1
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
2
|
Mukherjee AG, Renu K, Gopalakrishnan AV, Jayaraj R, Dey A, Vellingiri B, Ganesan R. Epicardial adipose tissue and cardiac lipotoxicity: A review. Life Sci 2023; 328:121913. [PMID: 37414140 DOI: 10.1016/j.lfs.2023.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat 131001, India; Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Brecht P, Dring JC, Yanez F, Styczeń A, Mertowska P, Mertowski S, Grywalska E. How Do Minerals, Vitamins, and Intestinal Microbiota Affect the Development and Progression of Heart Disease in Adult and Pediatric Patients? Nutrients 2023; 15:3264. [PMID: 37513682 PMCID: PMC10384570 DOI: 10.3390/nu15143264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, far ahead of cancer. Epidemiological data emphasize the participation of many risk factors that increase the incidence of CVDs, including genetic factors, age, and sex, but also lifestyle, mainly nutritional irregularities and, connected with them, overweight and obesity, as well as metabolic diseases. Despite the importance of cardiovascular problems in the whole society, the principles of prevention of CVDs are not widely disseminated, especially among the youngest. As a result, nutritional neglect, growing from childhood and adolescence, translates into the occurrence of numerous disease entities, including CVDs, in adult life. This review aimed to draw attention to the role of selected minerals and vitamins in health and the development and progression of CVDs in adults and children. Particular attention was paid to the effects of deficiency and toxicity of the analyzed compounds in the context of the cardiovascular system and to the role of intestinal microorganisms, which by interacting with nutrients, may contribute to the development of cardiovascular disorders. We hope this article will draw the attention of society and the medical community to emphasize promoting healthy eating and proper eating habits in children and adults, translating into increased awareness and a reduced risk of CVD.
Collapse
Affiliation(s)
- Peet Brecht
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - James Curtis Dring
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Felipe Yanez
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Agnieszka Styczeń
- Department of Cardiology, Medical University of Lublin, Jaczewskiego 8, 20-093 Lublin, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Front Endocrinol (Lausanne) 2023; 14:1197102. [PMID: 37484963 PMCID: PMC10357040 DOI: 10.3389/fendo.2023.1197102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Metabolic disorders including obesity, diabetes and non-alcoholic steatohepatitis are a group of conditions characterised by chronic low-grade inflammation of metabolic tissues. There is now a growing appreciation that various metabolites released from adipose tissue serve as key signalling mediators, influencing this interaction with inflammation. G protein-coupled receptors (GPCRs) are the largest family of signal transduction proteins and most historically successful drug targets. The signalling pathways for several key adipose metabolites are mediated through GPCRs expressed both on the adipocytes themselves and on infiltrating macrophages. These include three main groups of GPCRs: the FFA4 receptor, which is activated by long chain free fatty acids; the HCA2 and HCA3 receptors, activated by hydroxy carboxylic acids; and the succinate receptor. Understanding the roles these metabolites and their receptors play in metabolic-immune interactions is critical to establishing how these GPCRs may be exploited for the treatment of metabolic disorders.
Collapse
|
5
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
6
|
Taing K, Chen L, Weng HR. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neural Regen Res 2023; 18:763-768. [PMID: 36204834 PMCID: PMC9700108 DOI: 10.4103/1673-5374.354514] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathological process of multiple neurological disorders and pathological pain conditions. GPR109A, a Gi protein-coupled receptor, has emerged as an important therapeutic target for controlling inflammation in various tissues and organs. In this review, we summarized current data about the role of GPR109A in neuroinflammation. Specifically, we focused on the pharmacological features of GPR109A and signaling pathways used by GPR109A to ameliorate neuroinflammation and symptoms in Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and pathological pain conditions.
Collapse
Affiliation(s)
- Kyle Taing
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Lawrence Chen
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
7
|
Zhang Z, Li J, Zhang M, Li B, Pan X, Dong X, Pan LL, Sun J. GPR109a Regulates Phenotypic and Functional Alterations in Macrophages and the Progression of Type 1 Diabetes. Mol Nutr Food Res 2022; 66:e2200300. [PMID: 36208084 DOI: 10.1002/mnfr.202200300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/27/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Dietary fibers can alter gut microbiota and microbial metabolite profiles. SCFAs are produced by bacterial fermentation of fiber, mediating immune homeostasis through G-protein-coupled receptors (GPCRs). GPR109a, a receptor for niacin and butyrate, expressed by immune cells and non-immune cells, is a key factor regulating immune responses. However, the role and underlying mechanisms of GPR109a in type 1 diabetes (T1D) remain unclear. METHODS AND RESULTS Experimental T1D was induced by streptozotocin in GPR109a-deficient (Gpr109a-/- ) and wild type mice. The study found that Gpr109a-/- mice were more susceptible to T1D with dysregulated immune responses, along with increased M1 macrophage polarization (from 10.55% to 21.48%). Further, an adoptive transfer experiment demonstrated that GPR109a-deficient macrophages promoted the homing of intestine-derived type 1 cytotoxic T cells to pancreas (from 18.91% to 24.24%), thus disturbing the pancreatic immune homeostasis in non-obese diabetic mice. Mechanistically, GPR109a deficiency promoted M1 macrophage polarization associated with the activation of suppressor of cytokine signaling 3-signal transducer and activator of transcription 1 signaling pathway. CONCLUSION The findings reveal that macrophage GPR109a deficiency accelerates the development of T1D. Activation of GPR109a on macrophage by dietary components may provide a new strategy for preventing or treating T1D.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiahong Li
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Binbin Li
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - XiaoHua Pan
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoliang Dong
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Jiangnan University, Wuxi, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Abdelrahman AA, Powell FL, Jadeja RN, Jones MA, Thounaojam MC, Bartoli M, Al-Shabrawey M, Martin PM. Expression and activation of the ketone body receptor HCAR2/GPR109A promotes preservation of retinal endothelial cell barrier function. Exp Eye Res 2022; 221:109129. [DOI: 10.1016/j.exer.2022.109129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
|
9
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
10
|
Viatchenko-Karpinski V, Kong L, Weng HR. Activation of microglial GPR109A alleviates thermal hyperalgesia in female lupus mice by suppressing IL-18 and glutamatergic synaptic activity. Glia 2021; 70:634-649. [PMID: 34919284 DOI: 10.1002/glia.24130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Many patients with systemic lupus erythematosus (SLE) live with chronic pain despite advances in medical management in reducing mortality related to SLE. Few animal studies have addressed mechanisms and treatment for chronic pain caused by SLE. In this study, we provide the first evidence for the analgesic effects of a GPR109A specific agonist (MK1903) and its action mechanisms in thermal hyperalgesia in female MRL/lpr mice, an SLE mouse model. Specifically, we show that MRL/lpr mice had a higher sensitivity to thermal stimuli at age 11-16 weeks, which was accompanied with significantly microglial and astrocytic activation, increases in p38 MAPK and glutamatergic synaptic activities in the spinal dorsal horn. We demonstrate that thermal hyperalgesia in MRL/lpr mice was significantly attenuated by intrathecal injection of MK1903. GPR109A was expressed in spinal microglia but not astrocytes or neurons. Its expression was significantly increased in MRL/lpr mice with thermal hyperalgesia. Activation of GPR109A receptors in microglia attenuated glutamatergic synaptic activity via suppressing production of interleukin-18 (IL-18). We provide evidence that activation of GPR109A attenuated thermal hyperalgesia in the SLE animal model via suppressing p38 MAPK activity and production of IL-18. Our study suggests that targeting the microglial GPR109A is a potent approach for reversing spinal neuroinflammation, abnormal excitatory synaptic activity, and management of thermal hyperalgesia caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, Georgia, USA.,Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, Georgia, USA
| |
Collapse
|
11
|
Geisler CE, Miller KE, Ghimire S, Renquist BJ. The Role of GPR109a Signaling in Niacin Induced Effects on Fed and Fasted Hepatic Metabolism. Int J Mol Sci 2021; 22:4001. [PMID: 33924461 PMCID: PMC8069761 DOI: 10.3390/ijms22084001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Signaling through GPR109a, the putative receptor for the endogenous ligand β-OH butyrate, inhibits adipose tissue lipolysis. Niacin, an anti-atherosclerotic drug that can induce insulin resistance, activates GPR109a at nM concentrations. GPR109a is not essential for niacin to improve serum lipid profiles. To better understand the involvement of GPR109a signaling in regulating glucose and lipid metabolism, we treated GPR109a wild-type (+/+) and knockout (-/-) mice with repeated overnight injections of saline or niacin in physiological states characterized by low (ad libitum fed) or high (16 h fasted) concentrations of the endogenous ligand, β-OH butyrate. In the fed state, niacin increased expression of apolipoprotein-A1 mRNA and decreased sterol regulatory element-binding protein 1 mRNA independent of genotype, suggesting a possible GPR109a independent mechanism by which niacin increases high-density lipoprotein (HDL) production and limits transcriptional upregulation of lipogenic genes. Niacin decreased fasting serum non-esterified fatty acid concentrations in both GPR109a +/+ and -/- mice. Independent of GPR109a expression, niacin blunted fast-induced hepatic triglyceride accumulation and peroxisome proliferator-activated receptor α mRNA expression. Although unaffected by niacin treatment, fasting serum HDL concentrations were lower in GPR109a knockout mice. Surprisingly, GPR109a knockout did not affect glucose or lipid homeostasis or hepatic gene expression in either fed or fasted mice. In turn, GPR109a does not appear to be essential for the metabolic response to the fasting ketogenic state or the acute effects of niacin.
