular proton fraction and macromolecular transverse relaxation time (T2-MM). Specimens were also scanned using microcomputed tomography (μCT) at 9-μm isometric voxel size to measure bone mineral density (BMD), porosity, and pore size. The elastic modulus (E) of each specimen was measured using a 4-point bending test. RESULTS α demonstrated significant positive Spearman correlations with E (R = 0.69) and BMD (R = 0.44) while showing significant negative correlations with porosity (R = -0.41), T2-MM (R = -0.47), TWPD (R = -0.68), BWPD (R = -0.67), and PWPD (R = -0.45). CONCLUSIONS The negative correlation between α and T2-MM is likely indicating the relationship between QUS and collagen matrix organization. The higher correlations of α with BWPD than with PWPD may indicate that water organized in finer structure (bound to matrix) provides lower acoustic impedance than water in larger pores, which is yet to be investigated thoroughly. RELEVANCE STATEMENT This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone, including the collagenous matrix and water. Investigating the full potential of QUS and its validation facilitates a more affordable and accessible tool for bone health monitoring in clinics. KEY POINTS • Ultrasound attenuation demonstrated significant positive correlations with bone mechanics and mineral density. • Ultrasound attenuation demonstrated significant negative correlations with porosity and bone water contents. • This study highlights the importance of future investigations exploring the relationship between QUS measures and all major components of the bone.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| | - Victor Barrere
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Behnam Namiranian
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Yuanshan Wu
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Sameer B Shah
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Michael P Andre
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
- Research Service, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
3
|
Jerban S, Jang H, Chang EY, Bukata S, Du J, Chung CB. Bone Biomarkers Based on Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2024; 28:62-77. [PMID: 38330971 DOI: 10.1055/s-0043-1776431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is increasingly used to evaluate the microstructural and compositional properties of bone. MRI-based biomarkers can characterize all major compartments of bone: organic, water, fat, and mineral components. However, with a short apparent spin-spin relaxation time (T2*), bone is invisible to conventional MRI sequences that use long echo times. To address this shortcoming, ultrashort echo time MRI sequences have been developed to provide direct imaging of bone and establish a set of MRI-based biomarkers sensitive to the structural and compositional changes of bone. This review article describes the MRI-based bone biomarkers representing total water, pore water, bound water, fat fraction, macromolecular fraction in the organic matrix, and surrogates for mineral density. MRI-based morphological bone imaging techniques are also briefly described.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, California
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
4
|
Surowiec RK, Does MD, Nyman JS. In Vivo Assessment of Bone Quality Without X-rays. Curr Osteoporos Rep 2024; 22:56-68. [PMID: 38227178 PMCID: PMC11050740 DOI: 10.1007/s11914-023-00856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW This review summarizes recent advances in the assessment of bone quality using non-X-ray techniques. RECENT FINDINGS Quantitative ultrasound (QUS) provides multiple measurements of bone characteristics based on the propagation of sound through bone, the attenuation of that sound, and different processing techniques. QUS parameters and model predictions based on backscattered signals can discriminate non-fracture from fracture cases with accuracy comparable to standard bone mineral density (BMD). With advances in magnetic resonance imaging (MRI), bound water and pore water, or a porosity index, can be quantified in several long bones in vivo. Since such imaging-derived measurements correlate with the fracture resistance of bone, they potentially provide new BMD-independent predictors of fracture risk. While numerous measurements of mineral, organic matrix, and bound water by Raman spectroscopy correlate with the strength and toughness of cortical bone, the clinical assessment of person's bone quality using spatially offset Raman spectroscopy (SORS) requires advanced spectral processing techniques that minimize contaminating signals from fat, skin, and blood. Limiting exposure of patients to ionizing radiation, QUS, MRI, and SORS has the potential to improve the assessment of fracture risk and track changes of new therapies that target bone matrix and micro-structure.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd., Indianapolis, IN, 46202, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave. S., Nashville, TN, 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, 400 24th Ave. S., Nashville, TN, 37212, USA
| | - Jeffry S Nyman
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Nashville, TN, 37232, USA.
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, 1215 21st Ave. S., Suite 4200, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, 1211 Medical Center Dr., Nashville, TN, 37212, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| |
Collapse
|
5
|
He T, Pang Z, Yin Y, Xue H, Pang Y, Song H, Li J, Bai R, Qin A, Kong X. Micron-resolution Imaging of Cortical Bone under 14 T Ultrahigh Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300959. [PMID: 37339792 PMCID: PMC10460861 DOI: 10.1002/advs.202300959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Compact, mineralized cortical bone tissues are often concealed on magnetic resonance (MR) images. Recent development of MR instruments and pulse techniques has yielded significant advances in acquiring anatomical and physiological information from cortical bone despite its poor 1 H signals. This work demonstrates the first MR research on cortical bones under an ultrahigh magnetic field of 14 T. The 1 H signals of different mammalian species exhibit multi-exponential decays of three characteristic T2 or T2 * values: 0.1-0.5 ms, 1-4 ms, and 4-8 ms. Systematic sample comparisons attribute these T2 /T2 * value ranges to collagen-bound water, pore water, and lipids, respectively. Ultrashort echo time (UTE) imaging under 14 T yielded spatial resolutions of 20-80 microns, which resolves the 3D anatomy of the Haversian canals. The T2 * relaxation characteristics further allow spatial classifications of collagen, pore water and lipids in human specimens. The study achieves a record of the spatial resolution for MR imaging in bone and shows that ultrahigh-field MR has the unique ability to differentiate the soft and organic compartments in bone tissues.
Collapse
Affiliation(s)
- Tian He
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhenfeng Pang
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yu Yin
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Huadong Xue
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haixin Song
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Jianhua Li
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT)College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Xueqian Kong
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghai200240China
| |
Collapse
|
6
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
7
|
Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, Does MD. T 1 relaxation of bound and pore water in cortical bone. NMR IN BIOMEDICINE 2023; 36:e4878. [PMID: 36418236 DOI: 10.1002/nbm.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
MRI measures of bound and/or pore water concentration in cortical bone offer potential diagnostics of bone fracture risk. The transverse relaxation characteristics of both bound and pore water are relatively well understood and have been used to design clinical MRI pulse sequences to image each water pool quantitatively. However, these methods are also sensitive to longitudinal relaxation characteristics, which have been less well studied. Here, spectroscopic relaxometry measurements of 31 human cortical bone specimens provided a more detailed picture of T 1 of both bound and pore water. The results included mean, standard deviation, and range of T 1 spectra from both bound and pore water, as well as novel presentations of the 2D T 1 - T 2 distribution of pore water. Importantly, for each sample the pore water T 1 spectrum was found to span more than one order of magnitude and varied substantially across the 31 sample studies. Because many existing methods assume pore water T 1 to be mono-exponential and constant across individuals, the results were used to compute the potential effect neglecting this intra- and intersample T 1 variation on accurate MRI measurement of both bound and pore water concentrations. The greatest effect was found for adiabatic inversion recovery (AIR) based measurements of bound water concentration, which showed an average of 8.8% and as much as 37% error when using a common mono-exponential assumption of pore water T 1 . Despite these errors, the simulated AIR measurements were still moderately well correlated with the bound water concentrations derived from the spectroscopic data.
Collapse
Affiliation(s)
- Thammathida Ketsiri
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sasidhar Uppuganti
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin D Harkins
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffry S Nyman
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark D Does
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Jerban S, Ma Y, Alenezi S, Moazamian D, Athertya J, Jang H, Dorthe E, Dlima D, Woods G, Chung CB, Chang EY, Du J. Ultrashort Echo Time (UTE) MRI porosity index (PI) and suppression ratio (SR) correlate with the cortical bone microstructural and mechanical properties: Ex vivo study. Bone 2023; 169:116676. [PMID: 36657630 PMCID: PMC9987215 DOI: 10.1016/j.bone.2023.116676] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
Ultrashort echo time (UTE) MRI can image and consequently enable quantitative assessment of cortical bone. UTE-MRI-based evaluation of bone is largely underutilized due to the high cost and time demands of MRI in general. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques (∼ 5 mins scan time each), which can potentially reduce the time demand and cost in future clinical studies. This study aimed to investigate the correlations of PI and SR measures with cortical bone microstructural and mechanical properties. Cortical bone strips (n = 135) from tibial and femoral midshafts of 37 donors (61 ± 24 years old) were scanned using a dual-echo 3D Cones UTE sequence and a 3D Cones IR-UTE sequence for PI and SR calculations, respectively. Average bone mineral density, porosity, and pore size were measured using microcomputed tomography (μCT). Bone mechanical properties were measured using 4-point bending tests. The μCT measures showed significant correlations with PI (moderate to strong, R = 0.68-0.71) and SR (moderate, R = 0.58-0.68). Young's modulus, yield stress, and ultimate stress demonstrated significant moderate correlations with PI and SR (R = 0.52-0.62) while significant strong correlations with μCT measures (R > 0.7). PI and SR can potentially serve as fast and noninvasive (non-ionizing radiation) biomarkers for evaluating cortical bone in various bone diseases.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA; Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Salem Alenezi
- Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Kingdom of Saudi Arabia
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Erik Dorthe
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Darryl Dlima
- Shiley Center for Orthopedic Research and Education at Scripps Clinic, La Jolla, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Lombardi AF, Ma YJ, Jang H, Jerban S, Du J, Chang EY, Chung CB. Synthetic CT in Musculoskeletal Disorders: A Systematic Review. Invest Radiol 2023; 58:43-59. [PMID: 36070535 PMCID: PMC9742139 DOI: 10.1097/rli.0000000000000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Repeated computed tomography (CT) examinations increase patients' ionizing radiation exposure and health costs, making an alternative method desirable. Cortical and trabecular bone, however, have short T2 relaxation times, causing low signal intensity on conventional magnetic resonance (MR) sequences. Different techniques are available to create a "CT-like" contrast of bone, such as ultrashort echo time, zero echo time, gradient-echo, and susceptibility-weighted image MR sequences, and artificial intelligence. This systematic review summarizes the essential technical background and developments of ultrashort echo time, zero echo time, gradient-echo, susceptibility-weighted image MR imaging sequences and artificial intelligence; presents studies on research and clinical applications of "CT-like" MR imaging; and describes their main advantages and limitations. We also discuss future opportunities in research, which patients would benefit the most, the most appropriate situations for using the technique, and the potential to replace CT in the clinical workflow.
