1
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, TX
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX.
| |
Collapse
|
2
|
Lee D, Kim D, Kim D, Kim N, Nam YW, Lee BC, Song J, Chang J. Development of a targeted IL-12 immunotherapy platform for B-cell lymphomas. Int Immunopharmacol 2024; 139:112600. [PMID: 39002524 DOI: 10.1016/j.intimp.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Immunotherapy has emerged as a promising approach to cancer treatment that utilizes the potential of the immune system to precisely identify and eradicate cancerous cells. Despite significant progress in immunotherapy, innovative approaches are required to enhance the effectiveness and safety of these treatments. Interleukin-12 (IL-12), widely recognized for its essential function in immune responses, has been explored as a potential candidate for treating cancer. However, early attempts involving the systemic administration of IL-12 were ineffective, with significant adverse effects, thus underscoring the need for innovation. To address these challenges, we developed a therapeutic molecule that utilizes a single-chain IL-12 mutant (IL-12mut) linked to a tumor-targeting arm. Here, we describe the development of a highly effective IL-12-based TMEkine™ platform by employing a B-cell lymphoma model (termed CD20-IL-12mut). CD20-IL-12mut combined the attenuated activities of IL-12 with targeted delivery to the tumor, thereby maximizing therapeutic potential while minimizing off-target effects. Our results revealed that CD20-IL-12mut exhibited potent anticancer activity by inducing complete regression and generating immunological memory for tumor antigens. Collectively, our data provide a basis for additional research on CD20-IL-12mut as a potential treatment choice for patients with B-cell lymphomas such as non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Dahea Lee
- Kanaph Therapeutics, Seoul, South Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | | | | | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | | | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| | | |
Collapse
|
3
|
Popa LG, Dumitras I, Giurcaneanu C, Berghi O, Radaschin DS, Vivisenco CI, Popescu MN, Beiu C. Mechanisms of Resistance to Rituximab Used for the Treatment of Autoimmune Blistering Diseases. Life (Basel) 2024; 14:1223. [PMID: 39459523 PMCID: PMC11508628 DOI: 10.3390/life14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune blistering diseases represent a group of chronic severe, disabling, and potentially fatal disorders of the skin and/or mucous membranes, primarily mediated by pathogenic auto-antibodies. Despite their rarity, these diseases are associated with significant morbidity and mortality and profound negative impact on the patient's quality of life and impose a considerable economic burden. Rituximab, an anti-CD-20 monoclonal antibody, represents the first line of therapy for pemphigus, regardless of severity and a valuable off-label therapeutic alternative for subepidermal autoimmune blistering diseases as it ensures high rates of rapid, long-lasting complete remission. Nevertheless, disease recurrence is the rule, all patients requiring maintenance therapy with rituximab eventually. While innate resistance to rituximab in pemphigus patients is exceptional, acquired resistance is frequent and may develop even in patients with initial complete response to rituximab, representing a real challenge for physicians. We discuss the various resistance mechanisms and their complex interplay, as well as the numerous therapeutic alternatives that may be used to circumvent rituximab resistance. As no therapeutic measure is universally efficient, individualization of rituximab treatment regimen and tailored adjuvant therapies in refractory autoimmune blistering diseases are mandatory.
Collapse
Affiliation(s)
- Liliana Gabriela Popa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Ioana Dumitras
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Ovidiu Berghi
- Department of Allergy and Clinical Immunology, Colentina Clinical Hospital, 19-21 Stefan cel Mare Bd., District 2, 020125 Bucharest, Romania
| | - Diana Sabina Radaschin
- Department of Dermatology, Dunarea de Jos University of Medicine and Pharmacy, 25 Otelarilor Bd., 800008 Galati, Romania
| | - Cristina Iolanda Vivisenco
- Department of Paediatrics, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, 30-32 Iancu de Hunedoara Road, 011743 Bucharest, Romania
| | - Marius Nicolae Popescu
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Physical and Rehabilitation Medicine, Dermatology Department, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| | - Cristina Beiu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, District 1, 020021 Bucharest, Romania
- Department of Dermatology, Elias Emergency University Hospital, 17 Marasti Bd., District 1, 011461 Bucharest, Romania
| |
Collapse
|
4
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|
5
|
Zhang D, Sun D. Current progress in CAR-based therapy for kidney disease. Front Immunol 2024; 15:1408718. [PMID: 39234257 PMCID: PMC11372788 DOI: 10.3389/fimmu.2024.1408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Despite significant breakthroughs in the understanding of immunological and pathophysiological features for immune-mediated kidney diseases, a proportion of patients exhibit poor responses to current therapies or have been categorized as refractory renal disease. Engineered T cells have emerged as a focal point of interest as a potential treatment strategy for kidney diseases. By genetically modifying T cells and arming them with chimeric antigen receptors (CARs), effectively targeting autoreactive immune cells, such as B cells or antibody-secreting plasma cells, has become feasible. The emergence of CAR T-cell therapy has shown promising potential in directing effector and regulatory T cells (Tregs) to the site of autoimmunity, paving the way for effective migration, proliferation, and execution of suppressive functions. Genetically modified T-cells equipped with artificial receptors have become a novel approach for alleviating autoimmune manifestations and reducing autoinflammatory events in the context of kidney diseases. Here, we review the latest developments in basic, translational, and clinical studies of CAR-based therapies for immune-mediated kidney diseases, highlighting their potential as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
- Clinical Research Center For Kidney Disease, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
7
|
Perrone G, Rigacci L, Roviello G, Landini I, Fabbri A, Iovino L, Puccini B, Cencini E, Orciuolo E, Bocchia M, Bosi A, Mini E, Nobili S. Validation of single nucleotide polymorphisms potentially related to R-CHOP resistance in diffuse large B-cell lymphoma patients. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:21. [PMID: 38835350 PMCID: PMC11149109 DOI: 10.20517/cdr.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
Aim: Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell non-Hodgkin lymphoma (NHL). Despite the availability of clinical and molecular algorithms applied for the prediction of prognosis, in up to 30%-40% of patients, intrinsic or acquired drug resistance occurs. Constitutional genetics may help to predict R-CHOP resistance. This study aimed to validate previously identified single nucleotide polymorphisms (SNPs) in the literature as potential predictors of R-CHOP resistance in DLBCL patients, SNPs. Methods: Twenty SNPs, involved in R-CHOP pharmacokinetics/pharmacodynamics or other pathobiological processes, were investigated in 185 stage I-IV DLBCL patients included in a multi-institution pharmacogenetic study to validate their previously identified correlations with resistance to R-CHOP. Results: Correlations between rs2010963 (VEGFA gene) and sex (P = 0.046), and rs1625895 (TP53 gene) and stage (P = 0.003) were shown. After multivariate analyses, a concordant effect (i.e., increased risk of disease progression and death) was observed for rs1883112 (NCF4 gene) and rs1800871 (IL10 gene). When patients were grouped according to the revised International Prognostic Index (R-IPI), both these SNPs further discriminated progression-free survival (PFS) and overall survival (OS) of the R-IPI-1-2 subgroup. Overall, patients harboring the rare allele showed shorter PFS and OS compared with wild-type patients. Conclusions: Two out of the 20 study SNPs were validated. Thus, these results support the role of previously identified rs1883112 and rs1800871 in predicting DLBCL resistance to R-CHOP and highlight their ability to further discriminate the prognosis of R-IPI-1-2 patients. These data point to the need to also focus on host genetics for a more comprehensive assessment of DLBCL patient outcomes in future prospective trials.
Collapse
Affiliation(s)
- Gabriele Perrone
- Department of Health Sciences, University of Florence, Florence 50139, Italy
| | - Luigi Rigacci
- Research Unit of Hematology, Department of Medicine and Surgery, Campus Biomedico University, Rome 00128, Italy
| | | | - Ida Landini
- Department of Health Sciences, University of Florence, Florence 50139, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena 53100, Italy
| | - Lorenzo Iovino
- Unit of Hematology, Santa Chiara University Hospital, University of Pisa, Pisa 56126, Italy
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109-4433, USA
| | - Benedetta Puccini
- Unit of Hematology, Careggi University-Hospital, Florence 50134, Italy
| | - Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena 53100, Italy
| | - Enrico Orciuolo
- Unit of Hematology, Santa Chiara University Hospital, University of Pisa, Pisa 56126, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese, University of Siena, Siena 53100, Italy
| | - Alberto Bosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence 50139, Italy
- Authors contributed equally
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy
- Authors contributed equally
| |
Collapse
|
8
|
Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U, Weiner GJ. T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood 2024; 143:1816-1824. [PMID: 38457360 PMCID: PMC11076912 DOI: 10.1182/blood.2023023370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.
