1
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in striatal functional connectivity networks across 2 years due to stimulant exposure in childhood ADHD: results from the ABCD sample. Transl Psychiatry 2024; 14:463. [PMID: 39505862 PMCID: PMC11541585 DOI: 10.1038/s41398-024-03165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Hua Xie
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University, Washington, DC, USA.
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
2
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
3
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
4
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
5
|
Kaminski A, Xie H, Hawkins B, Vaidya CJ. Change in Striatal Functional Connectivity Networks Across Two Years Due to Stimulant Exposure in Childhood ADHD: Results from the ABCD Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304470. [PMID: 38562872 PMCID: PMC10984058 DOI: 10.1101/2024.03.18.24304470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Widely prescribed for Attention-Deficit/Hyperactivity Disorder (ADHD), stimulants (e.g., methylphenidate) have been studied for their chronic effects on the brain in prospective designs controlling dosage and adherence. While controlled approaches are essential, they do not approximate real-world stimulant exposure contexts where medication interruptions, dosage non-compliance, and polypharmacy are common. Brain changes in real-world conditions are largely unexplored. To fill this gap, we capitalized on the observational design of the Adolescent Brain Cognitive Development (ABCD) study to examine effects of stimulants on large-scale bilateral cortical networks' resting-state functional connectivity (rs-FC) with 6 striatal regions (left and right caudate, putamen, and nucleus accumbens) across two years in children with ADHD. Bayesian hierarchical regressions revealed associations between stimulant exposure and change in rs-FC of multiple striatal-cortical networks, affiliated with executive and visuo-motor control, which were not driven by general psychotropic medication. Of these connections, three were selective to stimulants versus stimulant naive: reduced rs-FC between caudate and frontoparietal network, and between putamen and frontoparietal and visual networks. Comparison with typically developing children in the ABCD sample revealed stronger rs-FC reduction in stimulant-exposed children for putamen and frontoparietal and visual networks, suggesting a normalizing effect of stimulants. 14% of stimulant-exposed children demonstrated reliable reduction in ADHD symptoms, and were distinguished by stronger rs-FC reduction between right putamen and visual network. Thus, stimulant exposure for a two-year period under real-world conditions modulated striatal-cortical functional networks broadly, had a normalizing effect on a subset of networks, and was associated with potential therapeutic effects involving visual attentional control.
Collapse
Affiliation(s)
- Adam Kaminski
- Department of Psychology, Georgetown University, Washington, DC
| | - Hua Xie
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| | - Brylee Hawkins
- Department of Psychology, Georgetown University, Washington, DC
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, Washington, DC
- Children’s Research Institute, Children’s National Medical Center, Washington, DC
| |
Collapse
|
6
|
Mayer FP, Stewart A, Varman DR, Moritz AE, Foster JD, Owens AW, Areal LB, Gowrishankar R, Velez M, Wickham K, Phelps H, Katamish R, Rabil M, Jayanthi LD, Vaughan RA, Daws LC, Blakely RD, Ramamoorthy S. Kappa Opioid Receptor Antagonism Restores Phosphorylation, Trafficking and Behavior induced by a Disease Associated Dopamine Transporter Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539310. [PMID: 37205452 PMCID: PMC10187322 DOI: 10.1101/2023.05.03.539310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate, as exemplified by the therapeutic use of d-amphetamine and methylphenidate for the treatment of ADHD, agents with high abuse liability. In search for an improved and non-addictive therapeutic approach for the treatment of DA-linked disorders, we utilized a preclinical mouse model expressing the human DA transporter (DAT) coding variant DAT Val559, previously identified in individuals with ADHD, ASD, or BPD. DAT Val559, like several other disease-associated variants of DAT, exhibits anomalous DA efflux (ADE) that can be blocked by d-amphetamine and methylphenidate. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might also provide an alternative approach to normalizing DA-signaling disrupted by perturbed DAT function. Here we demonstrate that KOR stimulation leads to enhanced surface trafficking and phosphorylation of Thr53 in wildtype DAT, effects achieved constitutively by the Val559 mutant. Moreover, these effects can be rescued by KOR antagonism of DAT Val559 in ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release as well as sex-dependent behavioral abnormalities observed in DAT Val559 mice. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.
