1
|
Ribeiro VV, Casado-Coy N, Salaní S, De-la-Torre GE, Sanz-Lazaro C, Castro ÍB. Microplastics in marine sponges (Porifera) along a highly urbanized estuarine gradient in Santos, Brazil. MARINE POLLUTION BULLETIN 2024; 208:117044. [PMID: 39361994 DOI: 10.1016/j.marpolbul.2024.117044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MPs) are ubiquitously found in environmental matrices, particularly affecting aquatic systems. While several marine species have been widely used to assess MP contamination, sponges (Porifera) are less used. The MPs contamination was assessed in the sun sponge (Hymeniacidon heliophila) along a gradient at the Santos Estuarine System (Brazil). A 14-fold difference between concentrations (particles g-1) was verified between the most (1.40 ± 0.81) and least (0.10 ± 0.12) contaminated sites, confirming the local contamination gradient. The MPs found were primarily polypropylene, small (1.2-1000 μm), fibrous, and colored. Considering total concentrations, sizes and shapes these spatial patterns were similar those previously detected in molluscs obtained in the same sites. On the other hand, they differed in polymeric composition and color categories. Such findings give important initial insights into the potential role of marine sponges as putative sentinels of MPs contamination.
Collapse
Affiliation(s)
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Sula Salaní
- Instituto Federal de Brasília, Campus São Sebastião, Brasília, Brazil
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain; Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
2
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
3
|
Tian F, Liu S, Xu R, Wu NN, Liu SS, Cheng YY, Xiong Q, Tang ZZ, Zhang LB, Zhang Z, Chen HG. Ubiquity and ecological risks of conjugated steroids cannot be overlooked: First evidence from estuarine sediments. MARINE POLLUTION BULLETIN 2024; 207:116879. [PMID: 39182404 DOI: 10.1016/j.marpolbul.2024.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Steroids, renowned for endocrine-disrupting capabilities, have garnered significant research interest, predominantly centered on their parent forms. This study was the first to explore the composition, spatiotemporal characteristics, sources, mass inventories, and ecological risks of steroids in free and conjugated forms in estuarine sediments. Seventeen steroids were identified in sediments with the total levels of 1.3-4.3 ng/g. Most natural steroids and metabolites existed in free forms, while synthetic ones predominantly stored in conjugates. Environmental factors exerted limited impacts on steroid distribution. Raw domestic wastewater, drug consumption, and mariculture may be leading steroid sources in estuarine sediments, with total mean mass inventories of 177-219 μg/m2. The predominant contributors to the ecological risk were cortisol, prednisolone, 20α-dihydroprogesterone, 20β-dihydroprogesterone, and progesterone. This research gives the first insight into the understanding of conjugated steroids in the marine environment, and advocates for more studies on the fate and ecotoxicology of conjugated steroids.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Shuang Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian Xiong
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhen-Zhao Tang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin-Bao Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhe Zhang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hai-Gang Chen
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
4
|
Lan H, Liu F, Lu L, Liu A, Ye H. A new type II CHH neuropeptide involves ovarian development in the peppermint shrimp, Lysmata vittata. PLoS One 2024; 19:e0305127. [PMID: 39088423 PMCID: PMC11293640 DOI: 10.1371/journal.pone.0305127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 08/03/2024] Open
Abstract
Type II crustacean hyperglycemic hormone (CHH) neuropeptides play diverse roles in crustaceans. In the hermaphrodite shrimp Lysmata vittata, two transcripts of type II CHHs (molt-inhibiting hormone/gonad-inhibiting hormone, MIH/GIH1 and MIH/GIH2) were identified by transcriptome sequencing, and MIH/GIH1 was later named Lvit-GIH1 for its inhibitory effect on ovarian development. Based on the high similarity of MIH/GIH2 to Lvit-GIH1, we named tentatively MIH/GIH2 as Lvit-GIH2 and explored the role of Lvit-GIH2 in ovarian development. The open reading frame (ORF) of Lvit-GIH2 was 333 bp in length, encoding a precursor consisted of a 32-aa signal peptide and a 78-aa mature peptide, which shared high sequence similarity with the type II subfamily peptides in crustaceans. Notably, Lvit-GIH2 was widely expressed in multiple tissues. The qRT-PCR findings indicated a rising trend in the expression of Lvit-GIH2 from the male phase to the euhermaphrodite phase. Both RNA interference and addition of GIH2 recombinant proteins (rGIH2) experiments showed that Lvit-GIH2 suppressed Lvit-Vg expression in hepatopancreas and Lvit-VgR expression in ovary. To further investigate the role of Lvit-GIH2 in ovarian development, the RNA-sequence analysis was performed to examine the changes in ovary after addition of rGIH2. The results showed that the pathways (Cysteine and methionine metabolism, Apoptosis-multiple species, etc.) and the genes (17bHSD8, IGFR, CHH, etc.) related to ovarian development were negatively regulated by rGIH2. In brief, Lvit-GIH2 might inhibit the ovarian development in L. vittata.
Collapse
Affiliation(s)
- Huiling Lan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Fang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Li Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - An Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Haihui Ye
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
5
|
Adamovsky O, Groh KJ, Białk-Bielińska A, Escher BI, Beaudouin R, Mora Lagares L, Tollefsen KE, Fenske M, Mulkiewicz E, Creusot N, Sosnowska A, Loureiro S, Beyer J, Repetto G, Štern A, Lopes I, Monteiro M, Zikova-Kloas A, Eleršek T, Vračko M, Zdybel S, Puzyn T, Koczur W, Ebsen Morthorst J, Holbech H, Carlsson G, Örn S, Herrero Ó, Siddique A, Liess M, Braun G, Srebny V, Žegura B, Hinfray N, Brion F, Knapen D, Vandeputte E, Stinckens E, Vergauwen L, Behrendt L, João Silva M, Blaha L, Kyriakopoulou K. Exploring BPA alternatives - Environmental levels and toxicity review. ENVIRONMENT INTERNATIONAL 2024; 189:108728. [PMID: 38850672 DOI: 10.1016/j.envint.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.
Collapse
Affiliation(s)
- Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - R Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, UMR-I 02 SEBIO, Verneuil en Halatte 65550, France
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Po.Box 5003, N-1432 Ås, Norway
| | - Martina Fenske
- Department of Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Nicolas Creusot
- INRAE, French National Research Institute for Agriculture, Food & Environment, UR1454 EABX, Bordeaux Metabolome, MetaboHub, Gazinet Cestas, France
| | - Anita Sosnowska
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Susana Loureiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579 Oslo, Norway
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013-Sevilla, Spain
| | - Alja Štern
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Isabel Lopes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Monteiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Zikova-Kloas
- Testing and Assessment Strategies Pesticides, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Ecotoxicological Laboratory, German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Tina Eleršek
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Marjan Vračko
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Szymon Zdybel
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Tomasz Puzyn
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Weronika Koczur
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jane Ebsen Morthorst
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gunnar Carlsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232 Las Rozas de Madrid, Spain
| | - Ayesha Siddique
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany
| | - Matthias Liess
- System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany
| | - Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Vanessa Srebny
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - François Brion
- Ecotoxicology of Substances and Environments, Ineris, Verneuil-en-Halatte, France
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ellen Vandeputte
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lars Behrendt
- Science for Life Laboratory, Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, 75236 Uppsala, Sweden
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal; Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Katerina Kyriakopoulou
- Laboratory of Environmental Control of Pesticides, Benaki Phytopathological Institute, 8th Stefanou Delta str., 14561, Kifissia, Attica, Greece.
| |
Collapse
|
6
|
Wu X, Nawaz S, Li Y, Zhang H. Environmental health hazards of untreated livestock wastewater: potential risks and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24745-24767. [PMID: 38499926 DOI: 10.1007/s11356-024-32853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Due to technological and economic limitations, waste products such as sewage and manure generated in livestock farming lack comprehensive scientific and centralized treatment. This leads to the exposure of various contaminants in livestock wastewater, posing potential risks to both the ecological environment and human health. This review evaluates the environmental and physical health risks posed by common pollutants in livestock wastewater and outlines future treatment methods to mitigate these risks. Residual wastes in livestock wastewater, including pathogenic bacteria and parasites surviving after epidemics or diseases on various farms, along with antibiotics, organic wastes, and heavy metals from farming activities, contribute to environmental damage and pose risks to human health. As the livestock industry's development increasingly impacts society's future negatively, addressing the issue of residual wastes in livestock wastewater discharge becomes imperative. Ongoing advancements in wastewater treatment systems are consistently updating and refining practices to effectively minimize waste exposure at the discharge source, mitigating risks to environmental ecology and human health. This review not only summarizes the "potential risks of livestock wastewater" but also explores "the prospects for the development of wastewater treatment technologies" based on current reports. It offers valuable insights to support the long-term and healthy development of the livestock industry and contribute to the sustainable development of the ecological environment.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
8
|
Odehnalová K, Přibilová P, Maršálková E, Zezulka Š, Pochylý F, Rudolf P, Maršálek B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2905-2916. [PMID: 38096077 PMCID: wst_2023_382 DOI: 10.2166/wst.2023.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The present paper investigated the potential of hydrodynamic cavitation (HC) as an effective tool for activating sodium percarbonate (SPC). The method's efficiency was demonstrated by effectively removing estrogens, which are pollutants that have adverse impacts on aquatic ecosystems. The effects of the SPC concentration, temperature of solution, and cavitation time were evaluated. After SPC/HC treatment, the removal of estrogens was monitored by liquid chromatography-tandem mass spectrometry (LC -MS/MS). Already after 4 s of treatment and 24 h of reaction time, more than 97% of estrogens (initial concentration of 300 ng/L) were removed. The effect of post-treatment time is not considered in several papers, even though it seems to be crucial and is discussed here. The results were supported by the values of degradation rate constants, which fit the pseudo-first-order kinetic model. We also verified that HC alone was not effective for estrogen removal under the selected conditions. The sustainability of the SPC/HC system was evaluated based on electric energy per order calculation. The combination of SPC and HC is a promising approach for rapidly degrading micropollutants such as estrogenic compounds without the need for additional technological steps, such as pH or temperature adjustment.