Collapse
Affiliation(s)
- Jyoti Arora
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA
| | - Sabarish Ayyappan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Brian J. Smith
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | | | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Umar Farooq
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - George J. Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
9
|
Salehi T, Krishnan A, Al Jurdi A, So P, Lerma E, Wiegley N. Rituximab Resistance in Glomerular Diseases: A GlomCon Mini Review. Kidney Med 2024; 6:100791. [PMID: 38495600 PMCID: PMC10943057 DOI: 10.1016/j.xkme.2024.100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Resistance to rituximab B-cell depletion therapy is a clinically pertinent adverse sequela that can have significant implications for the treatment of immune-mediated glomerular diseases. The true incidence of rituximab resistance remains unknown; however, it is an increasingly recognized treatment complication. Resistance typically presents with suboptimal treatment response, rapid B-cell reconstitution, and a relapsing disease course. Although the diverse mechanisms resulting in rituximab resistance are ongoing topics of research, both primary and secondary mechanisms have been identified as key catalysts. The emergence of human antichimeric antibodies (HACAs) is a major cause of secondary resistance to rituximab therapy and typically appears following repeated drug exposure. Frequently, HACAs develop in the setting of underlying autoimmune disease and contribute to poor B-cell depletion, reduced rituximab therapeutic efficacy, and enhanced drug clearance. The clinical challenge of rituximab resistance necessitates heightened awareness among clinicians. Screening for HACAs should be considered in individuals with poor clinical response to rituximab, more rapid B-cell reconstitution, and relapsing disease. Detection of HACAs may guide treatment alterations, including addition of further immunosuppressive therapy and transitioning to a humanized B-cell depleting monoclonal antibody.
Collapse
Affiliation(s)
- Tania Salehi
- Central Northern Adelaide Renal and Transplantation Service, Adelaide, Australia
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anoushka Krishnan
- Department of Renal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - Paolo So
- Private Practice, Manila, Philippines
| | - Edgar Lerma
- University of Illinois at Chicago, Chicago, Illinois
- Advocate Christ Medical Center, Oak Lawn, Illinois
| | - Nasim Wiegley
- University of California Davis School of Medicine, Sacramento, California
| | - GlomCon Editorial Team
- Central Northern Adelaide Renal and Transplantation Service, Adelaide, Australia
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- Department of Renal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
- Massachusetts General Hospital, Boston, Massachusetts
- Private Practice, Manila, Philippines
- University of Illinois at Chicago, Chicago, Illinois
- Advocate Christ Medical Center, Oak Lawn, Illinois
- University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
10
|
Mandal G, Pradhan S. B cell responses and antibody-based therapeutic perspectives in human cancers. Cancer Rep (Hoboken) 2024; 7:e2056. [PMID: 38522010 PMCID: PMC10961090 DOI: 10.1002/cnr2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-oncology has been focused on T cell-centric approaches until the field recently started appreciating the importance of tumor-reactive antibody production by tumor-infiltrating plasma B cells, and the necessity of developing novel therapeutic antibodies for the treatment of different cancers. RECENT FINDINGS B lymphocytes often infiltrate solid tumors and the extent of B cell infiltration normally correlates with stronger T cell responses while generating humoral responses against malignant progression by producing tumor antigens-reactive antibodies that bind and coat the tumor cells and promote cytotoxic effector mechanisms, reiterating the fact that the adaptive immune system works by coordinated humoral and cellular immune responses. Isotypes, magnitude, and the effector functions of antibodies produced by the B cells within the tumor environment differ among cancer types. Interestingly, apart from binding with specific tumor antigens, antibodies produced by tumor-infiltrating B cells could bind to some non-specific receptors, peculiarly expressed by cancer cells. Antibody-based immunotherapies have revolutionized the modalities of cancer treatment across the world but are still limited against hematological malignancies and a few types of solid tumor cancers with a restricted number of targets, which necessitates the expansion of the field to have newer effective targeted antibody therapeutics. CONCLUSION Here, we discuss about recent understanding of the protective spontaneous antitumor humoral responses in human cancers, with an emphasis on the advancement and future perspectives of antibody-based immunotherapies in cancer.
Collapse
Affiliation(s)
- Gunjan Mandal
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| | - Suchismita Pradhan
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
11
|
Zhao Q, Huang S, Yang L, Chen T, Qiu X, Huang R, Dong L, Liu W. Biomarkers and coptis chinensis activity for rituximab-resistant diffuse large B-cell lymphoma: Combination of bioinformatics analysis, network pharmacology and molecular docking. Technol Health Care 2024; 32:2091-2105. [PMID: 38517810 DOI: 10.3233/thc-230738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Rituximab resistance is one of the great challenges in the treatment of diffuse large B-cell lymphoma (DLBCL), but relevant biomarkers and signalling pathways remain to be identified. Coptis chinensis and its active ingredients have antitumour effects; thus, the potential bioactive compounds and mechanisms through which Coptis chinensis acts against rituximab-resistant DLBCL are worth exploring. OBJECTIVE To elucidate the core genes involved in rituximab-resistant DLBCL and the potential therapeutic targets of candidate monomers of Coptis chinensis. METHODS Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Similarity Ensemble Approach and Swiss Target Prediction, the main ingredients and pharmacological targets of Coptis chinensis were identified through database searches. Through the overlap between the pharmacological targets of Coptis chinensis and the core targets of rituximab-resistant DLBCL, we identified the targets of Coptis chinensis against rituximab-resistant DLBCL and constructed an active compound-target interaction network. The targets and their corresponding active ingredients of Coptis chinensis against rituximab-resistant DLBCL were molecularly docked. RESULTS Berberine, quercetin, epiberberine and palmatine, the active components of Coptis chinensis, have great potential for improving rituximab-resistant DLBCL via PIK3CG. CONCLUSION This study revealed biomarkers and Coptis chinensis-associated molecular functions for rituximab-resistant DLBCL.
Collapse
|
12
|
Jeon MJ, Yu ES, Choi CW, Kim DS. Identification and overcoming rituximab resistance in diffuse large B-cell lymphoma using next-generation sequencing. Korean J Intern Med 2023; 38:893-902. [PMID: 37599392 PMCID: PMC10636549 DOI: 10.3904/kjim.2023.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND/AIMS Although rituximab, an antiCD20 monoclonal antibody, has dramatically improved the clinical outcomes of diffuse large B-cell lymphoma, rituximab resistance remains a challenge. METHODS We developed a rituximab-resistant cell line (RRCL) by sequential exposure to gradually increasing concentrations of rituximab in a rituximab-sensitive cell line (RSCL). When the same dose of rituximab was administered, RRCL showed a smaller decrease in cell viability and apoptosis than RSCL. To determine the differences in gene expression between RSCL and RRCL, we performed next-generation sequencing. RESULTS In total, 1,879 differentially expressed genes were identified, and in the over-representation analysis of Consensus-PathDB, mitogen-activated protein kinase (MAPK) signaling pathway showed statistical significance. MAPK13, which encodes the p38δ protein, was expressed more than four-fold in RRCL. Western blot analysis revealed that phosphop38 expression mainwas increased in RRCL, and when p38 inhibitor was administered, phosphop38 expression was significantly decreased. Therefore, we hypothesized that p38 MAPK activation was associated with rituximab resistance. Previous studies have suggested that p38 is associated with NF-κB activation. Deferasirox has been reported to inhibit NF-κB activity and suppress phosphorylation of the MAPK pathway. Furthermore, it also has cytotoxic effects on various cancers and synergistic effects in overcoming drug resistance. In this study, we confirmed that deferasirox induced dose-dependent cytotoxicity in both RSCL and RRCL, and the combination of deferasirox and rituximab showed a synergistic effect in RRCL at all combination concentrations. CONCLUSION We suggest that p38 MAPK, especially p38δ, activation is associated with rituximab resistance, and deferasirox may be a candidate to overcome rituximab resistance.
