1
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
2
|
Duan W, Robles UA, Poole‐Warren L, Esrafilzadeh D. Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306275. [PMID: 38115740 PMCID: PMC11251570 DOI: 10.1002/advs.202306275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.
Collapse
Affiliation(s)
- Wenlu Duan
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
| | | | - Laura Poole‐Warren
- The Graduate School of Biomedical EngineeringUNSWSydneyNSW2052Australia
- Tyree Foundation Institute of Health EngineeringUNSWSydneyNSW2052Australia
| | | |
Collapse
|
3
|
Zhu Y, Yang Y, Ni G, Li S, Liu W, Gao Z, Zhang X, Zhang Q, Wang C, Zhou J. On-demand electrically controlled melatonin release from PEDOT/SNP composite improves quality of chronic neural recording. Front Bioeng Biotechnol 2023; 11:1284927. [PMID: 38033812 PMCID: PMC10684936 DOI: 10.3389/fbioe.2023.1284927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Long-time and high-quality signal acquisition performance from implantable electrodes is the key to establish stable and efficient brain-computer interface (BCI) connections. The chronic performance of implantable electrodes is hindered by the inflammatory response of brain tissue. In order to solve the material limitation of biological interface electrodes, we designed sulfonated silica nanoparticles (SNPs) as the dopant of Poly (3,4-ethylenedioxythiophene) (PEDOT) to modify the implantable electrodes. In this work, melatonin (MT) loaded SNPs were incorporated in PEDOT via electrochemical deposition on nickel-chromium (Ni-Cr) alloy electrode and carbon nanotube (CNT) fiber electrodes, without affecting the acute neural signal recording capacity. After coating with PEDOT/SNP-MT, the charge storage capacity of both electrodes was significantly increased, and the electrochemical impedance at 1 kHz of the Ni-Cr alloy electrodes was significantly reduced, while that of the CNT electrodes was significantly increased. In addition, this study inspected the effect of electrically triggered MT release every other day on the quality and longevity of neural recording from implanted neural electrodes in rat hippocampus for 1 month. Both MT modified Ni-Cr alloy electrodes and CNT electrodes showed significantly higher spike amplitude after 26-day recording. Significantly, the histological studies showed that the number of astrocytes around the implanted Ni-Cr alloy electrodes was significantly reduced after MT release. These results demonstrate the potent outcome of PEDOT/SNP-MT treatment in improving the chronic neural recording quality possibly through its anti-inflammatory property.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Kiran Raj G, Singh E, Hani U, Ramesh KVRNS, Talath S, Garg A, Savadatti K, Bhatt T, Madhuchandra K, Osmani RAM. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. J Control Release 2023; 355:709-729. [PMID: 36805872 DOI: 10.1016/j.jconrel.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Novel therapies and drug delivery systems (DDS) emphasis on localized, personalized, triggered, and regulated drug administration have heavily implicated electrically responsive DDS. An ideal DDS must deliver drugs to the target region at therapeutically effective concentrations to elicit a pharmacological response, resulting in better prophylaxis of the disease and the treatment. Biodegradable polymers are frequently employed for in-vivo long-term release; however, dose dumping can be anticipated. As a result, current DDSs can be tagged as dubbed "Smart Biomaterials" since they only focus on an on-demand cargo release in response to a trigger or stimulation. These organic materials have been recognized for their metal-like conductivity, as well as their mechanical stability and ease of production. These biomaterials can be programmed to respond to both internal and external stimuli. External pulsed triggers are required for extrinsic stimuli-responsive materials, whereas intrinsic stimuli-responsive materials rely on localized changes in the tissue environment. Furthermore, these materials have the ability to deliver active pharmaceutical agents at a varied concentration levels and across a broad spectrum of action. Drug delivery, biomedical implant technology, biosensor technology, and tissue engineering can be listed as a few prominent applications that have sparked immense interest for conductive polymers-based research and advancements in academia as well as in industry. This review comprehensively covers a cutting-edge collection of electrically conductive polymers and composites, and provide detailed insights of recent trends and advancements allied to conductive polymers for their potential applicability in an array of diverse meadows primarily focusing on drug delivery, biosensing and therapeutics. Furthermore, progressions in their synthesis, structural and functional properties have been presented in conjunction with futuristic directions for the smooth clinical translations.
Collapse
Affiliation(s)
- G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, United States; Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay (IITB), Mumbai 400076, Maharashtra, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Komal Savadatti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - K Madhuchandra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
5
|
Niederhoffer T, Vanhoestenberghe A, Lancashire HT. Methods of poly(3,4)-ethylenedioxithiophene (PEDOT) electrodeposition on metal electrodes for neural stimulation and recording. J Neural Eng 2023; 20. [PMID: 36603213 DOI: 10.1088/1741-2552/acb084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Conductive polymers are of great interest in the field of neural electrodes because of their potential to improve the interfacial properties of electrodes. In particular, the conductive polymer poly (3,4)-ethylenedioxithiophene (PEDOT) has been widely studied for neural applications.Objective:This review compares methods for electrodeposition of PEDOT on metal neural electrodes, and analyses the effects of deposition methods on morphology and electrochemical performance.Approach:Electrochemical performances were analysed against several deposition method choices, including deposition charge density and co-ion, and correlations were explained to morphological and structural arguments as well as characterisation methods choices.Main results:Coating thickness and charge storage capacity are positively correlated with PEDOT electrodeposition charge density. We also show that PEDOT coated electrode impedance at 1 kHz, the only consistently reported impedance quantity, is strongly dependent upon electrode radius across a wide range of studies, because PEDOT coatings reduces the reactance of the complex impedance, conferring a more resistive behaviour to electrodes (at 1 kHz) dominated by the solution resistance and electrode geometry. This review also summarises how PEDOT co-ion choice affects coating structure and morphology and shows that co-ions notably influence the charge injection limit but have a limited influence on charge storage capacity and impedance. Finally we discuss the possible influence of characterisation methods to assess the robustness of comparisons between published results using different methods of characterisation.Significance:This review aims to serve as a common basis for researchers working with PEDOT by showing the effects of deposition methods on electrochemical performance, and aims to set a standard for accurate and uniform reporting of methods.