Collapse
Affiliation(s)
- Klára Odehnalová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic E-mail:
| | - Petra Přibilová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Eliška Maršálková
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Štěpán Zezulka
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - František Pochylý
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Pavel Rudolf
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Blahoslav Maršálek
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| |
Collapse
|
9
|
Wei Y, Huang D, Ye Z, Jiang Z, Ge L, Ren Y, Wang J, Xu X, Yang J, Wang T. Comparative transcriptome analysis reveals key genes and pathways related to gonad development in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101144. [PMID: 37769382 DOI: 10.1016/j.cbd.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
The sea cucumber Apostichopus japonicus is an economically important marine species in China, and understanding the mechanisms underlying its gonad development is crucial for successful reproduction and breeding. In this study, we performed transcriptome comparisons and analyses of A. japonicus gonadal and non-gonadal tissues to identify genes and molecular pathways associated with gonadal development. We also supplemented the annotation of the A. japonicus genome. Collectively, results revealed a total of 941 ovary-specific genes and 2499 testis-specific genes through different expression analysis and WGCNA analysis. The most enriched pathways in ovary and testis were "DNA replication" and "purine metabolism", respectively. Additionally, we identified key candidate gene modules that control gonad development and germ cell maturation, with CDT1 and DYNC2LI1 serving as hub genes. Our findings provide important insights into the gonadal development system of A. japonicus and offer valuable references for further research on reproductive biology in this marine invertebrate species.
Collapse
Affiliation(s)
- Ying Wei
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Dexiang Huang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhiqing Ye
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Zhijing Jiang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Lifei Ge
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Yucheng Ren
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jixiu Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Xiuwen Xu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Jingwen Yang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China
| | - Tianming Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Marine Science College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, People's Republic of China.
| |
Collapse
|
10
|
Chancellor S, Grasse B, Sakmar T, Scheel D, Brown JS, Santymire RM. Exploring the Effect of Age on the Reproductive and Stress Physiology of Octopus bimaculoides Using Dermal Hormones. Animals (Basel) 2023; 13:3115. [PMID: 37835721 PMCID: PMC10571824 DOI: 10.3390/ani13193115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Our goal was to validate the use of dermal swabs to evaluate both reproductive and stress physiology in the California two-spot octopus, Octopus bimaculoides. Our objectives were to (1) use dermal swabs to evaluate glucocorticoids and reproductive hormones of O. bimaculoides; (2) determine the influence of life stage on hormone production (glucocorticoids in all individuals; testosterone, estrogen, and progesterone in females; and testosterone in males) of reproductive (n = 4) and senescent (n = 8) individuals to determine the effect of age on hormonal patterns; and (3) determine whether these hormones change significantly in response to an acute stressor. For the stress test, individuals were first swabbed for a baseline and then chased around the aquarium with a net for 5 min. Afterward, individuals were swabbed for 2 h at 15 min intervals to compare to the pre-stress test swab. Reproductive individuals responded to the stressor with a 2-fold increase in dermal cortisol concentrations at 15 and 90 min. Six of the eight senescent individuals did not produce a 2-fold increase in dermal cortisol concentrations. Reproductive individuals had significantly higher sex hormone concentrations compared to senescent individuals (progesterone and estradiol measured in females, and testosterone for both sexes). After the stressor, only reproductive males produced a 2-fold increase in dermal testosterone concentrations, while sex hormones in females showed no change. The stress hormone cortisol was significantly higher in senescent than in reproductive individuals, independent of sex. Dermal corticosterone concentrations were highest in senescent females followed by senescent males, and lowest in reproductive individuals regardless of sex. Dermal swabs provide an effective and noninvasive means for evaluating octopus hormones. Application of these indicators may be imperative as cephalopods are more commonly cultured in captivity for experimentation, display, and consumption.
Collapse
Affiliation(s)
| | - Bret Grasse
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - Taylor Sakmar
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; (B.G.); (T.S.)
| | - David Scheel
- Institute of Culture and the Environment, Alaska Pacific University, Anchorage, AK 99508, USA;
| | - Joel S. Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | | |
Collapse
|
11
|
Lance E, Sartor L, Foucault P, Geffard A, Marie B. Insights on the Organ-Dependent, Molecular Sexual Dimorphism in the Zebra Mussel, Dreissena polymorpha, Revealed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Metabolomics. Metabolites 2023; 13:1046. [PMID: 37887371 PMCID: PMC10609167 DOI: 10.3390/metabo13101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The zebra mussel, Dreissena polymorpha, is extensively used as a sentinel species for biosurveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies. However, its metabolome remains poorly understood, particularly in light of the potential molecular sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and inter-organ differences in the metabolome suggest variability in responsiveness, which can influence the analysis and interpretation of data, particularly in the case where males and females would be analyzed indifferently. This study aimed to assess the extent to which the molecular fingerprints of functionally diverse tissues like the digestive glands, gonads, gills, and mantle of D. polymorpha can reveal tissue-specific molecular sexual dimorphism. We employed a non-targeted metabolomic approach using liquid chromatography high-resolution mass spectrometry and revealed a significant sexual molecular dimorphism in the gonads, and to a lesser extent in the digestive glands, of D. polymorpha. Our results highlight the critical need to consider inter-sex differences in the metabolome of D. polymorpha to avoid confounding factors, particularly when investigating environmental effects on molecular regulation in the gonads, and to a lesser extent in the digestive glands.
Collapse
Affiliation(s)
- Emilie Lance
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Lucas Sartor
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Pierre Foucault
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| | - Alain Geffard
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Benjamin Marie
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| |
Collapse
|
12
|
Snyman M, Xu S. Transcriptomics and the origin of obligate parthenogenesis. Heredity (Edinb) 2023; 131:119-129. [PMID: 37280308 PMCID: PMC10382572 DOI: 10.1038/s41437-023-00628-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Despite the presence of obligately parthenogenetic (OP) lineages derived from sexual ancestors in diverse phylogenetic groups, the genetic mechanisms giving rise to the OP lineages remain poorly understood. The freshwater microcrustacean Daphnia pulex typically reproduces via cyclical parthenogenesis. However, some populations of OP D. pulex have emerged due to ancestral hybridization and introgression events between two cyclically parthenogenetic (CP) species D. pulex and D. pulicaria. These OP hybrids produce both subitaneous and resting eggs parthenogenetically, deviating from CP isolates where resting eggs are produced via conventional meiosis and mating. This study examines the genome-wide expression and alternative splicing patterns of early subitaneous versus early resting egg production in OP D. pulex isolates to gain insight into the genes and mechanisms underlying this transition to obligate parthenogenesis. Our differential expression and functional enrichment analyses revealed a downregulation of meiosis and cell cycle genes during early resting egg production, as well as divergent expression patterns of metabolism, biosynthesis, and signaling pathways between the two reproductive modes. These results provide important gene candidates for future experimental verification, including the CDC20 gene that activates the anaphase-promoting complex in meiosis.
Collapse
Affiliation(s)
- Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
13
|
Liu S, Xu R, Pan YF, Huang QY, Wu NN, Li HX, Lin L, Hou R, Xu XR. Free and conjugated forms of metabolites are indispensable components of steroids: The first evidence from an estuarine food web. WATER RESEARCH 2023; 235:119913. [PMID: 36996753 DOI: 10.1016/j.watres.2023.119913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Steroids have attracted particular attention as environmental contaminants because of their severe endocrine-disrupting effects. Previous studies have predominantly focused on parent steroids; however, the levels and proportions of the free and conjugated forms of their metabolites remain largely unclear, especially in food webs. Here, we first characterized the free and conjugated forms of parent steroids and their metabolites in 26 species in an estuarine food web. The steroids were dominated by their metabolites in water samples, whereas parent compounds were predominant in sediment samples. The total mean steroid concentrations in the biota samples that underwent non-enzymatic hydrolysis decreased in the following order: crabs (27 ng/g) > fish (5.9 ng/g) > snails (3.4 ng/g) > shrimps and sea cucumbers (1.2 ng/g); and those in the biota samples that underwent enzymatic hydrolysis decreased in the following order: crabs (57 ng/g) > snails (9.2 ng/g) > fish (7.9 ng/g) > shrimps and sea cucumbers (3.5 ng/g). The proportion of metabolites in the enzymatic hydrolysis biota samples was higher (38-79%) than that (2.9-65%) in non-enzymatic ones, indicating that the free and conjugated forms of metabolites in aquatic organisms were not negligible. Most synthetic steroids were either bioaccumulative or highly bioaccumulative. Importantly, in the invertebrate food web, 17α-methyltestosterone was biomagnified, while 17β-boldenone underwent trophic dilution. Although the estuarine water had a median ecological risk level, the health risks via aquatic product consumption were very low. This study provides novel insights into the composition and trophic transfer of steroids in an estuarine food web for the first time and highlights that free and conjugated metabolites should receive more attention, particularly in biota samples.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ru Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nian-Nian Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
14
|
Priscilla L, Malathi E, Moses Inbaraj R. Sex steroid profile during oocyte development and maturation in the intertidal worm Marphysa madrasi (Polychaeta: Eunicidae) from the east coast of India. Gen Comp Endocrinol 2023; 331:114118. [PMID: 36037874 DOI: 10.1016/j.ygcen.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly by ∼ 8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (p < 0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.