Collapse
MESH Headings
- Humans
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Deferasirox/pharmacology
- Mitogen-Activated Protein Kinase 13/genetics
- NF-kappa B
- Antibodies, Monoclonal, Murine-Derived/genetics
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Drug Resistance, Neoplasm/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Apoptosis
- High-Throughput Nucleotide Sequencing
- Cell Line, Tumor
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/pharmacology
Collapse
Affiliation(s)
- Min Ji Jeon
- Division of Hematology-Oncology, Department of Internal Medicine, Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Eun Sang Yu
- Division of Hematology-Oncology, Department of Internal Medicine, Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Chul Won Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Dae Sik Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Guro Hospital, Korea University School of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Li J, Zhu Z, Zhu Y, Li J, Li K, Zhong W. METTL3-mediated m6A methylation of C1qA regulates the Rituximab resistance of diffuse large B-cell lymphoma cells. Cell Death Discov 2023; 9:405. [PMID: 37907575 PMCID: PMC10618261 DOI: 10.1038/s41420-023-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Rituximab has been incorporated into the standard treatment regimen for diffuse large B-cell lymphoma (DLBCL), and induces the death of tumor cells via complement-dependent cytotoxicity (CDC). Unfortunately, the resistance of DLBCL cells to Rituximab limits its clinical usefulness. It remains unclear whether the complement system is related to Rituximab resistance in DLBCL. A Rituximab-resistant DLBCL cell line (Farage/R) was generated under the stress of Rituximab. Constituent proteins of the complement system in wild-type Farage cells (Farage/S) and Farage/R cells were analyzed by qPCR, western blotting, and immunofluorescence. In vitro and in vivo knockdown and overexpression studies confirmed that the complement 1Q subcomponent A chain (C1qA) was a regulator of Rituximab resistance. Finally, the mechanism by which C1qA is regulated by m6A methylation was explored. The reader and writer were identified by pull-down studies and RIP-qPCR. Activity of the complement system in Farage/R cells was suppressed. C1qA expression was reduced in Farage/R cells due to post-transcriptional regulation. Furthermore, in vitro and in vivo results showed that C1qA knockdown in Farage/S cells decreased their sensitivity to Rituximab, and C1qA overexpression in Farage/R cells attenuated the Rituximab resistance of those cells. Moreover, METTL3 and YTHDF2 were proven to be the reader and writer for m6A methylation of C1qA, respectively. Knockdown of METTL3 or YTHDF2 in Farage/R cells up-regulated C1qA expression and reduced their resistance to Rituximab. In summary, the aberrant downregulation of C1qA was related to Rituximab resistance in DLBCL cells, and C1qA was found to be regulated by METTL3- and YTHDF2-mediated m6A methylation. Enhancing the response of the complement system via regulation of C1qA might be an effective strategy for inhibiting Rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Junping Li
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yuan Zhu
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Jinqing Li
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Kangbao Li
- Department of Geriatrics, Gastroenterology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Lee SM, Min SW, Kwon HS, Bae GD, Jung JH, Park HI, Lee SH, Lim CS, Ko BJ, Lee JC, Jung ST. Effective clearance of rituximab-resistant tumor cells by breaking the mirror-symmetry of immunoglobulin G and simultaneous binding to CD55 and CD20. Sci Rep 2023; 13:18275. [PMID: 37880350 PMCID: PMC10600224 DOI: 10.1038/s41598-023-45491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC), which eliminates aberrant target cells through the assembly and complex formation of serum complement molecules, is one of the major effector functions of anticancer therapeutic antibodies. In this study, we discovered that breaking the symmetry of natural immunoglobulin G (IgG) antibodies significantly increased the CDC activity of anti-CD20 antibodies. In addition, the expression of CD55 (a checkpoint inhibitor in the CDC cascade) was significantly increased in a rituximab-resistant cell line generated in-house, suggesting that CD55 overexpression might be a mechanism by which cancer cells acquire rituximab resistance. Based on these findings, we developed an asymmetric bispecific antibody (SBU-CD55 × CD20) that simultaneously targets both CD55 and CD20 to effectively eliminate rituximab-resistant cancer cells. In various cancer cell lines, including rituximab-resistant lymphoma cells, the SBU-CD55 × CD20 antibody showed significantly higher CDC activity than either anti-CD20 IgG antibody alone or a combination of anti-CD20 IgG antibody and anti-CD55 IgG antibody. Furthermore, the asymmetric bispecific antibody (SBU-CD55 × CD20) exhibited significantly higher CDC activity against rituximab-resistant cancer cells compared to other bispecific antibodies with symmetric features. These results demonstrate that enhancing CDC with an asymmetric CD55-binding bispecific antibody could be a new strategy for developing therapeutics to treat patients with relapsed or refractory cancers.
Collapse
Affiliation(s)
- Sang Min Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sung-Won Min
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hyeong Sun Kwon
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Gong-Deuk Bae
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Ji Hae Jung
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Hye In Park
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea
| | - Seung Hyeon Lee
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chung Su Lim
- New Drug Development Center, Osong Medical Innovation Foundation 123, Cheongju, Chungcheongbuk-do, 28160, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, 55, Dobonng-Ro 76ga-gil, Gangbuk, Seoul, 01133, Republic of Korea
| | - Ji Chul Lee
- SG Medical, 3-11, Ogeum-ro 13-gil, Songpa-gu, Seoul, 05548, Republic of Korea.
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Genetics, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Biomedical Research Center, Korea University Anam Hospital, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Nasehi L, Abdolhossein Zadeh B, Rahimi H, Hossein Ghahremani M. Radio-immunotherapy by 188Re-antiCD20 and stable silencing of IGF-IR in Raji cells, new insight in treatment of lymphoma. Gene 2023; 882:147638. [PMID: 37479093 DOI: 10.1016/j.gene.2023.147638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Hematologic malignancies such as Non-Hodgkin's lymphoma (NHL), remain a serious threat to human health due to their heterogeneity and complexity. The inherent genetic heterogeneity of NHL B-cells, as well as the instability of lymphoma cancer cells, results in drug resistance in lymphoma, posing a fundamental challenge to NHL treatment. Burkitt lymphoma (including Raji cell line) is a rare and highly aggressive form of B-cell NHL. Since overexpression of the insulin-like growth factor-1 receptor (IGF-1R) playing a prominent role in the development and transformation of different malignancies, especially lymphoma malignancies, we have explored the role of IGF-1R in the development and progression of Raji cells and the stable silencing of IGF-1R by lentivirus-mediated RNA interference (RNAi). We have shown that stable silencing of the IGF-1R gene in Raji cells using lentivirus-mediated-RNAi have resulted in a significant reduction in Raji cell proliferation. Moreover, the results of the cell viability assays indicatedhigh resistance of Raji cells to rituximab. However, coupling rituximab to 188Re potentially leads to specific targeting of Raji cells by 188Re, improving the therapeutic efficacy. We found that the synergistic effect of using a gene therapy-based system in combination with radioimmunotherapy could be a promising therapeutic strategy in the future. To the best of our knowledge, this is the first study that reports the knock down of IGF-1R via lentiviral-mediated shRNA in Raji cells.
Collapse
Affiliation(s)
- Leila Nasehi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Medical Laboratory, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Baharak Abdolhossein Zadeh
- Department of Molecular Medicine, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rahimi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Schoenfeld K, Harwardt J, Habermann J, Elter A, Kolmar H. Conditional activation of an anti-IgM antibody-drug conjugate for precise B cell lymphoma targeting. Front Immunol 2023; 14:1258700. [PMID: 37841262 PMCID: PMC10569071 DOI: 10.3389/fimmu.2023.1258700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain. Antibody masking impaired interaction with soluble pentameric as well as cell surface-expressed IgM molecules rendering the antibody cytotoxically inactive. Binding capacity of the anti-IgM antibody drug conjugate was restored upon conditional protease-mediated demasking which consequently enabled target-dependent antibody internalization and subsequent induction of apoptosis in malignant B cells. This easily adaptable approach potentially provides a novel mechanism of clonal B cell lymphoma eradication to the arsenal available for non-Hodgkin's lymphoma treatment.
Collapse
Affiliation(s)
- Katrin Schoenfeld
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
17
|
Mamidi MK, Huang J, Honjo K, Li R, Tabengwa EM, Neeli I, Randall NL, Ponnuchetty MV, Radic M, Leu CM, Davis RS. FCRL1 immunoregulation in B cell development and malignancy. Front Immunol 2023; 14:1251127. [PMID: 37822931 PMCID: PMC10562807 DOI: 10.3389/fimmu.2023.1251127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.