Collapse
Affiliation(s)
- Alecio F Lombardi
- From the Department of Radiology, University of California San Diego, La Jolla, and the Research Service, Veterans Affairs San Diego Healthcare System, California
| | | | | | | | | | | | | |
Collapse
|
10
|
Liu J, Chen JD, Li P, Liao JW, Feng JX, Chen ZY, Cai ZY, Li W, Chen XJ, Su ZH, Lu H, Li SL, Ma YJ. Comprehensive assessment of osteoporosis in lumbar spine using compositional MR imaging of trabecular bone. Eur Radiol 2022; 33:3995-4006. [PMID: 36571604 DOI: 10.1007/s00330-022-09368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To comprehensively assess osteoporosis in the lumbar spine, a compositional MR imaging technique is proposed to quantify proton fractions for all the water components as well as fat in lumbar vertebrae measured by a combination of a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) MRI and IDEAL-IQ. METHODS A total of 182 participants underwent MRI, quantitative CT, and DXA. Lumbar collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), total water proton fraction (TWPF), bone mineral density (BMD), and T-score were calculated in three vertebrae (L2-L4) for each subject. The correlations of the CBWPF, FWPF, and TWPF with BMD and T-score were investigated respectively. A comprehensive diagnostic model combining all the water components and clinical characteristics was established. The performances of all the water components and the comprehensive diagnostic model to discriminate between normal, osteopenia, and osteoporosis cohorts were also evaluated using receiver operator characteristic (ROC). RESULTS The CBWPF showed strong correlations with BMD (r = 0.85, p < 0.001) and T-score (r = 0.72, p < 0.001), while the FWPF and TWPF showed moderate correlations with BMD (r = 0.65 and 0.68, p < 0.001) and T-score (r = 0.47 and 0.49, p < 0.001). The high area under the curve values obtained from ROC analysis demonstrated that CBWPF, FWPF, and TWPF have the potential to differentiate the normal, osteopenia, and osteoporosis cohorts. At the same time, the comprehensive diagnostic model shows the best performance. CONCLUSIONS The compositional MRI technique, which quantifies CBWPF, FWPF, and TWPF in trabecular bone, is promising in the assessment of bone quality. KEY POINTS • Compositional MR imaging technique is able to quantify proton fractions for all the water components (i.e., collagen-bound water proton fraction (CBWPF), free water proton fraction (FWPF), and total water proton fraction (TWPF)) in the human lumbar spine. • The biomarkers derived from the compositional MR imaging technique showed moderate to high correlations with bone mineral density (BMD) and T-score and showed good performance in distinguishing people with different bone mass. • The comprehensive diagnostic model incorporating CBWPF, FWPF, TWPF, and clinical characteristics showed the highest clinical diagnostic capability for the assessment of osteoporosis.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jian-Di Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zi-Yang Chen
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Zhi-Yuan Cai
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China. .,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, 9452 Medical Center Drive, La Jolla, CA, 92037, USA
| |
Collapse
|
11
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
12
|
Ullah MS, Mankinen O, Zhivonitko VV, Telkki VV. Ultrafast transverse relaxation exchange NMR spectroscopy. Phys Chem Chem Phys 2022; 24:22109-22114. [PMID: 36074123 PMCID: PMC9491048 DOI: 10.1039/d2cp02944h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022]
Abstract
Molecular exchange between different physical or chemical environments occurs due to either diffusion or chemical transformation. Nuclear magnetic resonance (NMR) spectroscopy provides a means of understanding the molecular exchange in a noninvasive way and without tracers. Here, we introduce a novel two dimensional, single-scan ultrafast Laplace NMR (UF LNMR) method to monitor molecular exchange using transverse relaxation as a contrast. The UF T2-T2 relaxation exchange spectroscopy (REXSY) method shortens the experiment time by one to two orders of magnitude compared to its conventional counterpart. Contrary to the conventional EXSY, the exchanging sites are distinguished based on T2 relaxation times instead of chemical shifts, making the method especially useful for systems including physical exchange of molecules. Therefore, the UF REXSY method offers an efficient means for quantification of exchange processes in various fields such as cellular metabolism and ion transport in electrolytes. As a proof of principle, we studied a halogen-free orthoborate based ionic liquid system and followed molecular exchange between molecular aggregates and free molecules. The results are in good agreement with the conventional exchange studies. Due to the single-scan nature, the method potentially significantly facilitates the use of modern hyperpolarization techniques to boost the sensitivity by several orders of magnitude.
Collapse
Affiliation(s)
- Md Sharif Ullah
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Otto Mankinen
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O.Box 3000, 90014 Oulu, Finland.
| |
Collapse
|
13
|
Webb TD, Fu F, Leung SA, Ghanouni P, Dahl JJ, Does MD, Pauly KB. Improving Transcranial Acoustic Targeting: The Limits of CT-Based Velocity Estimates and the Role of MR. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2630-2637. [PMID: 35853046 PMCID: PMC9519088 DOI: 10.1109/tuffc.2022.3192224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) enables the noninvasive treatment of the deep brain. This capacity relies on the ability to focus acoustic energy through the in-tact skull, a feat that requires accurate estimates of the acoustic velocity in individual patient skulls. In current practice, these estimates are generated using a pretreatment computed tomography (CT) scan and then registered to a magnetic resonance (MR) dataset on the day of the treatment. Treatment safety and efficacy can be improved by eliminating the need to register the CT data to the MR images and by improving the accuracy of acoustic velocity measurements. In this study, we examine the capacity of MR to supplement or replace CT as a means of estimating velocity in the skull. We find that MR can predict velocity with less but comparable accuracy to CT. We then use micro-CT imaging to better understand the limitations of Hounsfield unit (HU)-based estimates of velocity, demonstrating that the macrostructure of pores in the skull contributes to the acoustic velocity of the bone. We find evidence that detailed T2 measurements provide information about pore macrostructure similar to the information obtained with micro-CT, offering a potential clinical mechanism for improving patient-specific estimates of acoustic velocity in the human skull.
Collapse
|
14
|
Ahmed R, Uppuganti S, Derasari S, Meyer J, Pennings JS, Elefteriou F, Nyman JS. Identifying Bone Matrix Impairments in a Mouse Model of Neurofibromatosis Type 1 (NF1) by Clinically Translatable Techniques. J Bone Miner Res 2022; 37:1603-1621. [PMID: 35690920 PMCID: PMC9378557 DOI: 10.1002/jbmr.4633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Three-to-four percent of children with neurofibromatosis type 1 (NF1) present with unilateral tibia bowing, fracture, and recalcitrant healing. Alkaline phosphatase (ALP) enzyme therapy prevented poor bone mineralization and poor mechanical properties in mouse models of NF1 skeletal dysplasia; but transition to clinical trials is hampered by the lack of a technique that (i) identifies NF1 patients at risk of tibia bowing and fracture making them eligible for trial enrollment and (ii) monitors treatment effects on matrix characteristics related to bone strength. Therefore, we assessed the ability of matrix-sensitive techniques to provide characteristics that differentiate between cortical bone from mice characterized by postnatal loss of Nf1 in Osx-creTet-Off ;Nf1flox/flox osteoprogenitors (cKO) and from wild-type (WT) mice. Following euthanasia at two time points of bone disease progression, femur and tibia were harvested from both genotypes (n ≥ 8/age/sex/genotype). A reduction in the mid-diaphysis ultimate force during three-point bending at 20 weeks confirmed deleterious changes in bone induced by Nf1 deficiency, regardless of sex. Pooling females and males, low bound water (BW), and low cortical volumetric bone mineral density (Ct.vBMD) were the most accurate outcomes in distinguishing cKO from WT femurs with accuracy improving with age. Ct.vBMD and the average unloading slope (Avg-US) from cyclic reference point indentation tests were the most sensitive in differentiating WT from cKO tibias. Mineral-to-matrix ratio and carbonate substitution from Raman spectroscopy were not good classifiers. However, when combined with Ct.vBMD and BW (femur), they helped predict bending strength. Nf1 deficiency in osteoprogenitors negatively affected bone microstructure and matrix quality with deficits in properties becoming more pronounced with duration of Nf1 deficiency. Clinically measurable without ionizing radiation, BW and Avg-US are sensitive to deleterious changes in bone matrix in a preclinical model of NF1 bone dysplasia and require further clinical investigation as potential indicators of an onset of bone weakness in children with NF1. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rafay Ahmed
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shrey Derasari
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua Meyer
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jacquelyn S Pennings
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Florent Elefteriou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Orthopaedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
15
|
He W, Jakobsen LMA, Zachariassen LF, Hansen AK, Andersen HJ, Bertram HC. Dual nuclear magnetic resonance for probing intrinsic bone structure and a potential gut-bone axis in ovariectomized rats. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:651-658. [PMID: 34969169 DOI: 10.1002/mrc.5244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Currently, the existence of a gut-bone axis receives massive attention, and while sound premises and indirect proofs exist for the gut-bone axis concept, few studies have provided actual data linking the gut and bone physically. This study aimed to exploit the versatile nature of nuclear magnetic resonance (NMR) to link NMR relaxometry data on bone mineralization with NMR spectroscopic profiling of gut metabolites. For this purpose, sample material was obtained from a 6-week intervention study with ovariectomized (OVX) rats (n = 49) fed with seven different diets varying in calcium content (0.2-6.0 mg/kg) and prebiotic fiber content (0-5.0% w/w). This design ensured a span in (i) calcium available for bone mineralization and (ii) metabolic activity in the gut. After termination of the intervention, longitudinal (T1 ), transverse (T2 ) relaxation, and mechanical bone strength were measured on the excised femur bones. A PLS model with high predictability (Q2 = 0.86, R2 = 0.997) was demonstrated between T2 decay curves and femur mechanical strength. Correlations were established between bone T2 populations and gut short-chain fatty acids. In conclusion, the present dual NMR approach showed strong correlation between T2 relaxation and mechanical strength of the bone, and when metabolic activity in the gut was modulated by inulin, the potential existence of a gut-bone axis was demonstrated.
