1
|
Soliman MKY, Amin MAA, Nowwar AI, Hendy MH, Salem SS. Green synthesis of selenium nanoparticles from Cassia javanica flowers extract and their medical and agricultural applications. Sci Rep 2024; 14:26775. [PMID: 39500933 PMCID: PMC11538282 DOI: 10.1038/s41598-024-77353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Nanostructured materials are advantageous within numerous fields of medicine owing to their intriguing qualities, which include their size, reactive surface, bioactivity, potential for modification, and optical characteristics. Cassia javanica flower extract was used as a chelating agent in an environmentally friendly process to create SeNPs FTIR, XRD, and TEM, SAED were utilized to analyze and characterize the synthesized. The findings showed that the MIC of Se NPs against B. subtilis and S. aureus was 500 µg/ml. Conversely, the MIC for P. aeruginosa, E. coli, and C. albicans were 125, 250, and 62.5 µg/ml, respectively. Hence, SeNPs considerably reduced the activity; the inhibition peaked at 77.6% at 250 µg/ml to reach 49.04% at 7.8 µg/ml. Which showed the greatest suppression of MRSA biofilm formation without affecting bacterial growth. SeNPs showed an intriguing antioxidant capacity, achieving an IC50 of 53.34 µg/ml. This study looked how soaking seeds before sowing them with Se NPs at 50, 100, and 200 ppm affected the plants' development in different parameters, as well as their yield of Vicia faba L. The growth conditions were effectively increased by soaking application of various quantities of Se NPs. The highest values of dry weight/pod (g), number of seeds/plant, weight of 100 seeds (g), and number of pods/plant were caused by high concentrations of Se NPs, by 28.43, 89.60, 18.20, and 94.11%, respectively.
Collapse
Affiliation(s)
- Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Abdel-Aal Amin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdelatti Ibrahim Nowwar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud H Hendy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
2
|
Arafa SS, Badr El-Din S, Hewedy OA, Abdelsattar S, Hamam SS, Sharif AF, Elkholy RM, Shebl GZ, Al-Zahrani M, Salama RAA, Abdelkader A. Flubendiamide provokes oxidative stress, inflammation, miRNAs alteration, and cell cycle deregulation in human prostate epithelial cells: The attenuation impact of synthesized nano-selenium using Trichodermaaureoviride. CHEMOSPHERE 2024; 365:143305. [PMID: 39260595 DOI: 10.1016/j.chemosphere.2024.143305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flubendiamide (FBD) is a novel diamide insecticide extensively used with potential human health hazards. This research aimed to examine the effects of FBD on PrEC prostate epithelial cells, including Oxidative stress, pro-inflammatory responses, modifications in the expression of oncogenic and suppressor miRNAs and their target proteins, disruption of the cell cycle, and apoptosis. Additionally, the research investigated the potential alleviative effect of T-SeNPs, which are selenium nanoparticles biosynthesized by Trichoderma aureoviride, against the toxicity induced by FBD. Selenium nanoparticles were herein synthesized by Trichoderma aureoviride. The major capping metabolites in synthesized T-SeNPs were Isochiapin B and Quercetin 7,3',4'-trimethyl ether. T-SeNPs showed a spherical shape and an average size between 57 and 96.6 nm. FBD exposure (12 μM) for 14 days induced oxidative stress and inflammatory responses via overexpression of NF-κB family members. It also distinctly caused upregulation of miR-221, miR-222, and E2F2, escorted by downregulation of miR-17, miR-20a, and P27kip1. FBD encouraged PrEC cells to halt at the G1/S checkpoint. Apoptotic cells were drastically increased in FBD-treated sets. Treatment of T-SeNPs simultaneously with FBD revealed its antioxidant, anti-inflammatory, and antitumor activities in counteracting FBD-induced toxicity. Our findings shed light on the potential FBD toxicity that may account for the neoplastic transformation of epithelial cells in the prostate and the mitigating activity of eco-friendly synthesized T-SeNPs.
Collapse
Affiliation(s)
- Samah S Arafa
- Department of Pesticides, Faculty of Agriculture, Menoufia University, Egypt.
| | - Sahar Badr El-Din
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Egypt
| | - Omar A Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Egypt
| | - Shimaa Abdelsattar
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Egypt
| | - Sanaa S Hamam
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa F Sharif
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt; Department of Clinical Medical Sciences, College of Medicine, Dar Al-Uloom University, Riyadh, Saudi Arabia
| | - Reem Mohsen Elkholy
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Ghada Zaghloul Shebl
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Menoufia University, Egypt
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Sciences and Art, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rasha Aziz Attia Salama
- Department of Community and Public Health, Kasr El Aini Faculty of Medicine, Cairo University, Egypt; Department of Community Medicine, Ras Al Khaimah Medical and Health Science University, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
3
|
Geethamala GV, Swathilakshmi AV, Keerthana S, Vidhyanivetha D, Preethi G, Chitra P, Poonkothai M. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res 2024; 202:4260-4278. [PMID: 38095844 DOI: 10.1007/s12011-023-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/26/2023] [Indexed: 07/18/2024]
Abstract
The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.
Collapse
Affiliation(s)
- G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - S Keerthana
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - D Vidhyanivetha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G Preethi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - P Chitra
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
4
|
Nagarajan SB, Jayaraman A, Ramakrishnan S. Theranostic scope of monometallic selenium and titanium dioxide nanoparticles in biomedicine: A review. HEALTH CARE SCIENCE 2024; 3:215-231. [PMID: 39220427 PMCID: PMC11362656 DOI: 10.1002/hcs2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
The nanoparticles (NPs) of metals and metal oxides constitute significant components of technology in terms of monometallic NPs (MNPs). Over the last decade, the most fascinating and in-depth uses of NPs have been found in the biomedical field, which has demonstrated the therapeutic potential of these particles. Significant strides have been made in the application of nanotechnology across various industries, including biomedical sciences. In biomedicine, two of the most important applications of NPs are in the diagnosis and treatment of disease. Given their ability to deliver specific drugs, these next-generation NPs provide safe and effective pharmacotherapies for a wide range of disorders. Selenium nanoparticles (SeNPs) and titanium dioxide (TiO2) NPs offer potential treatments for various applications, including hair care and cancer treatment. SeNPs help with abiotic stress, plant disease, and growth, while TiO2 NPs enhance bio-imaging and drug delivery. This comprehensive review focuses on MNPs like Se (metal-based) and TiO2 (metal-oxide based). It covers their synthesis methods, nanoscale physicochemical properties, and the definition of specific industrial applications in various fields of applied nanotechnology, including biomedicine.
Collapse
Affiliation(s)
- Shwetha B. Nagarajan
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| | - Anuradha Jayaraman
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| | - Sanjeevi Ramakrishnan
- Nims Institute of Allied Medical Science and TechnologyNIMS UniversityJaipurRajasthanIndia
| |
Collapse
|
5
|
Mohammed EJ, Abdelaziz AEM, Mekky AE, Mahmoud NN, Sharaf M, Al-Habibi MM, Khairy NM, Al-Askar AA, Youssef FS, Gaber MA, Saied E, AbdElgayed G, Metwally SA, Shoun AA. Biomedical Promise of Aspergillus Flavus-Biosynthesized Selenium Nanoparticles: A Green Synthesis Approach to Antiviral, Anticancer, Anti-Biofilm, and Antibacterial Applications. Pharmaceuticals (Basel) 2024; 17:915. [PMID: 39065765 PMCID: PMC11279975 DOI: 10.3390/ph17070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This study utilized Aspergillus flavus to produce selenium nanoparticles (Se-NPs) in an environmentally friendly and ecologically sustainable manner, targeting several medicinal applications. These biosynthesized Se-NPs were meticulously characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), and UV-visible spectroscopy (UV), revealing their spherical shape and size ranging between 28 and 78 nm. We conducted further testing of Se-NPs to evaluate their potential for biological applications, including antiviral, anticancer, antibacterial, antioxidant, and antibiofilm activities. The results indicate that biosynthesized Se-NPs could be effective against various pathogens, including Salmonella typhimurium (ATCC 14028), Bacillus pumilus (ATCC 14884), Staphylococcus aureus (ATCC 6538), Clostridium sporogenes (ATCC 19404), Escherichia coli (ATCC 8739), and Bacillus subtilis (ATCC 6633). Additionally, the biosynthesized Se-NPs exhibited anticancer activity against three cell lines: pancreatic carcinoma (PANC1), cervical cancer (Hela), and colorectal adenocarcinoma (Caco-2), with IC50 values of 177, 208, and 216 μg/mL, respectively. The nanoparticles demonstrated antiviral activity against HSV-1 and HAV, achieving inhibition rates of 66.4% and 15.1%, respectively, at the maximum non-toxic concentration, while also displaying antibiofilm and antioxidant properties. In conclusion, the biosynthesized Se-NPs by A. flavus present a promising avenue for various biomedical applications with safe usage.