Collapse
Affiliation(s)
- Thomas Niederhoffer
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Anne Vanhoestenberghe
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Henry T Lancashire
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Lin R, Jin Y, Li RR, Jiang C, Ping J, Charles CJ, Kong YL, Ho JS. Needle-integrated ultrathin bioimpedance microsensor array for early detection of extravasation. Biosens Bioelectron 2022; 216:114651. [DOI: 10.1016/j.bios.2022.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
7
|
Moslehi S, Rowland C, Smith JH, Watterson WJ, Miller D, Niell CM, Alemán BJ, Perez MT, Taylor RP. Controlled assembly of retinal cells on fractal and Euclidean electrodes. PLoS One 2022; 17:e0265685. [PMID: 35385490 PMCID: PMC8985931 DOI: 10.1371/journal.pone.0265685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Controlled assembly of retinal cells on artificial surfaces is important for fundamental cell research and medical applications. We investigate fractal electrodes with branches of vertically-aligned carbon nanotubes and silicon dioxide gaps between the branches that form repeating patterns spanning from micro- to milli-meters, along with single-scaled Euclidean electrodes. Fluorescence and electron microscopy show neurons adhere in large numbers to branches while glial cells cover the gaps. This ensures neurons will be close to the electrodes’ stimulating electric fields in applications. Furthermore, glia won’t hinder neuron-branch interactions but will be sufficiently close for neurons to benefit from the glia’s life-supporting functions. This cell ‘herding’ is adjusted using the fractal electrode’s dimension and number of repeating levels. We explain how this tuning facilitates substantial glial coverage in the gaps which fuels neural networks with small-world structural characteristics. The large branch-gap interface then allows these networks to connect to the neuron-rich branches.
Collapse
Affiliation(s)
- Saba Moslehi
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Conor Rowland
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Julian H. Smith
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - William J. Watterson
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
| | - David Miller
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, United States of America
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Department of Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Benjamín J. Alemán
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, United States of America
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, United States of America
| | - Maria-Thereza Perez
- Division of Ophthalmology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
- * E-mail: (RPT); (MTP)
| | - Richard P. Taylor
- Physics Department, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (RPT); (MTP)
| |
Collapse
|
8
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
9
|
Vajrala VS, Saunier V, Nowak LG, Flahaut E, Bergaud C, Maziz A. Nanofibrous PEDOT-Carbon Composite on Flexible Probes for Soft Neural Interfacing. Front Bioeng Biotechnol 2021; 9:780197. [PMID: 34900968 PMCID: PMC8662776 DOI: 10.3389/fbioe.2021.780197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance in vivo neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed via in situ electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.8 ± 2 MΩ µm2 at 1 kHz) and elevated charge injection capabilities (7.6 ± 1.3 mC/cm2) that exceed those of pure and composite PEDOT layers. In addition, the PEDOT-CNF composite electrode exhibited extended biphasic charge cycle endurance and excellent performance under accelerated lifetime testing, resulting in a negligible physical delamination and/or degradation for long periods of electrical stimulation. In vitro testing on mouse brain slices showed that they can record spontaneous oscillatory field potentials as well as single-unit action potentials and allow to safely deliver electrical stimulation for evoking field potentials. The combined superior electrical properties, durability and 3D microstructure topology of the PEDOT-CNF composite electrodes demonstrate outstanding potential for developing future neural surface interfacing applications.
Collapse
Affiliation(s)
| | - Valentin Saunier
- Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Toulouse, France
| | - Lionel G Nowak
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Toulouse, France
| | | | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Toulouse, France
| | - Ali Maziz
- Laboratory for Analysis and Architecture of Systems (LAAS), CNRS, Toulouse, France
| |
Collapse
|
10
|
Khan ZM, Wilts E, Vlaisavljevich E, Long TE, Verbridge SS. Electroresponsive Hydrogels for Therapeutic Applications in the Brain. Macromol Biosci 2021; 22:e2100355. [PMID: 34800348 DOI: 10.1002/mabi.202100355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Indexed: 12/22/2022]
Abstract
Electroresponsive hydrogels possess a conducting material component and respond to electric stimulation through reversible absorption and expulsion of water. The high level of hydration, soft elastomeric compliance, biocompatibility, and enhanced electrochemical properties render these hydrogels suitable for implantation in the brain to enhance the transmission of neural electric signals and ion transport. This review provides an overview of critical electroresponsive hydrogel properties for augmenting electric stimulation in the brain. A background on electric stimulation in the brain through electroresponsive hydrogels is provided. Common conducting materials and general techniques to integrate them into hydrogels are briefly discussed. This review focuses on and summarizes advances in electric stimulation of electroconductive hydrogels for therapeutic applications in the brain, such as for controlling delivery of drugs, directing neural stem cell differentiation and neurogenesis, improving neural biosensor capabilities, and enhancing neural electrode-tissue interfaces. The key challenges in each of these applications are discussed and recommendations for future research are also provided.