Collapse
Affiliation(s)
- Caroline E. Geisler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.E.G.); (K.E.M.); (S.G.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendra E. Miller
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.E.G.); (K.E.M.); (S.G.)
| | - Susma Ghimire
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.E.G.); (K.E.M.); (S.G.)
| | - Benjamin J. Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; (C.E.G.); (K.E.M.); (S.G.)
| |
Collapse
|
12
|
Iannotti FA, Vitale RM. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Cells 2021; 10:586. [PMID: 33799988 PMCID: PMC8001692 DOI: 10.3390/cells10030586] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors including PPARα, PPARγ, and PPARβ/δ, acting as transcription factors to regulate the expression of a plethora of target genes involved in metabolism, immune reaction, cell differentiation, and a variety of other cellular changes and adaptive responses. PPARs are activated by a large number of both endogenous and exogenous lipid molecules, including phyto- and endo-cannabinoids, as well as endocannabinoid-like compounds. In this view, they can be considered an extension of the endocannabinoid system. Besides being directly activated by cannabinoids, PPARs are also indirectly modulated by receptors and enzymes regulating the activity and metabolism of endocannabinoids, and, vice versa, the expression of these receptors and enzymes may be regulated by PPARs. In this review, we provide an overview of the crosstalk between cannabinoids and PPARs, and the importance of their reciprocal regulation and modulation by common ligands, including those belonging to the extended endocannabinoid system (or "endocannabinoidome") in the control of major physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
13
|
Westerman KE, Harrington S, Ordovas JM, Parnell LD. PhyteByte: identification of foods containing compounds with specific pharmacological properties. BMC Bioinformatics 2020; 21:238. [PMID: 32522154 PMCID: PMC7288679 DOI: 10.1186/s12859-020-03582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly established or unknown mechanisms. While there is a wealth of data on the biological and biophysical properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds commonly present in food. Computational methods for high-throughput identification of food compounds with specific biological effects, especially when accompanied by relevant food composition data, could enable more effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of foods and food compounds. Results PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a library of food compounds with known molecular structures from the FooDB database. The output is a list of food compounds with high confidence of eliciting relevant biological effects, along with their source foods and associated quantities in those foods, where available. Applying PhyteByte to the human PPARG gene, we identified irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified agonists of this important metabolic regulator. Conclusions PhyteByte identifies food-based compounds that are predicted to interact with specific protein targets. The identified relationships can be used to prioritize food compounds for experimental or epidemiological follow-up and can contribute to the rapid development of precision approaches to new nutraceuticals as well as personalized dietary planning.
Collapse
Affiliation(s)
- Kenneth E Westerman
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
14
|
An investigation of calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in schizophrenia. Psychiatry Res 2019; 273:782-787. [PMID: 31207866 DOI: 10.1016/j.psychres.2019.01.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022]
Abstract
Evidence indicates that abnormal phospholipase A2 (PLA2) levels and niacin insensitivity are present in individuals with schizophrenia. This study was designed to determine whether differences in plasma calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) exist between those with schizophrenia and healthy controls, and to explore the correlation between PLA2s and the niacin skin reaction in schizophrenic patients. We performed ELISA experiments to measure the concentrations of plasma iPLA2 and cPLA2 and we conducted a series of niacin skin tests on schizophrenic patients from the Chinese Han population. In addition, a meta-analysis of the relationship between PLA2 and schizophrenia was conducted. The plasma concentration of iPLA2 in patients with schizophrenia was significantly higher than that in healthy controls while the plasma concentration of cPLA2 did not differ. The meta-analysis also revealed that the activity level of iPLA2 in individuals with schizophrenia was higher than that in healthy controls, whereas that of cPLA2 was not. Furthermore, a significant positive correlation was found between the concentration of iPLA2 and the score for the skin flushing response within 20 min. The abnormal plasma iPLA2 concentration and its relationship with the niacin skin test in schizophrenic patients has contributed to a deeper understanding of the pathology of schizophrenia, which may in turn provide new insights into the clinical diagnoses and treatment of schizophrenia.
Collapse
|
15
|
Recio C, Lucy D, Iveson P, Iqbal AJ, Valaris S, Wynne G, Russell AJ, Choudhury RP, O'Callaghan C, Monaco C, Greaves DR. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxid Redox Signal 2018; 29:237-256. [PMID: 29117706 DOI: 10.1089/ars.2017.7168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Great attention has been placed on the link between metabolism and immune function giving rise to the term "immunometabolism." It is widely accepted that inflammation and oxidative stress are key processes that underlie metabolic complications during obesity, diabetes, and atherosclerosis. Therefore, identifying the mechanisms and mediators that are involved in the regulation of both inflammation and metabolic homeostasis is of high scientific and therapeutic interest. Recent Advances: G protein-coupled receptors (GPCRs) that signal in response to metabolites have emerged as attractive therapeutic targets in inflammatory disease. Critical Issues and Future Directions: In this review, we discuss recent findings about the physiological role of the main metabolite-sensing GPCRs, their implication in immunometabolic disorders, their principal endogenous and synthetic ligands, and their potential as drug targets in inflammation and metabolic disease. Antioxid. Redox Signal. 29, 237-256.