Collapse
Affiliation(s)
- Eman Jassim Mohammed
- Department of Microbiology, College of Science, Mustansiriyah University, Baghdad 14022, Iraq;
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, Port-Said 42522, Egypt;
| | - Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Nashaat N. Mahmoud
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Mohamed Sharaf
- Biochemistry and Molecular Biology Department, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Mahmoud M. Al-Habibi
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Nehal M. Khairy
- Microbiology and Immunology Department, Egypt Drug Authority (EDA), (Formerly NODCAR), Giza 12654, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University-East Kantara Branch, Ismailia 41636, Egypt
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Shimaa A Metwally
- Microbiology and Immunology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11651, Egypt;
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| |
Collapse
|
6
|
Satpathy S, Panigrahi LL, Samal P, Sahoo KK, Arakha M. Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon 2024; 10:e32499. [PMID: 39183842 PMCID: PMC11341326 DOI: 10.1016/j.heliyon.2024.e32499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Biogenic synthesis of nanoparticles has been established as an environmentally benign and sustainable approach. This study emphasizes biosynthesis of selenium nanoparticles (SeNPs) utilizing leaf extract of Nyctanthes arbor-tritis L., well known for its abundant bioactive compounds. Various analytical techniques were employed for characterization of synthesized SeNPs. X-ray diffraction (XRD) spectroscopy confirmed the crystalline structure and revealed the average crystalline size of SeNPs to be 44.57 nm. Additionally, UV-Vis spectroscopy confirmed successful synthesis of SeNPs by validating the surface plasmon resonance (SPR) properties of SeNPs. FTIR analysis data revealed different bonds and their corresponding functional groups responsible for the synthesis and stability of synthesized SeNPs. DLS and zeta analysis revealed that 116.5 nm sized SeNPs were stable in nature. Furthermore, field emission scanning electron microscopy (FE-SEM) validated the spherical morphology of SeNPs with a size range of 60-80 nm. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined the concentration of SeNPs in the obtained colloidal solution. Antioxidant activity of synthesized SeNPs was evaluated employing DPPH and H2O2 assay, revealed that the synthesized SeNPs were effective antioxidant agent. Additionally, antimicrobial potential was evaluated against a panel of Gram-positive and Gram-negative bacteria and found to be effective at higher concentration of SeNPs. SeNPs also exhibited strong anti-biofilm activity while evaluated against various biofilm producing bacteria like Escherichia coli , Staphylococcus epidermidis and Klebsiella pneumonia. The cytotoxicity of the bio-synthesized SeNPs was evaluated against HEK 293 cell line, exhibited minimal toxicity even at concentration 100 μg/mL with 65% viable cells. SeNPs has also been evaluated for dye degradation which has indicated excellent photocatalytic activity of synthesized SeNPs. The experimental data obtained altogether demonstrated that synthesized SeNPs exhibited significant antimicrobial and anti-biofilm activity against various pathogens, and also showed significant antioxidant and photocatalytic efficiency.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Pallavi Samal
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Kirti Kanta Sahoo
- School of Civil Engineering, Kalinga Institute of Industrial Technology Univ., Bhubaneswar, Odisha, 751024, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
7
|
Miksanek JR, Adarkwah C, Tuda M. Low concentrations of selenium nanoparticles enhance the performance of a generalist parasitoid and its host, with no net effect on host suppression. PEST MANAGEMENT SCIENCE 2024; 80:1812-1820. [PMID: 38032005 DOI: 10.1002/ps.7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The environmental and economic costs of conventional insecticides have stirred an interest in alternative management tactics, including the use of nanotechnologies. Selenium nanoparticles (SeNPs) have many applications in agriculture but may not be compatible with biological control; however, low concentrations of SeNPs may benefit natural enemies via hormesis. This study investigates the concentration-dependent effects of SeNPs (0-1000 mg L-1 ) on Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), a generalist parasitoid of stored product pests. RESULTS The LC50 of SeNPs was 1540 mg L-1 for female parasitoids and 1164 mg L-1 for males. SeNPs had a significant hormetic effect; average lifespan increased by 10% at a concentration of 4.03 mg L-1 for females and by 35% at 13.83 mg L-1 for males. In a bioassay including hosts [the azuki bean beetle, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae)], a low concentration of SeNPs (25 mg L-1 ) enhanced the performance of female parasitoids; lifespan increased by 23% and the number of offspring increased by 88%. However, the number of emerging hosts did not significantly decrease; in the absence of parasitism, SeNPs actually improved host emergence by 17%. CONCLUSION Because higher concentrations of SeNPs reduced parasitoid lifespan, whereas low concentrations enhanced not only parasitoid performance but also host emergence, practitioners should exercise caution when considering SeNPs for use in integrated pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- James Rudolph Miksanek
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, Sunyani, Ghana
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Raja RK, Kumar Seetharaman P, Kalidass B, Ananth S, Bo L, Kamaraj C, Cimen H, Hazir S. Biosynthesis of selenium nanoparticles using cell-free extract of Xenorhabdus cabanillasii GU480990 and their potential mosquito larvicidal properties against yellow fever mosquito Aedes aegypti. J Invertebr Pathol 2024; 203:108045. [PMID: 38135245 DOI: 10.1016/j.jip.2023.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.
Collapse
Affiliation(s)
- Ramalingam Karthik Raja
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu-602105, India.
| | - Prabu Kumar Seetharaman
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 255000, Xincun West Road 266, Zibo, China
| | - Bharathi Kalidass
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India; Department of Microbiology, Alagappa University, Karaikudi
| | - Siva Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam, Tamil Nadu, India
| | - Liu Bo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 255000, Xincun West Road 266, Zibo, China
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Harun Cimen
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Aydın, Turkiye
| | - Selcuk Hazir
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu-602105, India; Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Aydin, Turkiye.
| |
Collapse
|
9
|
Behera A, Dharmalingam Jothinathan MK, Saravanan S, Tamil Selvan S, Rajan Renuka R, Srinivasan GP. Green Synthesis of Selenium Nanoparticles From Clove and Their Toxicity Effect and Anti-angiogenic, Antibacterial and Antioxidant Potential. Cureus 2024; 16:e55605. [PMID: 38586722 PMCID: PMC10995455 DOI: 10.7759/cureus.55605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Nanoparticles, owing to their minuscule size, have become pivotal in diverse scientific endeavors, presenting unique characteristics with applications spanning medicine to environmental science. Selenium nanoparticles (SeNPs) exhibit potential in diverse biomedical uses. Aim This research investigates the potential anti-inflammatory and anticancer properties of SeNPs, which are synthesized using the green synthesis method. This eco-friendly approach aligns with sustainable practices and utilizes clove extract (Syzygium aromaticum). Materials and methods Clove extract facilitates SeNP synthesis via sodium selenite reduction. The characterization methods comprised Fourier-transform infrared (FTIR) spectroscopy, UV-VIS spectroscopy, and scanning electron microscopy (SEM). Assessments covered antioxidant properties, chorioallantoic membrane assay (CAM) assay for antiangiogenic effects, toxicity evaluation, and antibacterial assays. Results Successful synthesis of SeNPs was verified by a UV-visible absorption peak at 256 nm and FTIR peaks around 3500-500 cm -1, and the spherical morphology was confirmed by SEM analysis with EDAX, which indicated the presence of SeNPs and their unique properties. Phytochemical substances are active chemicals that contribute to the properties of SeNPs. The SeNPs exhibited antioxidant activity with an IC50 value of 0.437 µg/mL and antibacterial properties against bacterial pathogen Salmonella species, with a zone of inhibition measuring 19 mm. The CAM assay demonstrated possible antiangiogenic actions, and toxicity testing on Artemia nauplii showed biocompatibility. Conclusion This study underscores the efficient synthesis of SeNPs using clove extract, emphasizing their potential applications. The notable properties of SeNPs emphasize their promise for diverse biomedical and environmental uses.