Collapse
Affiliation(s)
- Felix P. Mayer
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Amy E. Moritz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Anthony W. Owens
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
| | - Lorena B. Areal
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Raajaram Gowrishankar
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Michelle Velez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Kyria Wickham
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Hannah Phelps
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Rania Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maximilian Rabil
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxanne A. Vaughan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Cerri DH, Albaugh DL, Walton LR, Katz B, Wang TW, Chao THH, Zhang W, Nonneman RJ, Jiang J, Lee SH, Etkin A, Hall CN, Stuber GD, Shih YYI. Distinct neurochemical influences on fMRI response polarity in the striatum. Nat Commun 2024; 15:1916. [PMID: 38429266 PMCID: PMC10907631 DOI: 10.1038/s41467-024-46088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
The striatum, known as the input nucleus of the basal ganglia, is extensively studied for its diverse behavioral roles. However, the relationship between its neuronal and vascular activity, vital for interpreting functional magnetic resonance imaging (fMRI) signals, has not received comprehensive examination within the striatum. Here, we demonstrate that optogenetic stimulation of dorsal striatal neurons or their afferents from various cortical and subcortical regions induces negative striatal fMRI responses in rats, manifesting as vasoconstriction. These responses occur even with heightened striatal neuronal activity, confirmed by electrophysiology and fiber-photometry. In parallel, midbrain dopaminergic neuron optogenetic modulation, coupled with electrochemical measurements, establishes a link between striatal vasodilation and dopamine release. Intriguingly, in vivo intra-striatal pharmacological manipulations during optogenetic stimulation highlight a critical role of opioidergic signaling in generating striatal vasoconstriction. This observation is substantiated by detecting striatal vasoconstriction in brain slices after synthetic opioid application. In humans, manipulations aimed at increasing striatal neuronal activity likewise elicit negative striatal fMRI responses. Our results emphasize the necessity of considering vasoactive neurotransmission alongside neuronal activity when interpreting fMRI signal.
Collapse
Affiliation(s)
- Domenic H Cerri
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel L Albaugh
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lindsay R Walton
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany Katz
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Wang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Weiting Zhang
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randal J Nonneman
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jing Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sung-Ho Lee
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | - Catherine N Hall
- Sussex Neuroscience, University of Sussex, Falmer, United Kingdom
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Garret D Stuber
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Neurology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Wilson SK, Thomas J. BH4 as a Therapeutic Target for ADHD: Relevance to Neurotransmitters and Stress-Driven Symptoms. J Atten Disord 2024; 28:161-167. [PMID: 37942650 DOI: 10.1177/10870547231204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Tetrahydrobiopterin (BH4) is a critical cofactor in a variety of metabolic pathways that have been linked to ADHD. There have been no previous studies utilizing BH4 as a supplement for ADHD. BH4 has been approved as a treatment for phenylketonuria (PKU). Individuals with PKU and ADHD appear to have low DA levels in common, suggesting that the hypodopaminergic state seen in both illnesses could be a relationship between the two. Clinical research involving supplementation of BH4 has shown low occurrence of adverse. In experiments, BH4 has also been found to have good blood-brain barrier permeability. BH4 also has the ability in scavenging ROS activity, which is an implication of stress and is seen in ADHD. BH4's significance in ADHD is reviewed in this paper because of its involvement in numerous neurodevelopmental metabolic pathways, and we anticipate that exogenous BH4 can be used to treat ADHD.
Collapse
Affiliation(s)
- Samson K Wilson
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala
| |
Collapse
|
9
|
Zhang M, Gu X, Wu L, Wan N, Liu Y, Xin Z, Chen T, Liu S, Li M, Deng M, Wang Q. A new mechanistic insight into the association between environmental perfluorooctane sulfonic acid (PFOS) exposure and attention deficit and hyperactivity disorder (ADHD)-like behavior. Neurotoxicology 2023; 99:254-263. [PMID: 37952603 DOI: 10.1016/j.neuro.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) is one of the main residual environmental pollutants that threaten human health. PFOS exposure is positively correlated with the prevalence of attention deficit hyperactivity disorder (ADHD); however, the underlying mechanism is unknown. Given that dopamine (DA) is a crucial target for PFOS and that its dysfunction is a key role in ADHD development, it is speculated that PFOS exposure contributes to the occurrence of ADHD to some extent by disrupting DA homeostasis. To establish the relationship between PFOS exposure, DA dysfunction, and ADHD-like behavior, adult zebrafish were exposed to PFOS for 21 days using PFOS concentrations in the serum of patients with ADHD as the reference exposure dose. Results showed that PFOS caused ADHD-like behaviors, with the presence of the slightly elevated percentage of time spent in movement and prolonged time spent in reaching the target zone in the T-maze. