1
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Mackey-Alfonso SE, Butler MJ, Taylor AM, Williams-Medina AR, Muscat SM, Fu H, Barrientos RM. Short-term high fat diet impairs memory, exacerbates the neuroimmune response, and evokes synaptic degradation via a complement-dependent mechanism in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 121:56-69. [PMID: 39043341 DOI: 10.1016/j.bbi.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by profound memory impairments, synaptic loss, neuroinflammation, and hallmark pathological markers. High-fat diet (HFD) consumption increases the risk of developing AD even after controlling for metabolic syndrome, pointing to a role of the diet itself in increasing risk. In AD, the complement system, an arm of the immune system which normally tags redundant or damaged synapses for pruning, becomes pathologically overactivated leading to tagging of healthy synapses. While the unhealthy diet to AD link is strong, the underlying mechanisms are not well understood in part due to confounding variables associated with long-term HFD which can independently influence the brain. Therefore, we experimented with a short-term diet regimen to isolate the diet's impact on brain function without causing obesity. This project investigated the effect of short-term HFD on 1) memory, 2) neuroinflammation including complement, 3) AD pathology markers, 4) synaptic markers, and 5) in vitro microglial synaptic phagocytosis in the 3xTg-AD mouse model. Following the consumption of either standard chow or HFD, 3xTg-AD and non-Tg mice were tested for memory impairments. In a separate cohort of mice, levels of hippocampal inflammatory markers, complement proteins, AD pathology markers, and synaptic markers were measured. For the last set of experiments, BV2 microglial phagocytosis of synapses was evaluated. Synaptoneurosomes isolated from the hippocampus of 3xTg-AD mice fed chow or HFD were incubated with equal numbers of BV2 microglia. The number of BV2 microglia that phagocytosed synaptoneurosomes was tracked over time with a live-cell imaging assay. Finally, we incubated BV2 microglia with a complement receptor inhibitor (NIF) and repeated the assay. Behavioral analysis showed 3xTg-AD mice had significantly impaired long-term contextual and cued fear memory compared to non-Tg mice that was further impaired by HFD. HFD significantly increased inflammatory markers and complement expression while decreasing synaptic marker expression only in 3xTg-AD mice, without altering AD pathology markers. Synaptoneurosomes from HFD-fed 3xTg-AD mice were phagocytosed at a significantly higher rate than those from chow-fed mice, suggesting the synapses were altered by HFD. The complement receptor inhibitor blocked this effect in a dose-dependent manner, demonstrating the HFD-mediated increase in phagocytosis was complement dependent. This study indicates HFD consumption increases neuroinflammation and over-activates the complement cascade in 3xTg-AD mice, resulting in poorer memory. The in vitro data point to complement as a potential mechanistic culprit and therapeutic target underlying HFD's influence in increasing cognitive vulnerability to AD.
Collapse
Affiliation(s)
- Sabrina E Mackey-Alfonso
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA; Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Michael J Butler
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Ashton M Taylor
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | | | - Stephanie M Muscat
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Kim H, Kang S, Go GW. Exploring the multifaceted role of ginkgolides and bilobalide from Ginkgo biloba in mitigating metabolic disorders. Food Sci Biotechnol 2024; 33:2903-2917. [PMID: 39234277 PMCID: PMC11370650 DOI: 10.1007/s10068-024-01656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 09/06/2024] Open
Abstract
The ancient Ginkgo biloba tree grows across various regions, with distinctive leaves emitting a unique fragrance. Its extract contains flavonoids, organic acids, and terpenoids. Ginkgolide and bilobalide, which are G. biloba leaf extracts, offer diverse pharmaceutical benefits, including antioxidant, anti-inflammatory, and neuroprotective properties. The antioxidant and anti-inflammatory properties of these compounds are crucial for mitigating neurodegeneration, particularly in diseases such as Alzheimer's disease. Additionally, their effectiveness in countering oxidative stress and inflammation highlights their potential to prevent cardiovascular ailments. This study also suggests that these compounds have a promising impact on lipid metabolism, suggesting their significance in addressing obesity-related metabolic disorders. In conclusion, ginkgolides and bilobalide exhibit promising effects in sustaining the integrity of the nervous and endocrine systems, along with the modulation of lipid metabolism. The diverse health benefits suggest that these compounds could serve as promising therapeutic interventions for various conditions, including neurological, cardiovascular, and metabolic diseases.
Collapse
Affiliation(s)
- Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
4
|
Ge TQ, Guan PP, Wang P. Complement 3a induces the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms during the development and progression of Alzheimer's disease. Neurosci Biobehav Rev 2024; 165:105868. [PMID: 39218048 DOI: 10.1016/j.neubiorev.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing β-amyloid protein (Aβ). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aβ, leading to the deposition of Aβ and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aβ and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.
Collapse
Affiliation(s)
- Tong-Qi Ge
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China; College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
5
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
6
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Javalgekar M, Jupp B, Vivash L, O'Brien TJ, Wright DK, Jones NC, Ali I. Inflammasomes at the crossroads of traumatic brain injury and post-traumatic epilepsy. J Neuroinflammation 2024; 21:172. [PMID: 39014496 PMCID: PMC11250980 DOI: 10.1186/s12974-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.
Collapse
Affiliation(s)
- Mohit Javalgekar
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Bianca Jupp
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Lucy Vivash
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - David K Wright
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Nigel C Jones
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| | - Idrish Ali
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| |
Collapse
|
8
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
9
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
10
|
Singh R, Panghal A, Jadhav K, Thakur A, Verma RK, Singh C, Goyal M, Kumar J, Namdeo AG. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04256-8. [PMID: 38809370 DOI: 10.1007/s12035-024-04256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Changes in the transition metal homeostasis in the brain are closely linked with Alzheimer's disease (AD), including intraneuronal iron accumulation and extracellular copper and zinc pooling in the amyloid plague. The brain copper, zinc, and iron surplus are commonly acknowledged characteristics of AD, despite disagreements among some. This has led to the theory that oxidative stress resulting from abnormal homeostasis of these transition metals may be a causative explanation behind AD. In the nervous system, the interaction of metals with proteins appears to be an essential variable in the development or suppression of neurodegeneration. Chelation treatment may be an option for treating neurodegeneration induced by transition metal ion dyshomeostasis. Some clinicians even recommend using chelating agents as an adjunct therapy for AD. The current review also looks at the therapeutic strategies that have been attempted, primarily with metal-chelating drugs. Metal buildup in the nervous system, as reported in the AD, could be the result of compensatory mechanisms designed to improve metal availability for physiological functions.
Collapse
Affiliation(s)
- Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institutes of Nano Science and Technology (INST), Sector 81. Mohali, Punjab, 140306, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Archna Panghal
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Krishna Jadhav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ashima Thakur
- Faculty of Pharmaceutical Sciences, ICFAI University, Baddi, Distt. Solan, Himachal Pradesh, 174103, India
| | - Rahul Kumar Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Charan Singh
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Manoj Goyal
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| | - Jayant Kumar
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India.
| | - Ajay G Namdeo
- Department of Pharmaceutical Sciences Hemwati, Nandan Bahuguna Garhwal University (A Central University), Srinagar, Dist. Garhwal (Uttarakhand), 246174, India
| |
Collapse
|
11
|
Saleki K, Mojtahedi Z, Ulrichs T, Mahdavi M, Azadmehr A. Editorial: Neuroimmune cell signaling in COVID-19. Front Immunol 2024; 15:1429908. [PMID: 38846941 PMCID: PMC11153806 DOI: 10.3389/fimmu.2024.1429908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Timo Ulrichs
- Institute for Research in International Assistance, Akkon University for Human Sciences, Berlin, Germany
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Abbas Azadmehr
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
12
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
14
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
15
|
Leão Batista Simões J, Webler Eichler S, Raitz Siqueira ML, de Carvalho Braga G, Bagatini MD. Amyotrophic Lateral Sclerosis in Long-COVID Scenario and the Therapeutic Potential of the Purinergic System in Neuromodulation. Brain Sci 2024; 14:180. [PMID: 38391754 PMCID: PMC10886908 DOI: 10.3390/brainsci14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) involves the degeneration of motor neurons and debilitating and possibly fatal symptoms. The COVID-19 pandemic directly affected the quality of life of this group, and the SARS-CoV-2 infection accelerated the present neuroinflammatory process. Furthermore, studies indicate that the infection may have led to the development of the pathology. Thus, the scenario after this pandemic presents "long-lasting COVID" as a disease that affects people who have been infected. From this perspective, studying the pathophysiology behind ALS associated with SARS-CoV-2 infection and possible supporting therapies becomes necessary when we understand the impact on the quality of life of these patients. Thus, the purinergic system was trained to demonstrate how its modulation can add to the treatment, reduce disease progression, and result in better prognoses. From our studies, we highlight the P2X7, P2X4, and A2AR receptors and how their activity can directly influence the ALS pathway.