Collapse
Affiliation(s)
- Archana Behera
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | | | - Saantosh Saravanan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Silambarasan Tamil Selvan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Guru Prasad Srinivasan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
10
|
Abdelsalam A, El-Sayed H, Hamama HM, Morad MY, Aloufi AS, Abd El-Hameed RM. Biogenic Selenium Nanoparticles: Anticancer, Antimicrobial, Insecticidal Properties and Their Impact on Soybean ( Glycine max L.) Seed Germination and Seedling Growth. BIOLOGY 2023; 12:1361. [PMID: 37997960 PMCID: PMC10669218 DOI: 10.3390/biology12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Selenium nanoparticles (SeNPs) have demonstrated significant potential in a variety of disciplines, making them an extremely desirable subject of research. This study investigated the anticancer and antibacterial properties of my-co-fabricated selenium SeNPs, as well as their effects on soybean (Glycine max L.) seeds, seedling growth, cotton leafworm (Spodoptera littoralis) combat, and plant pathogenic fungi inhibition. SeNPs showed anticancer activity with an IC50 value of 1.95 µg/mL against MCF-7 breast adenocarcinoma cells. The myco-synthesized SeNPs exhibited an antibacterial effect against Proteus mirabilis and Klebsiella pneumoniae at 20 mg/mL. The use of 1 µM SeNPs improved soybean seed germination (93%), germination energy (76.5%), germination rate (19.0), and mean germination time (4.3 days). At 0.5 and 1.0 µM SeNPs, the growth parameters of seedlings improved. SeNPs increased the 4th instar larval mortality of cotton leafworm compared to control, with a median lethal concentration of 23.08 mg/mL. They inhibited the growth of Fusarium oxysporum, Rhizoctonia solani, and Fusarium solani. These findings demonstrate that biogenic SeNPs represent a promising approach to achieving sustainable progress in the fields of agriculture, cancer therapy, and infection control.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| | - Heba M. Hamama
- Entomology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab M. Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (A.A.); (H.E.-S.); (R.M.A.E.-H.)
| |
Collapse
|
11
|
Buacheen P, Karinchai J, Inthachat W, Butkinaree C, Jankam C, Wongnoppavich A, Imsumran A, Chewonarin T, Pimpha N, Temviriyanukul P, Pitchakarn P. The Toxicological Assessment of Anoectochilus burmannicus Ethanolic-Extract-Synthesized Selenium Nanoparticles Using Cell Culture, Bacteria, and Drosophila melanogaster as Suitable Models. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2804. [PMID: 37887954 PMCID: PMC10609996 DOI: 10.3390/nano13202804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Selenium nanoparticles (SeNPs) are worthy of attention and development for nutritional supplementation due to their health benefits in both animals and humans with low toxicity, improved bioavailability, and controlled release, being greater than the Se inorganic and organic forms. Our previous study reported that Anoectochilus burmannicus extract (ABE)-synthesized SeNPs (ABE-SeNPs) exerted antioxidant and anti-inflammatory activities. Furthermore, ABE could stabilize and preserve the biological activities of SeNPs. To promote the ABE-SeNPs as supplementary and functional foods, it was necessary to carry out a safety assessment. Cytotoxicity testing showed that SeNPs and ABE-SeNPs were harmless with no killing effect on Caco2 (intestinal epithelial cells), MRC-5 (lung fibroblasts), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and 3T3-L1 (adipocytes), and were not toxic to isolated human PBMCs and RBCs. Genotoxicity assessments found that SeNPs and ABE-SeNPs did not induce mutations in Salmonella typhimurium TA98 and TA100 (Ames test) as well as in Drosophila melanogaster (somatic mutation and recombination test). Noticeably, ABE-SeNPs inhibited mutation in TA98 and TA100 induced by AF-2, and in Drosophila induced by urethane, ethyl methanesulfonate, and mitomycin c, suggesting their anti-mutagenicity ability. This study provides data that support the safety and anti-genotoxicity properties of ABE-SeNPs for the further development of SeNPs-based food supplements.
Collapse
Affiliation(s)
- Pensiri Buacheen
- PhD Program in Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chutikarn Butkinaree
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chonchawan Jankam
- National Omics Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttaporn Pimpha
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
El-Sayed H, Morad MY, Sonbol H, Hammam OA, Abd El-Hameed RM, Ellethy RA, Ibrahim AM, Hamada MA. Myco-Synthesized Selenium Nanoparticles as Wound Healing and Antibacterial Agent: An In Vitro and In Vivo Investigation. Microorganisms 2023; 11:2341. [PMID: 37764185 PMCID: PMC10536823 DOI: 10.3390/microorganisms11092341] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial-associated wound infections are an obstacle for individuals and the medical industry. Developing versatile, antibiotic-free therapies helps heal wounds more quickly and efficiently. In the current study, fungal metabolites were employed as a reducing agent in fabricating selenium nanoparticles (SeNPs) for improved antibacterial and wound healing properties. Utilizing UV-visible spectroscopy, dynamic light scattering (DLS), zeta potential, X-ray diffraction (XRD), and electron microscopic examination, the properties of the synthesized nanoparticles were extensively evaluated. Myco-synthesized SeNPs demonstrated strong antibacterial activity against Staphylococcus aureus ATCC 6538 with a minimum inhibitory concentration of 0.3125 mg/mL, reducing cell number and shape distortion in scanning electron microscope (SEM) images. SeNPs' topical administration significantly reduced wound area and healing time, exhibiting the least bacterial load after six days compared to controls. After six and 11 days of treatment, SeNPs could decrease proinflammatory cytokines IL-6 and TNF-α production. The histopathological investigation showed a healed ulcer with moderate infiltration of inflammatory cells after exposing mice's skin to SeNPs for six and 11 days. The docking interaction indicated that SeNPs were highly efficient against the IL-6 and TNF-α binding receptors. These findings imply that myco-fabricated SeNPs might be used as topically applied antimicrobial agents for treating skin infections and wounds.
Collapse
Affiliation(s)
- Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Olfat A. Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| | - Rehab M. Abd El-Hameed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| | - Rania A. Ellethy
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt;
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| | - Marwa A. Hamada
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (H.E.-S.); (R.M.A.E.-H.); (M.A.H.)
| |
Collapse
|
13
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|
14
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
15
|
Nassar ARA, Eid AM, Atta HM, El Naghy WS, Fouda A. Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii. Sci Rep 2023; 13:9054. [PMID: 37270596 DOI: 10.1038/s41598-023-35360-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
Herein, four endophytic fungal strains living in healthy roots of garlic were used to produce selenium nanoparticles (Se-NPs) via green synthesis. Penicillium verhagenii was found to be the most efficient Se-NPs producer with a ruby red color that showed maximum surface plasmon resonance at 270 nm. The as-formed Se-NPs were crystalline, spherical, and well-arranged without aggregation, and ranged from 25 to 75 nm in size with a zeta potential value of -32 mV, indicating high stability. Concentration-dependent biomedical activities of the P. verhagenii-based Se-NPs were observed, including promising antimicrobial activity against different pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis) with minimum inhibitory concentration (MIC) of 12.5-100 µg mL-1. The biosynthesized Se-NPs showed high antioxidant activity with DPPH-scavenging percentages of 86.8 ± 0.6% at a concentration of 1000 µg mL-1 and decreased to 19.3 ± 4.5% at 1.95 µg mL-1. Interestingly, the Se-NPs also showed anticancer activity against PC3 and MCF7 cell lines with IC50 of 225.7 ± 3.6 and 283.8 ± 7.5 µg mL-1, respectively while it is remaining biocompatible with normal WI38 and Vero cell lines. Additionally, the green synthesized Se-NPs were effective against instar larvae of a medical insect, Aedes albopictus with maximum mortality of 85.1 ± 3.1, 67.2 ± 1.2, 62.10 ± 1.4, and 51.0 ± 1.0% at a concentration of 50 µg mL-1 for I, II, III, and IV-instar larva, respectively. These data highlight the efficacy of endophytic fungal strains for cost-effective and eco-friendly Se-NPs synthesis with different applications.
Collapse
Affiliation(s)
| | - Ahmed M Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
16
|
Alizadeh SR, Abbastabar M, Nosratabadi M, Ebrahimzadeh MA. High antimicrobial, cytotoxicity, and catalytic activities of biosynthesized selenium nanoparticles using Crocus caspius extract. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
17
|
Sahoo B, Leena Panigrahi L, Jena S, Jha S, Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv 2023; 13:11406-11414. [PMID: 37063733 PMCID: PMC10090903 DOI: 10.1039/d2ra07827a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
The present work investigates the role of oxidative stress generated at biosynthesized selenium nanoparticles (SeNPs) interface in defining the antimicrobial and anti-biofilm activity. To this end, SeNPs with average size of 119 nm were synthesized rapidly during the growth of Staphylococcus aureus using the principle of green chemistry. The synthesis of SeNPs was confirmed by using different biophysical techniques like UV-vis spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), EDX and zeta potential analysis. The obtained data from antimicrobial study revealed strong antimicrobial activity against both Gram-positive bacteria like Bacillus subtilis (MTCC 441) and Gram-negative bacteria like Escherichia coli (MTCC 443) and anti-biofilm activity against biofilm forming bacteria. The mechanism behind antimicrobial activity of biosynthesized SeNPs was explored by evaluating the amount of reactive oxygen species (ROS) generated at SeNPs interface due to photocatalytic activity. The experimental data obtained altogether concluded that, the ROS generated at SeNPs interface put stress on bacterial cell membrane causing leakage of cytoplasmic contents, leading to bacterial cell death.