Collapse
Affiliation(s)
- Murali K. Mamidi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jifeng Huang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Edlue M. Tabengwa
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nar’asha L. Randall
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Manasa V. Ponnuchetty
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming ChiaoTung University, Taipei, Taiwan
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Departments of Microbiology, and Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023; 15:4550. [PMID: 37760519 PMCID: PMC10526328 DOI: 10.3390/cancers15184550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized the treatment landscape of hematological malignancies. By directing T cells towards specific tumor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive development of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin's lymphoma, acute myelogenous leukemia, and acute lymphoblastic leukemia. However, despite their generally favorable safety profiles, particular toxicities such as infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Additionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining practical applications and strategies to overcome these limitations.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Moussab Damlaj
- Department of Hematology & Oncology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
- College of Medicine, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
19
|
Ridwansyah H, Wijaya I, Bashari MH, Sundawa Kartamihardja AH, Suryawathy Hernowo B. The role of chidamide in the treatment of B-cell non-Hodgkin lymphoma: An updated systematic review. BIOMOLECULES & BIOMEDICINE 2023; 23:727-739. [PMID: 37004241 PMCID: PMC10494852 DOI: 10.17305/bb.2023.8791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
B-cell non-Hodgkin lymphoma (B-NHL) is a lymphoid malignancy derived from B-cells that remains difficult to treat. Moreover, relapses and refractory cases are common. Abnormalities in epigenetic mechanisms, such as imbalanced histone acetylation affecting certain genes, contribute to relapses and refractory cases. Chidamide (tucidinostat) is a novel histone deacetylase inhibitor that can reverse this epigenetic imbalance and has been approved for the treatment of T-cell malignancies. However, the use of chidamide for B-NHL remains limited, and the lack of relevant literature exacerbates this limitation. We conducted this review to summarize the anticancer activity of chidamide against B-NHL and its clinical applications to overcome drug resistance. This systematic review was conducted according to the PRISMA 2020 guidelines, using some keyword combinations from MEDLINE and EBSCO. The inclusion and exclusion criteria were also defined. Of the 131 records retrieved from databases, 16 were included in the review. Nine articles revealed that chidamide limited tumor progression by modifying the tumor microenvironment, stopping the cell cycle, inducing apoptosis and autophagy, and enhancing complement-dependent and antibody-dependent cell-mediated cytotoxicities.According to seven other studies, administering chidamide in combination with another existing therapeutic regimen may benefit not only patients with relapsed/refractory B-NHL, but also those with newly diagnosed B-NHL. Chidamide plays many important roles in limiting B-NHL progression through epigenetic modifications. Thus, combining chidamide with other anticancer drugs may be more beneficial for patients with newly diagnosed and relapsed/refractory B-NHL.
Collapse
Affiliation(s)
- Hastono Ridwansyah
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biomedicine, Faculty of Medicine, President University, Bekasi, Indonesia
| | - Indra Wijaya
- Division of Hematology and Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Muhammad Hasan Bashari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
20
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Belovezhets T, Kulemzin S, Volkova O, Najakshin A, Taranin A, Gorchakov A. Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based Antigen-Recognition Moieties. Int J Mol Sci 2023; 24:ijms24043698. [PMID: 36835110 PMCID: PMC9966244 DOI: 10.3390/ijms24043698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past decade, CAR T cell therapy for patients with B cell malignancies has evolved from an experimental technique to a clinically feasible option. To date, four CAR T cell products specific for a B cell surface marker, CD19, have been approved by the FDA. Despite the spectacular rates of complete remission in r/r ALL and NHL patients, a significant proportion of patients still relapse, frequently with the CD19 low/negative tumor phenotype. To address this issue, additional B cell surface molecules such as CD20 were proposed as targets for CAR T cells. Here, we performed a side-by-side comparison of the activity of CD20-specific CAR T cells based on the antigen-recognition modules derived from the murine antibodies, 1F5 and Leu16, and from the human antibody, 2F2. Whereas CD20-specific CAR T cells differed from CD19-specific CAR T cells in terms of subpopulation composition and cytokine secretion, they displayed similar in vitro and in vivo potency.
Collapse
Affiliation(s)
| | - Sergey Kulemzin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Olga Volkova
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Najakshin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Alexander Taranin
- Institute of Molecular and Cellular Biology of the SB RAS, 630090 Novosibirsk, Russia
| | - Andrey Gorchakov
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
22
|
Krustev E, Clarke AE, Barber MRW. B cell depletion and inhibition in systemic lupus erythematosus. Expert Rev Clin Immunol 2023; 19:55-70. [PMID: 36342225 DOI: 10.1080/1744666x.2023.2145281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is characterized by autoantibody expression and aberrant autoreactive B cells contribute to disease progression; therefore, B cell inhibition has been an attractive target for novel therapies. However, after more than two decades of research and over 40 randomized clinical trials, only one such therapy, belimumab, has been approved for use in SLE. AREAS COVERED In this review, we discuss the evidence for B cell-targeted therapies in SLE and lupus nephritis. Belimumab has been successful in several large clinical trials and is approved in several countries for use in SLE and lupus nephritis. Despite a lack of supporting phase III evidence, rituximab is used off-label in SLE. Several other B cell-targeted therapies have failed to meet their end points in late-stage clinical trials. Successful phase II trials have recently been reported for obinutuzumab and telitacicept with larger confirmatory trials currently underway. EXPERT OPINION Refinements in pharmaceutical mechanisms of action, trial design, and patient selection have resulted in recent preliminary successes, offering renewed optimism for B-cell targeted therapeutics in SLE management.
Collapse
Affiliation(s)
- Eugene Krustev
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ann E Clarke
- Division of Rheumatology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Megan R W Barber
- Division of Rheumatology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
23
|
Blincoe A, Labrosse R, Abraham RS. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J Immunol Methods 2022; 511:113385. [PMID: 36372267 DOI: 10.1016/j.jim.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
The advantage of the newer biological therapies is that the immunosuppressive effect is targeted, in contrast, to the standard, traditional immunomodulatory agents, which have a more global effect. However, there are unintended targets and consequences, even to these "precise" therapeutics, leading to acquired or secondary immunodeficiencies. Besides depleting specific cellular immune subsets, these biological agents, which include monoclonal antibodies against biologically relevant molecules, often have broader functional immune consequences, which become apparent over time. This review focuses on acquired B-cell immunodeficiency, secondary to the use of B-cell depleting therapeutic agents. Among the many adverse consequences of B-cell depletion is the risk of hypogammaglobulinemia, failure of B-cell recovery, impaired B-cell differentiation, and risk of infections. Factors, which modulate the outcomes of B-cell depleting therapies, include the intrinsic nature of the underlying disease, the concomitant use of other immunomodulatory agents, and the clinical status of the patient and other co-existing morbidities. This article seeks to explore the mechanism of action of B-cell depleting agents, the clinical utility and adverse effects of these therapies, and the relevance of systematic and serial laboratory immune monitoring in identifying patients at risk for developing immunological complications, and who may benefit from early intervention to mitigate the secondary consequences. Though these biological drugs are gaining widespread use, a harmonized approach to immune evaluation pre-and post-treatment has not yet gained traction across multiple clinical specialties, because of which, the true prevalence of these adverse events cannot be determined in the treated population, and a systematic and evidence-based dosing schedule cannot be developed. The aim of this review is to bring these issues into focus, and initiate a multi-specialty, data-driven approach to immune monitoring.
Collapse
Affiliation(s)
- Annaliesse Blincoe
- Department of Paediatric Immunology and Allergy, Starship Child Health, Auckland, NZ, New Zealand
| | - Roxane Labrosse
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
24
|
Geanes ES, Krepel SA, McLennan R, Pierce S, Khanal S, Bradley T. Development of combinatorial antibody therapies for diffuse large B cell lymphoma. Front Med (Lausanne) 2022; 9:1034594. [PMID: 36353222 PMCID: PMC9637670 DOI: 10.3389/fmed.2022.1034594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma, is typically treated with chemotherapy combined with the immunotherapy rituximab, an antibody targeting the B cell receptor, CD20. Despite the success of this treatment regimen, approximately a third of DLBCL patients experience either relapse or have refractory disease that is resistant to rituximab, indicating the need for alternative therapeutic strategies. Here, we identified that CD74 and IL4R are expressed on the cell surface of both CD20 positive and CD20 negative B cell populations. Moreover, genes encoding CD74 and IL4R are expressed in lymphoma biopsies isolated from all stages of disease. We engineered bispecific antibodies targeting CD74 or IL4R in combination with rituximab anti-CD20 (anti-CD74/anti-CD20 and anti-IL4R/anti-CD20). Bispecific antibody function was evaluated by measuring direct induction of apoptosis, antibody-dependent cellular phagocytosis (ADCP), and antibody-dependent cellular cytotoxicity in both rituximab-sensitive and rituximab-resistant DLBCL cell lines. Both anti-CD74/anti-CD20 and anti-IL4R/anti-CD20 were able to mediate ADCC and ADCP, but CD74-targeting therapeutic antibodies could also mediate direct cytotoxicity. Overall, this study strongly indicates that development of bispecific antibodies that target multiple B cell receptors expressed by lymphoma could provide improved defense against relapse and rituximab resistance.