Collapse
Affiliation(s)
| | | | | | | | - Margarete Dulce Bagatini
- Graduate Program in Medical Sciences, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
16
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
17
|
Gao Y, Cai L, Wu Y, Jiang M, Zhang Y, Ren W, Song Y, Li L, Lei Z, Wu Y, Zhu L, Li J, Li D, Li G, Luo C, Tao L. Emerging functions and therapeutic targets of IL-38 in central nervous system diseases. CNS Neurosci Ther 2024; 30:e14550. [PMID: 38334236 PMCID: PMC10853902 DOI: 10.1111/cns.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 02/10/2024] Open
Abstract
Interleukin (IL)-38 is a newly discovered cytokine of the IL-1 family, which binds various receptors (i.e., IL-36R, IL-1 receptor accessory protein-like 1, and IL-1R1) in the central nervous system (CNS). The hallmark physiological function of IL-38 is competitive binding to IL-36R, as does the IL-36R antagonist. Emerging research has shown that IL-38 is abnormally expressed in the serum and brain tissue of patients with ischemic stroke (IS) and autism spectrum disorder (ASD), suggesting that IL-38 may play an important role in neurological diseases. Important advances include that IL-38 alleviates neuromyelitis optica disorder (NMOD) by inhibiting Th17 expression, improves IS by protecting against atherosclerosis via regulating immune cells and inflammation, and reduces IL-1β and CXCL8 release through inhibiting human microglial activity post-ASD. In contrast, IL-38 mRNA is markedly increased and is mainly expressed in phagocytes in spinal cord injury (SCI). IL-38 ablation attenuated SCI by reducing immune cell infiltration. However, the effect and underlying mechanism of IL-38 in CNS diseases remain inadequately characterized. In this review, we summarize the biological characteristics, pathophysiological role, and potential mechanisms of IL-38 in CNS diseases (e.g., NMOD, Alzheimer's disease, ASD, IS, TBI, and SCI), aiming to explore the therapeutic potential of IL-38 in the prevention and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yulu Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Min Jiang
- Department of Forensic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Wenjing Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Yirui Song
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Lili Li
- Department of Child and Adolescent HealthcareChildren's Hospital of Soochow UniversitySuzhouChina
| | - Ziguang Lei
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Youzhuang Wu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luwen Zhu
- Department of Forensic ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Dongya Li
- Department of OrthopedicsThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Guohong Li
- Department of NeurosurgeryPennsylvania State University College of MedicineState CollegePennsylvaniaUSA
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
18
|
Mohamed-Mohamed H, García-Morales V, Sánchez Lara EM, González-Acedo A, Pardo-Moreno T, Tovar-Gálvez MI, Melguizo-Rodríguez L, Ramos-Rodríguez JJ. Physiological Mechanisms Inherent to Diabetes Involved in the Development of Dementia: Alzheimer's Disease. Neurol Int 2023; 15:1253-1272. [PMID: 37873836 PMCID: PMC10594452 DOI: 10.3390/neurolint15040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease reaching pandemic levels worldwide. In parallel, Alzheimer's disease (AD) and vascular dementia (VaD) are the two leading causes of dementia in an increasingly long-living Western society. Numerous epidemiological studies support the role of T2D as a risk factor for the development of dementia. However, few basic science studies have focused on the possible mechanisms involved in this relationship. On the other hand, this review of the literature also aims to explore the relationship between T2D, AD and VaD. The data found show that there are several alterations in the central nervous system that may be promoting the development of T2D. In addition, there are some mechanisms by which T2D may contribute to the development of neurodegenerative diseases such as AD or VaD.
Collapse
Affiliation(s)
- Himan Mohamed-Mohamed
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Victoria García-Morales
- Physiology Area, Department of Biomedicine, Biotechnology and Public Health, Faculty of Medicine, University of Cádiz, Pl. Falla, 9, 11003 Cádiz, Spain
| | - Encarnación María Sánchez Lara
- Department of Personalidad, Evaluación y Tratamiento Psicológico, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Anabel González-Acedo
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Teresa Pardo-Moreno
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - María Isabel Tovar-Gálvez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Lucía Melguizo-Rodríguez
- Department of Nursing, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences of Ceuta, University of Granada, 51001 Ceuta, Spain
| |
Collapse
|
19
|
Zeng T, Li J, Xie L, Dong Z, Chen Q, Huang S, Xie S, Lai Y, Li J, Yan W, Wang Y, Xie Z, Hu C, Zhang J, Kuang S, Song Y, Gao L, Lv Z. Nrf2 regulates iron-dependent hippocampal synapses and functional connectivity damage in depression. J Neuroinflammation 2023; 20:212. [PMID: 37735410 PMCID: PMC10512501 DOI: 10.1186/s12974-023-02875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Neuronal iron overload contributes to synaptic damage and neuropsychiatric disorders. However, the molecular mechanisms underlying iron deposition in depression remain largely unexplored. Our study aims to investigate how nuclear factor-erythroid 2 (NF-E2)-related factor 2 (Nrf2) ameliorates hippocampal synaptic dysfunction and reduces brain functional connectivity (FC) associated with excessive iron in depression. We treated mice with chronic unpredictable mild stress (CUMS) with the iron chelator deferoxamine mesylate (DFOM) and a high-iron diet (2.5% carbonyl iron) to examine the role of iron overload in synaptic plasticity. The involvement of Nrf2 in iron metabolism and brain function was assessed using molecular biological techniques and in vivo resting-state functional magnetic resonance imaging (rs-fMRI) through genetic deletion or pharmacologic activation of Nrf2. The results demonstrated a significant correlation between elevated serum iron levels and impaired hippocampal functional connectivity (FC), which contributed to the development of depression-induced CUMS. Iron overload plays a crucial role in CUMS-induced depression and synaptic dysfunction, as evidenced by the therapeutic effects of a high-iron diet and DFOM. The observed iron overload in this study was associated with decreased Nrf2 levels and increased expression of transferrin receptors (TfR). Notably, inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Nrf2-/- mice exhibited compromised FC within the limbic system and the basal ganglia, particularly in the hippocampus, and inhibition of iron accumulation effectively attenuated CUMS-induced synaptic damage mediated by downregulation of brain-derived neurotrophic factor (BDNF). Activation of Nrf2 restored iron homeostasis and reversed vulnerability to depression. Mechanistically, we further identified that Nrf2 deletion promoted iron overload via upregulation of TfR and downregulation of ferritin light chain (FtL), leading to BDNF-mediated synapse damage in the hippocampus. Therefore, our findings unveil a novel role for Nrf2 in regulating iron homeostasis while providing mechanistic insights into poststress susceptibility to depression. Targeting Nrf2-mediated iron metabolism may offer promising strategies for developing more effective antidepressant therapies.