Collapse
Affiliation(s)
- Carlota Recio
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Daniel Lucy
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Poppy Iveson
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Asif J Iqbal
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Sophia Valaris
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| | - Graham Wynne
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Angela J Russell
- 2 Department of Chemistry, University of Oxford , Oxford, Great Britain
| | - Robin P Choudhury
- 3 Radcliffe Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Chris O'Callaghan
- 4 Nuffield Department of Medicine, University of Oxford , Oxford, Great Britain
| | - Claudia Monaco
- 5 Kennedy Institute for Rheumatology, University of Oxford , Oxford, Great Britain
| | - David R Greaves
- 1 Sir William Dunn School of Pathology, University of Oxford , Oxford, Great Britain
| |
Collapse
|
16
|
Dias S, Paredes S, Ribeiro L. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue. Int J Endocrinol 2018; 2018:2637418. [PMID: 29593789 PMCID: PMC5822899 DOI: 10.1155/2018/2637418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome can be defined as a state of disturbed metabolic homeostasis characterized by visceral obesity, atherogenic dyslipidemia, arterial hypertension, and insulin resistance. The growing prevalence of metabolic syndrome will certainly contribute to the burden of cardiovascular disease. Obesity and dyslipidemia are main features of metabolic syndrome, and both can present with adipose tissue dysfunction, involved in the pathogenic mechanisms underlying this syndrome. We revised the effects, and underlying mechanisms, of the current approved drugs for dyslipidemia and obesity (fibrates, statins, niacin, resins, ezetimibe, and orlistat; sibutramine; and diethylpropion, phentermine/topiramate, bupropion and naltrexone, and liraglutide) on adipose tissue. Specifically, we explored how these drugs can modulate the complex pathways involved in metabolism, inflammation, atherogenesis, insulin sensitivity, and adipogenesis. The clinical outcomes of adipose tissue modulation by these drugs, as well as differences of major importance for clinical practice between drugs of the same class, were identified. Whether solutions to these issues will be found in further adjustments and combinations between drugs already in use or necessarily in new advances in pharmacology is not known. To better understand the effect of drugs used in dyslipidemia and obesity on adipose tissue not only is challenging for physicians but could also be the next step to tackle cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Dias
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sílvia Paredes
- Department of Endocrinology, Hospital de Braga, 4710-243 Braga, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Laura Ribeiro
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
A transcriptomic study of myogenic differentiation under the overexpression of PPARγ by RNA-Seq. Sci Rep 2017; 7:15308. [PMID: 29127356 PMCID: PMC5681552 DOI: 10.1038/s41598-017-14275-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022] Open
Abstract
To study the cellular and molecular function of peroxisome proliferator-activated receptor γ (PPARγ) in skeletal muscle differentiation, we have generated inducible gain-of-function to overexpress PPARγ in C2C12 myoblasts. In order to identify PPARγ targets, RNA sequencing (RNA-seq) was used to evaluate and quantify the transcriptomes and expression patterns during myogenic differentiation under the overexpression of PPARγ. The formation of myotubes and the expression of muscle-specific myogenic genes such as MyoD and MyoG may be inhibited by PPARγ overexpression. Multiple genes and pathways were significantly involved in this process, including 11 genes such as Fndc9 and Slc14a1 with fundamental change of regulation modes, 9 genes of which were validated by the data of qRT-PCR. Our studies demonstrate that PPARγ would play critical roles on myoblasts differentiation, mediating crosstalk among several pathways and transcription factors. Our data is available in the Gene Expression Omnibus (GEO) database with the accession number as GSE99399.
Collapse
|
18
|
Kong D, Li J, Shen Y, Liu G, Zuo S, Tao B, Ji Y, Lu A, Lazarus M, Breyer RM, Yu Y. Niacin Promotes Cardiac Healing after Myocardial Infarction through Activation of the Myeloid Prostaglandin D 2 Receptor Subtype 1. J Pharmacol Exp Ther 2017; 360:435-444. [PMID: 28057839 DOI: 10.1124/jpet.116.238261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023] Open
Abstract
Niacin is a well established drug used to lower cholesterol and prevent cardiovascular disease events. However, niacin also causes cutaneous flushing side effects due to release of the proresolution mediator prostaglandin D2 (PGD2). Recent randomized clinical trials have demonstrated that addition of niacin with laropiprant [a PGD2 receptor subtype 1 (DP1) blocker] to statin-based therapies does not significantly decrease the risk of cardiovascular disease events, but increases the risk of serious adverse events. Here, we tested whether, and how, niacin beneficial effects on myocardial ischemia require the activation of the PGD2/DP1 axis. Myocardial infarction (MI) was reproduced by ligation of the left anterior descending branch of the coronary artery in mice. We found that niacin increased PGD2 release in macrophages and shifted macrophages to M2 polarization both in vitro and in vivo by activation of DP1 and accelerated inflammation resolution in zymosan-induced peritonitis in mice. Moreover, niacin treatment facilitated wound healing and improved cardiac function after MI through DP1-mediated M2 bias and timely resolution of inflammation in infarcted hearts. In addition, we found that niacin intake also stimulated M2 polarization of peripheral monocytes in humans. Collectively, niacin promoted cardiac functional recovery after ischemic myocardial infarction through DP1-mediated M2 polarization and timely resolution of inflammation in hearts. These results indicated that DP1 inhibition may attenuate the cardiovascular benefits of niacin.
Collapse
Affiliation(s)
- Deping Kong
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Juanjuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Yujun Shen
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Guizhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Shengkai Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Bo Tao
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Yong Ji
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Ankang Lu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Michael Lazarus
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Richard M Breyer
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.K., Y.S., Y.Y.); Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.K., G.L., S.Z., B.T., Y.Y.); Department of Gastroenterology (J.L.), and Department of Cardiology (A.L.); Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; The Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Centre, Nanjing Medical University, Nanjing, Jiangsu, China (Y.J.); International Institute for Integrative, Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan (M.L.); and Department of Veterans Affairs, Tennessee Valley Health Authority, and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (R.M.B.)
| |
Collapse
|
19
|
Exogenous fatty acids and niacin on acute prostaglandin D 2 production in human myeloid cells. J Nutr Biochem 2017; 39:22-31. [DOI: 10.1016/j.jnutbio.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
|
20
|
Nakamichi R, Miranda EP, Lobo SMDV, Tristão VR, Dalboni MA, Quinto BMR, Batista MC. Action of nicotinic acid on the reversion of hypoxic-inflammatory link on 3T3-L1 adipocytes. Lipids Health Dis 2016; 15:91. [PMID: 27164826 PMCID: PMC4862071 DOI: 10.1186/s12944-016-0260-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Background Hypoxia resulting from adipocyte expansion is considered the basis of the inflammatory milieu observed in Metabolic Syndrome. Nicotinic acid can act on adipocytes interfering on the inflammatory response. In this study, we investigated the role of HIF-1 α (hypoxia-inducible factor -1 alpha) in the inflammatory process induced by hypoxia. The effect of nicotinic acid on the PPARs (peroxisome proliferator-activated receptors) expression during the inflammatory response was assessed over its action under HIF-1 α in 3T3-L1 adipocytes submitted to hypoxia. Methods 3T3-L1 adipocytes were pre-treated with nicotinic acid and incubated under hypoxic conditions. The level of adipokines and HIF-1 α were quantified using immunoassays. Adipokine expression was measured using real-time PCR, whereas PPARs and HIF-1 α expression were analyzed by western blot. The statistical significance of the differences between variables studied was determined by analysis of variance (ANOVA) complemented by Bonferroni’s test. Results The results demonstrated an increase in leptin and PAI-1 (plasminogen activator inhibitor-1) expression, while adiponectin production decreased under hypoxia. In parallel, induction with hypoxia enhanced HIF-1 α expression, despite causing reduced expression of PPAR α and PPAR γ. However, nicotinic acid reversed adipokine modulation under hypoxic conditions, leading to decreased HIF-1 α expression and increased PPARs expression. Conclusions Our findings suggest that nicotinic acid blunt the inflammatory response resulting from hypoxia by the reduction of HIF-1 α expression and concomitant increase of PPARs α and γ expression in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Renata Nakamichi
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil.