Collapse
Affiliation(s)
- Banishree Sahoo
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Sonali Jena
- Department of Life Science, National Institute of Technology Rourkela Odisha 769008 India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela Odisha 769008 India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| |
Collapse
|
18
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
19
|
Rudrappa M, Kumar RS, Nagaraja SK, Hiremath H, Gunagambhire PV, Almansour AI, Perumal K, Nayaka S. Myco-Nanofabrication of Silver Nanoparticles by Penicillium brasilianum NP5 and Their Antimicrobial, Photoprotective and Anticancer Effect on MDA-MB-231 Breast Cancer Cell Line. Antibiotics (Basel) 2023; 12:antibiotics12030567. [PMID: 36978433 PMCID: PMC10044662 DOI: 10.3390/antibiotics12030567] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, the exploration of fungal organisms for novel metabolite production and its pharmacological applications is much appreciated in the biomedical field. In the present study, the fungal strains were isolated from soil of unexplored Yellapura regions. The potent isolate NP5 was selected based on preliminary screening and identified as Penicillium brasilianum NP5 through morphological, microscopic, and molecular characterizations. Synthesis of silver nanoparticles from P. brasilianum was confirmed by the color change of the reaction mixture and UV-visible surface plasmon resonance (SPR) spectra of 420 nm. Fourier transform infrared (FTIR) analysis revealed the functional groups involved in synthesis. Atomic force microscopy (AFM) and transmission electron microscope (TEM) analysis showed aggregation of the NPs, with sizes ranged from 10 to 60 nm, an average particle size of 25.32 nm, and a polydispersity index (PDI) of 0.40. The crystalline nature and silver as the major element in NP5-AgNPs was confirmed by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis. The negative value −15.3 mV in Zeta potential exhibited good stability, and thermostability was recorded by thermogravimetric analysis (TGA). NP5-AgNPs showed good antimicrobial activity on selected human pathogens in a concentration-dependent manner. The MTT assay showed concentration-dependent anticancer activity with an IC50 of 41.93 µg/mL on the MDA-MB-231 cell line. Further, apoptotic study was carried out by flow cytometry to observe the rate of apoptosis. The calculated sun protection factor (SPF) value confirms good photoprotection capacity. From the results obtained, NP5-AgNPs can be used in the pharmaceutical field after successful in vitro clinical studies.
Collapse
Affiliation(s)
- Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.S.K.); (A.I.A.)
| | - Shashiraj Kareyellappa Nagaraja
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Halaswamy Hiremath
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Pooja Vidyasagar Gunagambhire
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.S.K.); (A.I.A.)
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA;
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India; (M.R.); (S.K.N.); (H.H.); (P.V.G.)
- Correspondence: or
| |
Collapse
|
20
|
Mohamed RA, Kassem LM, Ghazali NM, Elgazzar E, Mostafa WA. Modulation of the Morphological Architecture of Mn 2O 3 Nanoparticles to MnCoO Nanoflakes by Loading Co 3+ Via a Co-Precipitation Approach for Mosquitocidal Development. MICROMACHINES 2023; 14:567. [PMID: 36984973 PMCID: PMC10058717 DOI: 10.3390/mi14030567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The spread of many infectious diseases by vectors is a globally severe issue. Climate change and the increase of vector resistance are the primary sources of rising mosquito populations. Therefore, advanced approaches are needed to prevent the dispersal of life-threatening diseases. Herein, Mn2O3 NPs and MnCoO nanocomposites were presented as mosquitocidal agents. The synthesized samples were prepared by a co-precipitation route and characterized using different techniques indicating the change of host Mn2O3 structure to 2D MnCoO nanoflakes with Co3+ integration. The thermal decomposition of the nanoparticles was examined by TGA analysis, showing high stability. The energy gap (Eg) of Mn2O3 was estimated within the visible spectrum of the value 2.95 eV, which reduced to 2.80 eV with doping support. The impact of Mn2O3 and MnCoO on immature stages was investigated by semithin photomicrographs exhibiting significant changes in the midgut, fat tissue and muscles of the third larval instar. Moreover, the external deformations in pupae were examined using scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Rania A. Mohamed
- Department of Biology, Deanship of Educational Services, Qassim University, P.O. Box 5888, Unaizah 56219, Qassim, Saudi Arabia
- Parasitology Department, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44519, Zagazig 44516, Egypt
| | - Lamyaa M. Kassem
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, P.O. Box 5888, Unaizah 51911, Qassim, Saudi Arabia
| | - Niveen M. Ghazali
- Department of Pharmaceutical Chemistry and Pharmacognozy, Unaizah College of Pharmacy, Qassim University, P.O. Box 5888, Unaizah 51911, Qassim, Saudi Arabia
| | - Elsayed Elgazzar
- Department of Physics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Wageha A. Mostafa
- Entomology Section, Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
21
|
Zeraatkar S, Tahan M, Sadeghian H, Nazari R, Behmadi M, Hosseini Bafghi M. Effect of biosynthesized selenium nanoparticles using Nepeta extract against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. J Basic Microbiol 2023; 63:210-222. [PMID: 36482013 DOI: 10.1002/jobm.202200513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
The problems of drug resistance in bacteria have become one of the daily challenges of the clinical treatment of patients, which inevitably forces us to use agents other than common antibiotics. Among these, we can take help from different properties and applications of nanoparticles (NPs). In this work, we evaluate the antibacterial activity of biosynthesized selenium nanoparticles (SeNPs) against standard strains of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. The production of biosynthesized SeNPs was proved by ultraviolet-visible, Fourier transform infrared, X-ray diffractometer, Field Emission Scanning Electron Microscopy, Dynamic light scattering, and Zeta potential methods. The cytotoxicity effect of SeNPs was investigated by MTT assay. Disk diffusion agar (DDA) and minimum inhibitory concentration (MIC) tests were performed on the mentioned bacteria using different classes of standard antibiotics and SeNPs separately. The impact of SeNPs combined with the desired antibiotics for better treatment of these infections was evaluated by checkerboard assay to determine the synergism effect. After the confirmation results based on the biosynthesis of SeNPs, both standard bacterial strains were susceptible to SeNPs and had a zone of inhibition using the DDA test. Also, the results of MICs showed that biosynthesized SeNPs in lower concentrations than antibiotics cause no growth of bacteria. On the other hand, according to the checkerboard assay, SeNPs had a synergistic effect with conventional antibiotics. The antibacterial sensitivity tests demonstrated the inhibition of bacterial growth in the presence of lower concentrations of SeNPs than common antibiotics. This property can be exerted in future applications to solve the drug resistance obstacle of microorganisms in bacterial diseases.
Collapse
Affiliation(s)
- Shadi Zeraatkar
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Tahan
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Nazari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Qom, Iran
| | - Mostafa Behmadi
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
23
|
Joshi NC, Negi T, Gururani P. Papaya ( Carica papaya) leaves extract based synthesis, characterizations and antimicrobial activities of CeO 2 nanoparticles (CeO 2 NPs). INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2166068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Naveen Chandra Joshi
- Material Science & Nanotechnology Lab, Research & Development, Uttaranchal University, Dehradun, India
| | - Tripti Negi
- Department of Chemistry, Uttaranchal University, Dehradun, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| |
Collapse
|
24
|
Long Q, Cui LK, He SB, Sun J, Chen QZ, Bao HD, Liang TY, Liang BY, Cui LY. Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Sci Rep 2023; 13:53. [PMID: 36593245 PMCID: PMC9807572 DOI: 10.1038/s41598-022-26396-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium is an essential micronutrient element. For the extremely biotoxic of selenite, Selenium nanoparticles (SeNPs) is gaining increasing interest. In this work, a selenium-enriched strain with highly selenite-resistant (up to 173 mmol/L) was isolated from the local specialty food of longevity area and identified as Paenibacillus motobuensis (P. motobuensis) LY5201. Most of the SeNPs were accumulated extracellular. SeNPs were around spherical with a diameter of approximately 100 nm. The X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that the purified SeNPs consisted of selenium and proteins. Our results suggested that P. motobuensis LY5201could be a suitable and robust biocatalyst for SeNPs synthesis. In addition, the cytotoxicity effect and the anti-invasive activity of SeNPs on the HepG2 showed an inhibitory effect on HepG2, indicating that SeNPs could be used as a potential anticancer drug.
