1
|
Dhalla NS, Mota KO, Elimban V, Shah AK, de Vasconcelos CML, Bhullar SK. Role of Vasoactive Hormone-Induced Signal Transduction in Cardiac Hypertrophy and Heart Failure. Cells 2024; 13:856. [PMID: 38786079 PMCID: PMC11119949 DOI: 10.3390/cells13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Heart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins. All these hormones are released in the circulation and stimulate different signal transduction systems by acting on their respective receptors on the cell membrane to promote protein synthesis in cardiomyocytes and induce cardiac hypertrophy. The elevated levels of these vasoactive hormones induce hemodynamic overload, increase ventricular wall tension, increase protein synthesis and the occurrence of cardiac remodeling. In addition, there occurs an increase in proinflammatory cytokines and collagen synthesis for the induction of myocardial fibrosis and the transition of adaptive to maladaptive hypertrophy. The prolonged exposure of the hypertrophied heart to these vasoactive hormones has been reported to result in the oxidation of catecholamines and serotonin via monoamine oxidase as well as the activation of NADPH oxidase via angiotensin II and endothelins to promote oxidative stress. The development of oxidative stress produces subcellular defects, Ca2+-handling abnormalities, mitochondrial Ca2+-overload and cardiac dysfunction by activating different proteases and depressing cardiac gene expression, in addition to destabilizing the extracellular matrix upon activating some metalloproteinases. These observations support the view that elevated levels of various vasoactive hormones, by producing hemodynamic overload and activating their respective receptor-mediated signal transduction mechanisms, induce cardiac hypertrophy. Furthermore, the occurrence of oxidative stress due to the prolonged exposure of the hypertrophied heart to these hormones plays a critical role in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Karina O. Mota
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| | - Anureet K. Shah
- Department of Nutrition and Food Science, California State University, Los Angeles, CA 90032-8162, USA;
| | - Carla M. L. de Vasconcelos
- Department of Physiology, Center of Biological and Health Sciences, Federal University of Sergipe, Sao Cristóvao 49100-000, Brazil; (K.O.M.); (C.M.L.d.V.)
| | - Sukhwinder K. Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (S.K.B.)
| |
Collapse
|
2
|
Peng Y, Li P, Hu W, Shao Q, Li P, Wen H. Mechanisms by which spinal cord stimulation intervenes in atrial fibrillation: The involvement of the endothelin-1 and nerve growth factor/p75NTR pathways. Open Med (Wars) 2023; 18:20230802. [PMID: 37808162 PMCID: PMC10560034 DOI: 10.1515/med-2023-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Can the spinal cord stimulation (SCS) regulate the autonomic nerves through the endothelin-1 (ET-1) and nerve growth factor (NGF)/p75NTR pathways and thus inhibit the occurrence of atrial fibrillation (AF)? In our research, 16 beagles were randomly divided into a rapid atrial pacing (RAP) group (n = 8) and a RAP + SCS group (n = 8), and the effective refractory period (ERP), ERP dispersion, AF induction rate, and AF vulnerability window (WOV) at baseline, 6 h of RAP, 6 h of RAP + SCS were measured. The atrial tissue was then taken for immunohistochemical analysis to determine the localization of ET-1, NGF, p75NTR, NF-kB p65, and other genes. Our results showed that SCS attenuated the shortening of ERP in all parts caused by RAP, and after 6 h of SCS, the probability of AF in dogs was reduced compared with that in the RAP group. Moreover, the expression of ET-1, NGF, and p75NTR in the atrial tissues of dogs in the RAP + SCS group was significantly increased, but the expression of NF-kB p65 was reduced. In conclusion, SCS promotes the positive remodeling of cardiac autonomic nerves by weakening NFκB p65-dependent pathways to interfere with the ET-1 and NGF/p75NTR pathways to resist the original negative remodeling and inhibit the occurrence of AF.
Collapse
Affiliation(s)
- Yiyan Peng
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Li
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, No. 6, Square Street, Xiaonan District, Xiaogan, 432100, Hubei, China
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei Hu
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Qi Shao
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Panpan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Haiyue Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| |
Collapse
|
3
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
4
|
Docosahexaenoic Acid Attenuates Radiation-Induced Myocardial Fibrosis by Inhibiting the p38/ET-1 Pathway in Cardiomyocytes. Int J Radiat Oncol Biol Phys 2023; 115:1229-1243. [PMID: 36529557 DOI: 10.1016/j.ijrobp.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Radiation-induced myocardial fibrosis (RIMF) is a severe delayed complication of thoracic irradiation (IR). Endothelin-1 (ET-1) is critical in cardiac fibroblast activation, and docosahexaenoic acid (DHA) is protective against various cardiac diseases. This study aimed to explore the roles of ET-1 in RIMF and the potential of DHA in preventing RIMF. METHODS AND MATERIALS Hematoxylin and eosin, sirius red, and Masson trichrome staining were carried out to evaluate the histopathologic conditions in mouse models. Enzyme-linked immunosorbent assays were used to detect the concentration of ET-1 in serum and cell supernatants. Western blotting, immunofluorescence, and immunohistochemistry were used to assess the protein levels. The phenotypic alterations of cardiac fibroblasts were evaluated by cell proliferation/migration assays and α-smooth muscle actin (α-SMA) detection. RESULTS Radiation increased ET-1 expression and secretion by increasing p38 phosphorylation in cardiomyocytes, and ET-1 markedly promoted the activation of cardiac fibroblasts, which were characterized by enhanced fibroblast proliferation, migration, and α-SMA expression. Cardiomyocyte-derived ET-1 mediated radiation-induced fibroblast activation by targeting the PI3K-AKT and MEK-ERK pathways in fibroblasts. DHA suppressed ET-1 levels by blocking p38 signaling in cardiomyocytes and significantly attenuated the activation of cardiac fibroblasts induced by the IR/ET-1 axis. Importantly, DHA decreased collagen deposition and α-SMA expression, alleviating cardiac fibrosis caused by radiation in mouse models. CONCLUSIONS Our findings demonstrate that radiation facilitates cardiac fibroblast activation by enhancing p38/ET-1 signaling in cardiomyocytes, revealing the IR/p38/ET-1 regulatory axis in RIMF for the first time. DHA effectively inhibits fibroblast activation by targeting p38/ET-1 and can be recognized as a promising protective agent against RIMF.
Collapse
|
5
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
6
|
Köse D, Köse A, Halıcı Z, Çadırcı E, Tavacı T, Gürbüz MA, Maman A. Bosentan, a drug used in the treatment of pulmonary hypertension, can prevent development of osteoporosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:922-927. [PMID: 34712422 PMCID: PMC8528255 DOI: 10.22038/ijbms.2021.54152.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): We examined the antiosteoporotic effect of bosentan (Bose) by radiographic, histopathological, and molecular methods. Materials and Methods: Rats were divided into 4 groups of 8 rats each: one control (Sham), one osteoporosis only (OP), and two osteoporosis groups treated with Bose doses of 50 and 100 mg/kg (OP+Bose50, OP+Bose100). Six weeks later, Bose was administered for eight weeks to animals undergoing ovariectomy. The left femoral bone of the rats was evaluated in vitro after surgical removal. Bone mineral density (BMD) was analyzed by Dual-energy X-ray absorptiometry (DEXA). Endothelin 1 (ET-1), ET-A, and ET-B expressions were examined by real-time polymerase chain reaction (real time-PCR). In addition, bone tissue was evaluated histopathologically. Results: Compared with the osteoporosıs group, Bose significantly increased BMD values at both 50 and 100 mg/kg doses. ET-1 mRNA levels were significantly higher in the OP group than in the Sham group, while ET-1 mRNA levels were significantly lower in Bose treatment groups. ET-A mRNA levels were significantly lower in the OP group than in the Sham group, while ET-A mRNA levels were significantly higher in Bose treatment groups. Histopathological results supported the molecular results. Conclusion: Our study is the first to demonstrate the molecular, radiological, and histopathological effects of Bose in preventing osteoporosis in rats.
Collapse
Affiliation(s)
- Duygu Köse
- Clinical Research, Development and Design Application, and Research Center, Ataturk University, Erzurum, Turkey, 905074704150
| | - Ahmet Köse
- University of Health Sciences, Faculty of Medicine, Department of Orthopedics And Traumatology, Erzurum, Turkey, 905066330520
| | - Zekai Halıcı
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey, 905323868884
| | - Elif Çadırcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 905362328001
| | - Taha Tavacı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey, 9005059177816
| | - Muhammed Ali Gürbüz
- Faculty of Medicine, Department of Histology And Embryology Department, Atatürk University, Erzurum, Turkey, 905522265686
| | - Adem Maman
- Faculty of Medicine, Department of Nuclear Medicine, Atatürk University, Erzurum, Turkey, 905063661925
| |
Collapse
|
7
|
Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci 2021; 280:119760. [PMID: 34166713 DOI: 10.1016/j.lfs.2021.119760] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
Cardiotoxicity is a major side effect of the chemotherapeutic drug doxorubicin (Dox), which is further exacerbated when it is combined with trastuzumab, a standard care approach for Human Epidermal growth factor Receptor-type 2 (HER2) positive cancer patients. However, the molecular mechanisms of the underlying cardiotoxicity of this combination are still mostly elusive. Increased oxidative stress, impaired energetic substrate uses and topoisomerase IIB inhibition are among the biological processes proposed to explain Dox-induced cardiomyocyte dysfunction. Since cardiomyocytes express HER2, trastuzumab can also damage these cells by interfering with neuroregulin-1 signaling and mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt and focal adhesion kinase (FAK)-dependent pathways. Nevertheless, Dox and trastuzumab target other cardiac cell types, such as endothelial cells, fibroblasts, cardiac progenitor cells and leukocytes, which can contribute to the clinical cardiotoxicity observed. This review aims to summarize the current knowledge on the cardiac signaling pathways modulated by these two antineoplastic drugs highly used in the management of breast cancer, not only focusing on cardiomyocytes but also to broaden the knowledge of the potential impact on other cells found in the heart.