Collapse
Affiliation(s)
- Zerin M Khan
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Emily Wilts
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Eli Vlaisavljevich
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Timothy E Long
- Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85287, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
11
|
Zeng Q, Wu T. Enhanced electrochemical performance of neural electrodes based on
PEDOT
:
PSS
hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.51804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qi Zeng
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| | - Tianzhun Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| |
Collapse
|
12
|
Wang Y, Graham ES, Unsworth CP. Superior galvanostatic electrochemical deposition of platinum nanograss provides high performance planar microelectrodes for in vitroneural recording. J Neural Eng 2021; 18. [PMID: 34371484 DOI: 10.1088/1741-2552/ac1bc1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Objective.Platinum nanograss (Ptng) has been demonstrated as an excellent coating to increase the electrode roughness and reduce the impedance of microelectrodes for neural recording. However, the optimisation of the original potentiostatic electrochemical deposition (PSED) method has been performed by the original group only and noin vitrovalidation of functionality was reported.Approach.This study firstly reinvestigates the use of the PSED method for Ptng coating at different charge densities which highlights non-uniformities in the edges of the microelectrodes for increasing deposition charge densities, leading to a decreased impedance which is in fact an artefact. We then introduce a novel Ptng fabrication method of galvanostatic electrochemical deposition (GSED).Main results.We demonstrate that the GSED deposition method also significantly reduces the electrode impedance, raises the charge storage capacity and provides a significantly more planar electrode surface in comparison to the PSED method with negligible edge effects. In addition, we demonstrate how high-quality neural recordings were performed, for the first time, using the Ptng GSED deposition microelectrodes from human hNT neurons and how spiking and bursting were observed.Significance.Thus, the GSED Ptng deposition method presented here provides an alternative method of microelectrode fabrication for neural applications with excellent impedance and planarity of surface.
Collapse
Affiliation(s)
- Yi Wang
- Department of Engineering Science, University of Auckland, Auckland, New Zealand and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, University of Auckland, Auckland, New Zealand and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
13
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
14
|
Zheng XS, Tan C, Castagnola E, Cui XT. Electrode Materials for Chronic Electrical Microstimulation. Adv Healthc Mater 2021; 10:e2100119. [PMID: 34029008 PMCID: PMC8257249 DOI: 10.1002/adhm.202100119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.
Collapse
Affiliation(s)
- Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Chao Tan
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
15
|
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV, Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng 2021; 7:1962-1986. [PMID: 33749256 DOI: 10.1021/acsbiomaterials.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we aim to introduce the reader to the technique of electrical impedance spectroscopy (EIS) with a focus on its biological, biomaterials, and medical applications. We explain the theoretical and experimental aspects of the EIS with the details essential for biological studies, i.e., interaction of metal electrodes with biological matter and liquids, strategies of measurement rate increasing, noise reduction in bio-EIS experiments, etc. We also give various examples of successful bio-EIS practical implementations in science and technology, from whole-body health monitoring and sensors for vision prosthetic care to single living cell examination platforms, virus disease research, biomolecules detection, and implementation of novel biomaterials. The present review can be used as a bio-EIS tutorial for students as well as a handbook for scientists and engineers because of the extensive references covering the contemporary research papers in the field.
Collapse
Affiliation(s)
- Daniil D Stupin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Ekaterina A Kuzina
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Anna A Abelit
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russia
| | - Anton K Emelyanov
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Street. 6-8, Saint Petersburg 197022, Russia
| | - Dmitrii M Nikolaev
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia
| | - Mikhail N Ryazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii pr, Saint Petersburg 198504, Russia
| | - Sergei V Koniakhin
- Alferov University, 8/3 Khlopina Street, Saint Petersburg 194021, Russia.,Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand F-63000, France
| | - Michael V Dubina
- Institute of Highly Pure Biopreparation of the Federal Medical-Biological Agency, Pudozhskaya 7, St. Petersburg 197110, Russia
| |
Collapse
|
16
|
Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron 2020; 170:112620. [DOI: 10.1016/j.bios.2020.112620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
17
|
Saunier V, Flahaut E, Blatché MC, Bergaud C, Maziz A. Carbon nanofiber-PEDOT composite films as novel microelectrode for neural interfaces and biosensing. Biosens Bioelectron 2020; 165:112413. [PMID: 32729532 DOI: 10.1016/j.bios.2020.112413] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
A clear need exists for novel nanostructured materials that are capable to meet the performance criteria of a number of neuronal therapies including neural recording, stimulation and sensing of bioactive molecules at the electrode-tissue interface. By combining Poly (3,4-ethylenedioxythiophene) (PEDOT), with Carbon Nanofibers (CNFs), we demonstrate a versatile approach for the synthesis of a novel composite material PEDOT:CNF with remarkable electrochemical properties, combining low impedance, high surface area, high charge injection capability and reliable neurotransmitters monitoring using amperometric techniques. The oxidized CNFs were utilized as dopants of PEDOT to prepare the composite coatings through electrochemical deposition on neural microelectrodes arrays (MEA). The PEDOT:CNF modified microelectrodes demonstrated the low specific impedance of 1.28 MΩ μm2 at 1 kHz and results in unrivalled charge injection limit of 10.03 mC/cm2 when compared to other reported organic electrode nanomaterials. Furthermore, amperometric detection performances were determined for the neurotransmitters dopamine and serotonin, exhibiting linear concentration range from 0.1 to 9 μM and from 0.06 to 9 μM respectively, high sensitivities (44.54 pA/nM.μm2 and 71.08 pA/nM.μm2, respectively) and low detection limits (0.045 μM and 0.056 μM, respectively). Cell viability was investigated on PEDOT:CNF coated microelectrodes to show that the composite material does not advocate any cytotoxicity. Taken together, these results suggest the great potential of PEDOT:CNF composite for developing next-generation multifunctional microelectrodes for applications in neural therapies.