Collapse
Affiliation(s)
- Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
- Department of Brain Diseases, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Lingpeng Xie
- Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jun Li
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - YuHua Wang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Jiayi Zhang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China
| | - Yuhong Song
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University (SMU), Sha Tai Nan Road No. 1063, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
20
|
Xia Y, Xiao Y, Wang ZH, Liu X, Alam AM, Haran JP, McCormick BA, Shu X, Wang X, Ye K. Bacteroides Fragilis in the gut microbiomes of Alzheimer's disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat Commun 2023; 14:5471. [PMID: 37673907 PMCID: PMC10482867 DOI: 10.1038/s41467-023-41283-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
Gut dysbiosis contributes to Alzheimer's disease (AD) pathogenesis, and Bacteroides strains are selectively elevated in AD gut microbiota. However, it remains unknown which Bacteroides species and how their metabolites trigger AD pathologies. Here we show that Bacteroides fragilis and their metabolites 12-hydroxy-heptadecatrienoic acid (12-HHTrE) and Prostaglandin E2 (PGE2) activate microglia and induce AD pathogenesis in neuronal C/EBPβ transgenic mice. Recolonization of antibiotics cocktail-pretreated Thy1-C/EBPβ transgenic mice with AD patient fecal samples elicits AD pathologies, associated with C/EBPβ/Asparaginyl endopeptidase (AEP) pathway upregulation, microglia activation, and cognitive disorders compared to mice receiving healthy donors' fecal microbiota transplantation (FMT). Microbial 16S rRNA sequencing analysis shows higher abundance of proinflammatory Bacteroides fragilis in AD-FMT mice. Active components characterization from the sera and brains of the transplanted mice revealed that both 12-HHTrE and PGE2 activate primary microglia, fitting with poly-unsaturated fatty acid (PUFA) metabolites enrichment identified by metabolomics. Strikingly, recolonization with live but not dead Bacteroides fragilis elicited AD pathologies in Thy1-C/EBPβ transgenic mice, so did 12-HHTrE or PGE2 treatment alone. Collectively, our findings support a causal role for Bacteroides fragilis and the PUFA metabolites in activating microglia and inducing AD pathologies in Thy1- C/EBPβ transgenic mice.
Collapse
Affiliation(s)
- Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China
| | - Yifan Xiao
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ashfaqul M Alam
- University of Kentucky, Microbiology, Immunology & Molecular Genetics Office - MN 376, Medical Science Building, 800 Rose Street, Lexington, KY, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Beth A McCormick
- Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Xiji Shu
- School of Medicine, Jianghan University, Wuhan, HB, 430056, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neurodegeneration, Nantong University, Nantong, Jiangsu, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
21
|
Islamie R, Myint SLL, Rojanaratha T, Ritthidej G, Wanakhachornkrai O, Wattanathamsan O, Rodsiri R. Neuroprotective effect of nose-to-brain delivery of Asiatic acid in solid lipid nanoparticles and its mechanisms against memory dysfunction induced by Amyloid Beta 1-42 in mice. BMC Complement Med Ther 2023; 23:294. [PMID: 37608290 PMCID: PMC10464452 DOI: 10.1186/s12906-023-04125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Amyloid-β1-42 (Aβ1-42) plays an essential role in the development of the early stage of Alzheimer's disease (AD). Asiatic acid (AA), an active compound in Centella asiatica L, exhibit neuroprotective properties in previous studies. Due to its low bioavailability, the nose-to-brain delivery technique was used to enhance AA penetration in the brain. In this study, AA was also loaded in solid lipid nanoparticles (SLNs) as a strategy to increase its absorption in the nasal cavity. METHODS Memory impairment was induced via direct intracerebroventricular injection of Aβ1-42 oligomer into mouse brain. The neuroprotective effect and potential underlying mechanisms were investigated using several memory behavioral examinations and molecular techniques. RESULTS The intranasal administration of AA in SLNs attenuated learning and memory impairment induced by Aβ1-42 in Morris water maze and novel object recognition tests. AA significantly inhibited tau hyperphosphorylation of pTau-S396 and pTau-T231 and prevented astrocyte reactivity and microglial activation in the hippocampus of Aβ1-42-treated mice. It is also decreased the high levels of IL-1β, TNF-α, and malondialdehyde (MDA) in mouse brain. CONCLUSIONS These results suggested that nose-to-brain delivery of AA in SLNs could be a promising strategy to treat the early stage of AD.
Collapse
Affiliation(s)
- Ridho Islamie
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Su Lwin Lwin Myint
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Oraphan Wanakhachornkrai
- Physiology Unit, Department of Medical Sciences, Faculty of Sciences, Rangsit University, Pathumthani, 12000, Thailand
| | - Onsurang Wattanathamsan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
22
|
Li S, Lu C, Zhao Z, Lu D, Zheng G. Uncovering neuroinflammation-related modules and potential repurposing drugs for Alzheimer's disease through multi-omics data integrative analysis. Front Aging Neurosci 2023; 15:1161405. [PMID: 37333458 PMCID: PMC10272561 DOI: 10.3389/fnagi.2023.1161405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Neuroinflammation is one of the key factors leading to neuron death and synapse dysfunction in Alzheimer's disease (AD). Amyloid-β (Aβ) is thought to have an association with microglia activation and trigger neuroinflammation in AD. However, inflammation response in brain disorders is heterogenous, and thus, it is necessary to unveil the specific gene module of neuroinflammation caused by Aβ in AD, which might provide novel biomarkers for AD diagnosis and help understand the mechanism of the disease. Methods Transcriptomic datasets of brain region tissues from AD patients and the corresponding normal tissues were first used to identify gene modules through the weighted gene co-expression network analysis (WGCNA) method. Then, key modules highly associated with Aβ accumulation and neuroinflammatory response were pinpointed by combining module expression score and functional information. Meanwhile, the relationship of the Aβ-associated module to the neuron and microglia was explored based on snRNA-seq data. Afterward, transcription factor (TF) enrichment and the SCENIC analysis were performed on the Aβ-associated module to discover the related upstream regulators, and then a PPI network proximity method was employed to repurpose the potential approved drugs for AD. Results A total of 16 co-expression modules were primarily obtained by the WGCNA method. Among them, the green module was significantly correlated with Aβ accumulation, and its function was mainly involved in neuroinflammation response and neuron death. Thus, the module was termed the amyloid-β induced neuroinflammation module (AIM). Moreover, the module was negatively correlated with neuron percentage and showed a close association with inflammatory microglia. Finally, based on the module, several important TFs were recognized as potential diagnostic biomarkers for AD, and then 20 possible drugs including ibrutinib and ponatinib were picked out for the disease. Conclusion In this study, a specific gene module, termed AIM, was identified as a key sub-network of Aβ accumulation and neuroinflammation in AD. Moreover, the module was verified as having an association with neuron degeneration and inflammatory microglia transformation. Moreover, some promising TFs and potential repurposing drugs were presented for AD based on the module. The findings of the study shed new light on the mechanistic investigation of AD and might make benefits the treatment of the disease.
Collapse
Affiliation(s)
- Shensuo Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changhao Lu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zhenzhen Zhao
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangyong Zheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Arjmandi-Rad S, Ebrahimnejad M, Zarrindast MR, Vaseghi S. Do Sleep Disturbances have a Dual Effect on Alzheimer's Disease? Cell Mol Neurobiol 2023; 43:711-727. [PMID: 35568778 DOI: 10.1007/s10571-022-01228-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, PO Box: 1419815477, Karaj, Iran.
| |
Collapse
|
24
|
Webberley TS, Bevan RJ, Kerry-Smith J, Dally J, Michael DR, Thomas S, Rees M, Morgan JE, Marchesi JR, Good MA, Plummer SF, Wang D, Hughes TR. Assessment of Lab4P Probiotic Effects on Cognition in 3xTg-AD Alzheimer's Disease Model Mice and the SH-SY5Y Neuronal Cell Line. Int J Mol Sci 2023; 24:ijms24054683. [PMID: 36902113 PMCID: PMC10003662 DOI: 10.3390/ijms24054683] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Aging and metabolic syndrome are associated with neurodegenerative pathologies including Alzheimer's disease (AD) and there is growing interest in the prophylactic potential of probiotic bacteria in this area. In this study, we assessed the neuroprotective potential of the Lab4P probiotic consortium in both age and metabolically challenged 3xTg-AD mice and in human SH-SY5Y cell culture models of neurodegeneration. In mice, supplementation prevented disease-associated deteriorations in novel object recognition, hippocampal neurone spine density (particularly thin spines) and mRNA expression in hippocampal tissue implying an anti-inflammatory impact of the probiotic, more notably in the metabolically challenged setting. In differentiated human SH-SY5Y neurones challenged with β-Amyloid, probiotic metabolites elicited a neuroprotective capability. Taken together, the results highlight Lab4P as a potential neuroprotective agent and provide compelling support for additional studies in animal models of other neurodegenerative conditions and human studies.