Collapse
Affiliation(s)
- Miguel Anjos
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Vera M Costa
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mário Santos
- Cardiology Department, Centro Hospitalar Universitário do Porto, Porto, Portugal; UMIB, Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
8
|
Li X, Han ZN, Liu Y, Hong L, Cui BR, Cui X. Endogenous ET-1 promotes ANP secretion through activation of COX2-L-PGDS-PPARγ signaling in hypoxic beating rat atria. Peptides 2019; 122:170150. [PMID: 31541683 DOI: 10.1016/j.peptides.2019.170150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent stimulus for the secretion of atrial natriuretic peptide (ANP) and hypoxia stimulates the release of ET-1, which is involved in the regulation of atrial ANP secretion. However, the precise mechanism of endogenous ET-1 in the regulation of hypoxia-induced ANP secretion is unclear. Therefore, this study aimed to investigate the mechanism of hypoxia-induced endogenous ET-1 regulation of ANP secretion in isolated perfused hypoxic beating rat atria. The results of this study showed that acute hypoxia significantly stimulated ET-1 release and upregulated the expression of its type A as well as type B receptors (ETA and ETB receptors). Endogenous ET-1 induced by hypoxia markedly upregulated the expression of cyclooxygenase 2 (COX2) through activation of its two receptors, leading to an increase in lipocalin-type prostaglandin D synthase (L-PGDS) expression and prostaglandin D2 (PGD2) production. L-PGDS-derived PGD2 activated peroxisome proliferator-activated receptor γ (PPARγ), ultimately promoting hypoxia-induced ANP secretion. Conversely, L-PGDS-derived PGD2 may in turn regulate L-PGDS expression by a nuclear factor erythroid-2-related factor 2 (NRF2)-mediated feedback mechanism. These results indicate that endogenous ET-1 induced by hypoxia promotes hypoxia-induced ANP secretion by activation of COX2-L-PGDS-PPARγ signaling in beating rat atria. In addition, the positive feedback loop between L-PGDS-derived PGD2 and L-PGDS expression induced by hypoxia is part of the mechanism of hypoxia-induced ANP secretion by endogenous ET-1.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Zhuo-Na Han
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Ying Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Bai-Ri Cui
- Institute of Clinical Medicine, Yanbian University, Yanji, 133-000, China.
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133-002, China; Cellular Function Research Center, Yanbian University, Yanji, 133-002, China.
| |
Collapse
|
9
|
Nucleoligands-repurposing G Protein-coupled Receptor Ligands to Modulate Nuclear-localized G Protein-coupled Receptors in the Cardiovascular System. J Cardiovasc Pharmacol 2019; 71:193-204. [PMID: 28858907 DOI: 10.1097/fjc.0000000000000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is significant evidence that internal pools of G protein-coupled receptors (GPCRs) exist and may be affected by both endogenous signaling molecules and hydrophobic pharmaceutical ligands, once assumed to only affect cell surface versions of these receptors. Here, we discuss evidence that the biology of nuclear GPCRs in particular is complex, rich, and highly interactive with GPCR signaling from the cell surface. Caging existing GPCR ligands may be an excellent means of further stratifying the phenotypic effects of known pharmacophores such as β-adrenergic, angiotensin II, and type B endothelin receptor ligands in the cardiovascular system. We describe some synthetic strategies we have used to design ligands to go from in cellulo to in vivo experiments. We also consider how surface and intracellular GPCR signaling might be integrated and ways to dissect this. If they could be selectively targeted, nuclear GPCRs and their associated nucleoligands would represent a completely novel area for exploration by Pharma.
Collapse
|
10
|
Miyauchi T, Sakai S. Endothelin and the heart in health and diseases. Peptides 2019; 111:77-88. [PMID: 30352269 DOI: 10.1016/j.peptides.2018.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Endothelin-1 (ET-1), a 21-amino acid peptide, was initially identified in 1988 as a potent vasoconstrictor and pressor substance isolated from the culture supernatant of porcine aortic endothelial cells. From human genomic DNA analysis, two other family peptides, ET-2 and ET-3, were found. They showed different effects and distribution, suggesting that each peptide may play separate roles in different organs. In the heart, ET-1 also causes positive inotropic and chronotropic responses and hypertrophic activity of the cardiomyocytes. ETs act via activation of two receptor subtypes, ETA and ETB receptors, both of which are coupled to various GTP-binding proteins depending on cell types. Endogenous ET-1 may be involved in progression of various cardiovascular diseases. ET antagonists are currently used clinically in the treatment for patients with pulmonary hypertension, and are considered to have further target diseases as heart failure, cardiac hypertrophy and other cardiac diseases, renal diseases, systemic hypertension, and cerebral vasospasm.
Collapse
Affiliation(s)
- Takashi Miyauchi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan.
| | - Satoshi Sakai
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
11
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
12
|
Falk M, Huhn R, Behmenburg F, Ritz-Timme S, Mayer F. Biomechanical stress in myocardial infarctions: can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers? Int J Legal Med 2017; 132:509-518. [DOI: 10.1007/s00414-017-1726-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
|
13
|
Sun Y, Han M, Shen Z, Huang H, Miao X. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats. Saudi J Biol Sci 2017; 25:213-219. [PMID: 29472767 PMCID: PMC5816011 DOI: 10.1016/j.sjbs.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 02/01/2023] Open
Abstract
Ventricular remodeling is associated with many heart diseases, and ventricular remodeling induced by hypertension can be fatal independent of hypertension. In this study, we prepared a novel apitherapy formulation, designated Bao-Yuan-Ling (BYL), which contained propolis, royal jelly, and bee venom, to treat spontaneous hypertensive rats (SHRs). We then evaluated the pharmacology of BYL and the potential mechanisms through which BYL affects hypertension and ventricular remodeling. We found that BYL treatment could reduce blood pressure in SHRs. Thereafter, we found that BYL treatment reduced serum levels of angiotensin II, endothelin 1, and transforming growth factor-β and improved the myocardial structure. Moreover, the results of quantitative real-time polymerase chain reaction indicated that BYL treatment could upregulate the mRNA expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Thus, we could conclude that BYL had hypotensive and cardioprotective effects in SHRs, potentially through improvement of myocardial energy metabolism.
Collapse
Affiliation(s)
- Yanru Sun
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingfeng Han
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Zhenhuang Shen
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Haibo Huang
- National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| | - Xiaoqing Miao
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China.,National United Engineering Laboratory of Natural Biological Toxins, Fuzhou 350000, China
| |
Collapse
|
14
|
Skovsted GF, Kruse LS, Berchtold LA, Grell AS, Warfvinge K, Edvinsson L. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat. PLoS One 2017; 12:e0174119. [PMID: 28323857 PMCID: PMC5360328 DOI: 10.1371/journal.pone.0174119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Coronary artery remodelling and vasospasm is a complication of acute myocardial ischemia and reperfusion. The underlying mechanisms are complex, but the vasoconstrictor peptide endothelin-1 is suggested to have an important role. This study aimed to determine whether the expression of endothelin-1 and its receptors are regulated in the myocardium and in coronary arteries after experimental ischemia-reperfusion. Furthermore, we evaluated whether treatment with a specific MEK1/2 inhibitor, U0126, modified the expression and function of these proteins. METHODS AND FINDINGS Sprague-Dawley rats were randomly divided into three groups: sham-operated, ischemia-reperfusion with vehicle treatment and ischemia-reperfusion with U0126 treatment. Ischemia was induced by ligating the left anterior descending coronary artery for 30 minutes followed by reperfusion. U0126 was administered before ischemia and repeated 6 hours after start of reperfusion. The contractile properties of isolated coronary arteries to endothelin-1 and sarafotoxin 6c were evaluated using wire-myography. The gene expression of endothelin-1 and endothelin receptors were measured using qPCR. Distribution and localization of proteins (pERK1/2, prepro-endothelin-1, endothelin-1, and endothelin ETA and ETB receptors) were analysed by Western blot and immunohistochemistry. We found that pERK1/2 was significantly augmented in the ischemic area 3 hours after ischemia-reperfusion; this correlated with increased ETB receptor and ET-1 gene expressions in ischemic myocardium and in coronary arteries. ETB receptor-mediated vasoconstriction was observed to be increased in coronary arteries 24 hours after ischemia-reperfusion. Treatment with U0126 reduced pERK1/2, expression of ET-1 and ETB receptor, and ETB receptor-mediated vasoconstriction. CONCLUSIONS These findings suggest that the MEK-ERK1/2 signaling pathway is important for regulating endothelin-1 and ETB receptors in myocardium and coronary arteries after ischemia-reperfusion in the ischemic region. Inhibition of the MEK-ERK1/2 pathway may provide a novel target for reducing ischemia-reperfusion damage in the heart.