| | - Erika Prates Miranda
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil
| | - Sylvia Madeira de Vergueiro Lobo
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil
| | - Vivian Regina Tristão
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil.,Universidade Nove de Julho, São Paulo, Brazil
| | - Beata Marie Redublo Quinto
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil
| | - Marcelo Costa Batista
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo 781, Vila Clementino, São Paulo, Brazil.,Dialysis Unit, Intensive Care Center, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Division of Nephrology, Tufts University School of Medicine, Boston, USA
| |
Collapse
|
21
|
Titov VN, Rozhkova TA, Aripovsky AV. [Consecutive formation of the functions of high-, low-density and very-low-density lipoproteins during phylogenesis. Unique algorithm of the effects of lipid-lowering drugs]. TERAPEVT ARKH 2015; 87:123-131. [PMID: 26591564 DOI: 10.17116/terarkh2015879123-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During phylogenesis, all fatty acids (FA) were initially transported to cells by apoA-I high-density lipoproteins (HDL) in polar lipids. Later, active cellular uptake of saturated, monoenoic and unsaturated FA occurred via triglycerides (TG) in low-density lipoproteins (LDL). Active uptake of polyenoic FA (PUFA) required the following: a) PUFA re-esterified from polar phospholipids into nonpolar cholesteryl polyesters (poly-CLE), b) a novel protein, cholesteryl ester transfer protein (CETP), initiated poly-CLE transformation from HDL to LDL. CETP formed blood HDL-CETP-LDL complexes in which poly-CLE spontaneously came from polar lipids of TG in HDL to nonpolar TG in LDL. Then ligand LDLs formed and the cells actively absorbed PUFA via apoB-100 endocytosis. Some animal species (rats, mice, dogs) developed a spontaneous CETP-minus mutation followed by population death from atherosclerosis. However, there was another active CETP-independent uptake formed during phylogenesis; the cells internalized poly-CLE in HDL. Since apoA-I had no domain-ligand, another apoE/A-I ligand formed; the cells began synthesizing apoE/A-1 receptors. In cells of rabbits and primates absorbed cells PUFA consecutively: HDL-->LDL-->apoB-100 endocytosis; those of rats and dogs did HDL directly: HDL-->anoE/A-I endocytosis. In the rabbits, CETP was high, apoE in HDL was low, and the animals were sensitive to exogenous hypercholesterolemia. In the rats, CETP was low and ApoE in HDL-was high, and the animals were resistant to hypercholesterolemia. Reduced bioavailability of PUFA during their consecutive cellular uptake and develdpment of intercellular PUFA deficiency are fundamental to the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- V N Titov
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| | - T A Rozhkova
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| | - A V Aripovsky
- Russian Cardiology Research-and-Production Center, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
22
|
Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta Mol Basis Dis 2015; 1862:329-38. [PMID: 26584587 DOI: 10.1016/j.bbadis.2015.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Hematogenous recruitment of monocytes and macrophages has traditionally been viewed as a harmful process causing exacerbation of brain injury after stroke. However, emerging findings suggest equally important protective features. Inflammatory monocytes are rapidly recruited to ischemic brain via a CCR2-dependent pathway and undergo secondary differentiation in the target tissue towards non-inflammatory macrophages, mediating neuroprotection and repair of the ischemic neurovascular unit. In contrast, independent recruitment of non-inflammatory monocytes via CX3CR1 does not occur. Thus, protective features of hematogenous macrophages mainly depend on initial CCR2-dependent cell recruitment. Under therapeutic considerations, specific modulation of monocyte-derived macrophages will therefore be more appropriate than non-selectively blocking their hematogenous recruitment. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
23
|
Nicotinic Acid Accelerates HDL Cholesteryl Ester Turnover in Obese Insulin-Resistant Dogs. PLoS One 2015; 10:e0136934. [PMID: 26366727 PMCID: PMC4569091 DOI: 10.1371/journal.pone.0136934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
AIM Nicotinic acid (NA) treatment decreases plasma triglycerides and increases HDL cholesterol, but the mechanisms involved in these change are not fully understood. A reduction in cholesteryl ester transfer protein (CETP) activity has been advanced to explain most lipid-modulating effects of NA. However, due to the central role of CETP in reverse cholesterol transport in humans, other effects of NA may have been hidden. As dogs have no CETP activity, we conducted this study to examine the specific effects of extended-release niacin (NA) on lipids and high-density lipoprotein (HDL) cholesteryl ester (CE) turnover in obese Insulin-Resistant dogs with increase plasma triglycerides. METHODS HDL kinetics were assessed in fasting dogs before and four weeks after NA treatment through endogenous labeling of cholesterol and apolipoprotein AI by simultaneous infusion of [1,2 13C2] acetate and [5,5,5 2H3] leucine for 8 h. Kinetic data were analyzed by compartmental modeling. In vitro cell cholesterol efflux of serum from NA-treated dogs was also measured. RESULTS NA reduced plasma total cholesterol, low-density lipoprotein cholesterol, HDL cholesterol, triglycerides (TG), and very-low-density lipoprotein TG concentrations (p < 0.05). The kinetic study also showed a higher cholesterol esterification rate (p < 0.05). HDL-CE turnover was accelerated (p < 0.05) via HDL removal through endocytosis and selective CE uptake (p < 0.05). We measured an elevated in vitro cell cholesterol efflux (p < 0.05) with NA treatment in accordance with a higher cholesterol esterification. CONCLUSION NA decreased HDL cholesterol but promoted cholesterol efflux and esterification, leading to improved reverse cholesterol transport. These results highlight the CETP-independent effects of NA in changes of plasma lipid profile.
Collapse
|
24
|
Effect of Extended-Release Niacin/Laropiprant Combination on Plasma Adiponectin and Insulin Resistance in Chinese Patients with Dyslipidaemia. DISEASE MARKERS 2015; 2015:154014. [PMID: 26063948 PMCID: PMC4429190 DOI: 10.1155/2015/154014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/09/2015] [Indexed: 12/15/2022]
Abstract
Objectives. This study examined whether the increase of adiponectin associated with extended-release (ER) niacin/laropiprant combination attenuates the adverse effect of niacin on glucose and insulin resistance in Hong Kong Chinese patients with dyslipidaemia. Methods. Patients (N = 121) were treated with ER niacin/laropiprant 1 g/20 mg for 4 weeks and then the dose was doubled for an additional 8 weeks. Measurements of fasting lipids, glucose, insulin, and adiponectin were performed at baseline and during the study. Results. There were significant (P < 0.001) increases in glucose (9.4 ± 13.1%), insulin (70.2 ± 91.0%), HOMA-IR (87.8 ± 103.9%), and adiponectin (169.3 ± 111.6%). The increase in adiponectin was significantly associated with increase in glucose (r = 0.221, P < 0.05), insulin (r = 0.184, P < 0.05), and HOMA-IR (r = 0.237, P < 0.01) and the association remained significant after adjustment for changes in body weight or body fat mass. Conclusion. Treatment with ER niacin/laropiprant led to a significant increase in adiponectin levels but worsening of glucose levels and insulin resistance, and the increase in adiponectin and insulin resistance were correlated suggesting the increase in adiponectin did not ameliorate the deterioration in insulin resistance. Clinical trial is registered with number on WHO-ICTRP: ChiCTR-ONC-10001038.
Collapse
|
25
|
Chen L, So WY, Li SYT, Cheng Q, Boucher BJ, Leung PS. Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets. Mol Cell Endocrinol 2015; 404:56-66. [PMID: 25622782 DOI: 10.1016/j.mce.2015.01.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/17/2022]
Abstract
The widely used lipid-lowering drug niacin is reported to induce hyperglycemia during chronic and high-dose treatments, but the mechanism is poorly understood. Recently, the niacin receptor [G-protein-coupled receptor, (GPR) 109a], has been localized to islet cells while its potential role therein remains unclear. We, therefore, aimed at investigating how GPR109a regulates islet beta-cell function and its downstream signaling using high-fat diet-induced obese mice and INS-1E beta cells. Eight-week niacin treatment elevated blood glucose concentration in obese mice with increased areas under the curve at oral glucose and intraperitoneal insulin tolerance tests. Additionally, niacin treatment significantly decreased glucose-stimulated insulin secretion (GSIS) but induced peroxisome proliferator-activated receptor gamma (Pparg) and GPR109a expression in isolated pancreatic islets; concomitantly, reactive oxygen species (ROS) were transiently increased, with decreases in GSIS, intracellular cyclic adenosine monophosphate (cAMP) accumulation and mitochondrial membrane potential (ΔΨm), but with increased expression of uncoupling protein 2 (Ucp2), Pparg and Gpr109a in INS-1E cells. Corroborating these findings, the decreases in GSIS, ΔΨm and cAMP production and increases in ROS, Pparg and GPR109a expression were abolished in INS-1E cells by GPR109a knockdown. Our data indicate that niacin-induced pancreatic islet dysfunction is probably modulated through activation of the islet beta-cell GPR109a-induced ROS-PPARγ-UCP2 pathways.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Yan So
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Y T Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianni Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Barbara J Boucher
- Centre for Diabetes, The Blizard Institute, Queen Mary University of London, London, UK
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Affiliation(s)
- Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University
| |
Collapse
|
27
|
Zhou E, Li Y, Yao M, Wei Z, Fu Y, Yang Z. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms. Int Immunopharmacol 2014; 23:121-6. [PMID: 25038318 DOI: 10.1016/j.intimp.2014.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/07/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022]
Abstract
Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.