Collapse
Affiliation(s)
- Valentin Saunier
- LAAS-CNRS, Université de Toulouse, CNRS, F-31031 Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, 118 route de Narbonne, F-31062, Toulouse, France
| | | | | | - Ali Maziz
- LAAS-CNRS, Université de Toulouse, CNRS, F-31031 Toulouse, France.
| |
Collapse
|
18
|
Gunapu DVSK, Mudigunda VS, Das A, Rengan AK, Vanjari SRK. Facile synthesis and characterization of Poly (3, 4-ethylenedioxythiophene)/Molybdenum disulfide (PEDOT/MoS2) composite coatings for potential neural electrode applications. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01447-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5659682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis, structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the structure-property relationship and the corresponding functional applications of the conducting polymer-based composites. Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.
Collapse
|
20
|
Carli S, Bianchi M, Zucchini E, Di Lauro M, Prato M, Murgia M, Fadiga L, Biscarini F. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Adv Healthc Mater 2019; 8:e1900765. [PMID: 31489795 DOI: 10.1002/adhm.201900765] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/09/2019] [Indexed: 01/12/2023]
Abstract
Microelectrode arrays are used for recording and stimulation in neurosciences both in vitro and in vivo. The electrodeposition of conductive polymers, such as poly(3,4-ethylene dioxythiophene) (PEDOT), is widely adopted to improve both the in vivo recording and the charge injection limit of metallic microelectrodes. The workhorse of conductive polymers in the neurosciences is PEDOT:PSS, where PSS represents polystyrene-sulfonate. In this paper, the counterion is the fluorinated polymer Nafion, so the composite PEDOT:Nafion is deposited onto a flexible neural microelectrode array. PEDOT:Nafion coated electrodes exhibit comparable in vivo recording capability to the reference PEDOT:PSS, providing a large signal-to-noise ratio in a murine animal model. Importantly, PEDOT:Nafion exhibits a minimized polarization during electrical stimulation, thereby resulting in an improved charge injection limit equal to 4.4 mC cm-2 , almost 80% larger than the 2.5 mC cm-2 that is observed for PEDOT:PSS.
Collapse
Affiliation(s)
- Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Elena Zucchini
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Section of Human PhysiologyUniversity of Ferrara 44121 Ferrara Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di Tecnologia 16163 Genova Italy
| | - Mauro Murgia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)CNR 40129 Bologna Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Section of Human PhysiologyUniversity of Ferrara 44121 Ferrara Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationIstituto Italiano di Tecnologia 44121 Ferrara Italy
- Department of Life SciencesUniversity of Modena and Reggio Emilia 41125 Modena Italy
| |
Collapse
|
21
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Zeng Q, Zhao S, Yang H, Zhang Y, Wu T. Micro/Nano Technologies for High-Density Retinal Implant. MICROMACHINES 2019; 10:E419. [PMID: 31234507 PMCID: PMC6630275 DOI: 10.3390/mi10060419] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/10/2023]
Abstract
During the past decades, there have been leaps in the development of micro/nano retinal implant technologies, which is one of the emerging applications in neural interfaces to restore vision. However, higher feedthroughs within a limited space are needed for more complex electronic systems and precise neural modulations. Active implantable medical electronics are required to have good electrical and mechanical properties, such as being small, light, and biocompatible, and with low power consumption and minimal immunological reactions during long-term implantation. For this purpose, high-density implantable packaging and flexible microelectrode arrays (fMEAs) as well as high-performance coating materials for retinal stimulation are crucial to achieve high resolution. In this review, we mainly focus on the considerations of the high-feedthrough encapsulation of implantable biomedical components to prolong working life, and fMEAs for different implant sites to deliver electrical stimulation to targeted retinal neuron cells. In addition, the functional electrode materials to achieve superior stimulation efficiency are also reviewed. The existing challenge and future research directions of micro/nano technologies for retinal implant are briefly discussed at the end of the review.
Collapse
Affiliation(s)
- Qi Zeng
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Saisai Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Hangao Yang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yi Zhang
- Shenzhen CAS-Envision Medical Technology Co. Ltd., Shenzhen 518100, China.
| | - Tianzhun Wu
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
23
|
Chen C, Ruan S, Bai X, Lin C, Xie C, Lee IS. Patterned iridium oxide film as neural electrode interface: Biocompatibility and improved neurite outgrowth with electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109865. [PMID: 31349419 DOI: 10.1016/j.msec.2019.109865] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
Iridium (Ir) thin film was deposited on patterned titanium substrate by direct-current (DC) magnetron sputtering, and then activated in sulfuric acid (H2SO4) through repetitive potential sweeps to form iridium oxide (IrOx) as neural electrode interface. The resultant IrOx film showed a porous and open morphology with aligned microstructure, exhibited superior electrochemical performance and excellent stability. The IrOx film supported neural stem cells (NSCs) attachment, proliferation and improved processes without causing toxicity. The patterned IrOx films offered a unique system to investigate the synergistic effects of topographical cue and electrical stimulation on neurite outgrowth. Electrical stimulation, when applied through patterned IrOx films, was found to further increase the neurite extension of neuron-like cells and significantly reorient the neurite alignment towards to the direction of stimulation. These results indicate that IrOx film, as electrode-tissue interface is highly stable and biocompatible with excellent electrochemical properties.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Natural Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Shichao Ruan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xue Bai
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chenming Lin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chungang Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
24
|
Reddy S, Xiao Q, Liu H, Li C, Chen S, Wang C, Chiu K, Chen N, Tu Y, Ramakrishna S, He L. Bionanotube/Poly(3,4-ethylenedioxythiophene) Nanohybrid as an Electrode for the Neural Interface and Dopamine Sensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18254-18267. [PMID: 31034196 DOI: 10.1021/acsami.9b04862] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(3,4-ethylene dioxythiophene) (PEDOT) is a promising conductive material widely used for interfacing with tissues in biomedical fields because of its unique properties. However, obtaining high charge injection capability and high stability remains challenging. In this study, pristine carbon nanotubes (CNTs) modified by dopamine (DA) self-polymerization on the surface polydopamine (PDA@CNTs) were utilized as dopants of PEDOT to prepare hybrid films through electrochemical deposition on the indium tin oxide (ITO) electrode. The PDA@CNTs-PEDOT film of the nanotube network topography exhibited excellent stability and strong adhesion to the ITO substrate compared with PEDOT and PEDOT/ p-toulene sulfonate. The PDA@CNTs-PEDOT-coated ITO electrodes demonstrated lower impedance and enhanced charge storage capacity than the bare ITO. When applying exogenous electrical stimulation (ES), robust long neurites sprouted from the dorsal root ganglion (DRG) neurons cultured on the PDA@CNTs-PEDOT film. Moreover, ES promoted Schwann cell migration out from the DRG spheres and enhanced myelination. The PDA@CNTs-PEDOT film served as an excellent electrochemical sensor for the detection of DA in the presence of biomolecule interferences. Results would shed light into the advancement of conducting nanohybrids for applications in the multifunctional bioelectrode in neuroscience.