Collapse
Affiliation(s)
- Gry Freja Skovsted
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
- * E-mail:
| | - Lars Schack Kruse
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Lukas Adrian Berchtold
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles and represent a significant target for drug development. However, historically, drugs were developed with the understanding that GPCRs as a therapeutic target exist solely on cell surface membranes. More recently, GPCRs have been detected on intracellular membranes, including the nuclear membrane, and the concept that intracellular GPCRs are functional is become more widely accepted. Nuclear GPCRs couple to effectors and regulate signaling pathways, analogous to their counterparts at the cell surface, but may serve distinct biological roles. Hence, the physiological responses mediated by GPCR ligands, or pharmacological agents, result from the integration of their actions at extracellular and intracellular receptors. The net effect depends on the ability of a given ligand or drug to access intracellular receptors, as dictated by its structure, lipophilic properties, and affinity for nuclear receptors. This review will discuss angiotensin II, endothelin, and β-adrenergic receptors located on the nuclear envelope in cardiac cells in terms of their origin, activation, and role in cardiovascular function and pathology.
Collapse
|
16
|
Aydin A, Halici Z, Akpinar E, Aksakal AM, Saritemur M, Yayla M, Kunak CS, Cadirci E, Atmaca HT, Karcioglu SS. What is the role of bosentan in healing of femur fractures in a rat model? J Bone Miner Metab 2015; 33:496-506. [PMID: 25298328 DOI: 10.1007/s00774-014-0622-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to examine the effects bosentan (which is a strong vasoconstrictor) on bone fracture pathophysiology, and investigate the roles of the nonselective endothelin 1 receptor blocker bosentan on the bone fractures formed in rats through radiographic, histopathologic, and immunohistochemical methods. The rats were divided into three groups (six rats in each group): a femoral fracture control group, a femoral fracture plus bosentan at 50 mg/kg group, and a femoral fracture plus bosentan at 100 mg/kg group. The femoral fracture model was established by transversely cutting the femur at the midsection. After manual reduction, the fractured femur was fixed with intramedullary Kirschner wires. The radiographic healing scores of the bosentan 100 and 50 mg/kg groups were significantly better that those of the fracture control group. The fracture callus percent of new bone in the bosentan 100 mg/kg group was significantly greater than that in the control group. Also, semiquantitative analysis showed higher positive vascular endothelial growth factor and osteocalcin staining and lower positive endothelin receptor type A staining in the treatment groups than in the control group. Bosentan treatment also decreased tissue endothelin 1 expression relative to that in the fracture control group. As a result of our study, the protective effect of bosentan was shown in experimental femoral fracture healing in rats by radiographic, histopathologic, and molecular analyses.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Orthopedics and Traumatology, Ataturk University Faculty of Medicine, 25240, Erzurum, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cardiac hypertrophy is characterized by complex multicellular alterations, such as cardiomyocyte growth, angiogenesis, fibrosis, and inflammation. The heart consists of myocytes and nonmyocytes, such as fibroblasts, vascular cells, and blood cells, and these cells communicate with each other directly or indirectly via a variety of autocrine or paracrine mediators. Accumulating evidence has suggested that nonmyocytes actively participate in the development of cardiac hypertrophy. In this review, recent progress in our understanding of the importance of nonmyocytes as a hub for induction of cardiac hypertrophy is summarized with an emphasis of the contribution of noncontact communication mediated by diffusible factors between cardiomyocytes and nonmyocytes in the heart.
Collapse
Affiliation(s)
- Takehiro Kamo
- From the Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (T.K., H.A., I.K.); and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan (H.A., I.K.)
| | - Hiroshi Akazawa
- From the Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (T.K., H.A., I.K.); and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan (H.A., I.K.)
| | - Issei Komuro
- From the Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (T.K., H.A., I.K.); and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan (H.A., I.K.)
| |
Collapse
|
18
|
Skovsted GF, Kruse LS, Larsen R, Pedersen AF, Trautner S, Sheykhzade M, Edvinsson L. Heart ischaemia-reperfusion induces local up-regulation of vasoconstrictor endothelin ETB receptors in rat coronary arteries downstream of occlusion. Br J Pharmacol 2014; 171:2726-38. [PMID: 24467585 DOI: 10.1111/bph.12606] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 11/04/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelins act via two receptor subtypes, ETA and ETB . Under physiological conditions in coronary arteries, ETA receptors expressed in smooth muscle cells mediate vasoconstriction whereas ETB receptors mainly found in endothelial cells mediate vasorelaxation. However, under pathophysiological conditions, ETB receptors may also be expressed in vascular smooth muscle cells mediating vasoconstriction. Here, we have investigated whether vasoconstrictor ETB receptors are up-regulated in coronary arteries after experimental myocardial ischaemia in rats. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were subjected to either heart ischaemia-reperfusion (15 min ischaemia and 22 h reperfusion), permanent ischaemia (22 h) by ligation of the left anterior descending coronary artery, or sham operation. Using wire myography, the endothelin receptor subtypes mediating vasoconstriction were examined in isolated segments of the left anterior descending and the non-ligated septal coronary arteries. Endothelin receptor-mediated vasoconstriction was examined with cumulative administration of sarafotoxin 6c (ETB receptor agonist) and endothelin-1 (with or without ETA or ETB receptor blockade). The distribution of ETB receptors was localized with immunohistochemistry and quantified by Western blot. KEY RESULTS Endothelin ETB receptor-mediated vasoconstriction and receptor protein levels were significantly augmented in coronary arteries situated downstream of the occlusion after ischaemia-reperfusion compared with non-ischaemic arteries. In contrast, the ETA receptor-mediated vasoconstriction was unaltered in all groups. CONCLUSIONS AND IMPLICATIONS Ischaemia-reperfusion induced local up-regulation of ETB receptors in the smooth muscle cells of coronary arteries in the post-ischaemic area. In contrast, in non-ischaemic areas, ETB receptor function was unaltered.
Collapse
Affiliation(s)
- G F Skovsted
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J Pain Res 2014; 7:531-45. [PMID: 25210474 PMCID: PMC4155994 DOI: 10.2147/jpr.s65923] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Tami Haymond
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sherika N Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sarah M Sweitzer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA ; Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
20
|
Leucker TM, Jones SP. Endothelial dysfunction as a nexus for endothelial cell-cardiomyocyte miscommunication. Front Physiol 2014; 5:328. [PMID: 25206341 PMCID: PMC4144117 DOI: 10.3389/fphys.2014.00328] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/16/2022] Open
Abstract
Most studies of the heart focus on cardiomyocytes (CM) at the exclusion of other cell types such as myocardial endothelial cells (EC). Such mono-cellular approaches propagate the presumption that EC provide a mere “passive lining” or supportive role. In fact, EC contribute to a dynamic network regulating vascular tone, cardiac development, and repair. Two distinct EC types, vascular EC and epicardial EC, possess important structural and signaling properties within both the healthy and diseased myocardium. In this review, we address EC-CM interactions in mature, healthy myocardium, followed by a discussion of diseases characterized by EC dysfunction. Finally, we consider strategies to reverse EC-CM “miscommunication” to improve patients' outcomes in various cardiovascular diseases.