Collapse
Affiliation(s)
- Thomas S. Webberley
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
- Correspondence:
| | - Ryan J. Bevan
- UK Dementia Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF10 4HQ, UK
| | - Joshua Kerry-Smith
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Jordanna Dally
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Daryn R. Michael
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Sophie Thomas
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| | - Meg Rees
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF10 4HQ, UK
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Mark A. Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Sue F. Plummer
- Cultech Limited, Unit 2 Christchurch Road, Baglan Industrial Park, Port Talbot SA12 7BZ, UK
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Timothy R. Hughes
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XW, UK
| |
Collapse
|
25
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer's Disease and Dementia. Antioxidants (Basel) 2023; 12:antiox12020316. [PMID: 36829875 PMCID: PMC9952323 DOI: 10.3390/antiox12020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress and neuroinflammation are important processes involved in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1-42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1-42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
26
|
Faridar A, Vasquez M, Thome AD, Yin Z, Xuan H, Wang JH, Wen S, Li X, Thonhoff JR, Zhao W, Zhao H, Beers DR, Wong STC, Masdeu JC, Appel SH. Ex vivo expanded human regulatory T cells modify neuroinflammation in a preclinical model of Alzheimer's disease. Acta Neuropathol Commun 2022; 10:144. [PMID: 36180898 PMCID: PMC9524037 DOI: 10.1186/s40478-022-01447-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Regulatory T cells (Tregs) play a neuroprotective role by suppressing microglia and macrophage-mediated inflammation and modulating adaptive immune reactions. We previously documented that Treg immunomodulatory mechanisms are compromised in Alzheimer’s disease (AD). Ex vivo expansion of Tregs restores and amplifies their immunosuppressive functions in vitro. A key question is whether adoptive transfer of ex vivo expanded human Tregs can suppress neuroinflammation and amyloid pathology in a preclinical mouse model. Methods An immunodeficient mouse model of AD was generated by backcrossing the 5xFAD onto Rag2 knockout mice (5xFAD-Rag2KO). Human Tregs were expanded ex vivo for 24 days and administered to 5xFAD-Rag2KO. Changes in amyloid burden, microglia characteristics and reactive astrocytes were evaluated using ELISA and confocal microscopy. NanoString Mouse AD multiplex gene expression analysis was applied to explore the impact of ex vivo expanded Tregs on the neuroinflammation transcriptome. Results Elimination of mature B and T lymphocytes and natural killer cells in 5xFAD-Rag2KO mice was associated with upregulation of 95 inflammation genes and amplified number of reactive microglia within the dentate gyrus. Administration of ex vivo expanded Tregs reduced amyloid burden and reactive glial cells in the dentate gyrus and frontal cortex of 5xFAD-Rag2KO mice. Interrogation of inflammation gene expression documented down-regulation of pro-inflammatory cytokines (IL1A&B, IL6), complement cascade (C1qa, C1qb, C1qc, C4a/b), toll-like receptors (Tlr3, Tlr4 and Tlr7) and microglial activations markers (CD14, Tyrobp,Trem2) following Treg administration. Conclusions Ex vivo expanded Tregs with amplified immunomodulatory function, suppressed neuroinflammation and alleviated AD pathology in vivo. Our results provide preclinical evidences for Treg cell therapy as a potential treatment strategy in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40478-022-01447-z.
Collapse
Affiliation(s)
- Alireza Faridar
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Matthew Vasquez
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Aaron D Thome
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Zheng Yin
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Hui Xuan
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Jing Hong Wang
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Shixiang Wen
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, USA
| | - Jason R Thonhoff
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Weihua Zhao
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Hong Zhao
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - David R Beers
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stephen T C Wong
- Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, USA
| | - Joseph C Masdeu
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA
| | - Stanley H Appel
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, 6560 Fannin Street, Suite ST-802, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Sonidegib Suppresses Production of Inflammatory Mediators and Cell Migration in BV2 Microglial Cells and Mice Treated with Lipopolysaccharide via JNK and NF-κB Inhibition. Int J Mol Sci 2022; 23:ijms231810590. [PMID: 36142500 PMCID: PMC9503982 DOI: 10.3390/ijms231810590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Our structure-based virtual screening of the FDA-approved drug library has revealed that sonidegib, a smoothened antagonist clinically used to treat basal cell carcinoma, is a potential c-Jun N-terminal kinase 3 (JNK3) inhibitor. This study investigated the binding of sonidegib to JNK3 via 19F NMR and its inhibitory effect on JNK phosphorylation in BV2 cells. Pharmacological properties of sonidegib to exert anti-inflammatory and anti-migratory effects were also characterized. We found that sonidegib bound to the ATP binding site of JNK3 and inhibited JNK phosphorylation in BV2 cells, confirming our virtual screening results. Sonidegib also inhibited the phosphorylation of MKK4 and c-Jun, the upstream and downstream signals of JNK, respectively. It reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), and nitric oxide (NO), and the expression of inducible NO synthase and cyclooxygenase-2. The LPS-induced cell migration was suppressed by sonidegib. Sonidegib inhibited the LPS-induced IκBα phosphorylation, thereby blocking NF-κB nuclear translocation. Consistent with these findings, orally administered sonidegib attenuated IL-6 and TNF-α levels in the brains of LPS-treated mice. Collectively, our results indicate that sonidegib suppresses inflammation and cell migration in LPS-treated BV2 cells and mice by inhibiting JNK and NF-κB signaling. Therefore, sonidegib may be implicated for drug repurposing to alleviate neuroinflammation associated with microglial activation.
Collapse
|
28
|
Zamore Z, Veasey SC. Neural consequences of chronic sleep disruption. Trends Neurosci 2022; 45:678-691. [PMID: 35691776 PMCID: PMC9388586 DOI: 10.1016/j.tins.2022.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022]
Abstract
Recent studies in both humans and animal models call into question the completeness of recovery after chronic sleep disruption. Studies in humans have identified cognitive domains particularly vulnerable to delayed or incomplete recovery after chronic sleep disruption, including sustained vigilance and episodic memory. These findings, in turn, provide a focus for animal model studies to critically test the lasting impact of sleep loss on the brain. Here, we summarize the human response to sleep disruption and then discuss recent findings in animal models examining recovery responses in circuits pertinent to vigilance and memory. We then propose pathways of injury common to various forms of sleep disruption and consider the implications of this injury in aging and in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zachary Zamore
- Chronobiology and Sleep Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sigrid C Veasey
- Chronobiology and Sleep Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial Damage-Associated Molecular Patterns Content in Extracellular Vesicles Promotes Early Inflammation in Neurodegenerative Disorders. Cells 2022; 11:2364. [PMID: 35954208 PMCID: PMC9367540 DOI: 10.3390/cells11152364] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a common hallmark in different neurodegenerative conditions that share neuronal dysfunction and a progressive loss of a selectively vulnerable brain cell population. Alongside ageing and genetics, inflammation, oxidative stress and mitochondrial dysfunction are considered key risk factors. Microglia are considered immune sentinels of the central nervous system capable of initiating an innate and adaptive immune response. Nevertheless, the pathological mechanisms underlying the initiation and spread of inflammation in the brain are still poorly described. Recently, a new mechanism of intercellular signalling mediated by small extracellular vesicles (EVs) has been identified. EVs are nanosized particles (30-150 nm) with a bilipid membrane that carries cell-specific bioactive cargos that participate in physiological or pathological processes. Damage-associated molecular patterns (DAMPs) are cellular components recognised by the immune receptors of microglia, inducing or aggravating neuroinflammation in neurodegenerative disorders. Diverse evidence links mitochondrial dysfunction and inflammation mediated by mitochondrial-DAMPs (mtDAMPs) such as mitochondrial DNA, mitochondrial transcription factor A (TFAM) and cardiolipin, among others. Mitochondrial-derived vesicles (MDVs) are a subtype of EVs produced after mild damage to mitochondria and, upon fusion with multivesicular bodies are released as EVs to the extracellular space. MDVs are particularly enriched in mtDAMPs which can induce an immune response and the release of pro-inflammatory cytokines. Importantly, growing evidence supports the association between mitochondrial dysfunction, EV release and inflammation. Here, we describe the role of extracellular vesicles-associated mtDAMPS in physiological conditions and as neuroinflammation activators contributing to neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Sandra Mota
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| | - Carla Lopes
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| |
Collapse
|
30
|
Abstract
Innate and adaptive immunity are essential for neurodevelopment and central nervous system (CNS) homeostasis; however, the fragile equilibrium between immune and brain cells can be disturbed by any immune dysregulation and cause detrimental effects. Accumulating evidence indicates that, despite the blood-brain barrier (BBB), overactivation of the immune system leads to brain vulnerability that increases the risk of neuropsychiatric disorders, particularly upon subsequent exposure later in life. Disruption of microglial function in later life can be triggered by various environmental and psychological factors, including obesity-driven chronic low-grade inflammation and gut dysbiosis. Increased visceral adiposity has been recognized as an important risk factor for multiple neuropsychiatric conditions. The review aims to present our current understanding of the topic.