Collapse
Affiliation(s)
- Ershun Zhou
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China
| | - Yimeng Li
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China
| | - Minjun Yao
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, 5333#, Xian Road, Changchun 130062, PR China.
| |
Collapse
|
28
|
Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. J Nutr Biochem 2014; 25:750-7. [DOI: 10.1016/j.jnutbio.2014.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 11/23/2022]
|
29
|
Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Müller-Fielitz H, Pokorná B, Vollbrandt T, Stölting I, Nadrowitz R, Okun JG, Offermanns S, Schwaninger M. The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 2014; 5:3944. [PMID: 24845831 DOI: 10.1038/ncomms4944] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022] Open
Abstract
The ketone body β-hydroxybutyrate (BHB) is an endogenous factor protecting against stroke and neurodegenerative diseases, but its mode of action is unclear. Here we show in a stroke model that the hydroxy-carboxylic acid receptor 2 (HCA2, GPR109A) is required for the neuroprotective effect of BHB and a ketogenic diet, as this effect is lost in Hca2(-/-) mice. We further demonstrate that nicotinic acid, a clinically used HCA2 agonist, reduces infarct size via a HCA2-mediated mechanism, and that noninflammatory Ly-6C(Lo) monocytes and/or macrophages infiltrating the ischemic brain also express HCA2. Using cell ablation and chimeric mice, we demonstrate that HCA2 on monocytes and/or macrophages is required for the protective effect of nicotinic acid. The activation of HCA2 induces a neuroprotective phenotype of monocytes and/or macrophages that depends on PGD2 production by COX1 and the haematopoietic PGD2 synthase. Our data suggest that HCA2 activation by dietary or pharmacological means instructs Ly-6C(Lo) monocytes and/or macrophages to deliver a neuroprotective signal to the brain.
Collapse
Affiliation(s)
- Mahbubur Rahman
- 1] Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany [2]
| | - Sajjad Muhammad
- 1] Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany [2] [3]
| | - Mahtab A Khan
- 1] Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany [2]
| | - Hui Chen
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Dirk A Ridder
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Barbora Pokorná
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Tillman Vollbrandt
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Ines Stölting
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Roger Nadrowitz
- Institute of Radiotherapy and Nuclear Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jürgen G Okun
- Department of Pediatrics, University Hospital, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Stefan Offermanns
- 1] Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany [2] Medical Faculty, Goethe University, Frankfurt, Germany
| | - Markus Schwaninger
- 1] Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany [2] DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
30
|
Aboulsoud SH. Nicotinic acid: a lipid-lowering agent with unrealized potential. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2014. [DOI: 10.4103/1110-7782.132881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Offermanns S. Free fatty acid (FFA) and hydroxy carboxylic acid (HCA) receptors. Annu Rev Pharmacol Toxicol 2013; 54:407-34. [PMID: 24160702 DOI: 10.1146/annurev-pharmtox-011613-135945] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Saturated and unsaturated free fatty acids (FFAs), as well as hydroxy carboxylic acids (HCAs) such as lactate and ketone bodies, are carriers of metabolic energy, precursors of biological mediators, and components of biological structures. However, they are also able to exert cellular effects through G protein-coupled receptors named FFA1-FFA4 and HCA1-HCA3. Work during the past decade has shown that these receptors are widely expressed in the human body and regulate the metabolic, endocrine, immune and other systems to maintain homeostasis under changing dietary conditions. The development of genetic mouse models and the generation of synthetic ligands of individual FFA and HCA receptors have been instrumental in identifying cellular and biological functions of these receptors. These studies have produced strong evidence that several FFA and HCA receptors can be targets for the prevention and treatment of various diseases, including type 2 diabetes mellitus, obesity, and inflammation.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany and Medical Faculty, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
32
|
Abstract
GPR109A has generated expanding interest since its discovery as the receptor for niacin a decade ago, along with deorphanisation as the receptor for endogenous ligand 3-hydroxy-butyrate shortly after. This interest is generated especially because of the continuing exploration of niacin's "pleiotropic" mechanisms of action and its potential in the "cross-talk" between metabolic and inflammatory pathways. As GPR109A's primary pharmacological ligand in clinical use, niacin has been used for over 50 years in the treatment of cardiovascular disease, mainly due to its favourable effects on plasma lipoproteins. However, it has become apparent that niacin also possesses lipoprotein-independent effects that influence inflammatory pathways mediated through GPR109A. In addition to its G-protein-mediated effects, recent evidence has emerged to support alternative GPR109A signalling via adaptive protein β-arrestins. In this article, we consider the role of GPR109A and its downstream effects in the context of atherosclerosis and vascular inflammation, along with insights into strategy for future drug development.
Collapse
Affiliation(s)
- Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | | | | |
Collapse
|
33
|
Abstract
Niacin (nicotinic acid) has been used for decades as a lipid-lowering drug. The clinical use of niacin to treat dyslipidemic conditions is limited by its side effects. Niacin, along with fibrates, are the only approved drugs which elevate high density lipoprotein cholesterol (HDLc) along with its effects on low density lipoprotein cholesterol (LDLc) and triglycerides. Whether niacin has a beneficial role in lowering cardiovascular risk on the background of well-controlled LDLc has not been established. In fact, it remains unclear whether niacin, either in the setting of well-controlled LDLc or in combination with other lipid-lowering agents, confers any therapeutic benefit and if so, by which mechanism. The results of recent trials reject the hypothesis that simply raising HDLc is cardioprotective. However, in the case of the clinical trials, structural limitations of trial design complicate their interpretation. This is also true of the most recent Heart Protection Study 2-Treatment of HDLc to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial in which niacin is combined with an antagonist of the D prostanoid (DP) receptor. Human genetic studies have also questioned the relationship between cardiovascular benefit and HDLc. It remains to be determined whether niacin may have clinical utility in particular subgroups, such as statin intolerant patients with hypercholesterolemia or those who cannot achieve a sufficient reduction in LDLc. It also is unclear whether a potentially beneficial effect of niacin is confounded by DP antagonism in HPS2-THRIVE.
Collapse
Affiliation(s)
- Wen-Liang Song
- Institute for Translational Medicine and Therapeutics, Departments of Pharmacology and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | |
Collapse
|
34
|
Wanders D, Graff EC, White BD, Judd RL. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice. PLoS One 2013; 8:e71285. [PMID: 23967184 PMCID: PMC3742781 DOI: 10.1371/journal.pone.0071285] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022] Open
Abstract
Aims To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity. Materials and Methods Male C57BL/6 mice were placed on a control or high-fat diet (HFD) and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2−/− (niacin receptor−/−) mice. Results Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2−/− mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription) in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion). However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice. Conclusions Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.
Collapse
Affiliation(s)
- Desiree Wanders
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Emily C. Graff
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - B. Douglas White
- Department of Nutrition, Dietetics, and Hospitality Management, College of Human Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
35
|
Zhang Z, Tsukikawa M, Peng M, Polyak E, Nakamaru-Ogiso E, Ostrovsky J, McCormack S, Place E, Clarke C, Reiner G, McCormick E, Rappaport E, Haas R, Baur JA, Falk MJ. Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network. PLoS One 2013; 8:e69282. [PMID: 23894440 PMCID: PMC3722174 DOI: 10.1371/journal.pone.0069282] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease.