Collapse
Affiliation(s)
- Eric S. Geanes
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Stacey A. Krepel
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Stephen Pierce
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Santosh Khanal
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, MO, United States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Todd Bradley,
| |
Collapse
|
25
|
Bhatt R, Ravi D, Evens AM, Parekkadan B. Scaffold-mediated switching of lymphoma metabolism in culture. Cancer Metab 2022; 10:15. [PMID: 36224623 PMCID: PMC9559005 DOI: 10.1186/s40170-022-00291-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diffuse large B cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and accounts for about a third of all NHL cases. A significant proportion (~40%) of treated DLBCL patients develop refractory or relapsed disease due to drug resistance which can be attributed to metabolomic and genetic variations amongst diverse DLBCL subtypes. An assay platform that reproduces metabolic patterns of DLBCL in vivo could serve as a useful model for DLBCL. METHODS This report investigated metabolic functions in 2D and 3D cell cultures using parental and drug-resistant DLBCL cell lines as compared to patient biopsy tissue. RESULTS A 3D culture model controlled the proliferation of parental and drug-resistant DLBCL cell lines, SUDHL-10, SUDHL-10 RR (rituximab resistant), and SUDHL-10 OR (obinutuzumab resistant), as well as retained differential sensitivity to CHOP. The results from metabolic profiling and isotope tracer studies with D-glucose-13C6 indicated metabolic switching in 3D culture when compared with a 2D environment. Analysis of DLBCL patient tumor tissue revealed that the metabolic changes in 3D grown cells were shifted towards that of clinical specimens. CONCLUSION 3D culture restrained DLBCL cell line growth and modulated metabolic pathways that trend towards the biological characteristics of patient tumors. Counter-intuitively, this research thereby contends that 3D matrices can be a tool to control tumor function towards a slower growing and metabolically dormant state that better reflects in vivo tumor physiology.
Collapse
Affiliation(s)
- Rachana Bhatt
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical Health Sciences, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
26
|
Zhang J, Zhong M, Zhong W, Lan Y, Yuan Z, Duan Y, Wei Y. Construction of tandem diabody (IL-6/CD20)-secreting human umbilical cord mesenchymal stem cells and its experimental treatment on diffuse large B cell lymphoma. Stem Cell Res Ther 2022; 13:473. [PMID: 36104733 PMCID: PMC9476312 DOI: 10.1186/s13287-022-03169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND More than 40% patients with diffuse large B cell lymphoma (DLBCL) experienced relapse or refractory (R/R) lymphoma after the standard first R-CHOP therapy. IL-6 was reportedly associated with chemotherapy resistance of rituximab. Further, mesenchymal stem cells (MSCs) are known as the potential cell vehicle for their tropism toward tumor. A MSCs-based tandem diabody for treating DLBCL is currently lacking. METHODS We constructed a tandem diabody (Tandab(IL-6/CD20)) with modified umbilical cord MSCs (UCMSCs) and designed a cell-based Tandab releasing system. Western blot, qPCR and immunofluorescence were used to confirm the construction and expression of lentivirus-infected UCMSCs. The vitality, apoptosis and homing abilities of UCMSCs were examined via CCK-8 assay, apoptosis, wound healing and migration analysis. Cell binding assay was used to demonstrate the targeting property of Tandab binding to CD20-positive DLBCL cells. Furthermore, we evaluated the viability of SU-DHL-2 and SU-DHL-4 by using CCK-8 and EDU assay after the treatment of UCMSCs-Tandab(IL-6/CD20). RESULTS Tandab protein peaked at 6273 ± 487 pg/ml in the medium on day 7 after cell culture. The proliferation and homing ability of UCMSCs did not attenuate after genetically modification. Immunofluorescence images indicated the Tandab protein bound to the lymphoma cells. UCMSCs-Tandab(IL-6/CD20) inhibited the growth of SU-DHL-2 or SU-DHL-4 cells in vitro. CONCLUSIONS UCMSCs-Tandab(IL-6/CD20), which bound with both tumor-associated surface antigens and pro-tumor cytokines in tumor microenvironment, might serve as a potential treatment for DLBCL, evidenced by inhibiting the growth of SU-DHL-2 or SU-DHL-4 cells.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Minglu Zhong
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology and Oncology Ward, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfei Lan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Deshpande A, Munoz J. Targeted and cellular therapies in lymphoma: Mechanisms of escape and innovative strategies. Front Oncol 2022; 12:948513. [PMID: 36172151 PMCID: PMC9510896 DOI: 10.3389/fonc.2022.948513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The therapeutic landscape for lymphomas is quite diverse and includes active surveillance, chemotherapy, immunotherapy, radiation therapy, and even stem cell transplant. Advances in the field have led to the development of targeted therapies, agents that specifically act against a specific component within the critical molecular pathway involved in tumorigenesis. There are currently numerous targeted therapies that are currently Food and Drug Administration (FDA) approved to treat certain lymphoproliferative disorders. Of many, some of the targeted agents include rituximab, brentuximab vedotin, polatuzumab vedotin, nivolumab, pembrolizumab, mogamulizumab, vemurafenib, crizotinib, ibrutinib, cerdulatinib, idelalisib, copanlisib, venetoclax, tazemetostat, and chimeric antigen receptor (CAR) T-cells. Although these agents have shown strong efficacy in treating lymphoproliferative disorders, the complex biology of the tumors have allowed for the malignant cells to develop various mechanisms of resistance to the targeted therapies. Some of the mechanisms of resistance include downregulation of the target, antigen escape, increased PD-L1 expression and T-cell exhaustion, mutations altering the signaling pathway, and agent binding site mutations. In this manuscript, we discuss and highlight the mechanism of action of the above listed agents as well as the different mechanisms of resistance to these agents as seen in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Anagha Deshpande
- Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
- *Correspondence: Anagha Deshpande,
| | - Javier Munoz
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, United States
| |
Collapse
|
28
|
Hamlin PA, Musteata V, Park SI, Burnett C, Dabovic K, Strack T, Williams ET, Anand BS, Higgins JP, Persky DO. Safety and Efficacy of Engineered Toxin Body MT-3724 in Relapsed or Refractory B-cell Non-Hodgkin's Lymphomas and Diffuse Large B-cell Lymphoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:307-315. [PMID: 36875713 PMCID: PMC9981212 DOI: 10.1158/2767-9764.crc-22-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
MT-3724, a novel engineered toxin body comprised of an anti-CD20 single-chain variable fragment genetically fused to Shiga-like Toxin A subunit, is capable of binding to and internalizing against CD20, inducing cell killing via permanent ribosomal inactivation. This study evaluated MT-3724 in patients with relapsed/refractory B-cell non-Hodgkin lymphoma (r/rNHL). This open-label, multiple-dose phase Ia/b trial included a dose escalation in patients with r/rNHL according to a standard 3+3 design. Primary objectives were to determine the MTD and pharmacokinetics/pharmacodynamics. In a dose expansion study at MTD in serum rituximab-negative patients with diffuse large B-cell lymphoma (DLBCL), primary objectives were safety, tolerability, and pharmacokinetics/pharmacodynamics. Twenty-seven patients enrolled. MTD was 50 μg/kg/dose with 6,000 μg/dose cap. Thirteen patients experienced at least one grade ≥3 treatment-related adverse events; the most common grade ≥3 event was myalgia (11.1%). Two patients (75 μg/kg/dose) experienced grade 2 treatment-related capillary leak syndrome. Overall objective response rate was 21.7%. In serum rituximab-negative patients with DLBCL or composite DLBCL (n = 12), overall response rate was 41.7% (complete response, n = 2; partial response, n = 3). In patients with detectable baseline peripheral B cells, treatment resulted in dose-dependent B-cell depletion. The proportion of patients with anti-drug antibodies (ADA) increased during treatment and the majority appeared to be neutralizing based on an in vitro assay; nevertheless, tumor regression and responses were observed. MT-3724 demonstrated efficacy at the MTD in this population of previously treated patients with r/rDLBCL, with mild-to-moderate immunogenic safety events. Significance This work describes the safety and efficacy of a new pharmaceutical pathway that could provide a treatment option for a subset of patients with a critical unmet therapeutic need. The study drug, MT-3724, is capable of targeting B-cell lymphomas via a unique, potent cell-killing mechanism that appears to be promising.
Collapse
Affiliation(s)
- Paul A Hamlin
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vasile Musteata
- Institute of Oncology, ARENSIA EM, Chisinau, Republic of Moldova
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhu AZX, Rogge M. Applications of Quantitative System Pharmacology Modeling to Model-Informed Drug Development. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:71-86. [PMID: 35437719 DOI: 10.1007/978-1-0716-2265-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant advances in analytical technologies have dramatically improved our ability to deconvolute disease biology at molecular, cellular, and tissue levels. Quantitative system pharmacology (QSP) modeling is a computational framework to systematically integrate pharmaceutical properties of a drug candidate with scientific understanding of that deeper disease etiology, target expression, genetic variability, and human physiological processes, thus enabling more insightful drug development decisions related to efficacy and safety. In this chapter, we discuss the key attributes of QSP models in comparison to traditional models. We discuss a recommended four-step process to construct a QSP model to support drug development decisions. A number of illustrative QSP examples related to high-value drug development questions and decisions impacting target identification, lead generation and optimization, first in human studies, and clinical dose and schedule optimization are covered in the chapter. The future perspectives of QSP in the context of potential regulatory acceptance are also discussed.