Collapse
Affiliation(s)
- Thorsten M Leucker
- Division of Cardiology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Steven P Jones
- Department of Medicine - Cardiovascular, Institute of Molecular Cardiology, and Diabetes and Obesity Center, School of Medicine, University of Louisville Louisville, KY, USA
| |
Collapse
|
21
|
Li H, Gao S, Ye J, Feng X, Cai Y, Liu Z, Lu J, Li Q, Huang X, Chen S, Liu P. COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3. Mol Cell Endocrinol 2014; 382:998-1006. [PMID: 24291639 DOI: 10.1016/j.mce.2013.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 01/04/2023]
Abstract
Endothelin-1 (ET-1) is a critical molecule that involved in heart failure. It has been proved that ET-1 stimulation results in cardiac hypertrophy both in vitro and in vivo, but the mechanisms underlying remain largely unknown. In this study, we reported that cyclooxygenase-2 (COX-2) might be an important mediator of hypertrophic responses to ET-1 stimulation. In the cultured rat neonatal cardiomyocytes, ET-1 significantly upregulated the expression and activity of COX-2, which was accompanied by increase in cell surface area and BNP mRNA level. In contrast, ET-1-dependent cardiomyocyte hypertrophy was abolished by COX-2 selective inhibitors, NS-398 and celecoxib, or by COX-2 RNA interference, but the inhibitory effects could be diminished by pretreatment with PGE2. Furthermore, cyclosporin A (CsA) and knockdown of nuclear factor of activated T-cells c3 (NFATc3) inhibited the expression of COX-2 induced by ET-1, and NFATc3 could also bound to the -GGAAA- sequence in the promoter region of rat COX-2 gene, indicating that calcineurin/NFATc3 signaling participated in the transcriptional regulation of COX-2 following ET-1 treatment. These findings provided further insight into the roles of ET-1 in cardiac hypertrophy and suggested a potential therapeutic strategy against cardiac hypertrophy by inhibiting COX-2.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcineurin/genetics
- Calcineurin/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Celecoxib
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Cyclosporine/pharmacology
- Dinoprostone/pharmacology
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Gene Expression Regulation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Nitrobenzenes/pharmacology
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Binding
- Pyrazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Sulfonamides/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Xiaojun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Yi Cai
- Guangzhou Research Institute of Snake Venom, Guangzhou Medical College, Guangzhou 510182, Guangdong, PR China
| | - Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Qin Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Xiaoyang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
22
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
23
|
Intracrine endothelin signaling evokes IP3-dependent increases in nucleoplasmic Ca²⁺ in adult cardiac myocytes. J Mol Cell Cardiol 2013; 62:189-202. [PMID: 23756157 DOI: 10.1016/j.yjmcc.2013.05.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/17/2022]
Abstract
Endothelin receptors are present on the nuclear membranes in adult cardiac ventricular myocytes. The objectives of the present study were to determine 1) which endothelin receptor subtype is in cardiac nuclear membranes, 2) if the receptor and ligand traffic from the cell surface to the nucleus, and 3) the effect of increased intracellular ET-1 on nuclear Ca(2+) signaling. Confocal microscopy using fluorescently-labeled endothelin analogs confirmed the presence of ETB at the nuclear membrane of rat cardiomyocytes in skinned-cells and isolated nuclei. Furthermore, in both cardiac myocytes and aortic endothelial cells, endocytosed ET:ETB complexes translocated to lysosomes and not the nuclear envelope. Although ETA and ETB can form heterodimers, the presence or absence of ETA did not alter ETB trafficking. Treatment of isolated nuclei with peptide: N-glycosidase F did not alter the electrophoretic mobility of ETB. The absence of N-glycosylation further indicates that these receptors did not originate at the cell surface. Intracellular photolysis of a caged ET-1 analog ([Trp-ODMNB(21)]ET-1) evoked an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was attenuated by inositol 1,4,5-trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and prevented by pre-treatment with ryanodine. A caged cell-permeable analog of the ETB-selective antagonist IRL-2500 blocked the ability of intracellular cET-1 to increase [Ca(2+)]n whereas extracellular application of ETA and ETB receptor antagonists did not. These data suggest that 1) the endothelin receptor in the cardiac nuclear membranes is ETB, 2) ETB traffics directly to the nuclear membrane after biosynthesis, 3) exogenous endothelins are not ligands for ETB on nuclear membranes, and 4) ETB associated with the nuclear membranes regulates nuclear Ca(2+) signaling.
Collapse
|
24
|
Abstract
Endothelin-1 (ET-1) is a locally acting vasoactive peptide that also has profound effects on the contractile properties and growth of the cardiac myocyte. Binding of ET-1 to its transmembrane heptahelical receptors activates G proteins of the G(q) and G(i) classes. Activation of G(q) stimulates hydrolysis of phosphatidylinositol-4,5-bisphosphate, and the diacylglycerol thus formed stimulates protein kinase C. Subsequently, the protein kinase Raf is activated and this leads to activation of the extracellular signal-regulated protein kinase (ERK) subfamily of mitogen-activated protein kinases. Activation of G(i) counteracts β-adrenoceptor-mediated increases in cAMP concentrations. We have attempted to rationalize the established physiological consequences of ET-1 agonism in the cardiac myocyte (that is, on contraction and growth) in terms of activation of these signaling pathways.
Collapse
Affiliation(s)
- P H Sugden
- Peter H. Sugden is at the National Heart and Lung Institute (Cardiac Medicine), Imperial College of Science, Technology and Medicine, London SW3 6LY, United Kingdom
| | | |
Collapse
|
25
|
Nichols R, Bass C, Demers L, Larsen B, Li E, Blewett N, Converso-Baran K, Russell MW, Westfall MV. Structure-activity studies of RFamide-related peptide-1 identify a functional receptor antagonist and novel cardiac myocyte signaling pathway involved in contractile performance. J Med Chem 2012; 55:7736-45. [PMID: 22909119 DOI: 10.1021/jm300760m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human RFamide-related peptide-1 (hRFRP-1, MPHSFANLPLRF-NH(2)) binds to neuropeptide FF receptor 2 (NPFF(2)R) to dramatically diminish cardiovascular performance. hRFRP-1 and its signaling pathway may provide targets to address cardiac dysfunction. Here, structure-activity relationship, transcript, Ca(2+) transient, and phospholabeling data indicate the presence of a hRFRP-1 pathway in cardiomyocytes. Alanyl-substituted and N-terminal truncated analogues identified that R(11) was essential for activity, hRFRP-1((8-12)) mimicked hRFRP-1, and [A(11)]hRFRP-1((8-12)) antagonized the effect of hRFRP-1 in cellular and integrated cardiac performance. RFRP and NPFF(2)R transcripts were amplified from cardiomyocytes and heart. Maintenance of the Ca(2+) transient when hRFRP-1 impaired myocyte shortening indicated the myofilament was its primary downstream target. Enhanced myofilament protein phosphorylation detected after hRFRP-1 treatment but absent in [A(11)]hRFRP-1((8-12))-treated cells was consistent with this result. Protein kinase C (PKC) but not PKA inhibitor diminished the influence of hRFRP-1 on the Ca(2+) transient. Molecules targeting this pathway may help address cardiovascular disease.
Collapse
Affiliation(s)
- Ruthann Nichols
- Department of Biological Chemistry, The University of Michigan Medical School , Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weeks KL, McMullen JR. The Athlete's Heart vs. the Failing Heart: Can Signaling Explain the Two Distinct Outcomes? Physiology (Bethesda) 2011; 26:97-105. [DOI: 10.1152/physiol.00043.2010] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiac remodeling is typically associated with disease and can lead to heart failure. In contrast, remodeling that occurs in the athlete's heart is considered an adaptive physiological response. This review provides an overview of signaling mechanisms responsible for inducing left ventricular hypertrophy in the athlete's heart and in settings of pathological hypertrophy and heart failure.
Collapse
Affiliation(s)
- Kate L. Weeks
- Cardiac Hypertrophy Laboratory, Baker IDI Heart and Diabetes Institute, and
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Julie R. McMullen
- Cardiac Hypertrophy Laboratory, Baker IDI Heart and Diabetes Institute, and
| |
Collapse
|
27
|
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
28
|
Lagerqvist EL, Finnin BA, Pouton CW, Haynes JM. Endothelin-1 and angiotensin II modulate rate and contraction amplitude in a subpopulation of mouse embryonic stem cell-derived cardiomyocyte-containing bodies. Stem Cell Res 2010; 6:23-33. [PMID: 20970401 DOI: 10.1016/j.scr.2010.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022] Open
Abstract
Embryonic stem cell-derived cardiomyocytes (ESC-CMs) have applications in understanding cardiac disease pathophysiology, pharmacology, and toxicology. Comprehensive characterization of their basic physiological and pharmacological properties is critical in determining the suitability of ESC-CMs as models of cardiac activity. In this study we use video microscopy and quantitative PCR to investigate the responses of mouse ESC-CMs to adrenoceptor, muscarinic, angiotensin II (Ang II), and endothelin-1 (ET-1) receptor activation. Isoprenaline (10 nM-10 μM) increased beating rate and contraction amplitude in all beating bodies (BBs), whereas carbachol (up to 1 μM) and the I(f) channel blocker ZD-7288 (10 μM) decreased contraction frequency. ET-1 (0.01-100 nM) reduced contraction amplitude in all BBs and increased contraction frequency in 50% of BBs; these effects were blocked by the ET(A) receptor antagonist BQ123 (250 nM). Ang II (0.01 nM-1 μM) increased both contraction amplitude (all BBs) and frequency (in 50% of BBs), effects blocked, respectively, by losartan (100 nM) and PD123,319 (200 nM). These results indicate the presence of functional ET(A) and both AT₁ and AT₂ receptors in murine ESC-CMs, but their expression and or activity appears to be evident only in a limited set of BBs.
Collapse
Affiliation(s)
- E L Lagerqvist
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | | | | | | |
Collapse
|
29
|
Deacon K, Knox AJ. Endothelin-1 (ET-1) increases the expression of remodeling genes in vascular smooth muscle through linked calcium and cAMP pathways: role of a phospholipase A(2)(cPLA(2))/cyclooxygenase-2 (COX-2)/prostacyclin receptor-dependent autocrine loop. J Biol Chem 2010; 285:25913-27. [PMID: 20452970 PMCID: PMC2923981 DOI: 10.1074/jbc.m110.139485] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 11/17/2022] Open
Abstract
Several important genes that are involved in inflammation and tissue remodeling are switched on by virtue of CRE response elements in their promoters. The upstream signaling mechanisms that inflammatory mediators use to activate cAMP response elements (CREs) are poorly understood. Endothelin (ET) is an important vasoactive mediator that plays roles in inflammation, vascular remodeling, angiogenesis, and carcinogenesis by activating 7 transmembrane G protein-coupled receptors (GPCR). Here we characterized the mechanisms ET-1 uses to regulate CRE-dependent remodeling genes in pulmonary vascular smooth muscle cells. These studies revealed activation pathways involving a cyclooxygenase-2 (COX-2)/prostacyclin receptor (IP receptor) autocrine loop and an interlinked calcium-dependent pathway. We found that ET-1 activated several CRE response genes in vascular smooth muscle cells, particularly COX-2, amphiregulin, follistatin, inhibin-beta-A, and CYR61. ET-1 also activated two other genes epiregulin and HB-EGF. Amphiregulin, follistatin, and inhibin-beta-A and epiregulin were activated by an autocrine loop involving cPLA2, arachidonic acid release, COX-2-dependent PGI(2) synthesis, and IP receptor-linked elevation of cAMP leading to CRE transcription activation. In contrast COX-2, CYR61, and HB-EGF transcription were regulated in a calcium-dependent, COX-2 independent, manner. Observations with IP receptor antagonists and COX-2 inhibitors were confirmed with IP receptor or COX-2-specific small interfering RNAs. ET-1 increases in intracellular calcium and gene transcription were dependent upon ET(a) activation and calcium influx through T type voltage-dependent calcium channels. These studies give important insights into the upstream signaling mechanisms used by G protein-coupled receptor-linked mediators such as ET-1, to activate CRE response genes involved in angiogenesis, vascular remodeling, inflammation, and carcinogenesis.