Collapse
Affiliation(s)
- Lyndsay Priscilla
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India; Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India
| | - E Malathi
- Department of Zoology, Queen Mary's College (Autonomous), Affiliated to the University of Madras, Chennai 600004, Tamil Nadu, India
| | - R Moses Inbaraj
- Endocrinology Unit, Department of Zoology, Madras Christian College, Affiliated to the University of Madras, Chennai, India.
| |
Collapse
|
15
|
Cho H, Jeong CB, Lee YM. Modulation of ecdysteroid and juvenile hormone signaling pathways by bisphenol analogues and polystyrene beads in the brackish water flea Diaphanosoma celebensis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109462. [PMID: 36087704 DOI: 10.1016/j.cbpc.2022.109462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Owing to its high production and world-wide usage, plastic pollution is an increasing concern in marine environments. Plastic is decomposed into nano- and micro-sized debris, which negative affect reproduction and development in aquatic organisms. Bisphenol A (BPA), an additive of plastic, is released into the water column upon plastic degradation, and is known as a representative endocrine-disrupting chemical. However, the reproductive effects of plastics and bisphenols at the molecular level have not yet been explored in small marine crustaceans. In this study, we investigated the effects of polystyrene (PS) beads (0.05, 0.5, and 6 - μm) and bisphenol analogues (BPs; BPA, BPS, and BPF) on reproduction and development of small marine crustaceans. Effects on transcriptional changes in ecdysteroid and juvenile hormone (JH) signaling pathway-related genes were examined in the brackish water flea Diaphanosoma celebensis exposed to PS beads and BPs for 48 h. As results, BPs and PS beads delayed emergence time of first offspring, and increased fecundity in a concentration-dependent manner. BPs differentially modulated the expression of ecdysteroid and JH signaling pathway-related genes, indicating that BP analogs can disrupt endocrine systems via mechanisms different from those of BPA. PS beads was also changed the gene expression of both pathway, depending on their size and concentration. Our findings suggest that BP analogues and PS beads disrupt the endocrine system by modulating the hormonal pathways, affecting reproduction negatively. This study provides a better understanding of the molecular mode of action of BPs and PS beads in the reproduction of small crustaceans.
Collapse
Affiliation(s)
- Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Chang-Bum Jeong
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
16
|
Mannai A, Hmida L, Bouraoui Z, Guerbej H, Gharred T, Jebali J. Does thermal stress modulate the biochemical and physiological responses of Ruditapes decussatus exposed to the progestin levonorgestrel? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85211-85228. [PMID: 35794321 DOI: 10.1007/s11356-022-21786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the effects of 1000 ng/l levonorgestrel (LNG) alone or combined with increased temperature of 20, 24, and 28 °C on the biochemical and physiological responses of the clam (Ruditapes decussatus) for 28 days. Our results revealed that female clams treated with levonorgestrel (LNG) alone showed enhancement of the antioxidant defense against oxidative stress related to the inductions of catalase (CAT), gluthatione -S -transferase (GST), and protein sulfhydryl (PSH), while the elevated temperatures of 20, 24, and 28 °C diminished most of the specific responses to LNG and was the main factor in the determining the responses to combine exposures. The responses of lysosomal membrane stability, alkaline phosphatase, and NADP+-dependent isocitrate dehydrogenase detected were the most common signs of an adverse effect in all exposures. Female clams' testosterone and estradiol responses to LNG were the most particular manifestations depending on the exposure. Overall, these findings showed clearly that chronic warming stress caused disruption in physiological, biochemical parameters of the female clam R. decussatus, and this may have implications for the whole organism and populations.
Collapse
Affiliation(s)
- Asma Mannai
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Leila Hmida
- Research Unit Ecosystems & Aquatic Resources (UR13AGRO1), National Agronomic Institute of Tunisia (INAT), University of Carthage, Charles Nicolle Avenue 43, Mahrajene City, 1082, Tunis, Tunisia
| | - Zied Bouraoui
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Hamadi Guerbej
- National Institute of Marine Sciences and Technology, Laboratory of Blue Biotechnology and Aquatic Bioproducts (LR16INSTM05), Monastir, Tunisia
| | - Tahar Gharred
- Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Jamel Jebali
- Laboratory of Genetics Biodiversity and Valorization of Bio-resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
17
|
Provost T, McCarthy TM. Aquatic Hermaphrodite Snails Exposed to Polychlorinated Biphenyls (PCBs) Experience Increased Mortality, Reduced Reproduction, and Endocrine Disruption. Northeast Nat (Steuben) 2022. [DOI: 10.1656/045.029.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Paulose SK, Chakraborty K. Anti-hyperglycemic Δ 5 steroids, marginoids A-C from marine veined octopus Amphioctopus marginatus (Octopodidae): Prospective natural leads inhibit serineexopeptidase dipeptidyl peptidase-4. Steroids 2022; 186:109090. [PMID: 35850257 DOI: 10.1016/j.steroids.2022.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Three Δ5 steroid analogues, marginoids A-C were purified from the organic extract of marine veined octopus Amphioctopus marginatus (Taki, 1964) (family Octopodidae) distributed on the Asian and Mediterranean coasts. Their structures were elucidated as (5Z)-3β-acetoxy-cholesta-5-en-25-ethylene-22β-hydroxy-23,26-lactone (marginoid A), (5Z, 25Z)-3β-yl-(1'-(E)-3'-hydroxy-4'-methyl-hex-5'-enoate)-22-oxo-26-furanyl-cholesta-5,25-diene (marginoid B), and (5Z)-3β-yl-(7'-methoxypropan-8'-yl)-tetrahydro-2H-pyran-2-one-cholesta-5,24-dien (marginoid C) based on extensive spectroscopic experiments. Marginoid B with hydroxyl-methyl-hexanoate at the C-3 position in conjunction with the heterocyclic furanyl ring displayed superior anti-hyperglycemic properties as acknowledged by its promising serine protease dipeptidyl peptidase-4 attenuation potential (IC50 3.49 µM) displaying comparable activity with the standard DPP-4 inhibitor (DPP-4i) diprotin A (IC50 4.53 µM). The anti-hyperglycemic properties were corroborated by the promising antioxidant activities (IC50 ∼ 0.8-1.0 mM) of these Δ5 steroids, marginoids A-C. Sizeably greater electronic properties, balanced hydrophobic-lipophilic properties (log POW 6.4-8.3), and comparatively lower steric factors were directly proportional to their bioactive properties. Molecular simulation studies in the binding sites of DPP-4 and lesser binding energy (-12.17 kcal/mol) and inhibition constant (Ki 1.20 nM) of marginoid B could be correlated with anti-hyperglycemic properties. Promising bioactivities of marginoid B isolated from A. marginatus are anticipated for nutraceutical applications against hyperglycemia.
Collapse
Affiliation(s)
- Silpa Kunnappilly Paulose
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
19
|
Takeshima M, Ogihara MH, Kataoka H. Characterization and functional analysis of BmSR-B1 for phytosterol uptake. Steroids 2022; 184:109039. [PMID: 35588900 DOI: 10.1016/j.steroids.2022.109039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Insects cannot synthesize sterols, such as cholesterol, and require sterols in their diet. Phytophagous insects use dietary phytosterols as a source of cholesterol. Sterols are transported from the midgut by the insect lipoprotein, lipophorin (Lp), although mechanisms for uptake of phytosterols into tissues are unclear. This study characterizes Scavenger Receptor class B type1 (SR-B1) from Bombyx mori (BmSR-B1) as molecules related to phytosterol uptake. According to sterol quantification using LC-MS/MS analysis, the midgut and fat body were phytosterol-rich relative to cholesterol-rich brain and prothoracic glands. Gene expression analysis of Bmsr-b1 in silkworm tissues showed that the genes Bmsr-b1_2, 3, 4, 6, and 10 were expressed in the midgut and fat body. To characterize the function of BmSR-B1, 11 BmSR-B1 homologs expressed in Bombyx ovary-derived BmN cells and Drosophila melanogaster embryo-derived Schneider 2 (S2) cells were incubated with purified Lp. Our analysis showed that BmSR-B1_3 induced the accumulation of campesterol and BmSR-B1_4 induced the accumulation of β-sitosterol and campesterol in culture cells. BmSR-B1 incorporated specific phytosterols into insect cells by selective uptake across the cell membrane where BmSR-B1 was localized. In conclusion, our study demonstrated that one function of BmSR-B1 is the uptake of phytosterols into silkworm tissues.
Collapse
Affiliation(s)
- Mika Takeshima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan; Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
20
|
Shangguan X, Mao Y, Wang X, Liu M, Wang Y, Wang G, Li J. Cyp17a effected by endocrine disruptors and its function in gonadal development of Hyriopsis cumingii. Gen Comp Endocrinol 2022; 323-324:114028. [PMID: 35314150 DOI: 10.1016/j.ygcen.2022.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Estrogens and androgens that coexist in the aquatic environment could potentially affect shellfish, however, endocrine disrupting effects of them in shellfish are significant. As an important aquaculture shellfish in China, Hyriopsis cumingii has remarkable economic benefits. In this study, the effects of endocrine disrupting chemicals on the steroid synthase Hc-Cyp17a in the male and female gonads of the H. cumingii were assessed by exposing juvenile mussels to cultured waters containing 17β-Estradiol (E2) and 17α-Methyltestosterone (MT) for 28 days. At the same time, the E2 content in the four stages of gonadal development, the expression changes of Hc-Cyp17a in gonadal development and its localization in the mature gonad were measured to explore the relationship between genes and hormones. The results showed that both E2 and MT at 50 ng/L and 200 ng/L could affect the transcription level of Hc-Cyp17a, which was inhibited initially and promoted in post-development. E2 content was positively correlated with gonadal development stage, which was in mussel. By tracing the expression of Hc-Cyp17a, difference was found during different developmental periods. The expression level in ovary was higher than that in testis during gonadal development of 1/ 2/ 3-year-old mussels and showed an increasing trend with age. Furthermore, the expression levels in 6 tissues of mature individuals were measured and it showed that there was a significant difference between male and female in the gonads (p < 0.01). In situ hybridization, it suggested that Hc-Cyp17a was significantly signaled in the follicular wall and oocyte of female and in the follicular membrane of testis, respectively. These results could play a vital role in assessing and understanding the effects of aquatic environment on the endocrine system of H. cumingii.