Collapse
Affiliation(s)
- Weiwei He
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | | | - Line F Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel K Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
16
|
Surowiec RK, Allen MR, Wallace JM. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep 2022; 16:101161. [PMID: 35005101 PMCID: PMC8718737 DOI: 10.1016/j.bonr.2021.101161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Water constitutes roughly a quarter of the cortical bone by volume yet can greatly influence mechanical properties and tissue quality. There is a growing appreciation for how water can dynamically change due to age, disease, and treatment. A key emerging area related to bone mechanical and tissue properties lies in differentiating the role of water in its four different compartments, including free/pore water, water loosely bound at the collagen/mineral interfaces, water tightly bound within collagen triple helices, and structural water within the mineral. This review summarizes our current knowledge of bone water across the four functional compartments and discusses how alterations in each compartment relate to mechanical changes. It provides an overview on the advent of- and improvements to- imaging and spectroscopic techniques able to probe nano-and molecular scales of bone water. These technical advances have led to an emerging understanding of how bone water changes in various conditions, of which aging, chronic kidney disease, diabetes, osteoporosis, and osteogenesis imperfecta are reviewed. Finally, it summarizes work focused on therapeutically targeting water to improve mechanical properties.
Collapse
Affiliation(s)
- Rachel K. Surowiec
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
17
|
Dwivedi N, Dubey R, Srivastava S, Sinha N. Unraveling Water-Mediated 31P Relaxation in Bone Mineral. ACS OMEGA 2022; 7:16678-16688. [PMID: 35601291 PMCID: PMC9118412 DOI: 10.1021/acsomega.2c01133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/15/2022] [Indexed: 06/09/2023]
Abstract
Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions. Many of the interactions among the different components are poorly understood. Recently, solid-state nuclear magnetic resonance (ssNMR) has become a popular spectroscopic tool for studying bone. In this article, we present a study probing the interaction of water molecules with amorphous and crystalline parts of the bone mineral through 31P ssNMR relaxation parameters (T 1 and T 2) and dynamics (correlation time). The method was developed to selectively measure the 31P NMR relaxation parameters and dynamics of the crystalline apatitic core and the amorphous surface layer of the bone mineral. The measured 31P correlation times (in the range of 10-6-10-7 s) indicated the different dynamic behaviors of both the mineral components. Additionally, we observed that dehydration affected the apatitic core region more significantly, while H-D exchange showed changes in the amorphous surface layer to a greater extent. Overall, the present work provides a significant understanding of the relaxation and dynamics of bone mineral components inside the bone matrix.
Collapse
Affiliation(s)
- Navneet Dwivedi
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Richa Dubey
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Seema Srivastava
- Department
of Physics, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Neeraj Sinha
- Centre
of Biomedical Research, Sanjay Gandhi Postgraduate
Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
18
|
Liu J, Liao JW, Li W, Chen XJ, Feng JX, Yao L, Huang PH, Su ZH, Lu H, Liao YT, Li SL, Ma YJ. Assessment of Osteoporosis in Lumbar Spine: In Vivo Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone. Front Endocrinol (Lausanne) 2022; 13:801930. [PMID: 35250862 PMCID: PMC8888676 DOI: 10.3389/fendo.2022.801930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
AIM Bone collagen matrix makes a crucial contribution to the mechanical properties of bone by imparting tensile strength and elasticity. The collagen content of bone is accessible via quantification of collagen bound water (CBW) indirectly. We prospectively study the performance of the CBW proton density (CBWPD) measured by a 3D short repetition time adiabatic inversion recovery prepared ultrashort echo time (STAIR-UTE) magnetic resonance imaging (MRI) sequence in the diagnosis of osteoporosis in human lumbar spine. METHODS A total of 189 participants with a mean age of 56 (ranged from 50 to 86) years old were underwent MRI, quantitative computed tomography (QCT), and dual-energy X-ray absorptiometry (DXA) in lumbar spine. Major fracture risk was also evaluated for all participants using Fracture Risk Assessment Tool (FRAX). Lumbar CBWPD, bone marrow fat fraction (BMFF), bone mineral density (BMD) and T score values were calculated in three vertebrae (L2-L4) for each subject. Both the CBWPD and BMFF were correlated with BMD, T score, and FRAX score for comparison. The abilities of the CBWPD and BMFF to discriminate between three different cohorts, which included normal subjects, patients with osteopenia, and patients with osteoporosis, were also evaluated and compared using receiver operator characteristic (ROC) analysis. RESULTS The CBWPD showed strong correlation with standard BMD (R2 = 0.75, P < 0.001) and T score (R2 = 0.59, P < 0.001), as well as a moderate correlation with FRAX score (R2 = 0.48, P < 0.001). High area under the curve (AUC) values (≥ 0.84 using QCT as reference; ≥ 0.76 using DXA as reference) obtained from ROC analysis demonstrated that the CBWPD was capable of well differentiating between the three different subject cohorts. Moreover, the CBWPD had better correlations with BMD, T score, and FRAX score than BMFF, and also performed better in cohort discrimination. CONCLUSION The STAIR-UTE-measured CBWPD is a promising biomarker in the assessment of bone quality and fracture risk.
Collapse
Affiliation(s)
- Jin Liu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jian-Wei Liao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wei Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Jun Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jia-Xin Feng
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Lin Yao
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Pan-Hui Huang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Zhi-Hai Su
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hai Lu
- Department of Spinal Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | | | - Shao-Lin Li
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Sotozono Y, Ikoma K, Kido M, Onishi O, Minami M, Wada H, Yamada S, Matsuda KI, Tanaka M, Takahashi K. Sweep imaging with Fourier transform as a tool with MRI for evaluating the effect of teriparatide on cortical bone formation in an ovariectomized rat model. BMC Musculoskelet Disord 2022; 23:16. [PMID: 34980094 PMCID: PMC8725572 DOI: 10.1186/s12891-021-04970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Teriparatide (TPTD) is a drug for osteoporosis that promotes bone formation and improves bone quality. However, the effects of TPTD on cortical bone are not well understood. Sweep imaging with Fourier transform (SWIFT) has been reported as a useful tool for evaluating bound water of cortical bone, but it has yet to be used to investigate the effects of TPTD on cortical bone. This study aimed to evaluate the consequences of the effect of TPTD on cortical bone formation using SWIFT. METHODS Twelve-week-old female Sprague-Dawley rats (n = 36) were reared after ovariectomy to create a postmenopausal osteoporosis model. They were divided into two groups: the TPTD and non-TPTD groups. Rats were euthanized at 4, 12, and 24 weeks after initiating TPTD treatment. Tibial bones were evaluated using magnetic resonance imaging (MRI) and bone histomorphometry. In MRI, proton density-weighted imaging (PDWI) and SWIFT imaging were performed. The signal-to-noise ratio (SNR) was calculated for each method. The same area evaluated by MRI was then used to calculate the bone formation rate by bone histomorphometry. Measurements were compared using the Mann-Whitney U-test, and a P-value of < 0.05 was considered significant. RESULTS PDWI-SNR was not significantly different between the two groups at any time point (P = 0.589, 0.394, and 0.394 at 4, 12, and 24 weeks, respectively). Contrarily, SWIFT-SNR was significantly higher in the TPTD group than in the non-TPTD group at 4 weeks after initiating treatment, but it was not significantly different at 12 and 24 weeks (P = 0.009, 0.937, and 0.818 at 4, 12, and 24 weeks, respectively). The bone formation rate assessed by histomorphometry was significantly higher in the TPTD group than in the non-TPTD group at all timepoints (P < 0.05, all weeks). In particular, at 4 weeks, the bone formation rate was markedly higher in the TPTD group than in the non-TPTD group (P = 0.028, 1.98 ± 0.33 vs. 0.09 ± 0.05 μm3/μm2/day). CONCLUSIONS SWIFT could detect increased signals of bound water, reflecting the effect of TPTD on the cortical bone. The signal detected by SWIFT reflects a marked increase in the cortical bone formation rate.