Collapse
Affiliation(s)
- Zhe Zhang
- Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mai Tsukikawa
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Min Peng
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Erzsebet Polyak
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eiko Nakamaru-Ogiso
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julian Ostrovsky
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shana McCormack
- Division of Endocrinology, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Place
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Colleen Clarke
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gail Reiner
- Department of Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Elizabeth McCormick
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Rappaport
- Nucleic Acid and Protein Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Richard Haas
- Department of Pediatrics, University of California San Diego, San Diego, California, United States of America
| | - Joseph A. Baur
- Department of Physiology, and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marni J. Falk
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Division of Child Development and Metabolic Disease, The Children’s Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Orlova M, Cobat A, Huong NT, Ba NN, Van Thuc N, Spencer J, Nédélec Y, Barreiro L, Thai VH, Abel L, Alcaïs A, Schurr E. Gene set signature of reversal reaction type I in leprosy patients. PLoS Genet 2013; 9:e1003624. [PMID: 23874223 PMCID: PMC3708838 DOI: 10.1371/journal.pgen.1003624] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/24/2013] [Indexed: 11/26/2022] Open
Abstract
Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage. Leprosy type 1 reversal reactions (T1R) are an important cause of nerve damage in leprosy patients and accurate prediction of patients at increased risk of T1R is a major challenge of current leprosy control. The incidence of T1R differs widely from 6% to 67% of leprosy patients in different leprosy endemic settings. Whether or not this reflects the impact of unknown environmental triggers or differences in the genetic background across ethnicities is not known. We performed a comparative transcriptome analysis between leprosy patients affected and free of T1R in response to M. leprae antigens. As the discovery sample we enrolled cured leprosy patients who had been diagnosed with T1R at the time of leprosy diagnosis and leprosy patients who had never undergone T1R (retrospective arm). Whole genome transcriptome analysis after stimulation of blood with M. leprae antigen resulted in the definition of a T1R signature gene set. We validated the T1R gene set in RNA samples obtained from T1R-free patients at the time of leprosy diagnosis and followed for 3 years for development of T1R (prospective arm). These results confirm the role of innate factors in T1R and are a first step towards a predictive genetic T1R signature.
Collapse
Affiliation(s)
- Marianna Orlova
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Aurélie Cobat
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nguyen Ngoc Ba
- Hospital for Dermato-Venereology, Ho Chi Minh City, Vietnam
| | | | - John Spencer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Yohann Nédélec
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Luis Barreiro
- Department of Pediatrics, Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Vu Hong Thai
- Hospital for Dermato-Venereology, Ho Chi Minh City, Vietnam
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- URC-CIC, Hopital Tarnier, Paris, France
| | - Erwin Schurr
- McGill International TB Centre, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Gaidarov I, Chen X, Anthony T, Maciejewski-Lenoir D, Liaw C, Unett DJ. Differential tissue and ligand-dependent signaling of GPR109A receptor: implications for anti-atherosclerotic therapeutic potential. Cell Signal 2013; 25:2003-16. [PMID: 23770183 DOI: 10.1016/j.cellsig.2013.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Until recently, the anti-atherosclerotic effects of niacin were attributed primarily to its lipid modification properties mediated by adipocyte G-protein coupled receptor GPR109A, though recent studies have raised significant doubts about this mechanism. In fact, in rodents it has recently been demonstrated that niacin inhibits progression of atherosclerosis through actions on immune cells, particularly via macrophage-expressed GPR109A, independent of lipid-modifying properties. Here, we studied GPR109A signal transduction in human Langerhans cells, macrophages and adipocytes. We find that the consequences of receptor activation are profoundly influenced by cellular context and that ligand-biased signaling significantly impacts functionally relevant signaling. In Langerhans cells, niacin initiates GPR109A-mediated signaling pathways (Erk1/2 and Ca(2+)) responsible for the release of vasodilatory prostanoids, while the synthetic GPR109A agonist MK-0354 fails to elicit any signaling, providing a mechanistic basis for the latter compound's inability to cause flushing. While GPR109A mediates inhibition of cAMP in adipocytes, in macrophages GPR109A signaling via Gβγ subunits results in paradoxical augmentation of intracellular cAMP levels. Also, in macrophages niacin and GPR109A full agonists induce Erk1/2 and Ca(2+) signaling, release of prostanoids, upregulation of cholesterol transporters ABCA1 and ABCG1 and stimulation of reverse cholesterol transport in GPR109A dependent manner. A mechanism is presented in which signals from the autocrine action of released prostanoids and Gi protein mediated cAMP augmentation are integrated leading to modulation of reverse cholesterol transport regulatory components. These studies provide key insights into mechanisms by which GPR109A may influence cholesterol efflux in macrophages; a process that may be at least partially responsible for niacin's anti-atherosclerotic activity. MK-0354 does not induce niacin-like GPR109A signaling in macrophages, suggesting that biased agonists devoid of the flushing side-effect may also lack properties required for macrophage-mediated anti-atherosclerotic effects.
Collapse
Affiliation(s)
- Ibragim Gaidarov
- Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Chai JT, Digby JE, Ruparelia N, Jefferson A, Handa A, Choudhury RP. Nicotinic acid receptor GPR109A is down-regulated in human macrophage-derived foam cells. PLoS One 2013; 8:e62934. [PMID: 23658787 PMCID: PMC3642175 DOI: 10.1371/journal.pone.0062934] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acid (NA) regresses atherosclerosis in human imaging studies and reduces atherosclerosis in mice, mediated by myeloid cells, independent of lipoproteins. Since GPR109A is expressed by human monocytes, we hypothesized that NA may drive cholesterol efflux from foam cells. In THP-1 cells NA suppressed LPS-induced mRNA transcription of MCP-1 by 76.6±12.2% (P<0.01) and TNFα by 56.1±11.5% (P<0.01), yet restored LPS-induced suppression of PPARγ transcription by 536.5±46.4% (P<0.001) and its downstream effector CD36 by 116.8±19.8% (P<0.01). Whilst direct PPARγ-agonism promoted cholesterol efflux from THP-1 derived foam cells by 37.7±3.1% (P<0.01) and stimulated transcription of LXRα by 87.9±9.5% (P<0.001) and ABCG1 by 101.2±15.5% (P<0.01), NA showed no effect in foam cells on either cholesterol efflux or key RCT genes transcription. Upon foam cell induction, NA lost its effect on PPARγ and cAMP pathways, since its receptor, GPR109A, was down-regulated by foam cell transformation. This observation was confirmed in explanted human carotid plaques. In conclusion, despite NA's anti-inflammatory effect on human macrophages, it has no effect on foam cells in reverse cholesterol transport; due to GPR109A down-regulation.
Collapse
Affiliation(s)
- Joshua T. Chai
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Janet E. Digby
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Neil Ruparelia
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Jefferson
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Robin P. Choudhury
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Kreutzer M, Seehusen F, Kreutzer R, Pringproa K, Kummerfeld M, Claus P, Deschl U, Kalkul A, Beineke A, Baumgärtner W, Ulrich R. Axonopathy is associated with complex axonal transport defects in a model of multiple sclerosis. Brain Pathol 2012; 22:454-71. [PMID: 21988534 PMCID: PMC8092950 DOI: 10.1111/j.1750-3639.2011.00541.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 09/08/2011] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized by myelin and axonal pathology. In a viral model of MS, we tested whether axonopathy initiation and development are based on an impaired transport of neurofilaments. Spinal cords of Theiler's murine encephalomyelitis virus (TMEV)-infected and mock-infected mice and TMEV infected neuroblastoma N1E-115 cells were analyzed by microarray analysis, light microscopy and electron and laser confocal microscopy. In vivo axonal accumulation of non-phosphorylated neurofilaments after TMEV infection revealed a temporal development caused by the impairments of the axonal traffic consisting of the downregulation of kinesin family member 5A, dynein cytoplasmic heavy chain 1, tau-1 and β-tubulin III expression. In addition, alterations of the protein metabolism were also noticed. In vitro, the TMEV-infected N1E-115 cells developed tandem-repeated swellings similar to in vivo alterations. Furthermore, the hypothesis of an underlying axonal self-destruction program involving nicotinamide adenine dinucleotide depletion was supported by molecular findings. The obtained data indicate that neurofilament accumulation in TME is mainly the result of dysregulation of their axonal transport machinery and impairment of neurofilament phosphorylation and protein metabolism. The present findings allow a more precise understanding of the complex interactions responsible for initiation and development of axonopathies in inflammatory degenerative diseases.