Collapse
Affiliation(s)
- Sathish Reddy
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Qiao Xiao
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Haiqian Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Chuping Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Shengfeng Chen
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Cong Wang
- Department of Traditional Therapy , The Second Clinical College of Guangzhou University of Chinese Medicine , Guangzhou 510120 , China
| | - Kin Chiu
- State Key Laboratory of Brain and Cognitive Sciences , The University of Hong Kong , Hong Kong SAR , P. R. China
| | - Nuan Chen
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , 117576 , Singapore
| | - Yujie Tu
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| | - Seeram Ramakrishna
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering , National University of Singapore , 117576 , Singapore
| | - Liumin He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), MOE Joint International Research Laboratory of CNS Regeneration , Jinan University , Guangzhou , Guangdong , 510632 , China
- College of Life Science and Technology , Jinan University , Guangzhou , Guangdong , 510632 , China
| |
Collapse
|
25
|
Krukiewicz K, Krzywiecki M, Biggs MJP, Janas D. Chirality-sorted carbon nanotube films as high capacity electrode materials. RSC Adv 2018; 8:30600-30609. [PMID: 35546838 PMCID: PMC9085468 DOI: 10.1039/c8ra03963a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
Carbon nanomaterials show great promise for a wide range of applications due to their excellent physicochemical and electrical properties. Since their discovery, the state-of-the-art has expanded the scope of their application from scientific curiosity to impactful solutions. Due to their tunability, carbon nanomaterials can be processed into a wide range of formulations and significant scope exists to couple carbon structures to electronic and electrochemical applications. In this paper, the electrochemical performance of various types of CNT films, which differ by the number of walls, diameter, chirality and surface chemistry is presented. Especially, chirality-sorted (6,5)- and (7,6)-based CNT films are shown to possess a high charge storage capacity (up to 621.91 mC cm-2), areal capacitance (262 mF cm-2), significantly increased effective surface area and advantageous charge/discharge characteristics without addition of any external species, and outperform many other high capacity materials reported in the literature. The results suggest that the control over the CNT structure can lead to the manufacture of macroscopic CNT devices precisely tailored for a wide range of applications, with the focus on energy storage devices and supercapacitors. The sorted CNT macroassemblies show great potential for energy storage technologies to come from R&D laboratories into real life.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- CÚRAM - Centre for Research in Medical Devices, National University of Ireland 118 Corrib Village Galway Ireland
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology M. Strzody 9 44-100 Gliwice Poland
| | - Maciej Krzywiecki
- Institute of Physics - CSE, Silesian University of Technology Konarskiego 22B 44-100 Gliwice Poland
| | - Manus J P Biggs
- CÚRAM - Centre for Research in Medical Devices, National University of Ireland 118 Corrib Village Galway Ireland
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland +48 32 2371082
| |
Collapse
|
26
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
27
|
Young AT, Cornwell N, Daniele MA. Neuro-Nano Interfaces: Utilizing Nano-Coatings and Nanoparticles to Enable Next-Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1700239. [PMID: 33867903 PMCID: PMC8049593 DOI: 10.1002/adfm.201700239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neural interfaces provide a window into the workings of the nervous system-enabling both biosignal recording and modulation. Traditionally, neural interfaces have been restricted to implanted electrodes to record or modulate electrical activity of the nervous system. Although these electrode systems are both mechanically and operationally robust, they have limited utility due to the resultant macroscale damage from invasive implantation. For this reason, novel nanomaterials are being investigated to enable new strategies to chronically interact with the nervous system at both the cellular and network level. In this feature article, the use of nanomaterials to improve current electrophysiological interfaces, as well as enable new nano-interfaces to modulate neural activity via alternative mechanisms, such as remote transduction of electromagnetic fields are explored. Specifically, this article will review the current use of nanoparticle coatings to enhance electrode function, then an analysis of the cutting-edge, targeted nanoparticle technologies being utilized to interface with both the electrophysiological and biochemical behavior of the nervous system will be provided. Furthermore, an emerging, specialized-use case for neural interfaces will be presented: the modulation of the blood-brain barrier.