Collapse
Affiliation(s)
- Qian Long
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Guangxi AIDS Clinical Treatment Center (Nanning), No. 1 Erli, Changgang Road, Nanning, 530023, Guangxi, People's Republic of China
| | - Lan-Kun Cui
- School of History and Archive, Yunnan University, Kunming, 650000, Yunnan, People's Republic of China
| | - Sheng-Bin He
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jian Sun
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Quan-Zhi Chen
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Hao-Dong Bao
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Teng-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Bao-Yue Liang
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Lan-Yu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
25
|
Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol 2022; 13:1015613. [PMID: 36620021 PMCID: PMC9816870 DOI: 10.3389/fmicb.2022.1015613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022] Open
Abstract
Heavy metal accumulation and pathogenic bacteria cause adverse effects on aquaculture. The active surface of selenium (Se) nanoparticles can mitigate these effects. The present study used Se-resistant Bacillus subtilis AS12 to fabricate biological Se nanoparticles (Bio-SeNPs). The double-edged Bio-SeNPs were tested for their ability to reduce the harmful effects of heavy metals and bacterial load in Nile tilapia (Oreochromis niloticus) and their respective influences on fish growth, behavior, and health. The Bio-SeNPs have a spherical shape with an average size of 77 nm and high flavonoids and phenolic content (0.7 and 1.9 g g-1 quercetin and gallic acid equivalents, respectively), resulting in considerable antioxidant and antibacterial activity. The Bio-SeNPs (3-5 μg ml-1) in the current study resolved two serious issues facing the aquaculture industry, firstly, the population of pathogenic bacteria, especially Aeromonas hydrophilia, which was reduced by 28-45% in fish organs. Secondly, heavy metals (Cd and Hg) at two levels (1 and 2 μg ml-1) were reduced by 50-87% and 57-73% in response to Bio-SeNPs (3-5 μg ml-1). Thus, liver function parameters were reduced, and inner immunity was enhanced. The application of Bio-SeNPs (3-5 μg ml-1) improved fish gut health, growth, and behavior, resulting in fish higher weight gain by 36-52% and a 40% specific growth rate, compared to controls. Furthermore, feeding and arousal times increased by 20-22% and 28-53%, respectively, while aggression time decreased by 78% compared to the control by the same treatment. In conclusion, Bio-SeNPs can mitigate the accumulation of heavy metals and reduce the bacterial load in a concentration-dependent manner, either in the fish media or fish organs.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamad I. Sultan-Alolama
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Department of Health, Research and Innovation Center, Zayed Complex for Herbal Research and Traditional Medicine, Abu Dhabi, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates,Harry Butler Institute, Murdoch University, Murdoch, WA, Australia,*Correspondence: Khaled A. El-Tarabily,
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Biogenic Nanoparticles Obtained by the Fungi-Mediated Synthesis: A Review. Biomimetics (Basel) 2022; 8:biomimetics8010001. [PMID: 36648787 PMCID: PMC9844505 DOI: 10.3390/biomimetics8010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungi are very promising biological objects for the green synthesis of nanoparticles. Biogenic synthesis of nanoparticles using different mycological cultures and substances obtained from them is a promising, easy and environmentally friendly method. By varying the synthesis conditions, the same culture can be used to produce nanoparticles with different sizes, shapes, stability in colloids and, therefore, different biological activity. Fungi are capable of producing a wide range of biologically active compounds and have a powerful enzymatic system that allows them to form nanoparticles of various chemical elements. This review attempts to summarize and provide a comparative analysis of the currently accumulated data, including, among others, our research group's works, on the variety of the characteristics of the nanoparticles produced by various fungal species, their mycelium, fruiting bodies, extracts and purified fungal metabolites.
Collapse
Affiliation(s)
| | - Elena P. Vetchinkina
- Correspondence: ; Tel.: +7-8452-970-444 or +7-8452-970-383; Fax: +7-8452-970-383
| | | |
Collapse
|
27
|
Haddadian A, Robattorki FF, Dibah H, Soheili A, Ghanbarzadeh E, Sartipnia N, Hajrasouliha S, Pasban K, Andalibi R, Ch MH, Azari A, Chitgarzadeh A, Kashtali AB, Mastali F, Noorbazargan H, Mirzaie A. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci Rep 2022; 12:21938. [PMID: 36536030 PMCID: PMC9763330 DOI: 10.1038/s41598-022-26400-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted drug delivery and increasing the biological activity of drugs is one of the recent challenges of pharmaceutical researchers. Niosomes are one of the new targeted drug delivery systems that enhances the biological properties of drugs. In this study, for the first time, the green synthesis of selenium nanoparticles (SeNPs), and its loading into niosome was carried out to increase the anti-bacterial and anti-cancer activity of SeNPs. Different formulations of noisome-loaded SeNPs were prepared, and the physical and chemical characteristics of the prepared niosomes were investigated. The antibacterial and anti-biofilm effects of synthesized niosomes loaded SeNPs and free SeNPs against standard pathogenic bacterial strains were studied, and also its anticancer activity was investigated against breast cancer cell lines. The expression level of apoptotic genes in breast cancer cell lines treated with niosome-loaded SeNPs and free SeNPs was measured. Also, to evaluate the biocompatibility of the synthesized niosomes, their cytotoxicity effects against the human foreskin fibroblasts normal cell line (HFF) were studied using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results illustrated that the optimal formulation had an average size of 177.9 nm, a spherical shape, and an encapsulation efficiency of 37.58%. Also, the results revealed that the release rate of SeNPs from niosome-loaded SeNPs and free SeNPs was 61.26% and 100%, respectively, in 72 h. Also, our findings demonstrated that the niosome-loaded SeNPs have significant antibacterial, anti-biofilm, and anticancer effects compared to the free SeNPs. In addition, niosome-loaded SeNPs can upregulate the expression level of Bax, cas3, and cas9 apoptosis genes while the expression of the Bcl2 gene is down-regulated in all studied cell lines, significantly. Also, the results of the MTT test indicated that the free niosome has no significant cytotoxic effects against the HFF cell line which represents the biocompatibility of the synthesized niosomes. In general, based on the results of this study, it can be concluded that niosomes-loaded SeNPs have significant anti-microbial, anti-biofilm, and anti-cancer effects, which can be used as a suitable drug delivery system.
Collapse
Affiliation(s)
- Abbas Haddadian
- grid.411463.50000 0001 0706 2472Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- grid.412266.50000 0001 1781 3962Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Ali Soheili
- grid.412112.50000 0001 2012 5829Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ghanbarzadeh
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasrin Sartipnia
- grid.411463.50000 0001 0706 2472Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Shadi Hajrasouliha
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Kamal Pasban
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Romina Andalibi
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Mojtaba Hedayati Ch
- grid.411874.f0000 0004 0571 1549Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arezou Azari
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aliasghar Bagheri Kashtali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Mastali
- grid.411463.50000 0001 0706 2472Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hassan Noorbazargan
- grid.411600.2Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mirzaie
- grid.460834.d0000 0004 0417 6855Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
28
|
Saleh AK, El-Gendi H, El-Fakharany EM, Owda ME, Awad MA, Kamoun EA. Exploitation of cantaloupe peels for bacterial cellulose production and functionalization with green synthesized Copper oxide nanoparticles for diverse biological applications. Sci Rep 2022; 12:19241. [PMID: 36357532 PMCID: PMC9649720 DOI: 10.1038/s41598-022-23952-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The promising features of most bacterial celluloses (BC) promote the continuous mining for a cost-effective production approach toward wide and sustainable applications. Herein, cantaloupe peels (CP) were successfully implemented for sustainable BC production. Results indicated that the enzymatically hydrolyzed CP supported the maximum BC production of approximately 3.49 g/L when used as a sole fermentation media. The produced BC was fabricated with polyvinyl alcohol (PVA) and chitosan (Ch), and loaded with green synthesized copper oxide nanoparticles (CuO-NPs) to improve its biological activity. The novel composite showed an antimicrobial activity against several human pathogens such as Staphylococcus aureus, Streptococcus mutans, Salmonella typhimurium, Escherichia coli, and Pseudomonas fluorescens. Furthermore, the new composite revealed a significant in vitro anticancer activity against colon (Caco-2), hepatocellular (HepG-2), and breast (MDA) cancer cells, with low IC50 of 0.48, 0.27, and 0.33 mg/mL for the three cell lines, respectively. On the other hand, the new composite was remarkably safe for human skin fibroblast (HSF) with IC50 of 1.08 mg/mL. Interestingly, the composite membranes exhibited lethal effects against all stages of larval instar and pupal stage compared with the control. In this study, we first report the diverse potential applications of BC/PVA/Ch/CuO-NPs composites based on green synthesized CuO-NPs and sustainably produced BC membrane.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Post 12622, Dokki, Giza, Egypt.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Medhat E Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed A Awad
- Zoology and Entomology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, 11837, Cairo, Egypt
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
29
|
Fouda A, Al-Otaibi WA, Saber T, AlMotwaa SM, Alshallash KS, Elhady M, Badr NF, Abdel-Rahman MA. Antimicrobial, Antiviral, and In-Vitro Cytotoxicity and Mosquitocidal Activities of Portulaca oleracea-Based Green Synthesis of Selenium Nanoparticles. J Funct Biomater 2022; 13:jfb13030157. [PMID: 36135592 PMCID: PMC9504135 DOI: 10.3390/jfb13030157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The aqueous extract of Portulaca oleracea was used as a biocatalyst for the reduction of Na2SeO3 to form Se-NPs that appeared red in color and showed maximum surface plasmon resonance at a wavelength of 266 nm, indicating the successful Phyto-fabrication of Se-NPs. A FT-IR chart clarified the role of plant metabolites such as proteins, carbohydrates, and amino acids in capping and stabilizing Se-NPs. TEM, SAED, and XRD analyses indicated the formation of spherical, well-arranged, and crystalline Se-NPs with sizes in the range of 2-22 nm. SEM-EDX mapping showed the maximum peaks of Se at 1.4, 11.3, and 12.4 KeV, with weight and atomic percentages of 36.49 and 30.39%, respectively. A zeta potential of -43.8 mV also indicated the high stability of the synthesized Se-NPs. The Phyto-synthesized Se-NPs showed varied biological activities in a dose-dependent manner, including promising activity against pathogenic bacteria and Candida species with varied MIC values in the range of 12.5-50 µg·mL-1. Moreover, the Se-NPs showed antiviral activity toward HAV and Cox-B4, with percentages of 70.26 and 62.58%, respectively. Interestingly, Se-NPs showed a target orientation to cancer cell lines (HepG2) with low IC50 concentration at 70.79 ± 2.2 µg·mL-1 compared to normal cell lines (WI-38) with IC50 at165.5 ± 5.4 µg·mL-1. Moreover, the as-formed Se-NPs showed high activity against various instar larvae I, II, III, and IV of Culex pipiens, with the highest mortality percentages of 89 ± 3.1, 73 ± 1.2, 68 ± 1.4, and 59 ± 1.0%, respectively, at 50 mg L-1. Thus, P. oleracea-based Se-NPs would be strong potential antimicrobial, anti-viral, anti-cancer, and anti-insect agents in the pharmaceutical and biomedical industries.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.F.); (M.A.A.-R.); Tel.: +20-111-335-1244 (A.F.); +20-109-148-5138 (M.A.A.-R.)