Collapse
Affiliation(s)
- Mihaela Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Robert Kreutzer
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Kidsadagorn Pringproa
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Maren Kummerfeld
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience, Hannover, Germany
- Department of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Ulrich Deschl
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Arno Kalkul
- Boehringer Ingelheim Pharma GmbH&Co KG, Department of Non‐Clinical Drug Safety, Biberach (Riß), Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
40
|
Godin AM, Ferreira WC, Rocha LTS, Ferreira RG, Paiva ALL, Merlo LA, Nascimento EB, Bastos LFS, Coelho MM. Nicotinic acid induces antinociceptive and anti-inflammatory effects in different experimental models. Pharmacol Biochem Behav 2012; 101:493-8. [DOI: 10.1016/j.pbb.2012.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/03/2012] [Accepted: 02/11/2012] [Indexed: 01/07/2023]
|
41
|
Zhang LH, Kamanna VS, Ganji SH, Xiong XM, Kashyap ML. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells. J Lipid Res 2012; 53:941-950. [PMID: 22389325 DOI: 10.1194/jlr.m020917] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipidation of apoA-I in liver greatly influences HDL biogenesis and plasma HDL levels by stabilizing the secreted apoA-I. Niacin is the most effective lipid-regulating agent clinically available to raise HDL. This study was undertaken to identify regulatory mechanisms of niacin action in hepatic lipidation of apoA-I, a critical event involved in HDL biogenesis. In cultured human hepatocytes (HepG2), niacin increased: association of apoA-I with phospholipids and cholesterol by 46% and 23% respectively, formation of lipid-poor single apoA-I molecule-containing particles up to ~2.4-fold, and pre β 1 and α migrating HDL particles. Niacin dose-dependently stimulated the cell efflux of phospholipid and cholesterol and increased transcription of ABCA1 gene and ABCA1 protein. Mutated DR4, a binding site for nuclear factor liver X receptor alpha (LXR α ) in the ABCA1 promoter, abolished niacin stimulatory effect. Further, knocking down LXR α or ABCA1 by RNA interference eliminated niacin-stimulated apoA-I lipidation. Niacin treatment did not change apoA-I gene expression. The present data indicate that niacin increases apoA-I lipidation by enhancing lipid efflux through a DR4-dependent transcription of ABCA1 gene in HepG2 cells. A stimulatory role of niacin in early hepatic formation of HDL particles suggests a new mechanism that contributes to niacin action to increase the stability of newly synthesized circulating HDL.
Collapse
Affiliation(s)
- Lin-Hua Zhang
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA; and the Department of Medicine, University of California, Irvine, CA; Department of Medicine, University of California, Irvine, CA.
| | - Vaijinath S Kamanna
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA; and the Department of Medicine, University of California, Irvine, CA; Department of Medicine, University of California, Irvine, CA
| | - Shobha H Ganji
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA; and the Department of Medicine, University of California, Irvine, CA; Department of Medicine, University of California, Irvine, CA
| | - Xi-Ming Xiong
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA; and the Department of Medicine, University of California, Irvine, CA; Department of Medicine, University of California, Irvine, CA
| | - Moti L Kashyap
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA; and the Department of Medicine, University of California, Irvine, CA; Department of Medicine, University of California, Irvine, CA.
| |
Collapse
|
42
|
Digby JE, Martinez F, Jefferson A, Ruparelia N, Chai J, Wamil M, Greaves DR, Choudhury RP. Anti-inflammatory effects of nicotinic acid in human monocytes are mediated by GPR109A dependent mechanisms. Arterioscler Thromb Vasc Biol 2012; 32:669-76. [PMID: 22267479 DOI: 10.1161/atvbaha.111.241836] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Nicotinic acid (NA) treatment has been associated with benefits in atherosclerosis that are usually attributed to effects on plasma lipoproteins. The NA receptor GPR109A is expressed in monocytes and macrophages, suggesting a possible additional role for NA in modulating function of these immune cells. We hypothesize that NA has the potential to act directly on monocytes to alter mediators of inflammation that may contribute to its antiatherogenic effects in vivo. METHODS AND RESULTS In human monocytes activated by Toll-like receptor (TLR)-4 agonist lipopolysaccharide, NA reduced secretion of proinflammatory mediators: TNF-α (by 49.2±4.5%); interleukin-6 (by 56.2±2.8%), and monocyte chemoattractant protein-1 (by 43.2±3.1%) (P<0.01). In TLR2 agonist, heat-killed Listeria monocytogenes-activated human monocytes, NA reduced secretion of TNF-α (by 48.6±7.1%), interleukin-6 (by 60.9±1.6%), and monocyte chemoattractant protein-1 (by 59.3±5.3%) (P<0.01; n=7). Knockdown of GPR109A by siRNA resulted in a loss of this anti-inflammatory effect in THP-1 monocytes. However, inhibition of prostaglandin D2 receptor by MK0524 or COX2 by NS398 did not alter the anti-inflammatory effects of NA observed in activated human monocytes. Preincubation of THP-1 monocytes with NA 0.1 mmol/L reduced phosphorylated IKKβ by 42±2% (P<0.001) IKB-α by 54±14% (P<0.01). Accumulation of nuclear p65 NF-κB in response to lipopolysaccharide treatment was also profoundly inhibited, by 89±1.3% (n=4; P<0.01). NA potently inhibited monocyte adhesion to activated HUVEC, and VCAM, mediated by the integrin, very late antigen 4. Monocyte chemotaxis was also significantly reduced (by 45.7±1.2%; P<0.001). CONCLUSION NA displays a range of effects that are lipoprotein-independent and potentially antiatherogenic. These effects are mediated by GPR109A and are independent of prostaglandin pathways. They suggest a rationale for treatment with NA that is not dependent on levels of plasma cholesterol and possible applications beyond the treatment of dyslipidemia.
Collapse
MESH Headings
- Anti-Inflammatory Agents/pharmacology
- Cell Adhesion/drug effects
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemotaxis, Leukocyte/drug effects
- Cyclooxygenase 2 Inhibitors/pharmacology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- I-kappa B Kinase/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation Mediators/metabolism
- Integrin alpha4beta1/metabolism
- Interleukin-6/metabolism
- Lipopolysaccharides/pharmacology
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- Niacin/pharmacology
- Phosphorylation
- Pyrazines/pharmacology
- RNA Interference
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/metabolism
- Toll-Like Receptor 2/agonists
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 4/agonists
- Toll-Like Receptor 4/metabolism
- Transcription Factor RelA/metabolism
- Transfection
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Janet E Digby
- Department of Cardiovascular Medicine, John Radcliffe Hospital, and Sir William Dunn School of Pathology, University of Oxford, Oxford, OX3 9DU, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kang I, Kim SW, Youn JH. Effects of nicotinic acid on gene expression: potential mechanisms and implications for wanted and unwanted effects of the lipid-lowering drug. J Clin Endocrinol Metab 2011; 96:3048-55. [PMID: 21816780 PMCID: PMC3200242 DOI: 10.1210/jc.2011-1104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Nicotinic acid (NA), or niacin, lowers circulating levels of lipids, including triglycerides, very low-density lipoprotein-cholesterol, and low-density lipoprotein-cholesterol. The lipid-lowering effects have been attributed to its effect to inhibit lipolysis in adipocytes and thus lower plasma free fatty acid (FFA) level. However, evidence accumulates that the FFA-lowering effect may account for only a fraction of NA effects on plasma lipids, and other mechanisms may be involved. Recent studies have reported NA effects on gene expression in various tissues in vivo and in cultured cells in vitro. EVIDENCE ACQUISITION We reviewed articles reporting NA effects on gene expression, identified by searching PubMed, focusing on potential underlying mechanisms and implications for unexplained NA effects. CONCLUSION The effects of NA on gene expression may be mediated directly via the NA receptor in the affected cells, indirectly via changes in circulating FFA or hormone levels induced by NA, or by activating the transcription factor FOXO1 in insulin-sensitive tissues. NA effects on gene expression provide new insights into previously unexplained NA effects, such as FFA-independent lipid-lowering effects, FFA rebound, and insulin resistance observed in clinics during NA treatment.