Collapse
Affiliation(s)
- Andy Z X Zhu
- Preclinical and Translational Sciences, Takeda Pharmaceuticals International Co, Cambridge, MA, USA.
| | - Mark Rogge
- Center for Pharmacometrics and Systems Pharmacology, University of Florida, Lake Nona, FL, USA
| |
Collapse
|
30
|
Singh N, Handa S, Mahajan R, Sachdeva N, De D. Comparison of efficacy and cost-efficiency of an immunologically targeted low dose rituximab protocol with the conventional rheumatoid arthritis protocol in severe pemphigus. Clin Exp Dermatol 2022; 47:1508-1516. [PMID: 35384021 DOI: 10.1111/ced.15213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Various dosing protocols of rituximab have been used in pemphigus. B-cell repopulation post-rituximab can be considered a forerunner of clinical relapse. Immunologically-guided dosing may obviate the need of fixed timepoint maintenance dosing, hence proving more cost-effective and perhaps safer. OBJECTIVE Comparison of overall efficacy and cost-efficiency of low dose rituximab with immunologically-guided ultra-low (200mg) top-up infusions versus rheumatoid arthritis (RA) protocol with 500mg repeat infusion upon clinical relapse, in severe pemphigus over one-year period. METHODS 23 patients of severe pemphigus were randomized into Group-A (RA protocol: 1000mg, 2 doses, 2 weeks apart) and Group-B (low-dose rituximab: 500mg, 2 doses, 2 weeks apart). Both groups also received short-term oral corticosteroids and were followed clinically and immunologically (3-monthly flowcytometric assessments of B-cell subtypes). While Group-A got a 500mg rituximab top-up upon clinical relapse; Group-B received an ultra-low top-up (200mg) on B-cell repopulation, intended to prevent clinical relapse. Outcome parameters [complete remission off treatment (CROT), relapse (clinical and immunological), total corticosteroid dose and direct cost of therapy] were compared. RESULTS Time to CROT (Group-A: 27±1.6 weeks; Group-B: 26±1.2 weeks, p=0.09) and cumulative prednisolone dose (p=0.28) were comparable. 10/11 (90.9%) patients in Group-B had B-cell repopulation (8.4±2.4 months) and a single 200mg top-up dose successfully prevented clinical relapse. In Group-A, 3/9 (33.3%) patients had clinical relapse (9.3±0.4 months). Overall cost of therapy was 37.4% cheaper in Group-B. CONCLUSION An immunologically- guided low dose rituximab regimen can be an equally effective yet affordable alternative to conventional rituximab regimens in pemphigus.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Mahajan
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology (Immunology Division), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipankar De
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Köllner SMS, Seifert L, Zahner G, Tomas NM. Strategies Towards Antigen-Specific Treatments for Membranous Nephropathy. Front Immunol 2022; 13:822508. [PMID: 35185913 PMCID: PMC8850405 DOI: 10.3389/fimmu.2022.822508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN) is a rare but potentially severe autoimmune disease and a major cause of nephrotic syndrome in adults. Traditional treatments for patients with MN include steroids with alkylating agents such as cyclophosphamide or calcineurin inhibitors such as cyclosporine, which have an undesirable side effect profile. Newer therapies like rituximab, although superior to cyclosporine in maintaining disease remission, do not only affect pathogenic B or plasma cells, but also inhibit the production of protective antibodies and therefore the ability to fend off foreign organisms and to respond to vaccination. These are undesired effects of general B or plasma cell-targeted treatments. The discovery of several autoantigens in patients with MN offers the great opportunity for more specific treatment approaches. Indeed, such treatments were recently developed for other autoimmune diseases and tested in different preclinical models, and some are about to jump to clinical practice. As such treatments have enormous potential to enhance specificity, efficacy and compatibility also for MN, we will discuss two promising strategies in this perspective: The elimination of pathogenic antibodies through endogenous degradation systems and the depletion of pathogenic B cells through chimeric autoantibody receptor T cells.
Collapse
Affiliation(s)
- Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
33
|
Gragnaniello V, Deodato F, Gasperini S, Donati MA, Canessa C, Fecarotta S, Pascarella A, Spadaro G, Concolino D, Burlina A, Parenti G, Strisciuglio P, Fiumara A, Casa RD. Immune responses to alglucosidase in infantile Pompe disease: recommendations from an Italian pediatric expert panel. Ital J Pediatr 2022; 48:41. [PMID: 35248118 PMCID: PMC8898438 DOI: 10.1186/s13052-022-01219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Classic infantile onset of Pompe disease (c-IOPD) leads to hypotonia and hypertrophic cardiomyopathy within the first days to weeks of life and, without treatment, patients die of cardiorespiratory failure in their first 1–2 years of life. Enzymatic replacement therapy (ERT) with alglucosidase alfa is the only available treatment, but adverse immune reactions can reduce ERT’s effectiveness and safety. It is therefore very important to identify strategies to prevent and manage these complications. Several articles have been written on this disease over the last 10 years, but no univocal indications have been established. Methods Our study presents a review of the current literature on management of immune responses to ERT in c-IOPD as considered by an Italian study group of pediatric metabolists and immunologists in light of our shared patient experience. Results We summarize the protocols for the management of adverse reactions to ERT, analyzing their advantages and disadvantages, and provide expert recommendations for their optimal management, to the best of current knowledge. However, further studies are needed to improve actual management protocols, which still have several limitations.
Collapse
|
34
|
Markovič T, Podgornik H, Avsec D, Nabergoj S, Mlinarič-Raščan I. The Enhanced Cytotoxic Effects in B-Cell Leukemia and Lymphoma Following Activation of Prostaglandin EP4 Receptor and Targeting of CD20 Antigen by Monoclonal Antibodies. Int J Mol Sci 2022; 23:ijms23031599. [PMID: 35163524 PMCID: PMC8835876 DOI: 10.3390/ijms23031599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Anti-CD20 monoclonal antibodies (MAbs) have revolutionized the treatment of B-cell leukemia and lymphoma. However, many patients do not respond to such treatment due to either deficiency of the complementary immune response or resistance to apoptosis. Other currently available treatments are often inadequate or induce major side effects. Therefore, there is a constant need for improved therapies. The prostaglandin E2 receptor 4 (EP4) receptor has been identified as a promising therapeutic target for hematologic B-cell malignancies. Herein, we report that EP4 receptor agonists PgE1-OH and L-902688 have exhibited enhanced cytotoxicity when applied together with anti-CD20 MAbs rituximab, ofatumumab and obinutuzumab in vitro in Burkitt lymphoma cells Ramos, as well as in p53-deficient chronic lymphocytic leukemia (CLL) cells MEC-1. Moreover, the enhanced cytotoxic effects of EP4 receptor agonists and MAbs targeting CD20 have been identified ex vivo on primary lymphocytes B obtained from patients diagnosed with CLL. Incubation of cells with PgE1-OH and L-902688 preserved the expression of CD20 molecules, further confirming the anti-leukemic potential of EP4 receptor agonists in combination with anti-CD20 MAbs. Additionally, we demonstrated that the EP4 receptor agonist PgE-1-OH induced apoptosis and inhibited proliferation via the EP4 receptor triggering in CLL. This work has revealed very important findings leading towards the elucidation of the anticancer potential of PgE1-OH and L-902688, either alone or in combination with MAbs. This may contribute to the development of potential therapeutic alternatives for patients with B-cell malignancies.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antigens, CD20/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Synergism
- Gene Expression Regulation, Neoplastic/drug effects
- Heptanoic Acids/pharmacology
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/metabolism
- Pyrrolidinones/pharmacology
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Tetrazoles/pharmacology
Collapse
Affiliation(s)
- Tijana Markovič
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Helena Podgornik
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
- Department of Haematology, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damjan Avsec
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Sanja Nabergoj
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.M.); (H.P.); (D.A.); (S.N.)
- Correspondence:
| |
Collapse
|
35
|
Piazza F, Di Paolo V, Scapinello G, Manni S, Trentin L, Quintieri L. Determinants of Drug Resistance in B-Cell Non-Hodgkin Lymphomas: The Case of Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia. Front Oncol 2022; 11:801124. [PMID: 35087759 PMCID: PMC8787211 DOI: 10.3389/fonc.2021.801124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is a rare subtype of B cell-derived non-Hodgkin lymphoma characterized by the abnormal growth of transformed clonal lymphoplasmacytes and plasma cells. This tumor almost always displays the capability of secreting large amounts of monoclonal immunoglobulins (Ig) of the M class (Waldenström Macroglobulinemia, WM). The clinical manifestations of WM/LPL may range from an asymptomatic condition to a lymphoma-type disease or may be dominated by IgM paraprotein-related symptoms. Despite the substantial progresses achieved over the last years in the therapy of LPL/WM, this lymphoma is still almost invariably incurable and exhibits a propensity towards development of refractoriness to therapy. Patients who have progressive disease are often of difficult clinical management and novel effective treatments are eagerly awaited. In this review, we will describe the essential clinical and pathobiological features of LPL/WM. We will also analyze some key aspects about the current knowledge on the mechanisms of drug resistance in this disease, by concisely focusing on conventional drugs, monoclonal antibodies and novel agents, chiefly Bruton’s Tyrosine Kinase (BTK) inhibitors. The implications of molecular lesions as predictors of response or as a warning for the development of therapy resistance will be highlighted.