Collapse
Affiliation(s)
- Karl Deacon
- Division of Respiratory Medicine, Centre for Respiratory Research, University of Nottingham, City Hospital Site, Hucknall Road, Nottingham, UK.
| | | |
Collapse
|
30
|
Piechota A, Polańczyk A, Goraca A. Role of endothelin-1 receptor blockers on hemodynamic parameters and oxidative stress. Pharmacol Rep 2010; 62:28-34. [PMID: 20360613 DOI: 10.1016/s1734-1140(10)70240-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 01/20/2010] [Indexed: 12/17/2022]
Abstract
Endothelin (ET) was first isolated and described by Yanagisawa et al. and has since been described as one of the most potent known vasoconstrictor compounds. ET-1 mediates its effects via two types of receptors, ETA and ETB, which are expressed in the vascular smooth muscle cells, endothelial cells, intestines and brain. Secretion of ET-1 results in long-lasting vasoconstriction, increased blood pressure and, in turn, overproduction of free radicals. As dysregulation of the endothelin system is an important factor in the pathogenesis of several diseases including atherosclerosis, hypertension and endotoxic shock, the ETA and ETB receptors are attractive therapeutic targets for treatment of these disorders. The biosynthesis and release of ET-1 are regulated at the transcriptional level. Studies have shown that p38MAP kinase, nuclear factor kappaB (NF-kappaB), PKC/ERK and JNK/c-Jun all take part in the ROS-activated production of ET-1. Furthermore, administration of ET(A) significantly reduces the generation of free radicals. However, treatment with ETB receptor blockers does not elicit the same effect. Therefore, the effects of endothelin receptor blockers on blood pressure and the generation of free radicals remain debatable. This review summarizes recent investigations into the role of endothelin receptor blockers with respect to the modulation of hemodynamic parameters and the generation of free radicals.
Collapse
Affiliation(s)
- Aleksandra Piechota
- Chair of Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Łódź, Mazowiecka 6/8, PL 92-215 Łódź, Poland.
| | | | | |
Collapse
|
31
|
Tawa M, Fukumoto T, Ohkita M, Matsumura Y. Role of endogenous endothelin-1 in post-ischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Eur J Pharmacol 2008; 591:182-8. [PMID: 18586023 DOI: 10.1016/j.ejphar.2008.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Endothelin-1 and norepinephrine are involved in myocardial ischemia/reperfusion injury. The aim of this study was to investigate the role of endogenously generated endothelin-1 in ischemia/reperfusion-induced norepinephrine overflow and cardiac dysfunction using a nonselective prototype of endothelin-converting enzyme (ECE) inhibitor, phosphoramidon, and a selective ECE inhibitor, SM-19712 (4-chloro-N-[[(4-cyano-3-methyl-1-phenyl-1H-pyrazol-5-yl)amino]carbonyl]benzenesulfonamide, monosodium salt). According to the Langendorff technique, isolated Sprague-Dawley rat hearts were subjected to 40-min global ischemia followed by 30-min reperfusion. Phosphoramidon and SM-19712 were perfused 30 min before ischemia and during reperfusion. Endothelin-1 level in left ventricle was increased by ischemia/reperfusion. This increase in left ventricular endothelin-1 level was suppressed by treatment with SM-19712. SM-19712 significantly improved ischemia/reperfusion-induced cardiac dysfunction such as decreased left ventricular developed pressure and dP/dt(max) and increased left ventricular end diastolic pressure. In addition, this agent suppressed excessive norepinephrine overflow in the coronary effluent from the post-ischemic heart. In contrast, treatment with phosphoramidon further enhanced left ventricular endothelin-1 level and norepinephrine overflow, and significantly worsened cardiac dysfunction after ischemia/reperfusion. These responses such as exaggerated norepinephrine overflow and the cardiac dysfunction observed after ischemia/reperfusion were markedly suppressed in the presence of a selective endothelin ET(A) receptor antagonist, ABT-627 [2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid]. These findings indicate that cardiac endothelin-1 production is enhanced by ischemia/reperfusion, and this endogenously increased endothelin-1 is involved in post-ischemic norepinephrine overflow and cardiac dysfunction via the activation of endothelin ET(A) receptors.
Collapse
Affiliation(s)
- Masashi Tawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | |
Collapse
|
32
|
Baptista MJ, Nogueira-Silva C, Areias JC, Correia-Pinto J. Perinatal profile of ventricular overload markers in congenital diaphragmatic hernia. J Pediatr Surg 2008; 43:627-33. [PMID: 18405707 DOI: 10.1016/j.jpedsurg.2007.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/03/2007] [Accepted: 08/11/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND In congenital diaphragmatic hernia (CDH), pulmonary hypertension increases right ventricle (RV) afterload, which could impair heart function and contribute to poor outcome for most affected infants. Nevertheless, the real significance of vascular pulmonary alterations in perinatal hemodynamics is largely unknown. It is defined that ventricular pressure overload induces increased myocardium gene expression of B-type natriuretic peptide (BNP) and components of the renin-angiotensinogen and endothelin (ET)-1 systems. Our aim was to evaluate perinatal myocardium expression of these genes associated with ventricular pressure overload in a nitrofen-induced CDH rat model. METHODS In the nitrofen-induced CDH rat model, fetuses from dated pregnant Sprague-Dawley rats at 15.5, 17.5, 19.5 and 21.5 days postcoitum as well as newborn pups were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from the RV and left ventricle (LV) were processed for quantification of messenger RNA (mRNA) of BNP, angiotensinogen, and ET-1. RESULTS The perinatal expression of BNP, angiotensinogen, and ET-1 mRNA in the RV and LV of the control group revealed daily changes. During gestation, the expression of BNP and angiotensinogen mRNA underwent significant oscillation compared with control in both nitrofen-exposed fetuses, although we cannot identify significant differences between the nitrofen and CDH groups. After birth, we found a significant increasing expression of all studied genes only in the RV of CDH pups. CONCLUSIONS Perinatal myocardial quantification of BNP, angiotensinogen, and ET-1 mRNA levels suggests that both nitrofen-exposed and control pups revealed prenatal variations of expression of the studied genes. Moreover, CDH is associated with significant molecular alterations only in the RV after birth.
Collapse
Affiliation(s)
- Maria João Baptista
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | |
Collapse
|
33
|
Abstract
Despite the fact that septic patients exhibit altered cardiac function, it is not considered a major pathology during sepsis. Thus, the molecular mechanisms underlying sepsis-induced myocardial dysfunction have not been studied extensively. In a polymicrobial septic rat model, +dP/dt and -dP/dt on day 1 were not altered but found depressed later, i.e., at 3 and 7 days postsepsis. Diastolic dysfunction characterized by an elevation of the time constant of left ventricular relaxation, tau, was evident at 1, 3, and 7 days postsepsis. Recent data from our laboratory demonstrated that sepsis-induced cardiodynamic alterations correlated with upregulation of TNF receptor-associated death domain, Bax, Smac (both mitochondrial and cytosolic fractions), total nuclear factor kappaB expression, p38-mitogen-activated protein kinase and c-Jun N-terminal kinase phosphorylation, and cytochrome c levels in the rat heart at 3 and 7 days postsepsis. Data from various laboratories emphasized that molecular myocardial alteration, which occurs during early and late stages of sepsis, needs to be elucidated thoroughly. A poor understanding of myocardial signaling during early sepsis could be one of the main reasons for limited success of pharmacotherapeutic options for sepsis. We anticipate that an increased understanding of pathophysiological mechanisms leading to sepsis-induced myocardial dysfunction would generate new enthusiasm among various research groups in this area of research.