| | - Waad A. Al-Otaibi
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sahar M. AlMotwaa
- Department of Chemistry, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Khalid S. Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
| | - Mohamed Elhady
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Naglaa Fathi Badr
- Department of Zoology and Entomology, Faculty of Science (Girls’ Brunch), Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (A.F.); (M.A.A.-R.); Tel.: +20-111-335-1244 (A.F.); +20-109-148-5138 (M.A.A.-R.)
| |
Collapse
|
30
|
Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering (Basel) 2022; 9:bioengineering9090452. [PMID: 36134998 PMCID: PMC9495838 DOI: 10.3390/bioengineering9090452] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022] Open
Abstract
In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.
Collapse
|
31
|
Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste. J Funct Biomater 2022; 13:jfb13030112. [PMID: 35997450 PMCID: PMC9397004 DOI: 10.3390/jfb13030112] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411, 208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts. In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal, and insecticidal activities, which can be used in biomedical and environmental applications.
Collapse
|
32
|
Hammad EN, Salem SS, Mohamed AA, El-Dougdoug W. Environmental Impacts of Ecofriendly Iron Oxide Nanoparticles on Dyes Removal and Antibacterial Activity. Appl Biochem Biotechnol 2022; 194:6053-6067. [PMID: 35881227 DOI: 10.1007/s12010-022-04105-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 12/13/2022]
Abstract
Biosynthesized nanoparticles have a promising future since they are a more environmentally friendly, cost-effective, repeatable, and energy-efficient technique than physical or chemical synthesis. In this work, Purpureocillium lilacinum was used to synthesize iron oxide nanoparticles (Fe2O3-NPs). Characterization of mycosynthesized Fe2O3-NPs was done by using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) analysis. UV-vis gave characteristic surface plasmon resonance (SPR) peak for Fe2O3-NPs at 380 nm. TEM image reveals that the morphology of biosynthesized Fe2O3-NPs was hexagonal, and their size range between 13.13 and 24.93 nm. From the XRD analysis, it was confirmed the crystalline nature of Fe2O3 with average size 57.9 nm. Further comparative study of photocatalytic decolorization of navy blue (NB) and safranin (S) using Fe2O3-NPs was done. Fe2O3-NPs exhibited potential catalytic activity with a reduction of 49.3% and 66% of navy blue and safranin, respectively. Further, the antimicrobial activity of Fe2O3-NPs was analyzed against pathogenic bacteria (Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus). The Fe2O3-NPs were clearly more effective on gram-positive bacteria (S. aureus and B. subtilis) than gram-negative bacteria (E. coli and P. aeruginosa). Thus, the mycosynthesized Fe2O3-NPs exhibited an ecofriendly, sustainable, and effective route for decolorization of navy blue and safranin dyes and antibacterial activity.
Collapse
Affiliation(s)
- Eman N Hammad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt.,Department of Chemistry, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Asem A Mohamed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Wagdi El-Dougdoug
- Department of Chemistry, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
33
|
Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci Rep 2022; 12:11834. [PMID: 35821239 PMCID: PMC9276666 DOI: 10.1038/s41598-022-15903-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023] Open
Abstract
Selenium nanoparticles (Se-NPs) has recently received great attention over owing to their superior optical properties and wide biological and biomedical applications. Herein, crystallographic and dispersed spherical Se-NPs were green synthesized using endophytic fungal strain, Penicillium crustosum EP-1. The antimicrobial, anticancer, and catalytic activities of biosynthesized Se-NPs were investigated under dark and light (using Halogen tungsten lamp, 100 Watt, λ > 420 nm, and light intensity of 2.87 W m−2) conditions. The effect of Se-NPs was dose dependent and higher activities against Gram-positive and Gram-negative bacteria as well different Candida spp. were attained in the presence of light than obtained under dark conditions. Moreover, the viabilities of two cancer cells (T47D and HepG2) were highly decreased from 95.8 ± 2.9% and 93.4 ± 3.2% in dark than those of 84.8 ± 2.9% and 46.4 ± 3.3% under light-irradiation conditions, respectively. Significant decreases in IC50 values of Se-NPs against T47D and HepG2 were obtained at 109.1 ± 3.8 and 70.4 ± 2.5 µg mL−1, respectively in dark conditions than 19.7 ± 7.2 and 4.8 ± 4.2 µg mL−1, respectively after exposure to light-irradiation. The photoluminescence activity of Se-NPs revealed methylene blue degradation efficiency of 89.1 ± 2.1% after 210 min under UV-irradiation compared to 59.7 ± 0.2% and 68.1 ± 1.03% in dark and light conditions, respectively. Moreover, superior stability and efficient MB degradation efficiency were successfully achieved for at least five cycles.
Collapse
|
34
|
Długosz O, Chmielowiec-Korzeniowska A, Drabik A, Tymczyna L, Banach M. Bioactive Selenium Nanoparticles Synthesized from Propolis Extract and Quercetin Based on Natural Deep Eutectic Solvents (NDES). J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). SUSTAINABLE MATERIALS AND TECHNOLOGIES 2022; 32:e00433. [PMCID: PMC8996440 DOI: 10.1016/j.susmat.2022.e00433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 07/20/2023]
Abstract
Selenium sulphide is a well-known bioactive chemical, but its preparation in nanometric form stabilised in water has not been widely reported. In the article, extracts of cinnamon, curcumin, and pepper obtained using natural deep eutectic solvents (NDES) were used to obtain stable selenium sulphide nanoparticles. The analysis confirmed that selenium sulphide nanoparticles with an average crystallite size of 28–44 nm and a particle size of approximately 500 nm were successfully synthesised. The use of NDES stabilised the SeS2 nanoparticles and increased their bioactivity towards microorganisms. The obtained systems revealed high biocidal and antiviral activity against S. aureus, E. coli, P. aeruginosa, and C. albicans strains, Human influenza virus A/H1N1, and Betacoronavirus 1 (Human coronavirus HCoV-OC43). The SeS2 nanoparticles obtained in the NDES extract of curcuma strongly inhibited the growth of pathogenic fungi and bacteria with minimum biocidal concentration (MBC) values of 117.2, 117.2, 117.2, and 468.8 mg/dm3 against E. coli, P. aeruginosa, S. aureus, and C. albicans, respectively. The suspensions containing selenium sulphide nanoparticles stabilised by spice extracts were also highly active against influenza viruses and B-coronavirus, showing a reduction of over 99%.