Collapse
Affiliation(s)
- Francesco Piazza
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Veronica Di Paolo
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Greta Scapinello
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Sabrina Manni
- Laboratory of Myeloma and Lymphoma Pathobiology, Veneto Institute of Molecular Medicine (VIMM) and Foundation for Advanced Biomedical Research (FABR), Padua, Italy.,Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology Division, Azienda Ospedaliera Universitaria and Department of Medicine, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Laboratory of Drug Metabolism, Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
36
|
Kusowska A, Kubacz M, Krawczyk M, Slusarczyk A, Winiarska M, Bobrowicz M. Molecular Aspects of Resistance to Immunotherapies-Advances in Understanding and Management of Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031501. [PMID: 35163421 PMCID: PMC8835809 DOI: 10.3390/ijms23031501] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the unquestionable success achieved by rituximab-based regimens in the management of diffuse large B-cell lymphoma (DLBCL), the high incidence of relapsed/refractory disease still remains a challenge. The widespread clinical use of chemo-immunotherapy demonstrated that it invariably leads to the induction of resistance; however, the molecular mechanisms underlying this phenomenon remain unclear. Rituximab-mediated therapeutic effect primarily relies on complement-dependent cytotoxicity and antibody-dependent cell cytotoxicity, and their outcome is often compromised following the development of resistance. Factors involved include inherent genetic characteristics and rituximab-induced changes in effectors cells, the role of ligand/receptor interactions between target and effector cells, and the tumor microenvironment. This review focuses on summarizing the emerging advances in the understanding of the molecular basis responsible for the resistance induced by various forms of immunotherapy used in DLBCL. We outline available models of resistance and delineate solutions that may improve the efficacy of standard therapeutic protocols, which might be essential for the rational design of novel therapeutic regimens.
Collapse
Affiliation(s)
- Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
| | - Marta Krawczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.K.); (M.K.); (M.K.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
37
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
38
|
CD20 expression, TrkB activation and functional activity of diffuse large B cell lymphoma-derived small extracellular vesicles. Br J Cancer 2021; 125:1687-1698. [PMID: 34743199 DOI: 10.1038/s41416-021-01611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) including exosomes, carrying the CD20, could be involved in immunotherapy resistance in diffuse large B cell lymphoma (DLBCL). We have reported endogenous brain-derived neurotrophic factor/TrkB (tropomyosin-related kinase B) survival axis in DLBCL. Here, we performed a comparative study of sEV production by germinal centre B cell (GCB) and activated B cell (ABC)-DLBCL cell lines, and analysed TrkB activation on this process. METHODS GCB (SUDHL4 and SUDHL6) and ABC (OCI-LY3, OCI-LY10 and U2932) cell lines were used. sEVs were characterised using nanoparticle tracking analysis technology and western blot. CD20 content was also analysed by enzyme-linked immunoassay, and complement-dependent cytotoxicity of rituximab was investigated. 7,8-Dihydroxyflavone (7,8-DHF) was used as a TrkB agonist. In vivo role of sEVs was evaluated in a xenograft model. RESULTS sEVs production varied significantly between DLBCL cells, independently of subtype. CD20 level was consistent with that of parental cells. Higher CD20 expression was found in sEVs after TrkB activation, with a trend in increasing their concentration. sEVs determined in vitro and in vivo protection from rituximab, which seemed CD20 level-dependent; the protection was enhanced when sEVs were produced by 7,8-DHF-treated cells. CONCLUSIONS DLBCL-derived sEVs have the differential capacity to interfere with immunotherapy, which could be enhanced by growth factors like neurotrophins. Evaluating the sEV CD20 level could be useful for disease monitoring.
Collapse
|
39
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
40
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
41
|
Novel immune engagers and cellular therapies for metastatic castration-resistant prostate cancer: do we take a BiTe or ride BiKEs, TriKEs, and CARs? Prostate Cancer Prostatic Dis 2021; 24:986-996. [PMID: 34035459 PMCID: PMC8613314 DOI: 10.1038/s41391-021-00381-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Checkpoint inhibitors and currently approved cellular products for metastatic castration-resistant prostate cancer have not resulted in revolutionary changes in outcomes compared to other solid tumors. Much of this lack of progress is attributed to the unique tumor microenvironment of prostate cancer that is often immunologically cold and immunosuppressive. These unique conditions emphasize the need for novel therapeutic options. In this review, we will discuss progress made in design of T- and NK cell immune engagers in addition to chimeric antigen receptor products specifically designed for prostate cancer that are currently under investigation in clinical trials. METHODS We searched peer-reviewed literature on the PubMed and the ClinicalTrials.gov databases for active clinical trials using the terms "bispecific T-cell engager," "bispecific killer engager," "trispecific killer engager," "chimeric antigen receptor," "metastatic castration-resistant prostate cancer," and "neuroendocrine prostate cancer." RESULTS Ten bispecific T-cell engager studies and nine chimeric antigen receptor-based products were found. Published data were compiled and presented based on therapeutic class. CONCLUSIONS Multiple immune engagers and cell therapies are in the development pipeline and demonstrate promise to address barriers to better outcomes for metastatic castration-resistant prostate cancer patients.
Collapse
|
42
|
Brewis N. Improvement of Key Characteristics of Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
43
|
Bohelay G, Caux F, Musette P. Clinical and biological activity of rituximab in the treatment of pemphigus. Immunotherapy 2021; 13:35-53. [PMID: 33045883 DOI: 10.2217/imt-2020-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
B-cells are major effector cells in autoimmunity since they differentiate into plasmocytes that produce pathogenic auto-antibody such as anti-desmoglein antibodies in pemphigus patients. Major advances were obtained using whole B-cell depleting therapies including anti-CD20 antibodies in refractory pemphigus patients that lead to rituximab approval in pemphigus patients in EU and USA. This review summarizes the data supporting the efficacy of rituximab in pemphigus and provides an overview of the reported immunological changes underlying its therapeutic action. Short and long-term remission in pemphigus is explained by the removal of autoreactive B-cells involved in the production of pathogenic IgG auto-antibodies and by enhancement of the appearance of regulatory B-cells that could maintain long term immune tolerance.
Collapse
Affiliation(s)
- Gérôme Bohelay
- Department of Dermatology, Groupe Hospitalier Paris Seine-Saint-Denis, AP-HP & INSERM UMR1125, Bobigny, France
| | - Frédéric Caux
- Department of Dermatology, Groupe Hospitalier Paris Seine-Saint-Denis, AP-HP & INSERM UMR1125, Bobigny, France
| | - Philippe Musette
- Department of Dermatology, Groupe Hospitalier Paris Seine-Saint-Denis, AP-HP & INSERM UMR1125, Bobigny, France
| |
Collapse
|
44
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
45
|
Amitai I, Gafter-Gvili A, Shargian-Alon L, Raanani P, Gurion R. Obinutuzumab-related adverse events: A systematic review and meta-analysis. Hematol Oncol 2020; 39:215-221. [PMID: 33252145 DOI: 10.1002/hon.2828] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/11/2022]
Abstract
Rituximab, the first anti-CD20 monoclonal antibody, has dramatically improved outcomes for patients with B-cell lymphoproliferative disorders. Obinutuzumab was developed to potentiate activity and overcome resistance to rituximab. Clinical data suggest that obinutuzumab is superior to rituximab in follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL). Yet, it has increased toxicity. This systematic review and meta-analysis compiled all randomized controlled trials (RCTs) comparing obinutuzumab-based regimens with rituximab-based regimens to better assess their toxicity profile. Primary outcome was grade 3-4 infections; secondary outcomes included any adverse events (AE), grade 3-4 AE, drug discontinuation rate, and 3-years mortality. Relative risks (RRs) were estimated and pooled using a fixed-effect model, unless there was significant heterogeneity, in which case a random-effects model was used. Our comprehensive search yielded five RCTs conducted between 2009 and 2014, including 4247 patients. The trials included FL patients, CLL and diffuse large B cell lymphoma. Monoclonal antibodies were given with different chemotherapy regimens (in four trials) or as monotherapy (in one trial). The point estimate favored increase in both grade 3-4 infections rate (RR 1.17 [95% CI, 1.0-1.36]) and any AE rate (RR 1.05 [95% 1-1.1]) with obinutuzumab, although this was not statistically significant. There was a significantly increased rate of grade 3-4 AE (RR 1.15 [95% CI, 1.09-1.2]), as well as grade 3-4 toxicities including thrombocytopenia (RR 2.8 [95% CI, 1.92-4.06]), infusion related reactions (RR 2.8 [95% CI, 2.16-3.64]) and cardiac events (RR 1.65 [95% CI, 1.11-2.46]). There was no significant difference in grade 3-4 anemia and neutropenia nor in the 3-year mortality rate. The point estimate favored increase in discontinuation rate due to AE with obinutuzumab, although without statistical significance (RR 1.24 [95% CI, 1.0-1.54]). In conclusion, physicians need to weigh the clinical benefits of this agent against higher toxicity.