Collapse
Affiliation(s)
- Ashlyn T Young
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Neil Cornwell
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, 911 Oval Dr., Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Wang MH, Ji BW, Gu XW, Tian HC, Kang XY, Yang B, Wang XL, Chen X, Li CY, Liu JQ. Direct electrodeposition of Graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 2018; 99:99-107. [DOI: 10.1016/j.bios.2017.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022]
|
29
|
Recent developments in drug eluting devices with tailored interfacial properties. Adv Colloid Interface Sci 2017; 249:181-191. [PMID: 28532663 DOI: 10.1016/j.cis.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 11/23/2022]
Abstract
Drug eluting devices have greatly evolved during past years to become fundamental products of great marketing importance in the biomedical field. There is currently a large diversity of highly specialized devices for specific applications, making the development of these devices an exciting field of research. The replacement of the former bare metal devices by devices loaded with drugs allowed the sustained and controlled release of drugs, to achieve the desired local therapeutic concentration of drug. The newer devices have been "engineered" with surfaces containing micro- and nanoscale features in a well-controlled manner, that have shown to significantly affect cellular and subcellular function of various biological systems. For example, the topography can be structured to form an antifouling surface mimicking the defense mechanisms found in nature, like the skin of the shark. In the case of bone implants, well-controlled nanostructured interfaces can promote osteoblast differentiation and matrix production, and enhance short-term and long-term osteointegration. In any case, the goal of current research is to design implants that induce controlled, guided, and rapid healing. This article reviews recent trends in the development of drug eluting devices, as well as recent developments on the micro/nanotechnology scales, and their future challenges. For this purpose medical devices have been divided according to the different systems of the body they are focused to: orthopedic devices, breathing stents, gastrointestinal and urinary systems, devices for cardiovascular diseases, neuronal implants, and wound dressings.
Collapse
|
30
|
Zhao Z, Gong R, Zheng L, Wang J. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1851. [PMID: 27827893 PMCID: PMC5134510 DOI: 10.3390/s16111851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μ V rms from 34.1 μ V rms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording.
Collapse
Affiliation(s)
- Zongya Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Ruxue Gong
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Liang Zheng
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| | - Jue Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
- National Engineering Research Center of Health Care and Medical Devices, Xi'an Jiaotong University Branch, Xi'an 710049, China.
| |
Collapse
|
31
|
Imaninezhad M, Kuljanishvili I, Zustiak SP. A Two-Step Method for Transferring Single-Walled Carbon Nanotubes onto a Hydrogel Substrate. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/24/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mozhdeh Imaninezhad
- Department of Biomedical Engineering; 3507 Lindell Blvd St. Louis MO 63103 USA
| | | | | |
Collapse
|
32
|
Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1056-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem Rev 2016; 116:13009-13041. [PMID: 27367172 DOI: 10.1021/acs.chemrev.6b00146] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
Collapse
Affiliation(s)
- Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Erik O Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden.,Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich , 8092 Zürich, Switzerland
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| |
Collapse
|
34
|
Oprych KM, Whitby RLD, Mikhalovsky SV, Tomlins P, Adu J. Repairing Peripheral Nerves: Is there a Role for Carbon Nanotubes? Adv Healthc Mater 2016; 5:1253-71. [PMID: 27027923 DOI: 10.1002/adhm.201500864] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Peripheral nerve injury continues to be a major global health problem that can result in debilitating neurological deficits and neuropathic pain. Current state-of-the-art treatment involves reforming the damaged nerve pathway using a nerve autograft. Engineered nerve repair conduits can provide an alternative to the nerve autograft avoiding the inevitable tissue damage caused at the graft donor site. Commercially available nerve repair conduits are currently only considered suitable for repairing small nerve lesions; the design and performance of engineered conduits requires significant improvements to enable their use for repairing larger nerve defects. Carbon nanotubes (CNTs) are an emerging novel material for biomedical applications currently being developed for a range of therapeutic technologies including scaffolds for engineering and interfacing with neurological tissues. CNTs possess a unique set of physicochemical properties that could be useful within nerve repair conduits. This progress report aims to evaluate and consolidate the current literature pertinent to CNTs as a biomaterial for supporting peripheral nerve regeneration. The report is presented in the context of the state-of-the-art in nerve repair conduit design; outlining how CNTs may enhance the performance of next generation peripheral nerve repair conduits.
Collapse
Affiliation(s)
- Karen M. Oprych
- Department of Brain, Repair and Rehabilitation; Institute of Neurology; University College London; Queen Square London WC1N 3BG UK
| | | | - Sergey V. Mikhalovsky
- School of Engineering; Nazarbayev University; Astana 010000 Kazakhstan
- School of Pharmacy and Biomolecular Sciences; University of Brighton; Brighton BN2 4GJ UK
| | | | - Jimi Adu
- School of Pharmacy and Biomolecular Science; University of Brighton; Brighton BN2 4GJ UK
| |
Collapse
|
35
|
Ostrovsky S, Hahnewald S, Kiran R, Mistrik P, Hessler R, Tscherter A, Senn P, Kang J, Kim J, Roccio M, Lellouche JP. Conductive hybrid carbon nanotube (CNT)–polythiophene coatings for innovative auditory neuron-multi-electrode array interfacing. RSC Adv 2016. [DOI: 10.1039/c5ra27642j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Surface modification of platinum electrodes to improve neuron-electrode interface and electrode conductive properties in cochlear implants.
Collapse
|
36
|
Wang K, Tang RY, Zhao XB, Li JJ, Lang YR, Jiang XX, Sun HJ, Lin QX, Wang CY. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface. NANOSCALE 2015; 7:18677-18685. [PMID: 26499788 DOI: 10.1039/c5nr05784a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.