Collapse
|
36
|
Martínez-Esquivias F, Guzmán-Flores JM, Perez-Larios A. Antimicrobial activity of green synthesized Se nanoparticles using ginger and onion extract: a laboratory and in silico analysis. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2088432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fernando Martínez-Esquivias
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| | - Alejandro Perez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingenierías, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Mexico
| |
Collapse
|
37
|
Salem SS, Badawy MSEM, Al-Askar AA, Arishi AA, Elkady FM, Hashem AH. Green Biosynthesis of Selenium Nanoparticles Using Orange Peel Waste: Characterization, Antibacterial and Antibiofilm Activities against Multidrug-Resistant Bacteria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060893. [PMID: 35743924 PMCID: PMC9227136 DOI: 10.3390/life12060893] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/13/2022]
Abstract
There is an increase of pathogenic multidrug-resistant bacteria globally due to the misuse of antibiotics. Recently, more scientists used metal nanoparticles to counteract antibacterial resistance. In this study, orange peel waste (OPW) was used for selenium nanoparticles’ (Se-NPs) biosynthesis through the green and ecofriendly method, and their applications as antibacterial and antibiofilm agents. Green biosynthesized Se-NPs were characterized using FTIR, XRD, SEM, EDAX, and TEM. Characterization results revealed that biosynthesized Se-NPs were highly crystalline, spherical, and polydisperse, and had sizes in the range of 16–95 nm. The biosynthesized Se-NPs were evaluated as antibacterial and antibiofilm activities against multidrug-resistant bacteria. Results illustrated that Se-NPs exhibited potential antibacterial activity against Gram-positive bacteria (S. aureus ATCC 29213 and biofilm-producing clinical isolates of S. aureus) and Gram-negative bacteria (Pseudomonas aeruginosa PAO1, MDR, biofilm, and quorum-sensing and producing clinical isolates of MDR P. aeruginosa, MDR E. coli, and K. pneumonia). Moreover, results illustrated that S. aureus ATCC 29213 was the most sensitive bacteria to Se-NPs at 1000 µg/mL, where the inhibition zone was 35 mm and MIC was 25 µg/mL. Furthermore, Se-NPs at 0.25 and 0.5 MIC decreased the biofilm significantly. The largest inhibition of biofilm was noticed in MDR K. pneumonia, which was 62% and 92% at 0.25 and 0.5 MIC, respectively. In conclusion, Se-NPs were successfully biosynthesized using OPW through the green method and had promising antibacterial and antibiofilm activity against multidrug-resistant bacteria, which can be used later in fighting resistant bacteria.
Collapse
Affiliation(s)
- Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Correspondence: (S.S.S.); (A.A.A.-A.); (A.H.H.)
| |
Collapse
|
38
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
39
|
A Review on Biogenic Synthesis of Selenium Nanoparticles and Its Biological Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02366-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Garza-García JJO, Hernández-Díaz JA, Zamudio-Ojeda A, León-Morales JM, Guerrero-Guzmán A, Sánchez-Chiprés DR, López-Velázquez JC, García-Morales S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol Trace Elem Res 2022; 200:2528-2548. [PMID: 34328614 DOI: 10.1007/s12011-021-02847-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an essential micronutrient for diverse organisms such as mammals, bacteria, some insects and nematodes, archaea, and algae, as it is involved in a large number of physiological and metabolic processes and is part of approximately 25 selenoproteins in mammals. In plants, Se has no essential metabolic role, high concentrations of inorganic Se can lead to the formation of Se-amino acids, and its incorporation into selenoproteins can generate toxicity. Conversely, low doses of Se can trigger a variety of beneficial effects as an antioxidant, antimicrobial, or stress-modulating agent without being an essential element. Therefore, Se can generate toxicity depending on the dose and the chemical form in which it is supplied. Selenium nanoparticles (SeNPs) have emerged as an approach to reduce this negative effect and improve its biological properties. In turn, SeNPs have a wide range of potential advantages, making them an alternative for areas such as agriculture and food technology. This review focuses on the use of SeNPs and their different applications as antimicrobial agents, growth promoters, crop biofortification, and nutraceuticals in agriculture. In addition, the utilization of SeNPs in the generation of packaging with antioxidant and antimicrobial traits and Se enrichment of animal source foods for human consumption as part of food technology is addressed. Additionally, possible action mechanisms and potential adverse effects are discussed. The concentration, size, and synthesis method of SeNPs are determining factors of their biological properties.
Collapse
Affiliation(s)
- Jorge J O Garza-García
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - José A Hernández-Díaz
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Adalberto Zamudio-Ojeda
- Physics, Universidad de Guadalajara, Boulevard Gral. Marcelino García Barragán 1421, 44430, Jalisco, Guadalajara, México
| | - Janet M León-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México
| | - Andrea Guerrero-Guzmán
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - David R Sánchez-Chiprés
- Veterinary Sciences Division, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, 4520, México
| | - Julio C López-Velázquez
- Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, 45019, Zapopan, Jalisco, México
| | - Soledad García-Morales
- Plant Biotechnology, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero 1227, Zapopan, Jalisco, 45019, México.
| |
Collapse
|
41
|
Shaheen TI, Abdelhameed MF, Zaghloul S, Montaser AS. In vivo assessment of the durable, green and in situ bio-functional cotton fabrics based carboxymethyl chitosan nanohybrid for wound healing application. Int J Biol Macromol 2022; 209:485-497. [PMID: 35398385 DOI: 10.1016/j.ijbiomac.2022.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC). In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers. Results affirmed that the treatment of CC with 10% of CMCs was adequate to achieve the highest swelling ratio which, in turns, is able to in situ deposition of AgNPs with a size range of 2-10 nm onto CC/CMCs rendering them a highly durable antibacterial activity against both Gram +Ve and Gram -Ve bacteria, which had a bacterial reduction of 98% to 86% after 20 washing cycles. Furthermore, the in vivo study revealed effectively the advantageous uses of the cotton functionalized with AgNPs compared to CC/CMCs in wound healing via alleviating the oxidative stress and promoting hyaluronic acid in wounded skin as well as increasing RUNX2 in healed skin tissues.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mohamed F Abdelhameed
- Department of Pharmacology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Saad Zaghloul
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - A S Montaser
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
42
|
Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 2022; 167:105544. [DOI: 10.1016/j.micpath.2022.105544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
43
|
El-Sayed ESR, Mousa SA, Abdou DA, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci 2022; 29:2463-2474. [PMID: 35531225 PMCID: PMC9072909 DOI: 10.1016/j.sjbs.2021.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Developing a suitable applicative process and scaling up the microbial synthesis of nanomaterials is an attractive and emerging prospect for a future sustainable industrial production. In this paper, optimization of fermentation conditions for enhanced production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic A. terreus ORG-1 was studied. Different cultivation conditions were evaluated. Then, a response surface methodology program was used to optimize physical conditions controlling the biosynthesis of these NPs. Finally, the use of gamma irradiation for improvement of NPs’ production was adopted. Under the optimum conditions and after gamma irradiation, the final yields of the respective NPs reached 545.71, 651.67, 463.19, 954.88, 1356.42 mg L−1. To the best of our knowledge, this is the first report on the production and enhancement of different types of nanomaterials from one microbial culture that can open up the way towards the industrialization of the microbial production of nanomaterials.
Collapse
|
44
|
Morad MY, El-Sayed H, Elhenawy AA, Korany SM, Aloufi AS, Ibrahim AM. Myco-Synthesized Molluscicidal and Larvicidal Selenium Nanoparticles: A New Strategy to Control Biomphalaria alexandrina Snails and Larvae of Schistosoma mansoni with an In Silico Study on Induced Oxidative Stress. J Fungi (Basel) 2022; 8:jof8030262. [PMID: 35330264 PMCID: PMC8952376 DOI: 10.3390/jof8030262] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is a tropical disease with socioeconomic problems. The goal of this study was to determine the influence of myco-synthesized nano-selenium (SeNPs) as a molluscicide on Biomphlaria alexandrina snails, with the goal of reducing disease spread via non-toxic routes. In this study, Penicillium chrysogenum culture filtrate metabolites were used as a reductant for selenium ions to form nano-selenium. The SeNPs were characterized via UV-Vis spectrophotometer, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD). Myco-synthesized SeNPs had a significant molluscicidal effect on B. alexandrina snails after 96 h of exposure at a concentration of 5.96 mg/L. SeNPs also had miracidicidal and cercaricidal properties against S. mansoni. Some alterations were observed in the hemocytes of snails exposed to SeNPs, including the formation of pseudopodia and an increasing number of granules. Furthermore, lipid peroxide, nitric oxide (NO), malondialdehyde (MDA), and glutathione s-transferase (GST) increased significantly in a dose-dependent manner, while superoxide dismutase (SOD) decreased. The comet assay revealed that myco-synthesized SeNPs could cause breaks in the DNA levels. In silico study revealed that SeNPs had promising antioxidant properties. In conclusion, myco-synthesized SeNPs have the potential to be used as molluscicides and larvicides.