Collapse
Affiliation(s)
- Yasutaka Sotozono
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan.
| | - Masamitsu Kido
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Okihiro Onishi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Masataka Minami
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Hiroaki Wada
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken-Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
20
|
Chang HK, Hsu TW, Ku J, Ku J, Wu JC, Lirng JF, Hsu SM. Simple parameters of synthetic MRI for assessment of bone density in patients with spinal degenerative disease. J Neurosurg Spine 2021:1-8. [PMID: 34653988 DOI: 10.3171/2021.6.spine21666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Good bone quality is the key to avoiding osteoporotic fragility fractures and poor outcomes after lumbar instrumentation and fusion surgery. Although dual-energy x-ray absorptiometry (DEXA) screening is the current standard for evaluating osteoporosis, many patients lack DEXA measurements before undergoing lumbar spine surgery. The present study aimed to investigate the utility of using simple quantitative parameters generated with novel synthetic MRI to evaluate bone quality, as well as the correlations of these parameters with DEXA measurements. METHODS This prospective study enrolled patients with symptomatic lumbar degenerative disease who underwent DEXA and conventional and synthetic MRI. The quantitative parameters generated with synthetic MRI were T1 map, T2 map, T1 intensity, proton density (PD), and vertebral bone quality (VBQ) score, and these parameters were correlated with T-score of the lumbar spine. RESULTS There were 62 patients and 238 lumbar segments eligible for analysis. PD and VBQ score moderately correlated with T-score of the lumbar spine (r = -0.565 and -0.651, respectively; both p < 0.001). T1 intensity correlated fairly well with T-score (r = -0.411, p < 0.001). T1 and T2 correlated poorly with T-score. Receiver operating characteristic curve analysis demonstrated area under the curve values of 0.808 and 0.794 for detecting osteopenia/osteoporosis (T-score ≤ -1.0) and osteoporosis (T-score ≤ -2.5) with PD (both p < 0.001). CONCLUSIONS PD and T1 intensity values generated with synthetic MRI demonstrated significant correlation with T-score. PD has excellent ability for predicting osteoporosis and osteopenia.
Collapse
Affiliation(s)
- Hsuan-Kan Chang
- 1Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,2College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,3Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tun-Wei Hsu
- 4Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan.,5Integrated PET/MR Imaging Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Johnson Ku
- 6University of California, Los Angeles, California; and
| | - Jason Ku
- 6University of California, Los Angeles, California; and
| | - Jau-Ching Wu
- 2College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,3Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,7Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- 2College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,4Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ming Hsu
- 1Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
21
|
Tse JJ, Smith ACJ, Kuczynski MT, Kaketsis DA, Manske SL. Advancements in Osteoporosis Imaging, Screening, and Study of Disease Etiology. Curr Osteoporos Rep 2021; 19:532-541. [PMID: 34292468 DOI: 10.1007/s11914-021-00699-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to inform researchers and clinicians with the most recent imaging techniques that are employed (1) to opportunistically screen for osteoporosis and (2) to provide a better understanding into the disease etiology of osteoporosis. RECENT FINDINGS Phantomless calibration techniques for computed tomography (CT) may pave the way for better opportunistic osteoporosis screening and the retroactive analysis of imaging data. Additionally, hardware advances are enabling new applications of dual-energy CT and cone-beam CT to the study of bone. Advances in MRI sequences are also improving imaging evaluation of bone properties. Finally, the application of image registration techniques is enabling new uses of imaging to investigate soft tissue-bone interactions as well as bone turnover. While DXA remains the most prominent imaging tool for osteoporosis diagnosis, new imaging techniques are becoming more widely available and providing additional information to inform clinical decision-making.
Collapse
Affiliation(s)
- Justin J Tse
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ainsley C J Smith
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Michael T Kuczynski
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Daphne A Kaketsis
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Sarah L Manske
- Department of Radiology, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
22
|
Barbieri M, Fantazzini P, Testa C, Bortolotti V, Baruffaldi F, Kogan F, Brizi L. Characterization of Structural Bone Properties through Portable Single-Sided NMR Devices: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:7318. [PMID: 34298936 PMCID: PMC8303251 DOI: 10.3390/ijms22147318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Paola Fantazzini
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| | - Claudia Testa
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
- IRCCS Istituto delle Scienze Neurologiche Bologna, Functional and Molecular Neuroimaging Unit, 40139 Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 40134 Bologna, Italy;
| | - Fabio Baruffaldi
- Medical Technology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA 94395, USA;
| | - Leonardo Brizi
- Department of Physics and Astronomy “Augusto Righi”, University of Bologna, 40127 Bologna, Italy; (P.F.); (C.T.)
| |
Collapse
|
23
|
Ni Q, Hua R, Holland D, Tinajero A, Han Y, Jiang JX, Wang X. Characterization of Microstructural Changes on Biglycan Induced Mice Bone by Low-Field Nuclear Magnetic Resonance. APPLIED PHYSICS (KOWLOON, CHINA) 2021; 4:58-67. [PMID: 35479609 PMCID: PMC9040680 DOI: 10.31058/j.ap.2021.42004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A NMR spin-spin (T2) relaxation technique has been described for determining the porosity, and the bound water distribution in biglycan induced mouse bone and correlate to their mechanical properties. The technique of low-field proton NMR involves spin-spin relaxation and free induction decay (FID) measurements, and the computational inversion methods for decay data analysis. The CPMG T2 relaxation data can be inverted to T2 relaxation distribution and this distribution then can be transformed to a pore size distribution with the longer relaxation times corresponding to larger pores. The FID T2 relaxation data of dried bone (mobile water removed) can be inverted to T2 relaxation distribution and this distribution then can be transformed to bound and solid-like water distribution with the longest relaxation time corresponding to bound water component. These techniques are applied to quantify apparent changes in porosity, and bound water in controlled and biglycan knockout mouse bone. Overall bone porosity from CPMG T2 relaxation is determined using the calibrated NMR fluid volume from the proton relaxation data divided by overall bone volume. Ignore the physical sample differences, from the inversion FID T2 relaxation spectrum, the ratio of the bound to solid-like water components is used to calibrate the bound water inside bone, and the results can be used to correlated bone mechanical properties. Hydration status significantly affects the toughness of bone, and bound water has been considered as a biomarker for prediction of bone fragility fractures. In addition to the collagen phase, recent evidence shows that glycosaminoglycans (GAGs) of proteoglycans (PGs) in the extracellular matrix also play a pivotal role in regulating the tissue-level hydration status of bone, there by affecting the tissue-level toughness of bone. Furthermore, biglycan and decorin are two major types of PGs in bone reports. Biglycan knockout induced changes in GAGs, bound water, as well as bone tissue toughness. Among all subtypes of PGs, biglycan is identified as a major subtype in the bone mineral matrix. In this study, we used a biglycan mouse model and the obtained bone samples were measured by low-field NMR to determine the bone porosity and bound water changes, and used to predict if knockout of biglycan may affect the amount of bound water and subsequently lead to reduce toughness of bone.
Collapse
Affiliation(s)
- Qingwen Ni
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Rui Hua
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Douglas Holland
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Anahi Tinajero
- Department of Mathematics and Physics,Texas A&M International University, Laredo, TX, USA
| | - Yan Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaodu Wang
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Wang H, Falcoz S, Berteau JP. Long-Chain Fatty Acids in Bones and Their Link to Submicroscopic Vascularization Network: NMR Assignment and Relaxation Studies under Magic Angle Spinning Conditions in Intramuscular Bones of Atlantic Herring Fish. J Phys Chem B 2021; 125:4585-4595. [PMID: 33914538 DOI: 10.1021/acs.jpcb.1c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The long-lasting proton signals in bones are identified as long-chain fatty acids, including saturated, mono-, and di-unsaturated fatty acids, with direct nuclear magnetic resonance evidence. We used intramuscular bones from Atlantic Herring fish to avoid interference from lipid-rich marrows. The key is to recognize that these signals are from mobile phase materials and study them with J-coupled correlation spectroscopies under magic angle spinning conditions. We kept extensive 1H-spin-echo records that allowed us to examine the effect of magic angle spinning on the transverse relaxation time of water and lipids over time. While it is impossible to distinguish based on chemical shifts, the relaxation data suggest that the signals are more consistent with the interpretation of phospholipid membranes than triglycerides in lipid droplets. In particular, the simultaneous T2 changes in water and lipids suggest that the centrifugal impact of magic angle spinning alters the lipid's structure in very tight spaces. Additional evidence of phospholipid membranes came from the choline-γ resonance at 3.2 ppm in fresh samples, which disappears with magic angle spinning. Thus, the fatty acid signals are at least partially from membrane bilayer structures, and we propose that they are linked to the submicroscopic vascularization channels similar to the dense canaliculi network in mammalian bones. Our detection of phospholipids from bones depended critically on two factors: (1) the elimination of the overwhelming triglyceride signals from marrows and (2) the preservation of water that biomembranes require. The relaxation data reveal aspects of lipid fluidity that have not been elucidated by previous order parameter studies on model membranes. Relaxation times have long been considered difficult to interpret. A robust and renewed understanding may be beneficial.