Collapse
|
31
|
Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol 2022; 13:855006. [PMID: 35603184 PMCID: PMC9120941 DOI: 10.3389/fimmu.2022.855006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is recognized as a life-threatening multi-organ dysfunction resulting from a dysregulated host response to infection. Although the incidence and mortality of sepsis decrease significantly due to timely implementation of anti-infective and support therapies, accumulating evidence suggests that a great proportion of survivors suffer from long-term cognitive impairment after hospital discharge, leading to decreased life quality and substantial caregiving burdens for family members. Several mechanisms have been proposed for long-term cognitive impairment after sepsis, which are not mutually exclusive, including blood-brain barrier disruption, neuroinflammation, neurotransmitter dysfunction, and neuronal loss. Targeting these critical processes might be effective in preventing and treating long-term cognitive impairment. However, future in-depth studies are required to facilitate preventive and/or treatment strategies for long-term cognitive impairment after sepsis.
Collapse
Affiliation(s)
- Ying Li
- Department of Anesthesiology, Jiangyin Hospital, Affiliated to Southeast University Medical School, Jiangyin, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Löscher W, Howe CL. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front Mol Neurosci 2022; 15:870868. [PMID: 35615063 PMCID: PMC9125338 DOI: 10.3389/fnmol.2022.870868] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022] Open
Abstract
Seizures are a common presenting symptom during viral infections of the central nervous system (CNS) and can occur during the initial phase of infection ("early" or acute symptomatic seizures), after recovery ("late" or spontaneous seizures, indicating the development of acquired epilepsy), or both. The development of acute and delayed seizures may have shared as well as unique pathogenic mechanisms and prognostic implications. Based on an extensive review of the literature, we present an overview of viruses that are associated with early and late seizures in humans. We then describe potential pathophysiologic mechanisms underlying ictogenesis and epileptogenesis, including routes of neuroinvasion, viral control and clearance, systemic inflammation, alterations of the blood-brain barrier, neuroinflammation, and inflammation-induced molecular reorganization of synapses and neural circuits. We provide clinical and animal model findings to highlight commonalities and differences in these processes across various neurotropic or neuropathogenic viruses, including herpesviruses, SARS-CoV-2, flaviviruses, and picornaviruses. In addition, we extensively review the literature regarding Theiler's murine encephalomyelitis virus (TMEV). This picornavirus, although not pathogenic for humans, is possibly the best-characterized model for understanding the molecular mechanisms that drive seizures, epilepsy, and hippocampal damage during viral infection. An enhanced understanding of these mechanisms derived from the TMEV model may lead to novel therapeutic interventions that interfere with ictogenesis and epileptogenesis, even within non-infectious contexts.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Charles L. Howe
- Division of Experimental Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Pilat D, Paumier JM, García-González L, Louis L, Stephan D, Manrique C, Khrestchatisky M, Di Pasquale E, Baranger K, Rivera S. MT5-MMP promotes neuroinflammation, neuronal excitability and Aβ production in primary neuron/astrocyte cultures from the 5xFAD mouse model of Alzheimer’s disease. J Neuroinflammation 2022; 19:65. [PMID: 35277173 PMCID: PMC8915472 DOI: 10.1186/s12974-022-02407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1β)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1β tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation.
Methods
To test this hypothesis, we used 11–14 day in vitro primary cortical cultures from wild type, MT5-MMP−/−, 5xFAD and 5xFAD/MT5-MMP−/− mice, and evaluated the impact of MT5-MMP deficiency and IL-1β treatment for 24 h, by performing whole cell patch-clamp recordings, RT-qPCR, western blot, gel zymography, ELISA, immunocytochemistry and adeno-associated virus (AAV)-mediated transduction.
Results
5xFAD cells showed higher levels of MT5-MMP than wild type, concomitant with higher basal levels of inflammatory mediators. Moreover, MT5-MMP-deficient cultures had strong decrease of the inflammatory response to IL-1β, as well as decreased stability of recombinant IL-1β. The levels of amyloid beta peptide (Aβ) were similar in 5xFAD and wild-type cultures, and IL-1β treatment did not affect Aβ levels. Instead, the absence of MT5-MMP significantly reduced Aβ by more than 40% while sparing APP metabolism, suggesting altogether no functional crosstalk between IL-1β and APP/Aβ, as well as independent control of their levels by MT5-MMP. The lack of MT5-MMP strongly downregulated the AAV-induced neuronal accumulation of the C-terminal APP fragment, C99, and subsequently that of Aβ. Finally, MT5-MMP deficiency prevented basal hyperexcitability observed in 5xFAD neurons, but not hyperexcitability induced by IL-1β treatment.
Conclusions
Neuroinflammation and hyperexcitability precede Aβ accumulation in developing neural cells with nascent expression of AD transgenes. MT5-MMP deletion is able to tune down basal neuronal inflammation and hyperexcitability, as well as APP/Aβ metabolism. In addition, MT5-MMP deficiency prevents IL-1β-mediated effects in brain cells, except hyperexcitability. Overall, this work reinforces the idea that MT5-MMP is at the crossroads of pathogenic AD pathways that are already incipiently activated in developing neural cells, and that targeting MT5-MMP opens interesting therapeutic prospects.
Collapse
|
34
|
Cheng P, Zhang R, Shan S, Yuan B, Chen J, Qiu Z, Du Y. Novel IL1RAP mutation associated with schizophrenia interferes with neuronal growth and related NF-κB signal pathways. Neurosci Lett 2022; 775:136533. [PMID: 35181481 DOI: 10.1016/j.neulet.2022.136533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a complex, severe psychiatric disorder with a high heritability that affects approximately 1% of the world's population. Numerous schizophrenia-related risk genes have been reported in large-scale studies, but the role of most genetic abnormalities in the pathogenesis of the disease is still obscure. In this study, using whole-exome sequencing, we identified a novel nonsense mutation c.1324C>T in the Interleukin 1 receptor accessory protein (IL1RAP) gene in four affected individuals with schizophrenia of a Chinese family.IL1RAP was found involved in initiating the immune responses and regulating synaptic formation. Considering that schizophrenia has been hypothesized to be neurodevelopment disorder for decades, we further explored the influence of altered expression of IL1RAP gene on neuronal growth, and assessed whether this mutation affects the function of IL1RAP protein in IL-1 signaling pathway. We used lentivirus-mediated shRNA to knockdown the IL1RAP gene expression, which suppressed the axon and dendrites growth of cultured mouse cortical neurons. These defects can be recovered by human IL1RAP wild type construct, but not the R442* mutant construct. Furthermore, this mutant even inhibited neuronal growth and IL-1β-induced JNK phosphorylation when overexpressed in cortical neurons. Although overexpression of this mutant in HePG2 cells did not change IL1RAP protein expression, it partially prohibited the IL-1β-induced nuclear translocation of transcript factor NF-κB, indicating that IL1RAP c.1324C>T is a loss-of-function mutation. Our findings show that IL1RAP plays an important role in early stages of neurodevelopment, and the mutation c.1324C>T may contribute to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ran Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shifang Shan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China
| | - Jinlong Chen
- Institute of Pediatrics, Children's Hospital, Institutes for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031,China.