Collapse
Affiliation(s)
- Kun Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing, 100850, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gottipati MK, Verkhratsky A, Parpura V. Probing astroglia with carbon nanotubes: modulation of form and function. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130598. [PMID: 25225092 DOI: 10.1098/rstb.2013.0598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carbon nanotubes (CNTs) have shown much promise in neurobiology and biomedicine. Their structural stability and ease of chemical modification make them compatible for biological applications. In this review, we discuss the effects that chemically functionalized CNTs, applied as colloidal solutes or used as strata, have on the morpho-functional properties of astrocytes, the most abundant cells present in the brain, with an insight into the potential use of CNTs in neural prostheses.
Collapse
Affiliation(s)
- Manoj K Gottipati
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA Department of Biomedical Engineering, University of Alabama, Birmingham, AL 35294, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Vladimir Parpura
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA Department of Biomedical Engineering, University of Alabama, Birmingham, AL 35294, USA Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
38
|
Alba NA, Du ZJ, Catt KA, Kozai TDY, Cui XT. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating. BIOSENSORS-BASEL 2015; 5:618-46. [PMID: 26473938 PMCID: PMC4697137 DOI: 10.3390/bios5040618] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022]
Abstract
Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating's charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.
Collapse
Affiliation(s)
- Nicolas A Alba
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Zhanhong J Du
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Kasey A Catt
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- NeuroTech Center of the University of Pittsburgh Brain Institute, Pittsburgh, PA 15260, USA.
| | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5056 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
39
|
Chung T, Wang JQ, Wang J, Cao B, Li Y, Pang SW. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. J Neural Eng 2015; 12:056018. [DOI: 10.1088/1741-2560/12/5/056018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Mandal HS, Cliff RO, Pancrazio JJ. Freeze Drying Improves the Shelf-Life of Conductive Polymer Modified Neural Electrodes. Bioengineering (Basel) 2015; 2:176-183. [PMID: 28952476 PMCID: PMC5597183 DOI: 10.3390/bioengineering2030176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022] Open
Abstract
Coating microelectrodes with conductive polymer is widely recognized to decrease impedance and improve performance of implantable neural devices during recording and stimulation. A concern for wide-spread use of this approach is shelf-life, i.e., the electrochemical stability of the coated microelectrodes prior to use. In this work, we investigated the possibility of using the freeze-drying process in order to retain the native low impedance state and, thereby, improve the shelf-life of conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT)-PSS modified neural electrodes. Control PEDOT-PSS coated microelectrodes demonstrated a significant increase in impedance at 1 kHz after 41-50 days of room temperature storage. Based on equivalent circuit modeling derived from electrochemical impedance spectroscopy, this increase in impedance could be largely attributed to a decrease in the interfacial capacitance consistent with a collapse and closing of the porous structure of the polymeric coating. Time-dependent electrochemical impedance measurements revealed higher stability of the freeze-dried coated microelectrodes compared to the controls, such that impedance values after 41-50 days appeared to be indistinguishable from the initial levels. This suggests that freeze drying PEDOT-PSS coated microelectrodes correlates with enhanced electrochemical stability during shelf storage.
Collapse
Affiliation(s)
- Himadri S Mandal
- Blackrock Microsystems, 630 Komas Dr #200, Salt Lake City, UT 84108, USA.
| | - Richard O Cliff
- System of Systems Analytics, 11250 Waples Mill Road, Fairfax, VA 22030, USA.
| | - Joseph J Pancrazio
- Department of Bioengineering, Volgenau School of Engineering, George Mason University, 4400 University Drive, MS 1G5, Fairfax, VA 22030, USA.
| |
Collapse
|
41
|
Du ZJ, Luo X, Weaver C, Cui XT. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. JOURNAL OF MATERIALS CHEMISTRY. C 2015; 3:6515-6524. [PMID: 26491540 PMCID: PMC4610193 DOI: 10.1039/c5tc00145e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In vivo multi-electrode arrays (MEAs) can sense electrical signals from a small set of neurons or modulate neural activity through micro-stimulation. Electrode's geometric surface area (GSA) and impedance are important for both unit recording and neural stimulation. Smaller GSA is preferred due to enhanced selectivity of neural signal, but it tends to increase electrode impedance. Higher impedance leads to increased electrical noise and signal loss in single unit neural recording. It also yields a smaller charge injection window for safe neural stimulation. To address these issues, poly (3, 4-ethylenedioxythiophene) - ionic liquid (PEDOT-IL) conducting polymers were electrochemically polymerized on the surface of the microelectrodes. The PEDOT-IL coating reduced the electrode impedance modulus by over 35 times at 1 kHz. It also exhibited compelling nanostructure in surface morphology and significant impedance reduction in other physiologically relevant range (100Hz-1000Hz). PEDOT-IL coated electrodes exhibited a Charge Storage Capacity (CSC) that was about 20 times larger than that of bare electrodes. The neural recording performance of PEDOT-IL coated electrodes was also compared with uncoated electrodes and PEDOT-poly (styrenesulfonate) (PSS) coated electrodes in rat barrel cortex (SI). Spontaneous neural activity and sensory evoked neural response were utilized for characterizing the electrode performance. The PEDOT-IL electrodes exhibited a higher unit yield and signal-to-noise ratio (SNR) in vivo. The local field potential recording was benefited from the low impedance PEDOT-IL coating in noise and artifact reduction as well. Moreover, cell culture on PEDOT-IL coating demonstrated that the material is safe for neural tissue and reduces astrocyte fouling. Taken together, PEDOT-IL coating has the potential to benefit neural recording and stimulation electrodes, especially when integrated with novel small GSA electrode arrays designed for high recording density, minimal insertion damage and alleviated tissue reaction.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cassandra Weaver
- Bioengineering Department, University of California at San Diego, La Jolla, CA, USA
| | - Xinyan Tracy Cui
- Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Abstract
ABSTRACT Restoration of lost neuronal function after spinal cord injury still remains a considerable challenge for current medicine. Over the last decade, regenerative medicine has recorded rapid and promising advancements in stem cell research, genetic engineering and the progression of new sophisticated biomaterials as well as nanotechnology. This advancement has also been reflected in neural tissue engineering, where, along with the development of a new generation of well-designed biopolymer scaffolds, multifactorial therapeutic strategies are being validated in order to determine the greatest possible repair efficacy of the complex CNS pathophysiology. Much attention is currently focused on the designing of multifunctional polymer scaffolds as systems for targeted drug or gene delivery, electrical stimulation or as substrates creating a special micro-environment, promoting the growth and desired differentiation of various cell lines. In this review, the latest advances in biomaterial technology together with various combinatorial strategies designed to treat spinal cord injury treatment are summarized and discussed.