Collapse
Affiliation(s)
- Xiaozhao Shangguan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Meiling Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
21
|
Djebbi E, Yahia MND, Farcy E, Pringault O, Bonnet D. Acute and chronic toxicity assessments of 17β-estradiol (E 2) and 17α-ethinylestradiol (EE 2) on the calanoid copepod Acartia clausi: Effects on survival, development, sex-ratio and reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150845. [PMID: 34627906 DOI: 10.1016/j.scitotenv.2021.150845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Estrogens, such as the 17β-estradiol (E2) and the 17α-ethinylestradiol (EE2), have been regarded as a global threat to aquatic ecosystems due to their pseudo-persistence, their high estrogenic activity and their toxicity towards non-target species. Data regarding their ecotoxicological effects on marine calanoid copepods are very scarce. In this study, the calanoid copepod Acartia clausi was used as a model organism for estrogens exposure in marine pelagic ecosystems. Lethal effects of estrogens on A. clausi life-stages (Embryos, one day old nauplii: N1, three day old nauplii: N3, copepodites: C1-C3 and adults: C6) were investigated using 48 h acute tests. Copepods showed stage-specific responses against E2 and EE2 acute exposure. The most resistant life stage was N1 with LC50 values > 1500 μg L-1 and >5000 μg L-1, respectively for E2 and EE2. For N3, C1-C3, and C6, sensitivity to estrogens decreased with age and survival was affected at concentrations above those detected in the environment reflecting low estrogens acute toxicity for these life stages. In contrast, embryonic stage revealed high vulnerability to E2 and EE2 acute effects. Embryos showed non-monotonic dose-response and hatching success was significantly reduced at low realistic concentrations of E2 (0.005, 0.5, and 5 μg L-1) and EE2 (0.05 and 5 μg L-1). Survival, development and sex ratio of A. clausi to EE2 exposure at 1 and 100 μg L-1 were also determined during a life cycle experiment. Fitness of the females of the generation F0 was evaluated by measuring lifespan, prosome length and egg production. The main observed effects were the decrease of females' prosome length, the feminization of the population and the reduction of the egg production for the generation F0 at 100 μg L-1 of EE2. This concentration is above those reported in the environment indicating the tolerance of A. clausi to EE2 at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Emna Djebbi
- Faculty of Sciences of Bizerte, Carthage University, 7021, Zarzouna, LR18ES41 (Tunis El Manar University), 1082 Tunis, Tunisia.
| | - Mohamed Néjib Daly Yahia
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Emilie Farcy
- Université de Montpellier, CNRS, Ifremer, IRD, MARBEC, Montpellier, France
| | - Olivier Pringault
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
| | - Delphine Bonnet
- Université de Montpellier, CNRS, Ifremer, IRD, MARBEC, Montpellier, France
| |
Collapse
|
22
|
Morgan MB, Ross J, Ellwanger J, Phrommala RM, Youngblood H, Qualley D, Williams J. Sea Anemones Responding to Sex Hormones, Oxybenzone, and Benzyl Butyl Phthalate: Transcriptional Profiling and in Silico Modelling Provide Clues to Decipher Endocrine Disruption in Cnidarians. Front Genet 2022; 12:793306. [PMID: 35087572 PMCID: PMC8787064 DOI: 10.3389/fgene.2021.793306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023] Open
Abstract
Endocrine disruption is suspected in cnidarians, but questions remain how occurs. Steroid sex hormones are detected in corals and sea anemones even though these animals do not have estrogen receptors and their repertoire of steroidogenic enzymes appears to be incomplete. Pathways associated with sex hormone biosynthesis and sterol signaling are an understudied area in cnidarian biology. The objective of this study was to identify a suite of genes that can be linked to exposure of endocrine disruptors. Exaiptasia diaphana were exposed to nominal 20ppb concentrations of estradiol (E2), testosterone (T), cholesterol, oxybenzone (BP-3), or benzyl butyl phthalate (BBP) for 4 h. Eleven genes of interest (GOIs) were chosen from a previously generated EST library. The GOIs are 17β-hydroxysteroid dehydrogenases type 14 (17β HSD14) and type 12 (17β HSD12), Niemann-Pick C type 2 (NPC2), Equistatin (EI), Complement component C3 (C3), Cathepsin L (CTSL), Patched domain-containing protein 3 (PTCH3), Smoothened (SMO), Desert Hedgehog (DHH), Zinc finger protein GLI2 (GLI2), and Vitellogenin (VTG). These GOIs were selected because of functional associations with steroid hormone biosynthesis; cholesterol binding/transport; immunity; phagocytosis; or Hedgehog signaling. Quantitative Real-Time PCR quantified expression of GOIs. In silico modelling utilized protein structures from Protein Data Bank as well as creating protein structures with SWISS-MODEL. Results show transcription of steroidogenic enzymes, and cholesterol binding/transport proteins have similar transcription profiles for E2, T, and cholesterol treatments, but different profiles when BP-3 or BBP is present. C3 expression can differentiate between exposures to BP-3 versus BBP as well as exposure to cholesterol versus sex hormones. In silico modelling revealed all ligands (E2, T, cholesterol, BBP, and BP-3) have favorable binding affinities with 17β HSD14, 17β HSD12, NPC2, SMO, and PTCH proteins. VTG expression was down-regulated in the sterol treatments but up-regulated in BP-3 and BBP treatments. In summary, these eleven GOIs collectively generate unique transcriptional profiles capable of discriminating between the five chemical exposures used in this investigation. This suite of GOIs are candidate biomarkers for detecting transcriptional changes in steroidogenesis, gametogenesis, sterol transport, and Hedgehog signaling. Detection of disruptions in these pathways offers new insight into endocrine disruption in cnidarians.
Collapse
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - James Ross
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Ellwanger
- Department of Biology, Berry College, Mount Berry, GA, United States
| | | | - Hannah Youngblood
- Department of Biology, Berry College, Mount Berry, GA, United States.,Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States.,Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Dominic Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| |
Collapse
|
23
|
Dwivedi S, D'Souza LC, Shetty NG, Raghu SV, Sharma A. Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118484. [PMID: 34774861 DOI: 10.1016/j.envpol.2021.118484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nidhi Ganesh Shetty
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India; Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
24
|
Lettieri G, Carusone N, Notariale R, Prisco M, Ambrosino A, Perrella S, Manna C, Piscopo M. Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury. Biomolecules 2022; 12:87. [PMID: 35053235 PMCID: PMC8773939 DOI: 10.3390/biom12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Nadia Carusone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Shana Perrella
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| |
Collapse
|
25
|
Schuijt LM, Peng FJ, van den Berg SJP, Dingemans MML, Van den Brink PJ. (Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148776. [PMID: 34328937 DOI: 10.1016/j.scitotenv.2021.148776] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of chemicals in the aquatic environment by chemical analysis alone cannot completely assess and predict the effects of chemicals on aquatic species and ecosystems. This is primarily because of the increasing number of (unknown) chemical stressors and mixture effects present in the environment. In addition, the ability of ecological indices to identify underlying stressors causing negative ecological effects is limited. Therefore, additional complementary methods are needed that can address the biological effects in a direct manner and provide a link to chemical exposure, i.e. (eco)toxicological tests. (Eco)toxicological tests are defined as test systems that expose biological components (cells, individuals, populations, communities) to (environmental mixtures of) chemicals to register biological effects. These tests measure responses at the sub-organismal (biomarkers and in vitro bioassays), whole-organismal, population, or community level. We performed a literature search to obtain a state-of-the-art overview of ecotoxicological tests available for assessing impacts of chemicals to aquatic biota and to reveal datagaps. In total, we included 509 biomarkers, 207 in vitro bioassays, 422 tests measuring biological effects at the whole-organismal level, and 78 tests at the population- community- and ecosystem-level. Tests at the whole-organismal level and biomarkers were most abundant for invertebrates and fish, whilst in vitro bioassays are mostly based on mammalian cell lines. Tests at the community- and ecosystem-level were almost missing for organisms other than microorganisms and algae. In addition, we provide an overview of the various extrapolation challenges faced in using data from these tests and suggest some forward looking perspectives. Although extrapolating the measured responses to relevant protection goals remains challenging, the combination of ecotoxicological experiments and models is key for a more comprehensive assessment of the effects of chemical stressors to aquatic ecosystems.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Feng-Jiao Peng
- Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
26
|
Wang Y, Wang HS. Bisphenol A affects the pulse rate of Lumbriculus variegatus via an estrogenic mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109105. [PMID: 34119654 PMCID: PMC8373826 DOI: 10.1016/j.cbpc.2021.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Invertebrates are recognized as important species in endocrine disrupting chemical (EDC) testing. However, it is poorly understood whether the effects of EDCs in invertebrates are mediated by hormonal mechanisms. Previously, we showed that bisphenol A (BPA) affected the physiology of the freshwater oligochaete Lumbriculus variegatus. In the present study, we examined the mechanism of the impact of BPA on L. variegatus, using pulse rate of the dorsal blood vessel (DBV) as an endpoint. Both long term and acute exposures to BPA increased the pulsing rate of DBV. The former had a distinct inverted-U dose response relationship with a most efficacious dose of 10-9 M, which increased the pulse rate from 8.97 to 10.9 beats/min. The effects of BPA were mimicked by the synthetic estrogen ethinylestradiol with a most efficacious dose of 10-12 M. Interestingly E2 had no effect on pulsing rate, either acute or long term. The sensitivity of L. variegatus to estrogens were exquisite, with detectable effects at 10-14 to 10-10 M range. Both the long term and acute effects of BPA were partially or fully blocked by various vertebrate estrogen receptor (ER) antagonists, including ICI 182,780, MPP and G15. Our results suggest that the impact of BPA on pulsing rate of L. variegatus is likely mediated by an estrogenic mechanism instead of general toxicity. The exceptionally high sensitivity of L. variegatus to some estrogens makes it a possible tool for estrogenic EDC screening.