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
35
|
Protective Effects of Ginkgolide on a Cellular Model of Alzheimer's Disease via Suppression of the NF-κB Signaling Pathway. Appl Biochem Biotechnol 2022; 194:2448-2464. [PMID: 35129804 PMCID: PMC9117391 DOI: 10.1007/s12010-022-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
NF-κB signaling has been reported to play a key regulatory role in the pathogenesis of Alzheimer’s disease (AD). The purpose of this study is to investigate the effects of ginkgolide on cell viability in an AD cellular model involving an APP/PS1 double gene-transfected HEK293 cell line (APP/PS1-HEK293) and further explore the mechanisms of action related to NF-κB signaling. The optimal time point and concentration of ginkgolide for cell proliferation were screened using a cell counting kit-8 assay. Based on the results, an in vitro study was performed by co-culture of APP/PS1-HEK293 with different dosages of ginkgolide, followed by an enzyme-linked immunosorbent assay to measure the levels of supernatant tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, as well as western blotting and real-time polymerase chain reaction to detect intracellular protein and mRNA expression of NF-κB p65, IκBa, Bcl-2, and Bax. APP/PS1-HEK293 cells exhibited the highest cell viability at a concentration of 100 µg/ml after 48 h of treatment with ginkgolide. The supernatant levels of TNF-α, IL-1β, and IL-6 in the high-dosage ginkgolide-treated groups were lower than those in the control group. Compared with the control group, there were decreased intracellular protein and mRNA expression of NF-κB p65 and Bax, but increased protein and mRNA expression of IκBa in both high-dosage and low-dosage groups. Ginkgolide may enhance cell viability, indicative of its neuroprotective effects on AD, at least partially via suppression of the NF-κB signaling pathway involving anti-apoptosis and anti-inflammation mechanisms. Therefore, ginkgolide might be a promising therapeutic agent against AD.
Collapse
|
36
|
Durão ACCDS, Brandão WN, Bruno V, W. Spelta LE, Duro SDO, Barreto dos Santos N, Paranhos BAPB, Zanluqui NG, Yonamine M, Pierre Schatzmann Peron J, Munhoz CD, Marcourakis T. In Utero Exposure to Environmental Tobacco Smoke Increases Neuroinflammation in Offspring. FRONTIERS IN TOXICOLOGY 2022; 3:802542. [PMID: 35295109 PMCID: PMC8915864 DOI: 10.3389/ftox.2021.802542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022] Open
Abstract
The embryonic stage is the most vulnerable period for congenital abnormalities. Due to its prolonged developmental course, the central nervous system (CNS) is susceptible to numerous genetic, epigenetic, and environmental influences. During embryo implantation, the CNS is more vulnerable to external influences such as environmental tobacco smoke (ETS), increasing the risk for delayed fetal growth, sudden infant death syndrome, and immune system abnormalities. This study aimed to evaluate the effects of in utero exposure to ETS on neuroinflammation in the offspring of pregnant mice challenged or not with lipopolysaccharide (LPS). After the confirmation of mating by the presence of the vaginal plug until offspring birth, pregnant C57BL/6 mice were exposed to either 3R4F cigarettes smoke (Kentucky University) or compressed air, twice a day (1h each), for 21 days. Enhanced glial cell and mixed cell cultures were prepared from 3-day-old mouse pups. After cell maturation, both cells were stimulated with LPS or saline. To inhibit microglia activation, minocycline was added to the mixed cell culture media 24 h before LPS challenge. To verify the influence of in utero exposure to ETS on the development of neuroinflammatory events in adulthood, a different set of 8-week-old animals was submitted to the Autoimmune Experimental Encephalomyelitis (EAE) model. The results indicate that cells from LPS-challenged pups exposed to ETS in utero presented high levels of proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNFα) and decreased cell viability. Such a proinflammatory environment could modulate fetal programming by an increase in microglia and astrocytes miRNA155. This scenario may lead to the more severe EAE observed in pups exposed to ETS in utero.
Collapse
Affiliation(s)
| | - Wesley Nogueira Brandão
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor Bruno
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lídia Emmanuela W. Spelta
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie de Oliveira Duro
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Nágela Ghabdan Zanluqui
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz, ; Tania Marcourakis,
| |
Collapse
|
37
|
Tran S, Kuruppu S, Rajapakse NW. Chronic Renin-Angiotensin System Activation Induced Neuroinflammation: Common Mechanisms Underlying Hypertension and Dementia? J Alzheimers Dis 2021; 85:943-955. [PMID: 34897090 DOI: 10.3233/jad-215231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is a major risk factor for the pathogenesis of vascular dementia and Alzheimer's disease. Chronic activation of the renin-angiotensin system (RAS) contributes substantially to neuroinflammation. We propose that neuroinflammation arising from chronic RAS activation can initiate and potentiate the onset of hypertension and related dementia. Neuroinflammation induced by chronic activation of the RAS plays a key role in the pathogenesis of dementia. Increased levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and transforming growth factor (TGF)-β have been reported in brain tissue of vascular dementia patients and animal models of vascular dementia induced by either angiotensin II infusion or transverse aortic coarctation. It is proposed that neuronal cell death and synaptic dysfunction induced by neuroinflammation lead to cognitive impairment in dementia. The neuroprotective RAS pathway, regulated by angiotensin-converting enzyme 2 (ACE2) which converts angiotensin II into angiotensin-(1-7), can attenuate hypertension and dementia. Furthermore, the use of anti-hypertensive medications in preventing dementia or cognitive decline in hypertensive patients and animal models of dementia have mostly been beneficial. Current evidence suggests a strong link between RAS induced neuroinflammation and the onset of hypertension and dementia, which warrants further investigation. Strategies to counteract an overactive RAS and enhance the neuroprotective arm of the RAS may help prevent or improve cognitive impairment associated with hypertension.
Collapse
Affiliation(s)
- Shirley Tran
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sanjaya Kuruppu
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.,Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Niwanthi W Rajapakse
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
38
|
Chronic oral administration of adipoRon reverses cognitive impairments and ameliorates neuropathology in an Alzheimer's disease mouse model. Mol Psychiatry 2021; 26:5669-5689. [PMID: 32132650 DOI: 10.1038/s41380-020-0701-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Circulating adiponectin (APN) levels decrease with age and obesity. On the other hand, a reduction in APN levels is associated with neurodegeneration and neuroinflammation. We previously showed that aged adiponectin knockout (APN-/-) mice developed Alzheimer's like pathologies, cerebral insulin resistance, and cognitive impairments. More recently, we also demonstrated that APN deficiency increased Aβ-induced microglia activation and neuroinflammatory responses in 5xFAD mice. There is compelling evidence that deregulated insulin activities or cerebral insulin resistance contributes to neuroinflammation and Alzheimer's disease (AD) pathogenesis. Here, we demonstrated that APN levels were reduced in the brain of AD patients and 5xFAD mice. We crossbred 5xFAD mice with APN-/- mice to generate APN-deficient 5xFAD (5xFAD;APN-/-). APN deficiency in 5xFAD mice accelerated amyloid loading, increased cerebral amyloid angiopathy, and reduced insulin-signaling activities. Pharmacokinetics study demonstrated adipoRon (APN receptor agonist) was a blood-brain barrier penetrant. AdipoRon improved neuronal insulin-signaling activities and insulin sensitivity in vitro and in vivo. Chronic adipoRon treatment improved spatial memory functions and significantly rescued neuronal and synaptic loss in 5xFAD and 5xFAD;APN-/- mice. AdipoRon lowered plaque and Aβ levels in AD mice. AdipoRon also exerted anti-inflammatory effects by reducing microglial and astrocytes activation as well as suppressing cerebral cytokines levels. The microglial phagocytic activity toward Aβ was restored after adipoRon treatment. Our results indicated that adipoRon exerts multiple beneficial effects providing important therapeutic implications. We propose chronic adipoRon administration as a potential treatment for AD.