Collapse
|
43
|
Samba R, Herrmann T, Zeck G. PEDOT–CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities. J Neural Eng 2015; 12:016014. [DOI: 10.1088/1741-2560/12/1/016014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Xiao H, Zhang M, Xiao Y, Che J. A feasible way for the fabrication of single walled carbon nanotube/polypyrrole composite film with controlled pore size for neural interface. Colloids Surf B Biointerfaces 2014; 126:138-45. [PMID: 25546836 DOI: 10.1016/j.colsurfb.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Single walled carbon nanotube (SWNT)/polypyrrole (PPy) composite films with controlled pore size and strong adhesive force was prepared as electrode material for improving the performance of neural electrodes. SWNT film with controlled pore size was first fabricated through electrophoresis with a merit that the pore size can be well tuned by changing the concentration of metal ions in the electrolyte. An ultrathin conformal PPy layer around SWNT bundles in a uniform manner within the entire films was subsequently obtained by pulsed electropolymerization. The adhesion of the SWNT coated electrodes was tested by repeatedly inserting the coated electrode into agar gel to demonstrate the better adhesive force of the coating. Electrochemical results showed that the SWNT/PPy coated metal electrodes have much lower impedance and higher charge storage capacity than the bare metal substrates. Further in vitro culture of rat pheochromocytoma (PC12) cells revealed that the porous SWNT/PPy composite film was non-toxic and well supported the growth of neurons. We demonstrate that the prepared composite film has potential applications in chronic implantable neural electrodes for neural stimulation and recording.
Collapse
Affiliation(s)
- Hengyang Xiao
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Min Zhang
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China
| | - Yinghong Xiao
- Collaborative Innovation Center for Biomedical Functional Materials, Nanjing Normal University, Nanjing 210097, China.
| | - Jianfei Che
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210014, China.
| |
Collapse
|
45
|
Kolarcik CL, Catt K, Rost E, Albrecht IN, Bourbeau D, Du Z, Kozai TDY, Luo X, Weber DJ, Cui XT. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng 2014; 12:016008. [PMID: 25485675 DOI: 10.1088/1741-2560/12/1/016008] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Recent advances in micro/nanoscale biomedical implants. J Control Release 2014; 189:25-45. [DOI: 10.1016/j.jconrel.2014.06.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/22/2022]
|
47
|
Kim R, Joo S, Jung H, Hong N, Nam Y. Recent trends in microelectrode array technology for in vitro neural interface platform. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0130-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Mandal HS, Knaack GL, Charkhkar H, McHail DG, Kastee JS, Dumas TC, Peixoto N, Rubinson JF, Pancrazio JJ. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain-machine interface applications. Acta Biomater 2014; 10:2446-54. [PMID: 24576579 DOI: 10.1016/j.actbio.2014.02.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/31/2014] [Accepted: 02/17/2014] [Indexed: 01/15/2023]
Abstract
Conducting polymers, especially poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, are important for developing highly sensitive and microscale neural probes. In the present work, we show that the conductivity and stability of PEDOT can be significantly increased by switching the widely used counter anion poly(styrenesulfonate) (PSS) to the smaller tetrafluoroborate (TFB) anion during the electrodeposition of the polymer. Time-dependent impedance measurements of polymer modified implantable microwires were conducted in physiological buffer solutions under accelerated aging conditions and the relative stability of PEDOT:PSS and PEDOT:TFB modified microwires was compared over time. This study was also extended to carbon nanotube (CNT) incorporated PEDOT:PSS which, according to some reports, is claimed to enhance the stability and electrical performance of the polymer. However, no noticeable difference was observed between PEDOT:PSS and CNT:PEDOT:PSS in our measurements. At the biologically relevant frequency of 1kHz, PEDOT:TFB modified microwires exhibit approximately one order of magnitude higher conductivity and demonstrate enhanced stability over both PEDOT:PSS and CNT:PEDOT:PSS modified microwires. In addition, PEDOT:TFB is not neurotoxic and we show the proof-of-concept for both in vitro and in vivo neuronal recordings using PEDOT:TFB modified microelectrode arrays and chronic electrodes, respectively. Our findings suggest that PEDOT:TFB is a promising conductive polymer coating for the recording of neural activities.
Collapse
|
49
|
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10:2341-53. [PMID: 24556448 DOI: 10.1016/j.actbio.2014.02.015] [Citation(s) in RCA: 871] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 01/03/2023]
Abstract
Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.
Collapse
|
50
|
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1846-85. [PMID: 24677434 PMCID: PMC4373558 DOI: 10.1002/adma.201304496] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Indexed: 05/18/2023]
Abstract
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Collapse
Affiliation(s)
- Pouria Fattahi
- Biomedical Engineering Department and Chemical Engineering Departments, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guang Yang
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gloria Kim
- Biomedical Engineering Department, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mohammad Reza Abidian
- Biomedical Engineering Department, Materials Science & Engineering Department, Chemical Engineering Department, Materials Research Institute, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|