Collapse
Affiliation(s)
- Avadhesh C Sharma
- Cardionome Laboratory, Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246, USA.
| |
Collapse
|
34
|
Kato G, Ishino K, Mohri M, Hisamochi K, Takagaki M, Sano S. Efficacy of an endothelin-A receptor antagonist in heart transplantation from asphyxiated canine non-heart-beating donors. ACTA ACUST UNITED AC 2006; 54:511-5. [PMID: 17236652 DOI: 10.1007/s11748-006-0051-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Hypoxic perfusion before arrest, an indeterminate period of warm ischemia, and subsequent reperfusion are major causes of cardiac allograft dysfunction in non-heart-beating donors (NHBDs). The present study was undertaken to elucidate the cardioprotective effects of ET(A) receptor antagonist FR139317 for hearts obtained from asphyxiated NHBDs in a canine transplantation model. METHODS Hypoxic cardiac arrest was induced in 17 donor dogs. FR139317 (10 mg/kg) was given to 7 of the dogs over a period of 10 min before disconnecting the ventilator. The hearts were preserved with FR 139317-supplemented cardioplegic solution (FR group). The remaining 10 did not receive FR 139317 at any time during the experiment (control group). Orthotopic transplantation was performed after a mean myocardial ischemic time of 4h. RESULTS During the agonal period, the highest systolic pulmonary artery pressure in the FR group was lower than that in the control group (47 +/- 14 vs. 58 +/- 27 mmHg). All animals in the FR group were weaned from cardiopulmonary bypass, whereas only five of the controls were weaned, two of which were identified to have dominant right ventricular failure. After transplantation, recovery rates of the left ventricular end-systolic pressure-volume ratio (E(max)) and the maximum first derivative of pressure measured over time (max dP/dt) were not significantly different between the groups, but recovery rates of the cardiac index, left ventricular minimum dP/dt and exponential time constant of LV relaxation (tau) in the FR group were higher than those in the control group. CONCLUSIONS The ET(A) receptor antagonist FR 139317 reduced pressure overload on the right ventricle by decreasing the peak pulmonary artery pressure before donor arrest. Cardioprotective effects of this agent for heart transplantation from NHBDs are manifested by preserved diastolic properties of the left ventricle.
Collapse
Affiliation(s)
- Gentaro Kato
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikato-cho 2-5-1, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Motte S, McEntee K, Naeije R. Endothelin receptor antagonists. Pharmacol Ther 2006; 110:386-414. [PMID: 16219361 DOI: 10.1016/j.pharmthera.2005.08.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 08/23/2005] [Indexed: 01/08/2023]
Abstract
Endothelin receptor antagonists (ERAs) have been developed to block the effects of endothelin-1 (ET-1) in a variety of cardiovascular conditions. ET-1 is a powerful vasoconstrictor with mitogenic or co-mitogenic properties, which acts through the stimulation of 2 subtypes of receptors [endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) receptors]. Endogenous ET-1 is involved in a variety of conditions including systemic and pulmonary hypertension (PH), congestive heart failure (CHF), vascular remodeling (restenosis, atherosclerosis), renal failure, cancer, and cerebrovascular disease. The first dual ETA/ETB receptor blocker, bosentan, has already been approved by the Food and Drug Administration for the treatment of pulmonary arterial hypertension (PAH). Trials of endothelin receptor antagonists in heart failure have been completed with mixed results so far. Studies are ongoing on the effects of selective ETA antagonists or dual ETA/ETB antagonists in lung fibrosis, cancer, and subarachnoid hemorrhage. While non-peptidic ET-1 receptor antagonists suitable for oral intake with excellent bioavailability have become available, proven efficacy is limited to pulmonary hypertension, but it is possible that these agents might find a place in the treatment of several cardiovascular and non-cardiovascular diseases in the coming future.
Collapse
Affiliation(s)
- Sophie Motte
- Laboratory of Physiology (CP-604), Free University Brussels, Erasmus Campus, Lennik Road 808, B-1070 Brussels, Edmonton, Canada
| | | | | |
Collapse
|
36
|
Gómez-Garre D, Herraíz M, González-Rubio ML, Bernal R, Aragoncillo P, Carbonell A, Rufilanchas JJ, Fernández-Cruz A. Activation of peroxisome proliferator-activated receptor-α and -γ in auricular tissue from heart failure patients. Eur J Heart Fail 2006; 8:154-61. [PMID: 16185925 DOI: 10.1016/j.ejheart.2005.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 06/06/2005] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Peroxisome proliferator-activated receptors (PPARs), key transcriptional regulators of lipid and energy metabolism in cardiomyocytes, have recently been proposed to modulate cardiovascular pathophysiological responses in experimental models. However, there is little information about the functional activity of PPARs in human heart failure. AIMS To investigate PPAR-alpha and -gamma expression and activity, and the association with ET-1 production and fibrosis, in cardiac biopsies from patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) in comparison and from non-failing donor hearts. All samples were obtained during cardiac transplantation. METHODS AND RESULTS Morphological analysis (by Masson trichrome and image analysis) did not detect fibrosis in the left atrium from non-failing donors (NFLA) or from ICM patients (FLA). However, left ventricles from failing hearts (FLV) contained a greater number of fibrotic areas (NFLA: 3.21+/-1.15, FLA: 1.63+/-0.83, FLV: 14.5+/-3.45%; n = 9, P<0.05). By RT-PCR, preproET-1 expression was similar in the non-failing and failing atrium but was significantly higher in the ventricles from failing hearts (NFLA: 1.00+/-0.06, FLA: 1.08+/-0.11, FLV: 1.74+/-0.19; n = 9, P<0.05). PPAR-alpha and PPAP-gamma mRNA (by RT-PCR) and protein (by Western blot) levels were higher in the ventricles from failing hearts compared with the atrium from failing and non-failing hearts. Electrophoretic mobility shift assays showed that PPAR-alpha and PPAP-gamma were not activated in the ventricles (NFLA: 1.00+/-0.11, FLA: 1.89+/-0.24, FLV: 0.95+/-0.07; n = 9, P<0.05). CONCLUSIONS These data suggest that PPAR-alpha and PPAP-gamma are selectively activated in the atria from ICM patients and might be functionally important in the maintenance of atrial morphology.
Collapse
Affiliation(s)
- Dulcenombre Gómez-Garre
- Vascular Biology and Atherosclerosis Research Laboratory, Area de Prevención Cardiovascular y Rehabilitación Cardíaca, Instituto Cardiovascular, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xia Z, Kuo KH, McNeill JH, Ansley DM. Endothelin A and B receptor antagonist bosentan reduces postischemic myocardial injury in the rat: critical timing of administration. Can J Physiol Pharmacol 2005; 83:259-66. [PMID: 15870840 DOI: 10.1139/y05-014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of bosentan, a mixed endothelin receptor A and B subtype antagonist, on myocardial ischemia-reperfusion injury and to explore the influence of the timing of bosentan administration on its cardioprotective effects. Adult rat hearts were perfused by the Langendorff technique with Krebs-Henseleit solution (KH) at a constant flow rate at 10 mL/min. Global myocardial ischemia was induced by stopping KH perfusion for 40 min, and this was followed by 60 min of reperfusion. Hearts were randomized to 1 of 3 experimental groups (n = 7 each): untreated control; treatment with bosentan 1 micromol/L 10 min prior to, during 40 min global ischemia, and for 15 min of reperfusion (BOS); or treatment with bosentan 1 micromol/L after 15 min of reperfusion (BOS-R). We observed that BOS-R, but not the BOS treatment regimen, significantly reduced the release of cardiac-specific creatine kinase and postischemic myocardial infarct size (P < 0.05 vs. control) without affecting myocardial contractility. Left ventricular developed pressure in the BOS group was significantly (P < 0.01) lower than that in the control group throughout reperfusion. It is concluded that pharmacologically delayed antagonism of endothelin-1 during reperfusion attenuates postischemic myocardial injury. Endothelin-1 antagonist application during early reperfusion may exacerbate postischemic myocardial dysfunction.