Collapse
Affiliation(s)
- Hsin Wang
- Department of Chemistry and Biochemistry, The City College of New York and CUNY Institute for Macromolecular Assemblies, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Steve Falcoz
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States
| | - Jean-Philippe Berteau
- Department of Physical Therapy, The College of Staten Island, 2800 Victory Blvd, Staten Island, New York 10314, United States.,New York Centre for Biomedical Engineering, City University of New York - City College of New York, New York, New York 10031, United States.,Nanosciences Initiative, City University of New York - Advance Science Research Center, New York, New York 10031, United States
| |
Collapse
|
25
|
Surowiec RK, Ram S, Idiyatullin D, Goulet R, Schlecht SH, Galban CJ, Kozloff KM. In vivo quantitative imaging biomarkers of bone quality and mineral density using multi-band-SWIFT magnetic resonance imaging. Bone 2021; 143:115615. [PMID: 32853850 PMCID: PMC7770067 DOI: 10.1016/j.bone.2020.115615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
Bone is a composite biomaterial of mineral crystals, organic matrix, and water. Each contributes to bone quality and strength and may change independently, or together, with disease progression and treatment. Even so, there is a near ubiquitous reliance on ionizing x-ray-based approaches to measure bone mineral density (BMD) which is unable to fully characterize bone strength and may not adequately predict fracture risk. Characterization of treatment efficacy in bone diseases of altered remodeling is complicated by the lack of imaging modality able to safely monitor material-level and biochemical changes in vivo. To improve upon the current state of bone imaging, we tested the efficacy of Multi Band SWeep Imaging with Fourier Transformation (MB-SWIFT) magnetic resonance imaging (MRI) as a readout of bone derangement in an estrogen deficient ovariectomized (OVX) rat model during growth. MB-SWIFT MRI-derived BMD correlated significantly with BMD measured using micro-computed tomography (μCT). In this rodent model, growth appeared to overcome estrogen deficiency as bone mass continued to increase longitudinally over the duration of the study. Nonetheless, after 10 weeks of intervention, MB-SWIFT detected significant changes consistent with estrogen deficiency in cortical water, cortical matrix organization (T1), and marrow fat. Findings point to MB-SWIFT's ability to quantify BMD in good agreement with μCT while providing additive quantitative outcomes about bone quality in a manner consistent with estrogen deficiency. These results indicate MB-SWIFT as a non-ionizing imaging strategy with value for bone imaging and may be a promising technique to progress to the clinic for monitoring and clinical management of patients with bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sundaresh Ram
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Robert Goulet
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Craig J Galban
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M Kozloff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Barbieri M, Fantazzini P, Bortolotti V, Baruffaldi F, Festa A, Manners DN, Testa C, Brizi L. Single-sided NMR to estimate morphological parameters of the trabecular bone structure. Magn Reson Med 2020; 85:3353-3369. [PMID: 33349979 DOI: 10.1002/mrm.28648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients. METHODS Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT. RESULTS Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (33 ± 5)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients. CONCLUSION Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.
Collapse
Affiliation(s)
- Marco Barbieri
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,Department of Radiology, Stanford University, Stanford, CA, USA
| | - Paola Fantazzini
- Physics and Astronomy Department, University of Bologna, Bologna, Italy
| | - Villiam Bortolotti
- Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy
| | | | - Anna Festa
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David N Manners
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| | - Leonardo Brizi
- Physics and Astronomy Department, University of Bologna, Bologna, Italy.,National Institute for Nuclear Physics Bologna, Bologna, Italy
| |
Collapse
|
27
|
Ma YJ, Jerban S, Jang H, Chang D, Chang EY, Du J. Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of Bone: An Update. Front Endocrinol (Lausanne) 2020; 11:567417. [PMID: 33071975 PMCID: PMC7531487 DOI: 10.3389/fendo.2020.567417] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Bone possesses a highly complex hierarchical structure comprised of mineral (~45% by volume), organic matrix (~35%) and water (~20%). Water exists in bone in two forms: as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Magnetic resonance (MR) imaging has been increasingly used for assessment of cortical and trabecular bone. However, bone appears as a signal void on conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times (TEs) 100-1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. A series of quantitative UTE MRI techniques has been developed for bone evaluation. UTE and adiabatic inversion recovery prepared UTE (IR-UTE) sequences have been developed to quantify BW and PW. UTE magnetization transfer (UTE-MT) sequences have been developed to quantify collagen backbone protons, and UTE quantitative susceptibility mapping (UTE-QSM) sequences have been developed to assess bone mineral.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Douglas Chang
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
28
|
Jerban S, Ma Y, Wei Z, Jang H, Chang EY, Du J. Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone. Semin Musculoskelet Radiol 2020; 24:386-401. [PMID: 32992367 DOI: 10.1055/s-0040-1710355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Zhao Wei
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
29
|
Quantifying cortical bone free water using short echo time (STE-MRI) at 1.5 T. Magn Reson Imaging 2020; 71:17-24. [PMID: 32387394 DOI: 10.1016/j.mri.2020.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The purpose of our study was to use Dual-TR STE-MR protocol as a clinical tool for cortical bone free water quantification at 1.5 T and validate it by comparing the obtained results (MR-derived results) with dehydration results. METHODS Human studies were compliant with HIPPA and were approved by the institutional review board. Short Echo Time (STE) MR imaging with different Repetition Times (TRs) was used for quantification of cortical bone free water T1 (T1free) and concentration (ρfree). The proposed strategy was compared with the dehydration technique in seven bovine cortical bone samples. The agreement between the two methods was quantified by using Bland and Altman analysis. Then we applied the technique on a cross-sectional population of thirty healthy volunteers (18F/12M) and examined the association of the biomarkers with age. RESULTS The mean values of ρfree for bovine cortical bone specimens were quantified as 4.37% and 5.34% by using STE-MR and dehydration techniques, respectively. The Bland and Altman analysis showed good agreement between the two methods along with the suggestion of 0.99% bias between them. Strong correlations were also reported between ρfree (r2 = 0.62) and T1free and age (r2 = 0.8). The reproducibility of the method, evaluated in eight subjects, yielded an intra-class correlation of 0.95. CONCLUSION STE-MR imaging with dual-TR strategy is a clinical solution for quantifying cortical bone ρfree and T1free.
Collapse
|
30
|
Zhao X, Lee H, Song HK, Cheng CC, Wehrli FW. Impact of gradient imperfections on bone water quantification with UTE MRI. Magn Reson Med 2020; 84:2034-2047. [PMID: 32307749 DOI: 10.1002/mrm.28272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/06/2020] [Accepted: 03/11/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE The impact of gradient imperfections on UTE images and UTE image-derived bone water quantification was investigated at 3 T field strength. METHODS The effects of simple gradient time delays and eddy currents on UTE images, as well as the effects of gradient error corrections, were studied with simulation and phantom experiments. The k-space trajectory was mapped with a 2D sequence with phase encoding on both spatial axes by measuring the phase of the signal in small time increments during ramp-up of the read gradient. In vivo 3D UTE images were reconstructed with and without gradient error compensation to determine the bias in bone water quantification. Finally, imaging was performed on 2 equally configured Siemens TIM Trio systems (Siemens Medical Solutions, Erlangen, Germany) to investigate the impact of such gradient imperfections on inter-scanner measurement bias. RESULTS Compared to values derived from UTE images with full gradient error compensation, total bone water was found to deviate substantially with no (up to 17%) or partial (delay-only) compensation (up to 10.8%). Bound water, obtained with inversion recovery-prepared UTE, was somewhat less susceptible to gradient errors (up to 2.2% for both correction strategies). Inter-scanner comparison indicated a statistically significant bias between measurements from the 2 MR systems for both total and bound water, which either vanished or was substantially reduced following gradient error correction. CONCLUSION Gradient imperfections impose spatially dependent artifacts on UTE images, which compromise not only bone water quantification accuracy but also inter-scanner measurement agreement if left uncompensated.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheng-Chieh Cheng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Chandramohan D, Cao P, Han M, An H, Sunderland JJ, Kinahan PE, Laforest R, Hope TA, Larson PEZ. Bone material analogues for PET/MRI phantoms. Med Phys 2020; 47:2161-2170. [PMID: 32034945 DOI: 10.1002/mp.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To develop bone material analogues that can be used in construction of phantoms for simultaneous PET/MRI systems. METHODS Plaster was used as the basis for the bone material analogues tested in this study. It was mixed with varying concentrations of an iodinated CT contrast, a gadolinium-based MR contrast agent, and copper sulfate to modulate the attenuation properties and MRI properties (T1 and T2*). Attenuation was measured with CT and 68 Ge transmission scans, and MRI properties were measured with quantitative ultrashort echo time pulse sequences. A proof-of-concept skull was created by plaster casting. RESULTS Undoped plaster has a 511 keV attenuation coefficient (~0.14 cm-1 ) similar to cortical bone (0.10-0.15 cm-1 ), but slightly longer T1 (~500 ms) and T2* (~1.2 ms) MR parameters compared to bone (T1 ~ 300 ms, T2* ~ 0.4 ms). Doping with the iodinated agent resulted in increased attenuation with minimal perturbation to the MR parameters. Doping with a gadolinium chelate greatly reduced T1 and T2*, resulting in extremely short T1 values when the target T2* values were reached, while the attenuation coefficient was unchanged. Doping with copper sulfate was more selective for T2* shortening and achieved comparable T1 and T2* values to bone (after 1 week of drying), while the attenuation coefficient was unchanged. CONCLUSIONS Plaster doped with copper sulfate is a promising bone material analogue for a PET/MRI phantom, mimicking the MR properties (T1 and T2*) and 511 keV attenuation coefficient of human cortical bone.