Collapse
Affiliation(s)
- Yuyang Wang
- Hefei No. 8 High School, Hefei, Anhui, China
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
27
|
Rodríguez EM, Medesani DA, Canosa IS, Avigliano L. The Effect of Glyphosate on the Reproduction of Estuarine Crabs: Neohelice granulata as a Study Model. Front Endocrinol (Lausanne) 2021; 12:643168. [PMID: 33841335 PMCID: PMC8033165 DOI: 10.3389/fendo.2021.643168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
This review summarizes the bulk of evidence about the effect of glyphosate, both technical and formulated, on the ovarian maturation of Neohelice granulata female crabs, as well as the effects of glyphosate on sperm production in males of the same species. After long-term in vivo assays, made during the 3-month pre-reproductive period of this species, both formulated and technical glyphosate were able to produce a significant incidence of oocyte reabsorption in the ovary, together with a concomitant decreased of vitellogenin content, at concentrations ranging from 0.2 to 1 mg/L. Despite this, after 32-day in vivo assays, glyphosate stimulated oocyte growth, in terms of a higher percentage of vitellogenic oocytes, suggesting that glyphosate could be acting as an endocrine disruptor. In vitro assays made with isolated ovarian pieces showed a decrease of vitellogenin content, in correlation with lower protein synthesis, although some advance in maturation was observed in the histological analysis. In male crabs exposed in vivo to both technical and formulated glyphosate at 1 mg/L, several reproductive imbalances were noted, such as a significant decrease of the sperm count, abnormal spermatophores, and possible disrupting effects of glyphosate on the androgenic gland.
Collapse
Affiliation(s)
- Enrique M. Rodríguez
- Laboratorio de Fisiología de Crustáceos, Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Ciudad Universitaria, Buenos Aires, Argentina
| | - Daniel A. Medesani
- Laboratorio de Fisiología de Crustáceos, Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ivana S. Canosa
- Laboratorio de Fisiología de Crustáceos, Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciana Avigliano
- Instituto del Conurbano—Universidad Nacional de General Sarmiento (ICO-UNGS), CONICET, Los Polvorines, Argentina
| |
Collapse
|
28
|
Islam R, Melvin SD, Yu RMK, O'Connor WA, Tran TKA, Andrew-Priestley M, Leusch FDL, MacFarlane GR. Exposure to estrogenic mixtures results in tissue-specific alterations to the metabolome of oysters. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105722. [PMID: 33360311 DOI: 10.1016/j.aquatox.2020.105722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The current study investigated the effect of environmentally relevant mixtures of estrogens at levels representative of receiving waters on the metabolome of the Sydney rock oyster, Saccostrea glomerata. Oysters were exposed to a "low" and a "high" mixture of (xeno) estrogens (representative of Australian and global receiving waters respectively) for 7 days and digestive gland, gill, and gonad tissue were sampled for quantification of polar metabolites by 1H NMR spectroscopy. Exposure to both mixtures lowered body mass and altered the metabolite profile in the digestive glands. Comparatively, gills, and ovaries demonstrated lesser sensitivity to the mixtures, with significant metabolomic alterations observed only for the high mixture. The male gonad did not respond to either estrogenic exposure. In the responsive tissues, major metabolites including amino acids, carbohydrates, intermediates of the tricarboxylic acid cycle and ATP were all down-regulated and exhibited tissue-specific patterns of down-regulation with the greatest proportion of metabolites down-regulated due to estrogenic exposure in the digestive gland. Exposure to (xeno) estrogen mixtures representative of concentrations reported in receiving waters in Australia and globally can impact the metabolome and associated energy metabolism, especially in the digestive gland, translating to lower pools of available ATP energy for potential cellular homeostasis, somatic maintenance and growth, reproduction and fitness.
Collapse
Affiliation(s)
- Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; School of Agriculture and Resources, Vinh University, Viet Nam
| | | | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD, 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
29
|
Thongbuakaew T, Suwansa-Ard S, Chaiyamoon A, Cummins SF, Sobhon P. Sex steroids and steroidogenesis-related genes in the sea cucumber, Holothuria scabra and their potential role in gonad maturation. Sci Rep 2021; 11:2194. [PMID: 33500499 PMCID: PMC7838161 DOI: 10.1038/s41598-021-81917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
The sea cucumber Holothuria scabra is an economically valuable marine species which is distributed throughout the Asia-Pacific region. With the natural population declining due to over fishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating the reproduction in order to increase their populations. Sex steroids, including estrogens, androgens and progestogens, play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that sea cucumbers have the same sex steroids as vertebrates but the steroidogenic pathway in the sea cucumbers is still unclear. In this study, we demonstrated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) that sex steroids (estradiol, progesterone, and testosterone) were present in H. scabra neural and gonadal tissues. In silico searches of available sea cucumber transcriptome data identified 26 steroidogenesis-related genes. Comparative analysis of encoded proteins for the steroidogenic acute regulatory protein (HscStAR), CYP P450 10, 17 and 3A (HscCYP10, HscCYP17, HscCYP3A) and hydroxysteroid dehydrogenases (Hsc3β-HSD, Hsc17β-HSD) with other species was performed to confirm their evolutionary conservation. Gene expression analyses revealed widespread tissue expression. Real-time PCR analysis revealed that HscStAR, HscCYP10, Hsc3β-HSD, and Hsc17β-HSD gene expressions were similar to those in ovaries and testes, which increased during the gonad maturation. HscCYP17 mRNA was increased during ovarian development and its expression declined at late stages in females but continued high level in males. The expression of the HscCYP3A was high at the early stages of ovarian development, but not at other later stages in ovaries, however it remained low in testes. Moreover, a role for steroids in reproduction was confirmed following the effect of sex steroids on vitellogenin (Vtg) expression in ovary explant culture, showing upregulation of Vtg level. Collectively, this study has confirmed the existence of steroids in an echinoderm, as well as characterizing key genes associated with the steroidogenic pathway. We propose that sex steroids might also be associated with the reproduction of H. scabra, and the identification of biosynthetic genes enables future functional studies to be performed.
Collapse
Affiliation(s)
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Arada Chaiyamoon
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Scott F Cummins
- Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
30
|
Tan ES, Hamazato H, Ishii T, Taira K, Takeuchi Y, Takekata H, Isomura N, Takemura A. Does estrogen regulate vitellogenin synthesis in corals? Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110910. [PMID: 33486078 DOI: 10.1016/j.cbpa.2021.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Most broadcast spawner corals have a vitellogenic phase that lasts at least 6 months. It is established that estrogen regulates vitellogenin synthesis in vertebrates. Although some research have been conducted on the physiological role of sex steroids in corals, little is known about their involvement in oocyte development. This study aimed to detect steroid hormones - progesterone, testosterone, and estradiol-17β (E2) - in Acropora tenuis and study the relationships between vitellogenesis/vitellogenin synthesis and these steroids. This study also investigated the effect of E2 on vitellogenin synthesis in corals and identified steroidogenic enzymes in A. tenuis genome. Branches from tagged coral colonies were collected monthly from March to November. Histological observations showed that oocytes were vitellogenic from March to May (Stage IV and V), but not in June, and that gonads were occupied by immature oocytes in September (Stage I). Real-time qPCR revealed that vitellogenin (vg1 and vg2) transcript levels in coral branches were high in April and May, implying that corals actively underwent vitellogenesis during these months, and spawned before June. Liquid chromatography-mass spectrometry revealed that E2 could be detected in coral branches in March, April, and May, but not in June, whereas testosterone and progesterone did not fluctuate much in the same months. Immersing branches in E2-containing seawater failed to increase vitellogenin transcript levels. The results indicate that E2 is involved in oogenesis but does not positively regulate vitellogenin synthesis. Steroidogenic enzymes (except CYP19A) were identified in A. tenuis, suggesting that corals may endogenously synthesize progestogens and androgens from cholesterol.
Collapse
Affiliation(s)
- Ee Suan Tan
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Hirono Hamazato
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Takahiro Ishii
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Kenshiro Taira
- Okinawa Prefectural Naha International Senior High School, 1-29 Ameku, Naha, Okinawa 900-0005, Japan
| | - Yuki Takeuchi
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna 904-0412, Japan
| | - Hiroki Takekata
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Naoko Isomura
- Department of Bioresources Engineering, Okinawa National College of Technology, 905 Henoko, Nago-City, Okinawa 905-2192, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
31
|
Yang Y, Pan L, Zhou Y, Xu R, Li D. Benzo[a]pyrene exposure disrupts steroidogenesis and impairs spermatogenesis in diverse reproductive stages of male scallop (Chlamys farreri). ENVIRONMENTAL RESEARCH 2020; 191:110125. [PMID: 32861722 DOI: 10.1016/j.envres.2020.110125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (BaP), a model compound of polycyclic aromatic hydrocarbon known to impair reproductive functions of vertebrates, while the data is scarce in marine invertebrates. To investigate the toxic effects of BaP on invertebrates reproduction, we exposed male scallop (Chlamys farreri) to BaP (0, 0.38 and 3.8 μg/L) throughout three stages of reproductive cycle (early gametogenesis stage, late gametogenesis stage and ripe stage). The results demonstrated that BaP decreased the gonadosomatic index and mature sperms counts in a dose-dependent manner. Significant changes in sex hormones contents and increased 17β-estradiol/testosterone ratio suggested that BaP produced the estrogenic endocrine effects in male scallops. In support of this view, we confirmed that BaP significantly altered transcripts of genes along the upstream PKA and PKC mediated signaling pathway like fshr, lhcgr, adcy, PKA, PKC, PLC and NR5A2. Subsequently, the expressions of genes encoding downstream steroidogenic enzymes (e.g., 3β-HSD, CYP17 and 17β-HSD) were impacted, which corresponded well with hormonal alterations. In addition, BaP suppressed transcriptions of spermatogenesis-related genes, including ccnd2, SCP3, NRF1 and AQP9. Due to different functional demands, these transcript profiles involved in spermatogenesis exhibited a stage-specific expression pattern. Furthermore, histopathological analysis determined that BaP significantly inhibited testicular development and maturation in male scallops. Overall, the present findings indicated that, playing as an estrogenic-like chemical, BaP could disrupt the steroidogenesis pathway, impair spermatogenesis and caused histological damages, thereby inducing reproductive toxicities with dose- and stage-specific effects in male scallops. And the adverse outcomes might threaten the stability of bivalve populations and destroy the function of marine ecosystems in the long term.
Collapse
Affiliation(s)
- Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
32
|
Levy T, Sagi A. The "IAG-Switch"-A Key Controlling Element in Decapod Crustacean Sex Differentiation. Front Endocrinol (Lausanne) 2020; 11:651. [PMID: 33013714 PMCID: PMC7511715 DOI: 10.3389/fendo.2020.00651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The androgenic gland (AG)-a unique crustacean endocrine organ that secretes factors such as the insulin-like androgenic gland (IAG) hormone-is a key player in crustacean sex differentiation processes. IAG expression induces masculinization, while the absence of the AG or a deficiency in IAG expression results in feminization. Therefore, by virtue of its universal role as a master regulator of crustacean sexual development, the IAG hormone may be regarded as the sexual "IAG-switch." The switch functions within an endocrine axis governed by neuropeptides secreted from the eyestalks, and interacts downstream with specific insulin receptors at its target organs. In recent years, IAG hormones have been found-and sequenced-in dozens of decapod crustacean species, including crabs, prawns, crayfish and shrimps, bearing different types of reproductive strategies-from gonochorism, through hermaphroditism and intersexuality, to parthenogenesis. The IAG-switch has thus been the focus of efforts to manipulate sex developmental processes in crustaceans. Most sex manipulations were performed using AG ablation or knock-down of the IAG gene in males in order to sex reverse them into "neo-females," or using AG implantation/injecting AG extracts or cells into females to produce "neo-males." These manipulations have highlighted the striking crustacean sexual plasticity in different species and have permitted the manifestation of either maleness or femaleness without altering the genotype of the animals. Furthermore, these sex manipulations have not only facilitated fundamental studies of crustacean sexual mechanisms, but have also enabled the development of the first IAG-switch-based monosex population biotechnologies, primarily for aquaculture but also for pest control. Here, we review the crustacean IAG-switch, a unique crustacean endocrine mechanism, from the early discoveries of the AG and the IAG hormone to recent IAG-switch-based manipulations. Moreover, we discuss this unique early pancrustacean insulin-based sexual differentiation control mechanism in contrast to the extensively studied mechanisms in vertebrates, which are based on sex steroids.
Collapse
Affiliation(s)
- Tom Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
33
|
Höring F, Biscontin A, Harms L, Sales G, Reiss CS, De Pittà C, Meyer B. Seasonal gene expression profiling of Antarctic krill in three different latitudinal regions. Mar Genomics 2020; 56:100806. [PMID: 32773253 DOI: 10.1016/j.margen.2020.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
The Antarctic krill, Euphausia superba, has evolved seasonal rhythms of physiology and behaviour to survive under the extreme photoperiodic conditions in the Southern Ocean. However, the molecular mechanisms generating these rhythms remain far from understood. The aim of this study was to investigate seasonal differences in gene expression in three different latitudinal regions (South Georgia, South Orkneys/Bransfield Strait, Lazarev Sea) and to identify genes with potential regulatory roles in the seasonal life cycle of Antarctic krill. The RNA-seq data were analysed (a) for seasonal differences between summer and winter krill sampled from each region, and (b) for regional differences within each season. A large majority of genes showed an up-regulation in summer krill in all regions with respect to winter krill. However, seasonal differences in gene expression were less pronounced in Antarctic krill from South Georgia, most likely due to the milder seasonal conditions of the lower latitudes of this region, with a less extreme light regime and food availability between summer and winter. Our results suggest that in the South Orkneys/Bransfield Strait and Lazarev Sea region, Antarctic krill entered a state of metabolic depression and regressed development (winter quiescence) in winter. Moreover, seasonal gene expression signatures seem to be driven by a photoperiodic timing system that may adapt the flexible behaviour and physiology of Antarctic krill to the highly seasonal environment according to the latitudinal region. However, at the lower latitude South Georgia region, food availability might represent the main environmental cue influencing seasonal physiology.
Collapse
Affiliation(s)
- Flavia Höring
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Alberto Biscontin
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Lars Harms
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy
| | - Christian S Reiss
- National Oceanic and Atmospheric Administration, Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, CA 92037, USA
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, via Ugo Bassi 58b, 35121 Padova, Italy.
| | - Bettina Meyer
- Alfred Wegener Institute Helmholtz Centre for Polar und Marine Research, Am Handelshafen 12, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, Oldenburg 26129, Germany.
| |
Collapse
|
34
|
Merico V, Zanoni M, Parada-Bustamante A, Garagna S, Zuccotti M. In Vitro Maturation of Fully Grown Mouse Antral Follicles in the Presence of 1 nM 2-Hydroxyestradiol Improves Oocytes' Developmental Competence. Reprod Sci 2020; 28:121-133. [PMID: 32757137 PMCID: PMC7782423 DOI: 10.1007/s43032-020-00276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/24/2020] [Indexed: 11/06/2022]
Abstract
Cathecolestrogens are estradiol metabolites produced during folliculogenesis in the mammalian ovary. 2-Hydroxyestradiol (2-OHE2) is one of the most abundant although its role remains unknown. The aim of this study is to investigate whether the presence of 2-OHE2 during the germinal vesicle-to-metaphase II transition affects oocyte meiotic and preimplantation developmental competence. Mouse cumulus-oocyte complexes (COCs), isolated from fully grown antral follicles, were in vitro–matured (IVM) in the presence of 2-OHE2 (0.1, 1, 10 or 100 nM) for 6 or 15 h; then, their meiotic and developmental competence was evaluated using a number of cytological quality markers. With the exception of the highest dose (100 nM), the addition of 2-OHE2 to the IVM medium, did not alter, compared with untreated control, the frequency of oocytes that reached the MII stage. Instead, IVM in the presence of 1 nM 2-OHE2 highly increased the rate of preimplantation development and blastocyst quality. To understand whether this positive effect could be attributed to the events occurring during meiosis resumption, we analysed a number of specific cytological quality markers of the asymmetric division, such as PB-I volume and position, presence and extension of the cortical F-actin cap, meiotic spindle shape and area, and microtubule organisation centre localisation. The results highlighted how the presence of 1 nM 2-OHE2 significantly improved the overall cytological organisation required for a correct asymmetric division. Our results contribute a first step to acknowledge a potential role of this estradiol metabolite during the GV-to-MII transition, contributing to the acquisition of oocytes developmental competence.
Collapse
Affiliation(s)
- Valeria Merico
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Mario Zanoni
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Alexis Parada-Bustamante
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Maurizio Zuccotti
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy. .,Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| |
Collapse
|
35
|
Kidd KA, Graves SD, McKee GI, Dyszy K, Podemski CL. Effects of Whole-Lake Additions of Ethynylestradiol on Leech Populations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1608-1619. [PMID: 32692460 DOI: 10.1002/etc.4789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Leeches are widespread, found in many freshwater habitats, and have diverse dietary habits. Despite their close phylogenetic relationships to Mollusca, a phylum with species affected by exogenous estrogens, it is unclear whether Hirudinea may also be impacted. A whole-lake experiment was done at the Experimental Lakes Area in Ontario, Canada, to assess whether 17α-ethynylestradiol (EE2) affected fishes and other species. Herein, we examined whether EE2 impacted leech community composition, species abundance, growth rates, gonad size, and cocoon production, when compared with reference lakes using a before-after-control-impact design. Each month baited leech traps were set overnight in the littoral zone at 10 sites around experimental Lake 260 and 2 reference lakes, and individuals were identified, weighed, and measured. Male and female organs of common species Haemopis marmorata were measured. Across all lakes, 9 species representing 3 families were collected. There were no apparent effects of EE2 on numbers, species richness, or community composition; however, condition in 1 of 5 species increased significantly after EE2 exposures. Total gonadosomatic index (GSI) and the GSI for all male or all female organs combined for H. marmorata were not affected by EE2 additions. However, some individual reproductive organs including relative sperm sac length (+), relative epididymis weight (-), relative vaginal bulb length (+), and relative ovisac + albumen gland length (+) changed after EE2 additions. Finally, whereas overall cocoon production was similar, it occurred earlier in the EE2-amended lake. In summary, few individual through community measures of leeches responded to low ng/L concentrations of EE2, suggesting that Hirudinea are less sensitive to this endocrine disruptor than other invertebrates and vertebrates. Environ Toxicol Chem 2020;39:1608-1619. © 2020 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada
- Department of Biology and School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie D Graves
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graydon I McKee
- Department of Biology and School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | | | - Cheryl L Podemski
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Xu R, Pan L, Yang Y, Zhou Y. Characterizing transcriptome in female scallop Chlamys farreri provides new insights into the molecular mechanisms of reproductive regulation during ovarian development and spawn. Gene 2020; 758:144967. [PMID: 32707299 DOI: 10.1016/j.gene.2020.144967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Bivalve mollusks are descendants of an early-Cambrian lineage and have successfully evolved unique strategies for reproduction. Nonetheless, the molecular mechanisms underlying reproductive regulation in mollusks remain to be elucidated. In this study, transcriptomes of ovary at four reproductive stages in female Chlamys farreri were characterized by RNA-Seq. Regarding signaling pathways, ECM-receptor interaction pathway, mTOR signaling pathway, Fanconi anemia pathway, FoxO signaling pathway, Wnt signaling pathway and Hedgehog signaling pathway were enriched during ovarian development processes. In addition, pathways related to energy metabolism such as Nitrogen metabolism and Arachidonic acid metabolism were enriched at spawn stage. Interestingly, Neuroactive ligand-receptor interaction was significantly enriched involved in ovarian development and spawn, and indicated the potential functions of nervous system on reproductive regulation in C. farreri. What's more, this study identified and characterized fourteen genes involved in "sex hormones synthesis and regulation", "ovarian development and spawn" and "maternal immunity" during the four reproductive stages in C. farreri. We determined that CYP17 uniquely affected gamete release by influencing the physiological balance among the steroid hormones and showed that receptors of the 5-HT and GABA neurotransmitters were tightly associated with ovarian maturation. Furthermore, to the best of our knowledge, this is the first study to report the maternal effect gene Zar1 in bivalve mollusks, likewise the maternal immunity genes displayed coordinated and cooperative expression during reproductive periods, which strengthened the environmental adaptation mechanisms of bivalves. Taken together, this study provides the first dynamic transcriptomic analysis of C. farreri at four key reproductive stages, which will assist in revealing the molecular mechanisms underlying bivalves on reproductive regulation in ovarian development and spawn.
Collapse
Affiliation(s)
- Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
37
|
Dumas T, Bonnefille B, Gomez E, Boccard J, Castro NA, Fenet H, Courant F. Metabolomics approach reveals disruption of metabolic pathways in the marine bivalve Mytilus galloprovincialis exposed to a WWTP effluent extract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136551. [PMID: 31945539 DOI: 10.1016/j.scitotenv.2020.136551] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/20/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) discharge a highly diverse range of organic contaminants in aquatic environments, including marine waters. The health of marine ecosystems could be threatened by contaminants release. Environmental metabolomics can be helpful to assess the effects of multi-contamination on marine organisms without any a priori information since it is able to provide meaningful information on the biochemical response of organisms to a stress. The aim of the present study was to evaluate the potential of metabolomics to highlight key metabolites disrupted by a WWTP effluent extract exposure and then elucidate the biological effects of such exposure on Mediterranean mussels (Mytilus galloprovincialis). Exposed male mussels showed numerous metabolites altered in response to WWTP effluent exposure. The highlighted metabolites belong mainly to amino acids metabolism (e.g. tyrosine, phenylalanine, leucine, proline, etc.), neurohormones (dopamine and a serotonin metabolite), purine and pyrimidine metabolism (e.g. adenosine, adenine, guanine, uracil etc.), citric acid cycle intermediates (e.g. malate, fumarate), and a component involved in oxidative stress defense (oxidized glutathione). Modulation of these metabolites could reflect the alteration of several biological processes such as energy metabolism, DNA and RNA synthesis, immune system, osmoregulation, byssus formation and reproduction, which may lead to a negative impact of organism fitness. Our study provided further insight into the effects of WWTP effluents on marine organisms.
Collapse
Affiliation(s)
- Thibaut Dumas
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Bénilde Bonnefille
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Nancy Ariza Castro
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, 159-7050, Costa Rica
| | - Hélène Fenet
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
38
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
39
|
Zapata-Restrepo LM, Hauton C, Williams ID, Jensen AC, Hudson MD. Effects of the interaction between temperature and steroid hormones on gametogenesis and sex ratio in the European flat oyster (Ostrea edulis). Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110523. [DOI: 10.1016/j.cbpa.2019.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/23/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
|
40
|
In S, Yoon HW, Yoo JW, Cho H, Kim RO, Lee YM. Acute toxicity of bisphenol A and its structural analogues and transcriptional modulation of the ecdysone-mediated pathway in the brackish water flea Diaphanosoma celebensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:310-317. [PMID: 31030948 DOI: 10.1016/j.ecoenv.2019.04.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a representative endocrine disrupting chemical (EDC) that has estrogenic effects in aquatic animals. In recent years, due to the continuing usage of BPA, its analogues have been developed as alternative substances to replace its use. The molting process is a pivotal point in the development and reproduction of crustaceans. However, studies of the effects of EDCs on molting in crustaceans at the molecular level are scarce. In the present study, we examined the acute toxicity of BPA and its analogues bisphenol F (BPF) and S (BPS) to the brackish water flea Diaphanosoma celebensis. We further identified four ecdysteroid pathway - related genes (cyp314a1, EcRA, EcRB, and USP) in D. celebensis, and investigated the transcriptional modulation of these genes during molting and after exposure to BPA and its analogues for 48 h. Sequencing and phylogenetic analyses revealed that these four genes are highly conserved among arthropods and may be involved in development and reproduction in the adult stage. The mRNA expression patterns of cyp314a1, EcRA and USP were matched with the molting cycle, suggesting that these genes play a role in the molting process in the adult stage in cladocerans. Following relative real-time polymerase chain reaction (RT-PCR) analyses, BPA and its analogues were found to modulate the expression of each of these four genes differently, indicating that these compounds can disrupt the normal endocrine system function of D. celebensis. This study improves our understanding of the molecular mode of action of BPA and its analogues in D. celebensis.
Collapse
Affiliation(s)
- Soyeon In
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hae-Won Yoon
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Je-Won Yoo
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hayoung Cho
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Ryeo-Ok Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
41
|
Zhao X, Grimes KL, Colosi LM, Lung WS. Attenuation, transport, and management of estrogens: A review. CHEMOSPHERE 2019; 230:462-478. [PMID: 31121510 DOI: 10.1016/j.chemosphere.2019.05.086] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/04/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Overabundance of endocrine disruptors (EDs), such as steroid estrogens, in the natural environment disrupts hormone synthesis in aquatic organisms. Livestock and wastewater outflows contribute measurable quantities of steroid estrogens into the environment where they are picked up and transported via surface runoff and feedlot effluents into water matrices. E1, E2β, E2α, E3 and EE2 are the most prevalent estrogens in these environmental systems. Estrogens in soils and water undergo several concurrent attenuation processes including sorption to particles, biotransformation, photo-transformation, and plant uptake. This review summarizes current studies on the attenuation and transport of steroid estrogens with a focus on estrogen attenuation and transport modeling. The authors use this information to synthesize appropriate strategies for reducing estrogenicity in the environment.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Kassandra L Grimes
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lisa M Colosi
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| | - Wu-Seng Lung
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
42
|
Abu El Einin HM, Ali RE, Gad El-Karim RM, Youssef AA, Abdel-Hamid H, Habib MR. Biomphalaria alexandrina: a model organism for assessing the endocrine disrupting effect of 17β-estradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23328-23336. [PMID: 31197669 DOI: 10.1007/s11356-019-05586-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
A wide range of endocrine disruptor compounds are routinely discharged to the ecosystem. Water contaminated with these compounds has a potential effect on the reproductive physiology of aquatic organisms as well as humans. In the present study, we tested the effect of the steroid estrogen, 17β-estradiol, on Biomphalaria alexandrina, a snail species that is widely distributed in Egypt and that acts as an intermediate host for the human blood fluke, Schistosoma mansoni. The effects of exposure to 0.3 mg/L and 1 mg/L 17β-estradiol on fecundity (MX) and reproductive rate (R0) of B. alexandrina were recorded. In addition, levels of steroid sex hormones and antioxidants in the hemolymph and ovotestis (OT) of exposed snails were measured. Histopathological changes in the OT of B. alexandrina were also investigated. Exposure to 0.3 mg/L and 1 mg/L 17β-estradiol caused a significant increase in the number of egg masses per snail after 3 weeks and 1 week of exposure for the two tested concentrations compared with unexposed controls. An increase in the levels of progesterone hormone was recorded in the hemolymph of exposed snails in comparison with unexposed controls. Additionally, levels of the antioxidant enzyme glutathione (GSH) were increased in the hemolymph and OT tissues of snails after 2 and 4 weeks of exposure. Histopathological sections in the OT revealed an increase in the oocyte and a decrease in the sperm densities after 2 weeks and this effect was restored to normal conditions after 4 weeks of exposure to both tested concentrations. The current results indicate that B. alexandrina is sensitive to 17β-estradiol and can therefore be used as bioindicator and model organism for the assessment of water pollution with endocrine disruptor compounds.
Collapse
Affiliation(s)
- Hanaa M Abu El Einin
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Rasha E Ali
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Rasha M Gad El-Karim
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Alaa A Youssef
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Hoda Abdel-Hamid
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
| |
Collapse
|
43
|
Ren J, Chung-Davidson YW, Jia L, Li W. Genomic sequence analyses of classical and non-classical lamprey progesterone receptor genes and the inference of homologous gene evolution in metazoans. BMC Evol Biol 2019; 19:136. [PMID: 31262250 PMCID: PMC6604198 DOI: 10.1186/s12862-019-1463-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 06/18/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nuclear progesterone receptor (nPR) is an evolutionary innovation in vertebrates that mediates genomic responses to progesterone. Vertebrates also respond to progesterone via membrane progesterone receptors (mPRs) or membrane associated progesterone receptors (MAPRs) through rapid nongenomic mechanisms. Lampreys are extant agnathan vertebrates, residing at the evolutionary juncture where vertebrates diverged from invertebrates. A survey of the progesterone receptor (PR) gene sequences in lamprey genomes would inform PR gene evolutionary events during the transition from invertebrates to vertebrates. RESULTS In this study, we annotated sequences of one nPR, four mPR (β, γ, δ and ε) and four MAPR genes from genomes of two lamprey species (Petromyzon marinus and Lethenteron japonicum). To infer the origin and evolutionary history of PR genes, we constructed phylogenetic trees of PR homologous sequences across representative species of metazoans. Phylogenetic analyses revealed that the mPRγ gene first appeared in non-bilaterians, and the mPRβ gene likely arose from a duplication of mPRγ. On the other hand, the mPRγ gene gave rise to the mPRδ and ε genes much later in the vertebrate lineage. In addition, the mPRα gene first appeared in cartilaginous fishes, likely derived from duplication of mPRβ after the agnathan-gnathostome divergence. All known MAPR genes were present in the lamprey genomes. Progesterone receptor membrane component 1 (PGRMC1), neudesin and neuferricin genes probably evolved in parallel in non-bilaterians, whereas two copies of PGRMC genes probably derived from duplication of ancestral PGRMC1 sequence and appeared before the speciation of lampreys. CONCLUSIONS Non-classical mPR and MAPR genes first evolved in non-bilaterians and classical nPR genes evolved later in basal vertebrates. Sequence repertoires for membrane progesterone receptor genes in vertebrates likely originated from an ancestral metazoan sequence and expanded via several duplication events.
Collapse
Affiliation(s)
- Jianfeng Ren
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.,Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Liang Jia
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
45
|
Agnese M, Rosati L, Prisco M, Borzacchiello L, Abagnale L, Andreuccetti P. The expression of estrogen receptors during the Mytilus galloprovincialis ovarian cycle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:367-373. [PMID: 31145556 DOI: 10.1002/jez.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | | |
Collapse
|
46
|
Rosati L, Agnese M, Abagnale L, Aniello F, Andreuccetti P, Prisco M. The Mussel
Mytilus galloprovincialis
in the Bay of Naples: New Insights on Oogenic Cycle and Its Hormonal Control. Anat Rec (Hoboken) 2019; 302:1039-1049. [DOI: 10.1002/ar.24075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/22/2018] [Accepted: 10/12/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Luigi Rosati
- Department of BiologyFederico II Naples University Naples Italy
- Dipartimento di Scienze e TecnologieUniversità degli Studi di Napoli “Parthenope” Naples Italy
| | - Marisa Agnese
- Department of BiologyFederico II Naples University Naples Italy
| | - Ludovico Abagnale
- 3th South Naples ASLVeterinary Operative Unit, Torre del Greco Naples Italy
| | | | | | - Marina Prisco
- Department of BiologyFederico II Naples University Naples Italy
| |
Collapse
|
47
|
Thitiphuree T, Nagasawa K, Osada M. Molecular identification of steroidogenesis-related genes in scallops and their potential roles in gametogenesis. J Steroid Biochem Mol Biol 2019; 186:22-33. [PMID: 30195968 DOI: 10.1016/j.jsbmb.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023]
Abstract
Sex steroids are crucial for controlling gametogenesis and germ cell maturation in vertebrates. It has been proposed that Yesso scallop (Mizuhopecten yessoensis) has the same sex steroids as those animals, but the scallop biosynthetic pathway is unclear. In this study, we characterized several steroidogenesis-related genes in M. yessoensis and proposed a putative biosynthetic pathway for sex steroids that is similar to that of vertebrates. Specifically, we identified several steroidogenesis-related gene sequences that encode steroid metabolizing enzymes: StAR-related lipid transfer (START) protein, 17α-hydroxylase, 17,20-lyase (cyp17a), 17β-hydroxysteroid dehydrogenase (hsd17b), and 3β-hydroxysteroid dehydrogenase (hsd3b). We sampled adult scallops throughout their reproductive phase to compare their degree of maturation with their intensity of mRNA expression. Semi-quantitative RT-PCR analysis revealed a ubiquitous expression of transcripts for steroid metabolizing enzymes (i.e., star, cyp17a, hsd17b, and hsd3b) in peripheral and gonadal tissues. Real-time PCR analysis revealed a high level of expression of star3 and cyp17a genes in gonadal tissues at the early stage of cell differentiation in scallops. Interestingly, mRNA expression of hsd3b and hsd17b genes showed a synchronous pattern related to degree of gonad maturity. These results indicate that both hsd3b and hsd17b genes are likely involved in steroidogenesis in scallops. We therefore believe that these steroid-metabolizing enzymes allow scallops to endogenously produce sex steroids to regulate reproductive events.
Collapse
Affiliation(s)
- Tongchai Thitiphuree
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan.
| |
Collapse
|
48
|
Binder ARD, Pfaffl MW, Hiltwein F, Geist J, Beggel S. Does environmental stress affect cortisol biodistribution in freshwater mussels? CONSERVATION PHYSIOLOGY 2019; 7:coz101. [PMID: 31832197 PMCID: PMC6899224 DOI: 10.1093/conphys/coz101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/07/2019] [Indexed: 05/11/2023]
Abstract
As of today, regulation and physiological purpose of steroid hormones in invertebrates such as mussels are not completely understood. Many studies were able to show their presence, but their origin and genesis are not clear. Nevertheless, knowledge about changes in steroid hormone biodistribution in reaction to treatments could improve our understanding of their physiological functions in these species. Cortisol is a corticosteroid, which is frequently used as a stress biomarker in vertebrates, like fish or higher organisms. The aim of the study was to optimize cortisol extraction from various tissues of mussels, to develop a quantitative ELISA test system, and to study changes in biodistribution of cortisol in reaction to negative and positive stimulation treatments. As model organism, we used Anodonta anatina, a widespread freshwater mussel species native to Europe. We quantified cortisol concentrations in hepatopancreas, mantle, gills, gonads and the foot muscle. Tissue-specific reactions to environmental influences, simulated with the chemical stressors copper (II) chloride and sodium chloride, were assessed. During the 24-hours treatment, we additionally observed changes in cortisol regulation in response to feeding activity of the mussels. Besides, we found highly significant variations in the biodistribution of cortisol in different tissues, with a peak in the hepatopancreas. Whole body cortisol did not increase in the treated groups. However, balancing of all measured tissues showed redistribution of more than 10% of total body cortisol from the hepatopancreas to all other tissues during copper (II) chloride stressor treatment, but also when mussels ingested feed, compared to the non-fed control group. No redistribution was observed during sodium chloride treatment. We conclude that there can be a redistribution of cortisol in mussels, depending on external influences.
Collapse
Affiliation(s)
- A Ronja D Binder
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, Freising-Weihenstephan, D-85354, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, Freising-Weihenstephan, D-85354, Germany
| | | | - Juergen Geist
- Aquatic Systems Biology Unit, School of Life Sciences Weihenstephan, Technical University of Munich, Mühlenweg 22, Freising-Weihenstephan, D-85354, Germany
| | - Sebastian Beggel
- Aquatic Systems Biology Unit, School of Life Sciences Weihenstephan, Technical University of Munich, Mühlenweg 22, Freising-Weihenstephan, D-85354, Germany
- Corresponding author: Aquatic Systems Biology Unit, Mühlenweg 22, Freising-Weihenstephan, D-85354, Germany
| |
Collapse
|
49
|
Miyakawa H, Sato T, Song Y, Tollefsen KE, Iguchi T. Ecdysteroid and juvenile hormone biosynthesis, receptors and their signaling in the freshwater microcrustacean Daphnia. J Steroid Biochem Mol Biol 2018; 184:62-68. [PMID: 29247785 DOI: 10.1016/j.jsbmb.2017.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
The two essential insect hormones, ecdysteroids and juvenile hormones, are possessed not only by insects, but also widely by arthropods, and regulate various developmental and physiological processes. In contrast to the abundant information about molecular endocrine mechanisms in insects, the knowledge of non-insect arthropod endocrinology is still limited. In this review, we summarize recent reports about the molecular basis of these two major insect hormones in the freshwater microcrustacean Daphnia, a keystone taxon in limnetic ecology and a bioindicator in environmental studies. Comprehensive comparisons of endocrine signaling pathways between insects and daphnids may shed light on the regulatory mechanisms of various biological phenomena and, moreover, evolutionary processes of arthropod species.
Collapse
Affiliation(s)
- Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi 321-8505, Japan.
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
50
|
Reddy SB, Nolan CJ, Plautz CZ. Disturbances in reproduction and expression of steroidogenic enzymes in aquatic invertebrates exposed to components of the herbicide Roundup. TOXICOLOGY RESEARCH AND APPLICATION 2018. [DOI: 10.1177/2397847318805276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Exposure of organisms to environmental contaminants is a growing concern. We have investigated the effects of the individual active ingredients of the herbicide Roundup (glyphosate and diquat dibromide [DD]) since Roundup causes alterations in reproduction, mortality, and development in the aquatic snail Lymnaea palustris. Snails chronically treated with elevated but ecologically relevant levels of DD exhibit reduction in fecundity ( p < 0.05), while fecundity in glyphosate-treated snails is comparable to or exceeds control levels. To investigate a possible mechanism for the reproductive disturbance, we monitored levels of steroid acute regulatory (StAR) protein in whole snails and observed a correlation in StAR protein decrease with treatment with Roundup, glyphosate, or DD. We detect StAR in organs where steroid biosynthesis occurs (ovotestis, brain, kidney); StAR protein is reduced following chronic exposure to Roundup, glyphosate, or DD ( p < 0.01). Estradiol and testosterone concentrations in hemolymph were measured by enzyme-linked immunosorbent assay following 3-week exposure of snails to 3.5 mg/L glyphosate or 140 µg/L DD. Testosterone levels decrease in DD-treated groups ( p < 0.05); a trend of lower testosterone is also observed in glyphosate-treated groups ( p > 0.05). Estradiol concentration is greater than or equal to control levels in glyphosate, but decreased in DD ( p < 0.05). Because of its role in the conversion of testosterone to estradiol, we monitored abundance of aromatase and observed a reduction ( p < 0.05) in DD-treated snails (consistent with the drop in fecundity and estradiol levels) and a comparable level to control in glyphosate-treated snails (consistent with their high fecundity and estradiol levels). Although the toxicity of commercially-available Roundup to aquatic animals may have many contributing factors including its inactive surfactant, the constituent of Roundup associated with the greatest reproductive disturbances and observed developmental abnormalities of offspring is DD. This study details the analysis of particular herbicide constituents and their effect on specific targets in the reproductive pathway.
Collapse
Affiliation(s)
- Sneha B Reddy
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, USA
| | - Colleen J Nolan
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, USA
| | - Carol Zygar Plautz
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, USA
| |
Collapse
|