Collapse
|
39
|
Lorkiewicz P, Waszkiewicz N. Biomarkers of Post-COVID Depression. J Clin Med 2021; 10:4142. [PMID: 34575258 PMCID: PMC8470902 DOI: 10.3390/jcm10184142] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic is spreading around the world and 187 million people have already been affected. One of its after-effects is post-COVID depression, which, according to the latest data, affects up to 40% of people who have had SARS-CoV-2 infection. A very important issue for the mental health of the general population is to look for the causes of this complication and its biomarkers. This will help in faster diagnosis and effective treatment of the affected patients. In our work, we focused on the search for major depressive disorder (MDD) biomarkers, which are also present in COVID-19 patients and may influence the development of post-COVID depression. For this purpose, we searched PubMed, Scopus and Google Scholar scientific literature databases using keywords such as 'COVID-19', 'SARS-CoV-2', 'depression', 'post-COVID', 'biomarkers' and others. Among the biomarkers found, the most important that were frequently described are increased levels of interleukin 6 (IL-6), soluble interleukin 6 receptor (sIL-6R), interleukin 1 β (IL-1β), tumor necrosis factor α (TNF-α), interferon gamma (IFN-γ), interleukin 10 (IL-10), interleukin 2 (IL-2), soluble interleukin 2 receptor (sIL-2R), C-reactive protein (CRP), Monocyte Chemoattractant Protein-1 (MCP-1), serum amyloid a (SAA1) and metabolites of the kynurenine pathway, as well as decreased brain derived neurotrophic factor (BDNF) and tryptophan (TRP). The biomarkers identified by us indicate the etiopathogenesis of post-COVID depression analogous to the leading inflammatory hypothesis of MDD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Plac Brodowicza 1, 16-070 Choroszcz, Poland;
| | | |
Collapse
|
40
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
41
|
Huang W, Zeng F, Gu Y, Jiang M, Zhang X, Yan X, Kadowaki T, Mizutani S, Kashiwazaki H, Ni J, Wu Z. Porphyromonas Gingivalis Infection Induces Synaptic Failure via Increased IL-1β Production in Leptomeningeal Cells. J Alzheimers Dis 2021; 83:665-681. [PMID: 34334391 DOI: 10.3233/jad-210031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies have reported that synaptic failure occurs before the Alzheimer's disease (AD) onset. The systemic Porphyromonas gingivalis (P. gingivalis) infection is involved in memory decline. We previously showed that leptomeningeal cells, covering the brain, activate glial cells by releasing IL-1β in response to systemic inflammation. OBJECTIVE In the present study, we focused on the impact of leptomeningeal cells on neurons during systemic P. gingivalis infection. METHODS The responses of leptomeningeal cells and cortical neurons to systemic P. gingivalis infection were examined in 15-month-old mice. The mechanism of IL-1β production by P. gingivalis infected leptomeningeal cells was examined, and primary cortical neurons were treated with P. gingivalis infected leptomeningeal cells condition medium (Pg LCM). RESULTS Systemic P. gingivalis infection increased the expression of IL-1β in leptomeninges and reduced the synaptophysin (SYP) expression in leptomeninges proximity cortex in mice. Leptomeningeal cells phagocytosed P. gingivalis resulting in lysosomal rupture and Cathepsin B (CatB) leakage. Leaked CatB mediated NLRP3 inflammasome activation inducing IL-1β secretion in leptomeningeal cells. Pg LCM decreased the expression of synaptic molecules, including SYP, which was inhibited by an IL-1 receptor antagonist pre-treatment. CONCLUSION These observations demonstrate that P. gingivalis infection is involved in synaptic failure by inducing CatB/NLRP3 inflammasome-mediated IL-1β production in leptomeningeal cells. The periodontal bacteria-induced synaptic damage may accelerate the onset and cognitive decline of AD.
Collapse
Affiliation(s)
- Wanyi Huang
- Department of Aging Science and Pharmacology>, Faculty of Dental Science, Kyushu University, Fukuoka Japan
| | - Fan Zeng
- Department of Aging Science and Pharmacology>, Faculty of Dental Science, Kyushu University, Fukuoka Japan
| | - Yebo Gu
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Muzhou Jiang
- Department of Aging Science and Pharmacology>, Faculty of Dental Science, Kyushu University, Fukuoka Japan
| | - Xinwen Zhang
- Center of Implant Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Xu Yan
- The VIP Department, School of Stomatology, China Medical University, Shenyang, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinsuke Mizutani
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology>, Faculty of Dental Science, Kyushu University, Fukuoka Japan.,OBT Research Center, Faculty of Dental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
Vercellino M, Marasciulo S, Grifoni S, Vallino-Costassa E, Bosa C, Pasanisi MB, Crociara P, Casalone C, Chiò A, Giordana MT, Corona C, Cavalla P. Acute and chronic synaptic pathology in multiple sclerosis gray matter. Mult Scler 2021; 28:369-382. [PMID: 34124960 DOI: 10.1177/13524585211022174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To investigate the extent of synaptic loss, and the contribution of gray matter (GM) inflammation and demyelination to synaptic loss, in multiple sclerosis (MS) brain tissue. METHODS This study was performed on two different post-mortem series of MS and control brains, including deep GM and cortical GM. MS brain samples had been specifically selected for the presence of active demyelinating GM lesions. Over 1,000,000 individual synapses were identified and counted using confocal microscopy, and further characterized as glutamatergic/GABAergic. Synaptic counts were also correlated with neuronal/axonal loss. RESULTS Important synaptic loss was observed in active demyelinating GM lesions (-58.9%), while in chronic inactive GM lesions, synaptic density was only mildly reduced compared to adjacent non-lesional gray matter (NLGM) (-12.6%). Synaptic loss equally affected glutamatergic and GABAergic synapses. Diffuse synaptic loss was observed in MS NLGM compared to control GM (-21.2% overall). CONCLUSION This study provides evidence, in MS brain tissue, of acute synaptic damage/loss during active GM inflammatory demyelination and of synaptic reorganization in chronically demyelinated GM, affecting equally glutamatergic and GABAergic synapses. Furthermore, this study provides a strong indication of widespread synaptic loss in MS NLGM also independently from focal GM demyelination.
Collapse
Affiliation(s)
- Marco Vercellino
- I Division of Neurology and Multiple Sclerosis Center, Department of Neurosciences and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Stella Marasciulo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Silvia Grifoni
- S.S. Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Vallino-Costassa
- S.S. Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Chiara Bosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | | | - Paola Crociara
- S.S. Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Cristina Casalone
- S.S. Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Adriano Chiò
- I Division of Neurology and Multiple Sclerosis Center, Department of Neurosciences and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy/"Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy/Neuroscience Institute of Torino (NIT), Turin, Italy
| | - Maria Teresa Giordana
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Cristiano Corona
- S.S. Neurobiologia Sperimentale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Paola Cavalla
- I Division of Neurology and Multiple Sclerosis Center, Department of Neurosciences and Mental Health, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
43
|
Ohgomori T, Iinuma K, Yamada J, Jinno S. A unique subtype of ramified microglia associated with synapses in the rat hippocampus. Eur J Neurosci 2021; 54:4740-4754. [PMID: 34110047 DOI: 10.1111/ejn.15330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
To date, a number of studies have reported the heterogeneity of activated microglia. However, there is increasing evidence suggests that ramified, so-called resting, microglia may also be heterogeneous, and they may play diverse roles in normal brain homeostasis. Here, we found that both 5D4 keratan sulfate epitope-positive (5D4+ ) and 5D4-negative (5D4- ) microglia coexisted in the hippocampus of normal rats, while all microglia were negative for the 5D4 epitope in the hippocampus of normal mice. We thus aimed to determine the potential heterogeneity of microglia related to the 5D4 epitope in the normal rat hippocampus. The optical disector analysis showed that the densities of 5D4+ microglia were higher in the stratum oriens of the CA3 region than in other layers and regions. Although both 5D4+ and 5D4- microglia exhibited a ramified morphology, the three-dimensional reconstruction analysis showed that the node numbers, end numbers, and complexity of processes were higher in 5D4+ than in 5D4- microglia. The linear discriminant analysis showed that 5D4+ and 5D4- microglia can be classified into distinct morphometric subtypes. The ratios of contact between synaptic boutons and microglial processes were higher in 5D4+ than in 5D4- microglia. The gene expressions of pro-inflammatory cytokine interleukin-1β and purinergic receptor P2Y12 (P2Y12 R) were higher in 5D4+ than in 5D4- microglia. Together, these results indicate that at least two different subtypes of ramified microglia coexist in the normal rat hippocampus and also suggest that 5D4+ microglia may represent a unique subtype associated with synapses.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Japan
| | - Kyoko Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Moraes CA, Zaverucha-do-Valle C, Fleurance R, Sharshar T, Bozza FA, d’Avila JC. Neuroinflammation in Sepsis: Molecular Pathways of Microglia Activation. Pharmaceuticals (Basel) 2021; 14:ph14050416. [PMID: 34062710 PMCID: PMC8147235 DOI: 10.3390/ph14050416] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Frequently underestimated, encephalopathy or delirium are common neurological manifestations associated with sepsis. Brain dysfunction occurs in up to 80% of cases and is directly associated with increased mortality and long-term neurocognitive consequences. Although the central nervous system (CNS) has been classically viewed as an immune-privileged system, neuroinflammation is emerging as a central mechanism of brain dysfunction in sepsis. Microglial cells are major players in this setting. Here, we aimed to discuss the current knowledge on how the brain is affected by peripheral immune activation in sepsis and the role of microglia in these processes. This review focused on the molecular pathways of microglial activity in sepsis, its regulatory mechanisms, and their interaction with other CNS cells, especially with neuronal cells and circuits.