Collapse
Affiliation(s)
- Dharshan Chandramohan
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA
| | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA
| | - Hongyu An
- Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - John J Sunderland
- Departments of Radiology, Radiation Oncology, and Physics and Astronomy, University of Iowa, Iowa City, IA, 52242, USA
| | - Paul E Kinahan
- Department of Radiology, University of Washington, Seattle, WA, 98195, USA
| | - Richard Laforest
- Department of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
32
|
Jerban S, Chang DG, Ma Y, Jang H, Chang EY, Du J. An Update in Qualitative Imaging of Bone Using Ultrashort Echo Time Magnetic Resonance. Front Endocrinol (Lausanne) 2020; 11:555756. [PMID: 33117275 PMCID: PMC7551122 DOI: 10.3389/fendo.2020.555756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Bone is comprised of mineral, collagenous organic matrix, and water. X-ray-based techniques are the standard approach for bone evaluation in clinics, but they are unable to detect the organic matrix and water components in bone. Magnetic resonance imaging (MRI) is being used increasingly for bone evaluation. While MRI can non-invasively assess the proton pools in soft tissues, cortical bone typically appears as a signal void with clinical MR techniques because of its short T2*. New MRI techniques have been recently developed to image bone while avoiding the ionizing radiation present in x-ray-based methods. Qualitative bone imaging can be achieved using ultrashort echo time (UTE), single inversion recovery UTE (IR-UTE), dual-inversion recovery UTE (Dual-IR-UTE), double-inversion recovery UTE (Double-IR-UTE), and zero echo time (ZTE) sequences. The contrast mechanisms as well as the advantages and disadvantages of each technique are discussed.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Douglas G. Chang
- Departments of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- *Correspondence: Jiang Du,
| |
Collapse
|
33
|
Guo T, Ma Y, Jerban S, Jang H, Zhao W, Chang EY, Chen M, Bydder GM, Du J. T 1 measurement of bound water in cortical bone using 3D adiabatic inversion recovery ultrashort echo time (3D IR-UTE) Cones imaging. Magn Reson Med 2019; 84:634-645. [PMID: 31863519 DOI: 10.1002/mrm.28140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/04/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022]
Abstract
PURPOSE We describe the measurement of bound water T1 ( T 1 BW ) of cortical bone in vitro and in vivo with a 3D adiabatic inversion recovery ultrashort echo time (IR-UTE) Cones sequence using a clinical 3T scanner. METHODS A series IR-UTE data from 6 repetition times (TRs) with 5 inversion times (TIs) at each TR were acquired from 12 human tibial bone specimens, and data from 4 TRs with 5 TIs at each TR were acquired from the tibial midshafts of 8 healthy volunteers. The pore water nulling point was calculated from exponential fitting of the inversion recovery curve at each TR. Bone specimens and volunteers were then scanned again with the calculated nulling point at each TR. T 1 BW was derived through exponential fitting of data from IR-UTE images acquired at different TRs using the calculated pore water nulling point for each TR. RESULTS In vitro pore water nulling TIs were 141.3 ± 11.6, 123.4 ± 8.9, 101.3 ± 6.2, 88.9 ± 5.3, 74.8 ± 4.2, and 59.2 ± 3.9 ms for the 6 TRs of 500, 400, 300, 250, 200, and 150 ms, respectively. In vivo pore water nulling TIs were 132.8 ± 12.8, 110.3 ± 10.0, 80.0 ± 7.2, and 63.9 ± 5.4 ms for the 4 TRs of 400, 300, 200, and 150 ms, respectively. Excellent exponential fitting was achieved for IR-UTE imaging of bound water with pore water nulled at each TR. The mean T 1 BW was 106.9 ± 6.3 ms in vitro and 112.3 ± 16.4 ms in vivo. CONCLUSION Using the 3D IR-UTE Cones with a variable TR/TI approach, T 1 BW of cortical bone was calculated after complete nulling of pore water signals.
Collapse
Affiliation(s)
- Tan Guo
- Department of Radiology, Beijing Hospital, Beijing, China.,Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California
| | - Wei Zhao
- Department of Radiology, University of California, San Diego, California
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, California
| | - Min Chen
- Department of Radiology, Beijing Hospital, Beijing, China
| | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
34
|
Weiger M, Pruessmann KP. Short-T 2 MRI: Principles and recent advances. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:237-270. [PMID: 31779882 DOI: 10.1016/j.pnmrs.2019.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Among current modalities of biomedical and diagnostic imaging, MRI stands out by virtue of its versatile contrast obtained without ionizing radiation. However, in various cases, e.g., water protons in tissues such as bone, tendon, and lung, MRI performance is limited by the rapid decay of resonance signals associated with short transverse relaxation times T2 or T2*. Efforts to address this shortcoming have led to a variety of specialized short-T2 techniques. Recent progress in this field expands the choice of methods and prompts fresh considerations with regard to instrumentation, data acquisition, and signal processing. In this review, the current status of short-T2 MRI is surveyed. In an attempt to structure the growing range of techniques, the presentation highlights overarching concepts and basic methodological options. The most frequently used approaches are described in detail, including acquisition strategies, image reconstruction, hardware requirements, means of introducing contrast, sources of artifacts, limitations, and applications.
Collapse
Affiliation(s)
- Markus Weiger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Bouazizi K, Guillot G. Cross-relaxation parameters in cortical bone assessed with different MR sequences. NMR IN BIOMEDICINE 2019; 32:e4098. [PMID: 30986332 DOI: 10.1002/nbm.4098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to show evidence of MR cross-relaxation effects in cortical bone and to compare different MR sequences for the quantification of cross-relaxation parameters. Measurements were performed on bovine diaphysis samples with spectroscopic methods (inversion-recovery, off-resonance saturation) and with a variable flip angle (VFA) UTE imaging method on a 4.7 T laboratory-assembled scanner. Cross-relaxation parameter assessment was carried out via a two-pool model simulation with a matrix algebra approach. A proton signal amplitude of 28 Mol/L was observed (equivalent water fraction of 25%). It was attributed to collagen-bound water, with T2* values of ~ 0.3 ms, a "long-T2 " proton pool, in exchange with protons from the collagen macromolecules ( T2* of 10-20 μs). Magnetization transfer (MT) effects were detected with all sequences. The best precision of model parameters was obtained with off-resonance saturation; the fraction of collagen methylene protons was found in the range of 22-28% and the transverse relaxation time for collagen methylene protons was 11 μs (1% precision). The model parameters obtained were compatible with VFA-UTE results but could not be assessed with acceptable accuracy and precision using this method. In vivo MT quantification using off-resonance saturation with a single B1 amplitude and offset frequency may provide information about the relative amount of collagen per unit volume in cortical bone.
Collapse
Affiliation(s)
- Khaoula Bouazizi
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081), CNRS, Université Paris-Saclay, Orsay, France
| | - Geneviève Guillot
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081), CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
36
|
Hong AL, Ispiryan M, Padalkar MV, Jones BC, Batzdorf AS, Shetye SS, Pleshko N, Rajapakse CS. MRI-derived bone porosity index correlates to bone composition and mechanical stiffness. Bone Rep 2019; 11:100213. [PMID: 31372372 PMCID: PMC6660551 DOI: 10.1016/j.bonr.2019.100213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023] Open
Abstract
The MRI-derived porosity index (PI) is a non-invasively obtained biomarker based on an ultrashort echo time sequence that images both bound and pore water protons in bone, corresponding to water bound to organic collagenous matrix and freely moving water, respectively. This measure is known to strongly correlate with the actual volumetric cortical bone porosity. However, it is unknown whether PI may also be able to directly quantify bone organic composition and/or mechanical properties. We investigated this in human cadaveric tibiae by comparing PI values to near infrared spectral imaging (NIRSI) compositional data and mechanical compression data. Data were obtained from a cohort of eighteen tibiae from male and female donors with a mean ± SD age of 70 ± 21 years. Biomechanical stiffness in compression and NIRSI-derived collagen and bound water content all had significant inverse correlations with PI (r = −0.79, −0.73, and −0.95 and p = 0.002, 0.007, and <0.001, respectively). The MRI-derived bone PI alone was a moderate predictor of bone stiffness (R2 = 0.63, p = 0.002), and multivariate analyses showed that neither cortical bone cross-sectional area nor NIRSI values improved bone stiffness prediction compared to PI alone. However, NIRSI-obtained collagen and water data together were a moderate predictor of bone stiffness (R2 = 0.52, p = 0.04). Our data validates the MRI-derived porosity index as a strong predictor of organic composition of bone and a moderate predictor of bone stiffness, and also provides preliminary evidence that NIRSI measures may be useful in future pre-clinical studies on bone pathology.