Collapse
Affiliation(s)
- Zhengyuan Xia
- Centre for Anesthesia and Analgesia, Department of Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
38
|
Gupta A, Aberle NS, Kapoor R, Ren J, Sharma AC. Bigendothelin-1 via p38-MAPK-dependent mechanism regulates adult rat ventricular myocyte contractility in sepsis. Biochim Biophys Acta Mol Basis Dis 2005; 1741:127-39. [PMID: 15955456 DOI: 10.1016/j.bbadis.2005.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/03/2005] [Accepted: 03/14/2005] [Indexed: 11/24/2022]
Abstract
We tested the hypothesis that exogenous administration of the ET-1 precursor, bigET-1, would regulate adult rat ventricular myocyte (ARVM) contractility in a p38-mitogen activated protein kinase (p38-MAPK)-dependent mechanism during sepsis. Ventricular myocytes from adult rat hearts (both sham and septic) were stimulated to contract at 0.5 Hz and mechanical properties were evaluated using an IonOptix Myocam system. Immunoblot analysis was used to determine the phosphorylation of p38-MAPK and extracellular signal-regulated kinase 1/2 (ERK1/2). ARVMs were treated with vehicle, bigET-1 and inhibitors for 24 h and then subjected to functional and biochemical estimations. Septic ARVM displayed a distorted cell membrane and irregular network within the cells along with increased cell contractility as evidenced by elevated peak shortening (PS), maximal velocity of shortening (+dL/dt) and relengthening (-dL/dt) in comparison to sham ARVM. BigET-1 treatment caused ARVM enlargement in both sham and sepsis groups. BigET-1 (100 nM) produced an increase in ARVM contractility in sham group as compared to vehicle treatment. However, septic ARVM treated with bigET-1 exhibited unaltered ARVM contractility, and upregulated ET(B) receptors as compared to respective sham group. BigET-1 increased the concentration of ET-1 and upregulated phosphorylation of p38-MAPK but not of ERK1/2 in sham and septic ARVM. Furthermore, inhibition of p38-MAPK by SB203580 (10 microM) increased ARVM contractility in sham but not in sepsis group. BigET-1 reversed SB203580-induced increase in PS in sham group but accentuated it in sepsis group. BigET-1 also reversed SB203580-induced inhibition of p38-MAPK phosphorylation in sham but not in septic ARVM. SB203580 pretreatment followed by bigET-1 administration significantly decreased p38-MAPK phosphorylation and downregulated ET(B) receptor expression as compared to bigET-1 treatment per se in sepsis group but not in sham. We concluded that a bigET-1-induced non-responsive effect on septic ARVM contractile function could be due to upregulation of p38-MAPK phosphorylation and ET(B) receptor expression.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Pharmaceutical Sciences, Cardionome Laboratory, College of Pharmacy, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | |
Collapse
|
39
|
Yamamoto S, Matsumoto N, Kanazawa M, Fujita M, Takaoka M, Gariepy CE, Yanagisawa M, Matsumura Y. Different contributions of endothelin-A and endothelin-B receptors in postischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Circulation 2005; 111:302-9. [PMID: 15642760 DOI: 10.1161/01.cir.0000153351.86708.f7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelin (ET)-1 and norepinephrine (NE) are involved in myocardial ischemia/reperfusion injury. We investigated the role of ET-1 in ischemia/reperfusion-induced NE overflow and cardiac dysfunction using a selective ET(A) receptor antagonist (ABT-627), a selective ET(B) receptor antagonist (A-192621), and the spotting lethal (sl) rat, which carries a naturally occurring deletion in the ET(B) receptor gene. METHODS AND RESULTS According to the Langendorff technique, isolated hearts were subjected to 40-minute global ischemia followed by 30-minute reperfusion. In Sprague-Dawley rat hearts, ischemia/reperfusion-induced cardiac dysfunctions such as decreased left ventricular developed pressure and coronary flow and increased left ventricular end-diastolic pressure were worsened by treatment with A-192621. This agent enhanced excessive NE overflow in the coronary effluent from the postischemic heart. In contrast, treatment with ABT-627, in the absence or presence of A-192621, significantly improved postischemic cardiac dysfunction and markedly suppressed NE overflow to the same extent. Postischemic cardiac dysfunction and NE overflow in the heart of ET(B) receptor-deficient homozygous (sl/sl) rats were highly observed compared with cases in wild-type rats, and exaggerated responses to ischemia/reperfusion in sl/sl rats were abolished by ABT-627 treatment. Exogenously applied ET-1 produced severe cardiac dysfunction and a significant increase in NE overflow in a dose-dependent manner, but these responses were markedly suppressed in the presence of 5-N-ethyl-N-isopropyl-amiloride, an inhibitor of the Na+/H+ exchanger (NHE). CONCLUSIONS Pharmacological blockade or genetic deficiency of ET(B) receptors is detrimental to the postischemic heart, and exaggerated cardiac pathology under the above conditions is mediated by ET(A) receptor activation. ET(A)/NHE-mediated excessive NE overflow is contributive, at least in part, to postischemic cardiac dysfunction in rats.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gupta A, Brahmbhatt S, Sharma AC. Left ventricular mitogen activated protein kinase signaling following polymicrobial sepsis during streptozotocin-induced hyperglycemia. Biochim Biophys Acta Mol Basis Dis 2004; 1690:42-53. [PMID: 15337169 DOI: 10.1016/j.bbadis.2004.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 04/28/2004] [Accepted: 05/07/2004] [Indexed: 11/25/2022]
Abstract
We hypothesized that sepsis during hyperglycemia would activate left ventricular (LV) mitogen activated protein kinase (MAPK) signaling mechanisms and modulate generation of endothelin-1 (ET-1) and nitric oxide (NO) that can contribute to the progression of LV dysfunction. A single injection of streptozotocin (STZ, 60 mg/kg, via tail vein) was used to produce type 2 diabetes in male SD rats. Polymicrobial sepsis and sham-sepsis were induced using single i.p. injection of cecal inoculum and sterile 5% dextrose water, respectively, on the 13th and 27th day following STZ injection. Both 2-week (2-wk) and 4-wk diabetes groups were associated with hyperglycemia and weight loss. LV end diastolic pressure (LVEDP) was significantly increased in 4-wk diabetes but not in 2-wk diabetes group. Plasma concentration of tumor necrosis factor-alpha (TNF-alpha) was significantly increased in 4-wk diabetes+sepsis group as compared to sham, 2-wk diabetes+sepsis and sepsis groups. Elevated plasma and LV ET-1 and NO byproducts (NOx) along with LV preproET-1 and inducible nitric oxide synthase (iNOS) protein expression were observed in 4-wk but not in 2-wk diabetes group. Sepsis further elevated LV iNOS and preproET-1 in 4-wk diabetes group. Up-regulated phosphorylation of LV p38-MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and heat shock protein-27 (Hsp27) was observed in 4-wk diabetes group. Sepsis caused a factorial increase in LV p38-MAPK and Hsp27 phosphorylation and iNOS up-regulation but not ERK1/2 following progression from 2-wk to 4-wk diabetes. The study provides evidence that sepsis up-regulated LV iNOS, p38-MAPK phosphorylation and elevated LVEDP during 4-wk diabetes. We concluded that sepsis contributes in the development of LVEDP dysfunction and alteration in signaling mechanisms depending upon the progression from 2-wk to 4-wk diabetes in the rat.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, 208 Sudro Hall, Fargo, ND 58105, USA
| | | | | |
Collapse
|
41
|
Licht C, Laghmani K, Yanagisawa M, Preisig PA, Alpern RJ. An autocrine role for endothelin-1 in the regulation of proximal tubule NHE3. Kidney Int 2004; 65:1320-1326. [PMID: 15086471 DOI: 10.1111/j.1523-1755.2004.00506.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chronic metabolic acidosis leads to an increase in NHE3 activity that is mediated by endothelin-1 (ET-1) expression and activation of the proximal tubule endothelin B receptor. Chronic metabolic acidosis increases preproET-1 mRNA abundance in kidney cortex, but the cell responsible has not been identified. METHODS PreproET-1 mRNA abundance was quantified by competitive reverse transcription-polymerase chain reaction (RT-PCR) on tissue harvested from control rats or rats in which chronic metabolic acidosis was induced by addition of NH(4)Cl to the drinking water. RESULTS Chronic metabolic acidosis leads to an increase in preproET-1 mRNA expression in kidney cortex, proximal tubules, and glomeruli. The increase in preproET-1 expression correlates with the decrease in blood [HCO3(-)]. ET-1 expression is also increased by acidosis in abdominal aorta, but not in cardiac muscle. CONCLUSION In the renal proximal tubule, chronic metabolic acidosis induces an increase in preproET-1 expression, providing a mechanism for autocrine regulation of proximal tubule NHE3 activity. This response is not unique to the proximal tubule cell, but is also not ubiquitous.
Collapse
Affiliation(s)
- Christoph Licht
- Department of Internal Medicine and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
42
|
Motte S, van Beneden R, Mottet J, Rondelet B, Mathieu M, Havaux X, Lause P, Clercx C, Ketelslegers JM, Naeije R, McEntee K. Early activation of cardiac and renal endothelin systems in experimental heart failure. Am J Physiol Heart Circ Physiol 2003; 285:H2482-91. [PMID: 14613913 DOI: 10.1152/ajpheart.00419.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the time course of the expression of cardiac and renal endothelin systems in tachycardia-induced heart failure in dogs. Eleven beagles underwent rapid pacing at a progressively increased rate over a period of 5 wk, with a weekly clinical examination, echocardiography, measurement of circulating and urinary endothelin-1 (ET-1), and myocardial and renal tissue biopsies. Real-time quantitative PCR was used for determinations of tissue prepro-ET-1 (ppET-1), ET-1-converting enzyme (ECE-1), and ETA and ETB receptor mRNA. Cardiac and renal tissue ET-1 contents were evaluated by immunostaining and measured by radioimmunoassay at autopsy. Rapid pacing caused a progressive increase in end-systolic and end-diastolic ventricular volumes (P < 0.05) from week 2 together with a decrease in ejection fraction and in mean velocity of circumferential shortening (P < 0.05) from week 1. These changes were tightly correlated to myocardial ppET-1 and renal ETA receptor mRNA and less so to myocardial ECE-1 mRNA, and they occurred before any increase in plasma and urinary ET-1 (P < 0.05 from week 4) and clinical signs of heart failure. Renal ppET-1 did not change. Both cardiac and renal ET-1 peptide contents were increased at autopsy. We conclude that tachycardia-induced heart failure in dogs is characterized by an early activation of the cardiac and renal tissue endothelin systems, which occurs before any changes in circulating and urinary ET-1 and is closely related to altered ventricular function.