Collapse
Affiliation(s)
- Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt;
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Chemistry Department, Faculty of Science and Art, Al Baha University, Mukhwah, Al Baha 6531, Saudi Arabia
| | - Shereen M. Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
- Correspondence:
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza 12411, Egypt;
| |
Collapse
|
45
|
Vundela SR, Kalagatur NK, Nagaraj A, Kadirvelu K, Chandranayaka S, Kondapalli K, Hashem A, Abd_Allah EF, Poda S. Multi-Biofunctional Properties of Phytofabricated Selenium Nanoparticles From Carica papaya Fruit Extract: Antioxidant, Antimicrobial, Antimycotoxin, Anticancer, and Biocompatibility. Front Microbiol 2022; 12:769891. [PMID: 35250900 PMCID: PMC8892101 DOI: 10.3389/fmicb.2021.769891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
The present study focused on phytofabrication of selenium nanoparticles (SeNPs) from Carica papaya extract and exploration of their multi-biofunctional features. Total phenolics and flavonoids of C. papaya fruit extract were determined as 23.30 ± 1.88 mg gallic acid equivalents and 19.21 ± 0.44 mg quercetin equivalents per gram, respectively, which suggested that C. papaya fruit extract could be a competitive reducing and stabilizing agent during phytofabrication of nanoparticles. UV-Vis and FTIR spectroscopy showed the formation of SeNPs from sodium selenite, which could be related to the reducing and stabilizing activities of C. papaya fruit extract. The SeNPs were found to be stable with a Zeta potential of -32 mV. The average hydrodynamic size of SeNPs was found as 159 nm by dynamic light scattering. The SeNPs showed a broader XRD pattern with no sharp Bragg's peaks and found to be amorphous. SEM showed that SeNPs were spherical in shape and EDX pattern showed that SeNPs were made up of Se (71.81%), C (11.41%), and O (14.88%). The HR-TEM picture showed that SeNPs were spherical in morphology and have a size range of 101-137 nm. The SeNPs exhibited potent antioxidant activity and their EC50 values (effective concentration required to inhibit 50% of radicals) were 45.65 ± 2.01 and 43.06 ± 3.80 μg/ml in DPPH and ABTS assays, respectively. The antimicrobial action of SeNPs was found as a broad spectrum and suppressed microbial pathogens in ascending order: fungi > Gram-positive bacteria > Gram-negative bacteria. The SeNPs have been demonstrated to reduce the growth and ochratoxin A (OTA) of mycotoxigenic Aspergillus ochraceus and Penicillium verrucosum at 40 μg/ml in broth culture, which is noteworthy. The SeNPs reduced cancer cell proliferation (RAW 264.7, Caco-2, MCF-7, and IMR-32) more preferentially than normal cells (Vero), found to be highly biocompatible. Lower doses of SeNPs (up to 50 μg/ml) were shown to be less toxic and did not cause death in Danio rerio (zebrafish) embryos, implying that lower doses of SeNPs could be beneficial for biological purposes. The present study concluded that phytofabricated SeNPs have multiple biofunctional properties, including antioxidant, antimicrobial, antimycotoxin, and anticancer activities, as well as high biocompatibility.
Collapse
Affiliation(s)
| | | | - Anusuya Nagaraj
- Department of Biochemistry, Bharathiar University, Coimbatore, India
| | | | | | - Kasturi Kondapalli
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sudhakar Poda
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| |
Collapse
|
46
|
Salem SS, Ali OM, Reyad AM, Abd-Elsalam KA, Hashem AH. Pseudomonas indica-Mediated Silver Nanoparticles: Antifungal and Antioxidant Biogenic Tool for Suppressing Mucormycosis Fungi. J Fungi (Basel) 2022; 8:jof8020126. [PMID: 35205879 PMCID: PMC8874487 DOI: 10.3390/jof8020126] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucormycosis is considered one of the most dangerous invasive fungal diseases. In this study, a facile, green and eco-friendly method was used to biosynthesize silver nanoparticles (AgNPs) using Pseudomonas indica S. Azhar, to combat fungi causing mucormycosis. The biosynthesis of AgNPs was validated by a progressive shift in the color of P. indica filtrate from colorless to brown, as well as the identification of a distinctive absorption peak at 420 nm using UV-vis spectroscopy. Fourier-transform infrared spectroscopy (FTIR) results indicated the existence of bioactive chemicals that are responsible for AgNP production. AgNPs with particle sizes ranging from 2.4 to 53.5 nm were discovered using transmission electron microscopy (TEM). Pattern peaks corresponding to the 111, 200, 220, 311, and 222 planes, which corresponded to face-centered cubic forms of metallic silver, were also discovered using X-ray diffraction (XRD). Moreover, antifungal activity measurements of biosynthesized AgNPs against Rhizopus Microsporus, Mucor racemosus, and Syncephalastrum racemosum were carried out. Results of antifungal activity analysis revealed that the biosynthesized AgNPs exhibited outstanding antifungal activity against all tested fungi at a concentration of 400 µg/mL, where minimum inhibitory concentrations (MIC) were 50, 50, and 100 µg/mL toward R. microsporus, S. racemosum, and M. racemosus respectively. In addition, the biosynthesized AgNPs revealed antioxidant activity, where IC50 was 31 µg/mL when compared to ascorbic acid (0.79 µg/mL). Furthermore, the biosynthesized AgNPs showed no cytotoxicity on the Vero normal cell line. In conclusion, the biosynthesized AgNPs in this study can be used as effective antifungals with safe use, particularly for fungi causing mucormycosis.
Collapse
Affiliation(s)
- Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif 21944, Saudi Arabia
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Ahmed M. Reyad
- Biology Department, Faculty of Science, Jazan University, Jazan 82817, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Centre, Giza 12619, Egypt
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Correspondence: (O.M.A.); (K.A.A.-E.); (A.H.H.)
| |
Collapse
|
47
|
El-Hefnawy ME, Alhayyani S, El-Sherbiny MM, Sakran MI, El-Newehy MH. Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds. Polymers (Basel) 2022; 14:318. [PMID: 35054723 PMCID: PMC8779972 DOI: 10.3390/polym14020318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than -30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively.
Collapse
Affiliation(s)
- Mohamed E. El-Hefnawy
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sultan Alhayyani
- Department of Chemistry, Rabigh College of Sciences and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohsen M. El-Sherbiny
- Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed I. Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47731, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed H. El-Newehy
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Adibian F, Ghaderi RS, Sabouri Z, Davoodi J, Kazemi M, Ghazvini K, Youssefi M, Soleimanpour S, Darroudi M. Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. Biometals 2022; 35:147-158. [PMID: 35018556 DOI: 10.1007/s10534-021-00356-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
The interest of many has been attracted by plant-mediated synthesizing procedures for nanoparticles since they provide certain qualities including being cost-effective, quick, and compatible with the environment. In this regard, this work introduces the production of selenium-nanoparticles (Se-NPs) in a biological manner utilizing aqueous extracts of Rosmarinus officinalis (R. officinalis). Production of Se-NPs was confirmed using UV-visible (UV-Vis) spectrophotometry. Also, dynamic light scattering (DLS) analysis was used for determination particle size distribution, while we distinguished the identification of crystalline construction of nanoparticles through the means of X-ray diffraction (XRD) pattern, DLS, and transmission electron microscopy (TEM) examination indicated that Se-NPs are often spherical with a size about 20 to 40 nm. The minimum inhibitory concentration (MIC) of the synthesized Se-NPs by R. officinalis extract against Mycobacterium tuberculosis (M. tuberculosis), Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) was 256, 16, 32, 128, and 64 µg/mL, respectively. The synthesized Se-NPs had no significant effect on Mycobacterium simiae (M. simiae) and had exhibited a strong antimicrobial functionality towards the gram-positive and gram-negative bacteria and can stand as a potent antibacterial agent.
Collapse
Affiliation(s)
- Fatemeh Adibian
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roya Saddat Ghaderi
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javid Davoodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Monireh Kazemi
- Chemistry Department, Payame Noor University, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Bio-fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens. Appl Biochem Biotechnol 2022; 194:1898-1910. [DOI: 10.1007/s12010-022-03809-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
|
50
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|