Collapse
Affiliation(s)
- Carolina Araújo Moraes
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
| | - Camila Zaverucha-do-Valle
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
| | - Renaud Fleurance
- UCB Biopharma SRL, 1420 Braine L’Alleud, Belgium;
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Université de Paris Sciences et Lettres, 75006 Paris Paris, France
| | - Tarek Sharshar
- Experimental Neuropathology, Infection, and Epidemiology Department, Institut Pasteur, 75015 Paris, France;
- Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Ministry of Health, Rio de Janeiro 21040-360, Brazil; (C.Z.-d.-V.); (F.A.B.)
- D’Or Institute for Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Joana Costa d’Avila
- Immunopharmacology Lab, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil;
- School of Medicine, Universidade Iguaçu, Rio de Janeiro 26260-045, Brazil
- Correspondence:
| |
Collapse
|
45
|
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157-172. [PMID: 33318676 DOI: 10.1038/s41582-020-00435-y] [Citation(s) in RCA: 1363] [Impact Index Per Article: 454.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
46
|
Hsu HW, Rodriguez-Ortiz CJ, Zumkehr J, Kitazawa M. Inflammatory Cytokine IL-1β Downregulates Endothelial LRP1 via MicroRNA-mediated Gene Silencing. Neuroscience 2021; 453:69-80. [PMID: 33246059 PMCID: PMC7796931 DOI: 10.1016/j.neuroscience.2020.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Effective clearance of neurotoxic amyloid-beta (Aβ) from the brain is a critical process to prevent Alzheimer's disease (AD). One major clearance mechanism is Aβ transcytosis mediated by low-density lipoprotein receptor-related protein 1 (LRP1) in capillary endothelial cells. A marked loss of endothelial LRP1 is found in AD brains and is believed to significantly impair Aβ clearance. Recently, we demonstrated that pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, significantly down-regulated LRP1 in human primary microvascular endothelial cells (MVECs). In this study, we sought to determine the underlying molecular mechanism by which IL-1β led to LRP1 loss in MVECs. Reduced LRP1 protein and transcript were detected up to 24 h post-exposure and returned to the baseline levels after 48 h post-exposure with 1 ng/ml IL-1β. This reduction was in part mediated by microRNA-205-5p, -200b-3p, and -200c-3p, as these microRNAs were concomitantly upregulated in MVECs exposed to IL-1β. Synthetic microRNA-205-5p, -200b-3p, and -200c-3p mimics recapitulated LRP1 loss in MVECs without IL-1β, and their synthetic antagomirs effectively reversed IL-1β-mediated LRP1 loss. Importantly, we found that the expression of these three microRNAs was controlled by NF-κB as pharmacological NF-κB inhibitor, BMS-345541, inhibited the IL-1β-mediated upregulation of these microRNAs and rescued LRP1 expression. siRNA-mediated silencing of IκB in MVECs elevated microRNA-200b-3p and decreased LRP1 transcript, partially confirming our overall findings. In conclusion, our study provides a mechanism by which pro-inflammatory IL-1β instigates the suppression of LRP1 expression in MVECs. Our findings could implicate spatiotemporal loss of LRP1 and impairment of the LRP1-mediated clearance mechanism by endothelial cells.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Environmental and Occupational Health and Department of Medicine, University of California, Irvine, CA, United States.
| |
Collapse
|
47
|
Catanesi M, Caioni G, Castelli V, Benedetti E, d’Angelo M, Cimini A. Benefits under the Sea: The Role of Marine Compounds in Neurodegenerative Disorders. Mar Drugs 2021; 19:24. [PMID: 33430021 PMCID: PMC7827849 DOI: 10.3390/md19010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Marine habitats offer a rich reservoir of new bioactive compounds with great pharmaceutical potential; the variety of these molecules is unique, and its production is favored by the chemical and physical conditions of the sea. It is known that marine organisms can synthesize bioactive molecules to survive from atypical environmental conditions, such as oxidative stress, photodynamic damage, and extreme temperature. Recent evidence proposed a beneficial role of these compounds for human health. In particular, xanthines, bryostatin, and 11-dehydrosinulariolide displayed encouraging neuroprotective effects in neurodegenerative disorders. This review will focus on the most promising marine drugs' neuroprotective potential for neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. We will describe these marine compounds' potential as adjuvant therapies for neurodegenerative diseases, based on their antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, AQ, Italy; (M.C.); (G.C.); (V.C.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
48
|
Jiang C, Caskurlu A, Ganesh T, Dingledine R. Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain Behav Immun Health 2020; 8:100132. [PMID: 34589882 PMCID: PMC8474496 DOI: 10.1016/j.bbih.2020.100132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Long-term cognitive and affective impairments are common problems in the survivors of sepsis, which weakens their vocational and daily life ability. Neuroinflammation has been reported to exert a key role in the development of cognitive deficit in different disorders including epilepsy, Alzheimer's disease (AD) and stroke. Mice treated with lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, show a robust but short-lived neuroinflammation and develop long-term memory and affective problems. In this study, we test the hypothesis that pharmacological blockade of the EP2 receptor for prostaglandin E2 reduces neuroinflammation and prevents long-term affective and memory deficits in a mouse model of LPS-induced, sepsis-associated encephalopathy (SAE). Our results show that an EP2 antagonist, TG6-10-1, promotes the recovery of body weight, mitigates neuroinflammation as judged by inflammatory cytokines and microgliosis, prevents the loss of synaptic proteins, and ameliorates depression-like behavior in the sucrose preference test as well as memory loss in the novel object recognition test. Our results point to a new avenue to ameliorate neuroinflammation and long-term affective and cognition problems of sepsis survivors.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, 30322, Georgia
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Aysegul Caskurlu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, 30322, Georgia
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, 30322, Georgia
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, 30322, Georgia
| |
Collapse
|
49
|
Olsen I, Singhrao SK. Interaction between genetic factors, Porphyromonas gingivalis and microglia to promote Alzheimer's disease. J Oral Microbiol 2020; 12:1820834. [PMID: 33062201 PMCID: PMC7534375 DOI: 10.1080/20002297.2020.1820834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In late-onset Alzheimer disease (AD) pathogenesis, genes, infections and immunity could be significant factors. We have reviewed if the keystone periodontal pathogen Porphyromonas gingivalis may affect genes and microglia (primary immune cells in the brain) to promote AD development. Genes for apolipoprotein, clusterin, CD33, triggering receptor expressed on myeloid cells-2 (TREM-2), tyrosine kinase binding protein (TYR-OBP), and complement receptors can affect microglia. Most of these genes can also be affected by P. gingivalis via its mastering of immune suppression. Besides, P. gingivalis can affect microglia directly in several ways. Taken together, genetic predisposition, P. gingivalis infection and microglia could promote neurodegeneration typical of that reported for AD.
Collapse
Affiliation(s)
- Ingar Olsen
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Brain and Behavior Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
50
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|