Collapse
Affiliation(s)
- Sophie Motte
- Laboratory of Physiology, Faculty of Medicine, Free University of Brussels, Brussels B-1070, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nuedling S, Eickels MV, Alléra A, Doevendans P, Meyer R, Vetter H, Grohé C. 17 Beta-estradiol regulates the expression of endothelin receptor type B in the heart. Br J Pharmacol 2003; 140:195-201. [PMID: 12967949 PMCID: PMC1574007 DOI: 10.1038/sj.bjp.0705409] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
(1) Little is known about the interaction of 17beta-estradiol (E2) and the vasoactive endothelin system in the heart. Endothelin signaling is activated in a failing heart and may contribute to myocardial dysfunction and remodeling. Therefore, we investigated the regulation of proteins of the endothelin system (ppET-1, ECE and ETA-R and ETB-R) in the hearts of female spontaneously hypertensive rats (SHR) with respect to E2. (2) Relative expression levels of the respective cardiac mRNA obtained from sham-operated, ovariectomized and ovariectomized E2-substituted SHR were quantified by real-time PCR. Ovariectomy led to a significant upregulation of the ETB-R mRNA (2.6+/-0.8-fold) in the left ventricular myocardium, which was not attendant with an alteration of ETA-R, ECE and ppET-1 mRNA expression. (3) An upregulation of the relative expression level of ETB-R protein due to ovariectomy was also demonstrated by radioligand binding assay. (4) Upregulation of both ETB-R mRNA and ETB-R protein expression was completely inhibited by E2 replacement. (5) To confirm these results in in vitro experiments, we quantified the mRNA of ET-R subtypes from isolated cardiomyocytes in the presence and absence of E2 (10-8 m, 24 h). Our data showed a markedly downregulated level of ETB-R mRNA in cardiomyocytes stimulated with E2. ETB-R downregulation was not attendant with the alteration of ETA-R, ECE and ppET-1 mRNA expression. (6) Taken together, these data demonstrate that estrogen regulates the expression of ETB-R in rat ventricular myocardium in vivo and in vitro. These observations may help to understand gender-based differences found in cardiovascular disease.
Collapse
Affiliation(s)
| | - Martin van Eickels
- Medizinische Universitats-Poliklinik, Wilhelmstr. 35-37, Universitätsklinikum Bonn 53111, Germany
| | - Axel Alléra
- Institut für Klinische Biochemie, Universitätsklinikum Bonn, Germany
| | | | | | - Hans Vetter
- Medizinische Universitats-Poliklinik, Wilhelmstr. 35-37, Universitätsklinikum Bonn 53111, Germany
| | - Christian Grohé
- Medizinische Universitats-Poliklinik, Wilhelmstr. 35-37, Universitätsklinikum Bonn 53111, Germany
- Author for correspondence:
| |
Collapse
|
44
|
Boivin B, Chevalier D, Villeneuve LR, Rousseau E, Allen BG. Functional endothelin receptors are present on nuclei in cardiac ventricular myocytes. J Biol Chem 2003; 278:29153-63. [PMID: 12756260 DOI: 10.1074/jbc.m301738200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelins are thought to act through two specific, plasmalemmal G protein-coupled receptor subtypes, ETAR and ETBR. However, in subfractionated cardiac membranes, ETAR immunoreactivity was detected only in the plasma membrane whereas ETBR immunoreactivity was detected predominantly in membranes of intracellular origin. Confocal microscopy demonstrated the presence of intracellular ETAR and ETBR in ventricular myocytes. ETAR were primarily on plasma membrane (surface membranes and transverse-tubules) and to a lesser extent on the nucleus while ETBR localized primarily to the nuclei. Western blot analysis of nuclei isolated from the heart indicated the presence of endothelin receptors: both ETAR and ETBR copurified with nucleoporin 62, whereas markers of endoplasmic reticulum and Golgi membranes were depleted. Radioligand binding studies revealed that isolated nuclei contain specific [125I]ET-1 binding sites. Specific [125I]ET-1 binding was reduced by 70-80% using the ETAR-selective antagonist BQ610 and 20-30% using the ETBR-specific antagonist BQ788. IRL-1620, an ETBR-specific agonist, also reduced [125I]ET-1 binding. Furthermore, ET-1 and IRL-1620 altered the incorporation of 32P into nuclear proteins and caused a transient increase in nuclear Ca2+ concentration. Hence, cardiac nuclei possess both ETAR and ETBR subtypes, which are functional with respect to ligand binding and are coupled to signaling mechanisms within the nuclear membrane.
Collapse
Affiliation(s)
- Benoit Boivin
- Institut de Cardiologie de Montréal, Centre de Recherche, 5000 rue Bélanger, Montréal, Québec H1T 1C8, Canada
| | | | | | | | | |
Collapse
|
45
|
Yeh JL, Liang JC, Liou SF, Lin YT, Sheu SH, Lai WT, Shin SJ, Chen IJ. Ventricular PKC-? and humoral signaling in DOCA-Salt rats treated with labedipinedilol-A. Drug Dev Res 2003. [DOI: 10.1002/ddr.10214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Leite-Moreira AF, Bras-Silva C, Pedrosa CA, Rocha-Sousa AA. ET-1 increases distensibility of acutely loaded myocardium: a novel ETA and Na+/H+ exchanger-mediated effect. Am J Physiol Heart Circ Physiol 2003; 284:H1332-9. [PMID: 12595285 DOI: 10.1152/ajpheart.00715.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated, in rabbit papillary muscles (n = 61) and human auricular strips (n = 7), effects of endothelin-1 (ET-1; 0.1-10 nM) on diastolic myocardial properties. ET-1 (1 nM) was also given in the presence of selective ET(A) or ET(B) antagonism, nonselective ET(A)/ET(B) antagonism, and Na(+)/H(+) exchanger inhibition. Effects of 6.3 mM Ca(2+) were also studied. ET-1 dose dependently increased inotropism. In contrast to baseline, in the presence of ET-1, resting tension (RT) decreased, after an isometric twitch, 3.4 +/- 1.4, 6.9 +/- 1.5, and 12.5 +/- 3.1% with 0.1, 1, and 10 nM, respectively, reflecting an increase in myocardial distensibility. ET-1 effects were abolished with selective ET(A) as well as with nonselective ET(A)/ET(B) antagonism, whereas they were still present with ET(B) antagonism. Na(+)/H(+) exchanger inhibition abolished ET-1 effects on distensibility, whereas it only partially inhibited positive inotropic effect. Ca(2+) increased inotropism to a similar extent to ET-1 (1 nM) but did not affect distensibility. ET-1 therefore increased diastolic distensibility of acutely loaded human and nonhuman myocardium. This effect is mediated by ET(A) receptors, requires Na(+)/H(+) exchanger activation, and cannot be elicited by Ca(2+).
Collapse
Affiliation(s)
- Adelino F Leite-Moreira
- Department of Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | | | |
Collapse
|
47
|
Lin L, Yuan WJ. Effects of endothelin-1 antagonist BQ610 on hypoxia-induced injury and [Ca2+]i changes in cultured neonatal rat cardiomyocytes. Drug Dev Res 2003. [DOI: 10.1002/ddr.10134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Allen BG, Phuong LL, Farhat H, Chevalier D. Both endothelin-A and endothelin-B receptors are present on adult rat cardiac ventricular myocytes. Can J Physiol Pharmacol 2003; 81:95-104. [PMID: 12710521 DOI: 10.1139/y02-155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.
Collapse
Affiliation(s)
- Bruce G Allen
- Department of Medicine and Groupe de recherche sur le système nerveux autonome, Université de Montréal, Montréal, PQ H3C 3J7, Canada.
| | | | | | | |
Collapse
|
49
|
Gan XT, Chakrabarti S, Karmazyn M. Increased endothelin-1 and endothelin receptor expression in myocytes of ischemic and reperfused rat hearts and ventricular myocytes exposed to ischemic conditions and its inhibition by nitric oxide generation. Can J Physiol Pharmacol 2003; 81:105-13. [PMID: 12710522 DOI: 10.1139/y03-030] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET-1) and nitric oxide (NO) exert opposite effects in the cardiovascular system, and there is evidence that the NO counters the potential deleterious effects of ET-1. We investigated whether NO affects the increased mRNA expression of ET-1 and endothelin receptors induced by (i) 30 min of ischemia with or without 30 min reperfusion in myocytes from isolated rat hearts or (ii) ischemic conditions (acidosis or hypoxia) in cultured rat neonatal ventricular myocytes. Ischemia with or without reperfusion produced more than a twofold increase in mRNA expression of ET-1 as well as the ET(A) and ET(B) receptor (P < 0.05), although these effects were completely blocked by the NO donor 3-morpholinosydnonimine (SIN-1; 1 microM). To assess the possible factors regulating ET expression, myocytes were exposed to acidosis (pH 6.8-6.2) or to hypoxic conditions in an anaerobic chamber for 24 h in the presence or absence of SIN-1. At all acidic pHs, ET-1 and ET(A) receptor mRNA expression was significantly (P < 0.05) elevated approximately threefold, although the magnitude of elevation was independent of the degree of acidosis. These effects were completely prevented by SIN-1. ET(B) receptor expression was unaffected by acidosis. Hypoxia increased ET-1 as well as ET(A) and ET(B) receptor expression threefold (P < 0.05), although this was unaffected by SIN-1. Our results demonstrate that myocardial ischemia and reperfusion upregulate the ET system, which is inhibited by NO. Although increased expression of the ET system can be mimicked by both acidosis and hypoxia, only the effects of the former are NO sensitive. NO may serve an endogenous inhibitory factor which regulates the expression of the ET system under pathological conditions.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- Department of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
50
|
Chakrabarti S, Chen S, Evans T, Karmazyn M. Endothelins in the microvasculature and heart in diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 498:97-108. [PMID: 11900407 DOI: 10.1007/978-1-4615-1321-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- S Chakrabarti
- Department of Pathology, The University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|