Collapse
Affiliation(s)
- Abigail L Hong
- Department of Radiology, University of Pennsylvania, United States of America
| | - Mikayel Ispiryan
- Department of Radiology, University of Pennsylvania, United States of America
| | - Mugdha V Padalkar
- Department of Bioengineering, Temple University, United States of America
| | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, United States of America.,Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | | | - Snehal S Shetye
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, United States of America
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States of America.,Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| |
Collapse
|
37
|
Willett TL, Dapaah DY, Uppuganti S, Granke M, Nyman JS. Bone collagen network integrity and transverse fracture toughness of human cortical bone. Bone 2019; 120:187-193. [PMID: 30394355 PMCID: PMC6360115 DOI: 10.1016/j.bone.2018.10.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022]
Abstract
Greater understanding of the determinants of skeletal fragility is highly sought due to the great burden that bone affecting diseases and fractures have on economies, societies and health care systems. Being a complex, hierarchical composite of collagen type-I and non-stoichiometric substituted hydroxyapatite, bone derives toughness from its organic phase. In this study, we tested whether early observations that a strong correlation between bone collagen integrity measured by thermomechanical methods and work to fracture exist in a more general and heterogeneous sampling of the population. Neighboring uniform specimens from an established, highly characterized and previously published collection of human cortical bone samples (femur mid-shaft) were decalcified in EDTA. Fifty-four of the original 62 donors were included (26 male and 28 females; ages 21-101 years; aging, osteoporosis, diabetes and cancer). Following decalcification, bone collagen was tested using hydrothermal isometric tension (HIT) testing in order to measure the collagen's thermal stability (denaturation temperature, Td) and network connectivity (maximum rate of isometric tension generation; Max.Slope). We used linear regression and general linear models (GLMs) with several explanatory variables to determine whether relationships between HIT parameters and generally accepted bone quality factors (e.g., cortical porosity, pentosidine content [pen], pyridinoline content [pyd]), age, and measures of fracture toughness (crack initiation fracture toughness, Kinit, and total energy release/dissipation rate evaluated at the point of unstable fast fracture, J-int) were significant. Bone collagen connectivity (Max.Slope) correlated well with the measures of fracture toughness (R2 = 24-35%), and to a lesser degree with bound water fraction (BW; R2 = 7.9%) and pore water fraction (PW; R2 = 9.1%). Significant correlations with age, apparent volumetric bone mineral density (vBMD), and mature enzymatic [pyd] and non-enzymatic collagen crosslinks [pen] were not detected. GLMs found that Max.Slope and vBMD (or BW), with or without age as additional covariate, all significantly explained the variance in Kinit (adjusted-R2 = 36.7-49.0%). Also, the best-fit model for J-int (adjusted-R2 = 35.7%) included only age and Max.Slope as explanatory variables with Max.Slope contributing twice as much as age. Max.Slope and BW without age were also significant predictors of J-int (adjusted-R2 = 35.5%). In conclusion, bone collagen integrity as measured by thermomechanical methods is a key factor in cortical bone fracture toughness. This study further demonstrates that greater attention should be paid to degradation of the overall organic phase, rather than a specific biomarker (e.g. [pen]), when seeking to understand elevated fracture rates in aging and disease.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Y Dapaah
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sasidhar Uppuganti
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mathilde Granke
- Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jeffry S Nyman
- Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
38
|
Wan L, Zhao W, Ma Y, Jerban S, Searleman AC, Carl M, Chang EY, Tang G, Du J. Fast quantitative 3D ultrashort echo time MRI of cortical bone using extended cones sampling. Magn Reson Med 2019; 82:225-236. [PMID: 30821032 DOI: 10.1002/mrm.27715] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/09/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the effect of stretching sampling window on quantitative 3D ultrashort TE (UTE) imaging of cortical bone at 3 T. METHODS Ten bovine cortical bone and 17 human tibial midshaft samples were imaged with a 3T clinical MRI scanner using an 8-channel knee coil. Quantitative 3D UTE imaging biomarkers, including T1 , T 2 ∗ , magnetization transfer ratio and magnetization transfer modeling, were performed using radial or spiral Cones sampling trajectories with various durations. Errors in UTE-MRI biomarkers as a function of sampling time were evaluated using radial sampling as a reference standard. RESULTS For both bovine and human cortical bone samples, no significant differences were observed for all UTE biomarkers (single-component T 2 ∗ , bicomponent T 2 ∗ and relative fractions, T1 , magnetization transfer ratio, and magnetization transfer modeling of macromolecular fraction) for spiral sampling windows of 992 µs to 1600 µs compared with a radial sampling window of 688 µs. CONCLUSION The total scan time can be reduced by 76% with quantification errors less than 5%. Quantitative UTE-MRI techniques can be greatly accelerated using longer sampling windows without significant quantification errors.
Collapse
Affiliation(s)
- Lidi Wan
- Department of Radiology, University of California, San Diego, California.,Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Wei Zhao
- Department of Radiology, University of California, San Diego, California
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, California
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California
| | - Adam C Searleman
- Department of Radiology, University of California, San Diego, California
| | | | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California.,Radiology Service, VA San Diego Healthcare System, San Diego, California
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Jiang Du
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
39
|
Nyman JS, Uppuganti S, Unal M, Leverant CJ, Adabala S, Granke M, Voziyan P, Does MD. Manipulating the Amount and Structure of the Organic Matrix Affects the Water Compartments of Human Cortical Bone. JBMR Plus 2019; 3:e10135. [PMID: 31346566 PMCID: PMC6636778 DOI: 10.1002/jbm4.10135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 02/01/2023] Open
Abstract
Being predictors of the mechanical properties of human cortical bone, bound and pore water measurements by magnetic resonance (MR) imaging are being developed for the clinical assessment of fracture risk. While pore water is a surrogate of cortical bone porosity, the determinants of bound water are unknown. Manipulation of organic matrix properties by oxidative deproteinization, thermal denaturation, or nonenzymatic glycation lowers bone toughness. Because bound water contributes to bone toughness, we hypothesized that each of these matrix manipulations affect bound water fraction (Vbw/Vbone). Immersing cadaveric bone samples in sodium hypochlorite (NaClO) for 96 hours did not affect tissue mineral density or cortical porosity, but rather decreased Vbw/Vbone and increased short‐T2 pore water signals as determined by 1H nuclear MR relaxometry (1H NMR). Moreover, the post treatment Vbw/Vbone linearly correlated with the remaining weight fraction of the organic matrix. Heating bone samples at 110°C, 120°C, 130°C, and then 140°C (∼24 hours per temperature and rehydration for ∼24 hours before 1H NMR analysis) did not affect Vbw/Vbone. After subsequently heating them at 200°C, Vbw/Vbone increased. Boiling bone samples followed by heating at 110°C, 120°C, and then 130°C in water under pressure (8 hours per temperature) had a similar effect on Vbw/Vbone. Raman spectroscopy analysis confirmed that the increase in Vbw/Vbone coincided with an increase in an Amide I subpeak ratio that is sensitive to changes in the helical structure of collagen I. Glycation of bone by ribose for 4 weeks, but not in glucose for 16 weeks, decreased Vbw/Vbone, although the effect was less pronounced than that of oxidative deproteinization or thermal denaturation. We propose that MR measurements of bound water reflect the amount of bone organic matrix and can be modulated by collagen I helicity and by sugar‐derived post translational modifications of the matrix. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA.,Department of Biomedical Engineering Vanderbilt University Nashville TN USA.,Department of Veterans Affairs Tennessee Valley Healthcare System Nashville TN USA
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Mustafa Unal
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Calen J Leverant
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville TN USA
| | - Saahit Adabala
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation Vanderbilt University Medical Center Nashville TN USA
| | - Paul Voziyan
- Department of Medicine Division of Nephrology Vanderbilt University Medical Center Nashville TN USA
| | - Mark D Does
- Department of Biomedical Engineering Vanderbilt University Nashville TN USA.,Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville TN USA.,Department of Electrical Engineering Vanderbilt University Nashville TN USA
| |
Collapse
|
40
|
Foster RJ, Damion RA, Ries ME, Smye SW, McGonagle DG, Binks DA, Radjenovic A. Imaging of nuclear magnetic resonance spin-lattice relaxation activation energy in cartilage. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180221. [PMID: 30109078 PMCID: PMC6083713 DOI: 10.1098/rsos.180221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Samples of human and bovine cartilage have been examined using magnetic resonance imaging to determine the proton nuclear magnetic resonance spin-lattice relaxation time, T1, as a function of depth within through the cartilage tissue. T1 was measured at five to seven temperatures between 8 and 38°C. From this, it is shown that the T1 relaxation time is well described by Arrhenius-type behaviour and the activation energy of the relaxation process is quantified. The activation energy within the cartilage is approximately 11 ± 2 kJ mol-1 with this notably being less than that for both pure water (16.6 ± 0.4 kJ mol-1) and the phosphate-buffered solution in which the cartilage was immersed (14.7 ± 1.0 kJ mol-1). It is shown that this activation energy increases as a function of depth in the cartilage. It is known that cartilage composition varies with depth, and hence, these results have been interpreted in terms of the structure within the cartilage tissue and the association of the water with the macromolecular constituents of the cartilage.
Collapse
Affiliation(s)
- R. J. Foster
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - R. A. Damion
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - M. E. Ries
- Soft Matter Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - S. W. Smye
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - D. G. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - D. A. Binks
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| | - A. Radjenovic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS4 7SA, UK
| |
Collapse
|
41
|
Wang X, Hua R, Ahsan A, Ni Q, Huang Y, Gu S, Jiang JX. AGE-RELATED DETERIORATION OF BONE TOUGHNESS IS RELATED TO DIMINISHING AMOUNT OF MATRIX GLYCOSAMINOGLYCANS (GAGS). JBMR Plus 2018; 2:164-173. [PMID: 30009278 PMCID: PMC6042860 DOI: 10.1002/jbm4.10030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Hydration status significantly affects the toughness of bone. In addition to the collagen phase, recent evidence shows that glycosaminoglycans (GAGs) of proteoglycans (PGs) in the extracellular matrix also play a pivotal role in regulating the tissue-level hydration status of bone, thereby affecting the tissue-level toughness of bone. In this study, we hypothesized that the amount of GAGs in bone matrix decreased with age and such changes would lead to reduction in bound water and subsequently result in a decrease in the tissue-level toughness of bone. To test the hypothesis, nanoscratch tests were conducted to measure the tissue-level toughness of human cadaveric bone specimens, which were procured only from male donors in three different age groups: young (26 ± 6 years old), mid-aged (52 ± 5 years old) and elderly (73 ± 5 years old), with six donors in each group. Biochemical and histochemical assays were performed to determine the amount and major subtypes of GAGs and proteoglycans in bone matrix. In addition, low-field NMR measurements were implemented to determine bound water content in bone matrix. The results demonstrated that aging resulted in a statistically significant reduction (17%) of GAGs in bone matrix. Concurrently, a significant deterioration (20%) of tissue-level toughness of bone with age was observed. Most importantly, the deteriorated tissue-level toughness of bone was associated significantly with the age-related reduction (40%) of bound water, which was partially induced by the decrease of GAGs in bone matrix. Furthermore, we identified that chondroitin sulfate (CS) was a major subtype of GAGs and the amount of CS decreased with aging in accompany with a decrease of biglycan that is a major subtype of PGs in bone. The findings of this study suggests that reduction of GAGs in bone matrix is likely one of the molecular origins for age-related deterioration of bone quality.