Collapse
Affiliation(s)
- Irina Amitai
- Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Gafter-Gvili
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel.,Department of Internal Medicine A, Rabin Medical Center, Petah Tikva, Israel
| | - Liat Shargian-Alon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ronit Gurion
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
46
|
Zou L, Song G, Gu S, Kong L, Sun S, Yang L, Cho WC. Mechanism and Treatment of Rituximab Resistance in Diffuse Large Bcell Lymphoma. Curr Cancer Drug Targets 2020; 19:681-687. [PMID: 31142246 DOI: 10.2174/1568009619666190126125251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype B non-Hodgkin lymphoma in adults. After rituximab being introduced to treat DLBCL, the current first-line treatment is R-CHOP regimen. This regimen greatly improves patient's prognosis, however, relapsed or refractory cases are commonly seen, mainly due to the resistance to rituximab. Although a large number of experiments have been conducted to investigate rituximab resistance, the exac mechanisms and solutions are still unclear. This review mainly explores the possible mechanisms oft rituximab resistance and current new effective treatments for rituximab resistance in DLBCL.
Collapse
Affiliation(s)
- Linqing Zou
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyu Gu
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Lingling Kong
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Shiqi Sun
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Li Yang
- Department of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
47
|
Lee C, Peddi S, Anderson C, Su H, Cui H, Epstein AL, MacKay JA. Adaptable antibody Nanoworms designed for non-Hodgkin lymphoma. Biomaterials 2020; 262:120338. [PMID: 32916604 DOI: 10.1016/j.biomaterials.2020.120338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
Despite advancements in antibody-based therapies for non-Hodgkin lymphoma (NHL), at least two major therapeutic needs remain unmet: i) heterogenous activation of host immunity towards B cell NHL; and ii) lack of antibody-based therapeutics for T cell NHL. This study explores the molecular characteristics of an adaptable modality called antibody Nanoworms and demonstrates their receptor clustering activity as a means to overcome and address abovementioned needs. To test this, four selected therapeutic receptors of B cell (CD19, CD20, HLA-DR10) and T cell (CD3) NHL were targeted by Nanoworms. Regardless of the target or the cell type, Nanoworms inherently clustered bound receptors on the cell-surface through their multivalency and activated intracellular signaling without any secondary crosslinker. As a sole agent, Nanoworms induced apoptosis by clustering CD20 or HLA-DR10, and arrested the cell cycle upon CD19 clustering. Interestingly, CD3 clustering was particularly advantageous in inducing activation-induced cell death (AICD) in an aggressive form of T cell NHL named Sézary syndrome that is fatal, limited in antibody-based therapeutics, and has poor outcomes to traditional chemotherapy. As Nanoworms can be easily designed to target any receptor for which a scFv is available, they may provide solutions and add therapeutic novelty to underserved diseases.
Collapse
Affiliation(s)
- Changrim Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States
| | - Caleb Anderson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, United States; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
48
|
Desai AK, Baloh CH, Sleasman JW, Rosenberg AS, Kishnani PS. Benefits of Prophylactic Short-Course Immune Tolerance Induction in Patients With Infantile Pompe Disease: Demonstration of Long-Term Safety and Efficacy in an Expanded Cohort. Front Immunol 2020; 11:1727. [PMID: 32849613 PMCID: PMC7424004 DOI: 10.3389/fimmu.2020.01727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 01/19/2023] Open
Abstract
Immune tolerance induction (ITI) with a short-course of rituximab, methotrexate, and/or IVIG in the enzyme replacement therapy (ERT)-naïve setting has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD) lacking endogenous acid-alpha glucosidase (GAA), known as cross-reactive immunologic material (CRIM)-negative. In the context of cancer therapy, rituximab administration results in sustained B-cell depletion in 83% of patients for up to 26–39 weeks with B-cell reconstitution beginning at approximately 26 weeks post-treatment. The impact of rituximab on serum immunoglobulin levels is not well studied, available data suggest that rituximab can cause persistently low immunoglobulin levels and adversely impact vaccine responses. Data on a cohort of IPD patients who received a short-course of ITI with rituximab, methotrexate, and IVIG in the ERT-naïve setting and had ≥6 months of follow-up were retrospectively studied. B-cell quantitation, ANC, AST, ALT, immunization history, and vaccine titers after B-cell reconstitution were reviewed. Data were collected for 34 IPD patients (25 CRIM-negative and 9 CRIM-positive) with a median age at ERT initiation of 3.5 months (0.1–11.0 months). B-cell reconstitution, as measured by normalization of CD19%, was seen in all patients (n = 33) at a median time of 17 weeks range (11–55 weeks) post-rituximab. All maintained normal CD19% with the longest follow-up being 248 weeks post-rituximab. 30/34 (88%) maintained negative/low anti-rhGAA antibody titers, even with complete B-cell reconstitution. Infections during immunosuppression were reported in five CRIM-negative IPD patients, all resolved satisfactorily on antibiotics. There were no serious sequelae or deaths. Of the 31 evaluable patients, 27 were up to date on age-appropriate immunizations. Vaccine titers were available for 12 patients after B-cell reconstitution and adequate humoral response was observed in all except an inadequate response to the Pneumococcal vaccine (n = 2). These data show the benefits of short-course prophylactic ITI in IPD both in terms of safety and efficacy. Data presented here are from the youngest cohort of patients treated with rituximab and expands the evidence of its safety in the pediatric population.
Collapse
Affiliation(s)
- Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Carolyn H Baloh
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - John W Sleasman
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| | - Amy S Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, United States
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, United States
| |
Collapse
|
49
|
Desai AK, Rosenberg AS, Kishnani PS. The potential impact of timing of IVIG administration on the efficacy of rituximab for immune tolerance induction for patients with Pompe disease. Clin Immunol 2020; 219:108541. [PMID: 32681978 DOI: 10.1016/j.clim.2020.108541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Immune modulation with rituximab, methotrexate, and intravenous immunoglobulin (IVIG) has shown great success in inducing immune tolerance in a large cohort of enzyme replacement therapy (ERT)-naïve infantile Pompe disease patients. Antibody-dependent cellular cytotoxicity, the principal mechanism by which rituximab depletes B-cells, requires CD20 binding by Fab'2 of rituximab on B-cells and the concomitant binding of its Fc region to Fc receptors on effector cells or to complement. To protect patients against microbial infections when using rituximab, IVIG was added to the immunomodulation regimen used in Pompe disease. Administration of IVIG can saturate neonatal Fc receptors (FcRn), which recycle endogenous as well as administered polyclonal/monoclonal antibodies via the binding of the Fc moiety to FcRn. As such, the administration of IVIG prior to rituximab, a chimeric mouse-human monoclonal antibody, may sharply reduce the half-life of rituximab and in turn, its efficacy. Based on this understanding, it is vital to understand the optimal timing of IVIG administration in relation to rituximab administration for the purposes of inducing immune tolerance.
Collapse
Affiliation(s)
- Ankit K Desai
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Amy S Rosenberg
- Division of Biologics Review and Research 3, Office of Biotechnology Products, Center for Drug Evaluation and Research, US FDA, Bethesda, MD, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Health System, Durham, NC, USA.
| |
Collapse
|
50
|
Fox E, Lovett-Racke AE, Gormley M, Liu Y, Petracca M, Cocozza S, Shubin R, Wray S, Weiss MS, Bosco JA, Power SA, Mok K, Inglese M. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler 2020; 27:420-429. [PMID: 32351164 PMCID: PMC7897779 DOI: 10.1177/1352458520918375] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs. Objective: The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis. Methods: This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1–4 hours on day 1 and 450–600 mg over 1–3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion. Results: In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1–2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA). Conclusion: Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses.
Collapse
Affiliation(s)
- Edward Fox
- Central Texas Neurology Consultants, Round Rock, TX, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew Gormley
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA/Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Sibyl Wray
- Hope Neurology Multiple Sclerosis Center, Knoxville, TN, USA
| | | | | | | | - Koby Mok
- TG Therapeutics, Inc., New York, NY, USA
| | - Matilde Inglese
- Medical Center, Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|