Collapse
Affiliation(s)
- Insug Kang
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul 1130-701, Korea
| | | | | |
Collapse
|
44
|
Nicotinic acid (niacin): new lipid-independent mechanisms of action and therapeutic potentials. Trends Pharmacol Sci 2011; 32:700-7. [PMID: 21944259 DOI: 10.1016/j.tips.2011.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/04/2023]
Abstract
Nicotinic acid (niacin) has been used for decades to prevent and treat atherosclerosis. The well-documented antiatherogenic activity is believed to result from its antidyslipidemic effects, which are accompanied by unwanted effects, especially a flush. There has been renewed interest in nicotinic acid owing to the need for improved prevention of atherosclerosis in patients already taking statins. In addition, the identification of a nicotinic acid receptor expressed in adipocytes and immune cells has helped to elucidate the mechanisms underlying the antiatherosclerotic as well as the unwanted effects of this drug. Nicotinic acid exerts its antiatherosclerotic effects at least in part independently of its antidyslipidemic effects through mechanisms involving its receptor on immune cells as well as through direct and indirect effects on the vascular endothelium. Here, we review recent data on the pharmacological effects of nicotinic acid and discuss how they might be harnessed to treat other inflammatory diseases such as multiple sclerosis or psoriasis.
Collapse
|
45
|
Vosper H. Extended release niacin-laropiprant in patients with hypercholesterolemia or mixed dyslipidemias improves clinical parameters. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2011; 5:85-101. [PMID: 22084607 PMCID: PMC3201109 DOI: 10.4137/cmc.s7601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The progression of atherosclerosis remains a major cause of morbidity and mortality. Plaque formation is an immunological response driven by a number of risk factors, and reduction of risk is the primary goal of treatment. The role of LDL-C is well established and statins have proved effective drugs, although the relative risk reduction is only around 30%. The importance of other factors-notably low HDL-C and high TGs-has become increasingly clear and the search for alternative strategies continues. Niacin is particularly effective in achieving normalization of HDL-C but is clinically underutilized due to the side effect of cutaneous flushing. The discovery that flushing is mediated by mechanisms distinct from the lipid-lowering effects has led to the development of combination drugs with reduced side effects. This review considers the evidence regarding the clinical efficacy of extended-release niacin and the DP1 antagonist laropiprant in the treatment of hypercholesterolemia and mixed dyslipidemias.
Collapse
Affiliation(s)
- Helen Vosper
- School of Pharmacy and Life Sciences, Robert Gordon University, Schoolhill, Aberdeen, AB10 1FR, Scotland, UK
| |
Collapse
|
46
|
Abstract
Abnormal blood lipids are the major modifiable risk factor underlying the development of cardiovascular disease. Niacin has a profound ability to reduce low-density lipoprotein-C, very low-density lipoprotein-C and triglycerides and is the most effective pharmacological agent to increase high-density lipoprotein-C. Recently, the receptor for niacin, GPR109A, was discovered. GPR109A in the adipocyte mediates a niacin-induced inhibition of lipolysis, which could play a crucial part in its role as a lipid-modifying drug. GPR109A in epidermal Langerhans cells mediates flushing, an unwanted side effect of niacin therapy. For the past decade, the functions of GPR109A have been studied and full or partial agonists have been developed in an attempt to achieve the beneficial effects of niacin while avoiding the unwanted flushing side effect. This review presents what is known to date about GPR109A biology and function and the future of GPR109A as a pharmacological target.
Collapse
Affiliation(s)
- D Wanders
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
47
|
|
48
|
Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP. International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 2011; 63:269-90. [PMID: 21454438 DOI: 10.1124/pr.110.003301] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The G-protein-coupled receptors GPR81, GPR109A, and GPR109B share significant sequence homology and form a small group of receptors, each of which is encoded by clustered genes. In recent years, endogenous ligands for all three receptors have been described. These endogenous ligands have in common that they are hydroxy-carboxylic acid metabolites, and we therefore have proposed that this receptor family be named hydroxy-carboxylic acid (HCA) receptors. The HCA(1) receptor (GPR81) is activated by 2-hydroxy-propanoic acid (lactate), the HCA(2) receptor (GPR109A) is a receptor for the ketone body 3-hydroxy-butyric acid, and the HCA(3) receptor (GPR109B) is activated by the β-oxidation intermediate 3-hydroxy-octanoic acid. HCA(1) and HCA(2) receptors are found in most mammalian species, whereas the HCA(3) receptor is present only in higher primates. The three receptors have in common that they are expressed in adipocytes and are coupled to G(i)-type G-proteins mediating antilipolytic effects in fat cells. HCA(2) and HCA(3) receptors are also expressed in a variety of immune cells. HCA(2) is a receptor for the antidyslipidemic drug nicotinic acid (niacin) and related compounds, and there is an increasing number of synthetic ligands mainly targeted at HCA(2) and HCA(3) receptors. The aim of this article is to give an overview on the discovery and pharmacological characterization of HCAs, and to introduce an International Union of Basic and Clinical Pharmacology (IUPHAR)-recommended nomenclature. We will also discuss open questions regarding this receptor family as well as their physiological role and therapeutic potential.
Collapse
Affiliation(s)
- Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest 2011; 121:1163-73. [PMID: 21317532 DOI: 10.1172/jci41651] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/15/2010] [Indexed: 12/19/2022] Open
Abstract
Nicotinic acid (niacin) is a drug used to reduce the progression of atherosclerosis. Its antiatherosclerotic activity is believed to result from lipid-modifying effects, including its ability to decrease LDL cholesterol and increase HDL cholesterol levels in plasma. Here, we report that in a mouse model of atherosclerosis, we found that nicotinic acid inhibited disease progression under conditions that left total cholesterol and HDL cholesterol plasma levels unaffected. The antiatherosclerotic effect was not seen in mice lacking the receptor for nicotinic acid GPR109A. Surprisingly, transplantation of bone marrow from GPR109A-deficient mice into atherosclerosis-prone animals also abrogated the beneficial effect of nicotinic acid. We detected expression of GPR109A in macrophages in atherosclerotic plaques. In macrophages from WT mice, but not from GPR109A-deficient animals, nicotinic acid induced expression of the cholesterol transporter ABCG1 and promoted cholesterol efflux. Furthermore, activation of GPR109A by nicotinic acid inhibited MCP-1-induced recruitment of macrophages into the peritoneal cavity and impaired macrophage recruitment to atherosclerotic plaques. In contrast with current models, our data show that nicotinic acid can reduce the progression of atherosclerosis independently of its lipid-modifying effects through the activation of GPR109A on immune cells. We conclude therefore that GPR109A mediates antiinflammatory effects, which may be useful for treating atherosclerosis and other diseases.
Collapse
Affiliation(s)
- Martina Lukasova
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | | | | | |
Collapse
|
50
|
Montecucco F, Quercioli A, Dallegri F, Viviani GL, Mach F. New evidence for nicotinic acid treatment to reduce atherosclerosis. Expert Rev Cardiovasc Ther 2011; 8:1457-67. [PMID: 20936932 DOI: 10.1586/erc.10.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nicotinic acid (at a daily dose of grams) has been shown to induce potent anti-atherosclerotic effects in human and animal models. Evidence from clinical studies performed in the 1950s has shown that nicotinic acid treatment remarkably improves the plasma lipid profile. Large clinical studies showed that nicotinic acid improves clinical cardiovascular outcomes. Given the protective effects of niacin, basic research studies were designed to explore additional anti-atherosclerotic pathways, such as those involved in cardiovascular inflammation. After the discovery of the nicotinic acid receptor GPR109A on adipocytes and immune cells, novel direct immunomodulatory properties of nicotinic acid have been identified. Importantly, the regulation of the release of inflammatory mediators from adipose tissue was observed, independent of lipid level amelioration. Less is known about the possible direct anti-inflammatory activities of nicotinic acid in other cells (such as hepatocytes, endothelial and vascular cells) previously indicated as key players in atherogenesis. Thus, further studies are needed to clarify this promising topic. Emerging evidence from clinical and basic research studies indicates that novel direct anti-atherosclerotic properties might mediate nicotinic acid-induced cardiovascular protection. Despite some limitations in its clinical use (mainly due to the incidence of adverse events, such as cutaneous flushing and hepatotoxicity), nicotinic acid should be considered as a very potent therapeutic approach to reduce atherosclerosis. Promising research developments are warranted in the near future.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Research, 64 Avenue Roseraie, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|