Collapse
Affiliation(s)
- Xiaodu Wang
- Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioTexas
| | - Rui Hua
- Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioTexas
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Abu Ahsan
- Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioTexas
| | - Qingwen Ni
- Department of PhysicsTexas A&M International UniversityLaredoTexas
| | - Yehong Huang
- Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioTexas
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Sumin Gu
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Jean X Jiang
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
42
|
Minami M, Ikoma K, Horii M, Sukenari T, Onishi O, Fujiwara H, Ogi H, Itoh K, Kubo T. Usefulness of Sweep Imaging With Fourier Transform for Evaluation of Cortical Bone in Diabetic Rats. J Magn Reson Imaging 2018; 48:389-397. [DOI: 10.1002/jmri.25955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Masataka Minami
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Kazuya Ikoma
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Motoyuki Horii
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Tsuyoshi Sukenari
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Okihiro Onishi
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Toshikazu Kubo
- Department of Orthopaedics, Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
43
|
Soustelle L, Lamy J, Rousseau F, Armspach JP, Loureiro de Sousa P. A diffusion-based method for long-T2suppression in steady state sequences: Validation and application for 3D-UTE imaging. Magn Reson Med 2017; 80:548-559. [DOI: 10.1002/mrm.27057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas Soustelle
- Université de Strasbourg, CNRS, ICube, FMTS; Strasbourg France
| | - Julien Lamy
- Université de Strasbourg, CNRS, ICube, FMTS; Strasbourg France
| | | | | | | |
Collapse
|
44
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
45
|
Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, Hope TA, Larson PEZ. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. J Nucl Med 2017; 59:852-858. [PMID: 29084824 DOI: 10.2967/jnumed.117.198051] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUVmax was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods.
Collapse
Affiliation(s)
- Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California .,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| | - Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | | | | | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,Department of Radiology, San Francisco VA Medical Center, San Francisco, California
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.,UC Berkeley-UCSF Graduate Program in Bioengineering, UC Berkeley, Berkeley, California, and UCSF, San Francisco, California
| |
Collapse
|
46
|
Ma YJ, Tadros A, Du J, Chang EY. Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 2017; 79:1941-1949. [PMID: 28776754 DOI: 10.1002/mrm.26846] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/19/2023]
Abstract
PURPOSE To investigate quantitative 2D ultrashort echo time magnetization transfer (UTE-MT) imaging in ex vivo bovine cortical bone and in vivo human tibial cortical bone. METHODS Data were acquired from five fresh bovine cortical bone samples and five healthy volunteer tibial cortical bones using a 2D UTE-MT sequence on a clinical 3T scanner. The 2D UTE-MT sequence used four or five MT powers with five frequency offsets. Results were analyzed with a two-pool quantitative MT model, providing measurements of macromolecular fraction (f), macromolecular proton transverse relaxation times (T2m ), proton exchange rates from water/macromolecular to the macromolecular/water pool (RM0m /RM0w ), and spin-lattice relaxation rate of water pool (R1w ). A sequential air-drying study for a small bovine cortical bone chip was used to investigate whether above MT modeling parameters were sensitive to the water loss. RESULTS Mean fresh bovine cortical bone values for f, T2m , R1w , RM0m , and RM0w were 59.9 ± 7.3%, 14.6 ± 0.3 μs, 9.9 ± 2.4 s-1 , 17.9 ± 3.6 s-1 , and 11.8 ± 2.0 s-1 , respectively. Mean in vivo human cortical bone values for f, T2m , R1w , RM0m and RM0w were 54.5 ± 4.9%, 15.4 ± 0.6 μs, 8.9 ± 1.1 s-1 , 11.5 ± 3.5 s-1 , and 9.5 ± 1.9 s-1 , respectively. The sequential air-drying study shows that f, RM0m , and R1w were increased with longer drying time. CONCLUSION UTE-MT two-pool modeling provides novel and useful quantitative information for cortical bone. Magn Reson Med 79:1941-1949, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Anthony Tadros
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, San Diego, California, USA.,Radiology Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
47
|
Chang G, Boone S, Martel D, Rajapakse CS, Hallyburton RS, Valko M, Honig S, Regatte RR. MRI assessment of bone structure and microarchitecture. J Magn Reson Imaging 2017; 46:323-337. [PMID: 28165650 PMCID: PMC5690546 DOI: 10.1002/jmri.25647] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a disease of weak bone and increased fracture risk caused by low bone mass and microarchitectural deterioration of bone tissue. The standard-of-care test used to diagnose osteoporosis, dual-energy x-ray absorptiometry (DXA) estimation of areal bone mineral density (BMD), has limitations as a tool to identify patients at risk for fracture and as a tool to monitor therapy response. Magnetic resonance imaging (MRI) assessment of bone structure and microarchitecture has been proposed as another method to assess bone quality and fracture risk in vivo. MRI is advantageous because it is noninvasive, does not require ionizing radiation, and can evaluate both cortical and trabecular bone. In this review article, we summarize and discuss research progress on MRI of bone structure and microarchitecture over the last decade, focusing on in vivo translational studies. Single-center, in vivo studies have provided some evidence for the added value of MRI as a biomarker of fracture risk or treatment response. Larger, prospective, multicenter studies are needed in the future to validate the results of these initial translational studies. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. MAGN. RESON. IMAGING 2017;46:323-337.
Collapse
Affiliation(s)
- Gregory Chang
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Sean Boone
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Dimitri Martel
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Chamith S Rajapakse
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Hallyburton
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Mitch Valko
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| | - Stephen Honig
- Osteoporosis Center, Hospital for Joint Diseases, NYU Langone Medical Center, New York, New York, USA
| | - Ravinder R Regatte
- Department of Radiology, Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
48
|
Uppuganti S, Granke M, Manhard MK, Does MD, Perrien DS, Lee DH, Nyman JS. Differences in sensitivity to microstructure between cyclic- and impact-based microindentation of human cortical bone. J Orthop Res 2017; 35:1442-1452. [PMID: 27513922 PMCID: PMC5530367 DOI: 10.1002/jor.23392] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 02/04/2023]
Abstract
Unlike the known relationships between traditional mechanical properties and microstructural features of bone, the factors that influence the mechanical resistance of bone to cyclic reference point microindention (cRPI) and impact microindention (IMI) have yet to be identified. To determine whether cRPI and IMI properties depend on microstructure, we indented the tibia mid-shaft, the distal radius, and the proximal humerus from 10 elderly donors using the BioDent and OsteoProbe (neighboring sites). As the only output measure of IMI, bone material strength index (BMSi) was significantly different across all three anatomical sites being highest for the tibia mid-shaft and lowest for the proximal humerus. Total indentation distance (inverse of BMSi) was higher for the proximal humerus than for the tibia mid-shaft but was not different between other anatomical comparisons. As a possible explanation for the differences in BMSi, pore water, as determined by 1 H nuclear magnetic resonance, was lowest for the tibia and highest for the humerus. Moreover, the local intra-cortical porosity, as determined by micro-computed tomography, was negatively correlated with BMSi for both arm bones. BMSi was also positively correlated with peak bending stress of cortical bone extracted from the tibia mid-shaft. Microstructural correlations with cRPI properties were not significant for any of the bones. The one exception was that average energy dissipated during cRPI was negatively correlated with local tissue mineral density in the tibia mid-shaft. With higher indentation force and larger tip diameter than cRPI, only IMI appears to be sensitive to the underlying porosity of cortical bone. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1442-1452, 2017.
Collapse
Affiliation(s)
- Sasidhar Uppuganti
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mathilde Granke
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Mary Kate Manhard
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232,Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Daniel S. Perrien
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232,Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Donald H. Lee
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
49
|
Bray TJP, Bainbridge A, Punwani S, Ioannou Y, Hall-Craggs MA. Simultaneous Quantification of Bone Edema/Adiposity and Structure in Inflamed Bone Using Chemical Shift-Encoded MRI in Spondyloarthritis. Magn Reson Med 2017; 79:1031-1042. [PMID: 28589660 PMCID: PMC5811922 DOI: 10.1002/mrm.26729] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022]
Abstract
Purpose To evaluate proton density fat fraction (PDFF) and R2* as markers of bone marrow composition and structure in inflamed bone in patients with spondyloarthritis. Methods Phantoms containing fat, water, and trabecular bone were constructed with proton density fat fraction (PDFF) and bone mineral density (BMD) values matching those expected in healthy bone marrow and disease states, and scanned using chemical shift‐encoded MRI (CSE‐MRI) at 3T. Measured PDFF and R2* values in phantoms were compared with reference FF and BMD values. Eight spondyloarthritis patients and 10 controls underwent CSE‐MRI of the sacroiliac joints. PDFF and R2* in areas of inflamed bone and fat metaplasia in patients were compared with normal bone marrow in controls. Results In phantoms, PDFF measurements were accurate over the full range of PDFF and BMD values. R2* measurements were positively associated with BMD but also were influenced by variations in PDFF. In patients, PDFF was reduced in areas of inflammation and increased in fat metaplasia compared to normal marrow. R2* measurements were significantly reduced in areas of fat metaplasia. Conclusion PDFF measurements reflect changes in marrow composition in areas of active inflammation and structural damage and could be used for disease monitoring in spondyloarthritis. R2* measurements may provide additional information bone mineral density but also are influenced by fat content. Magn Reson Med 79:1031–1042, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Timothy J P Bray
- Centre for Medical Imaging, University College London, London, United Kingdom.,Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals, London, United Kingdom
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Yiannis Ioannou
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
| | | |
Collapse
|
50
|
Abbasi-Rad S, Saligheh Rad H. Quantification of Human Cortical Bone Bound and Free Water in Vivo with Ultrashort Echo Time MR Imaging: A Model-based Approach. Radiology 2017; 283:862-872. [DOI: 10.1148/radiol.2016160780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|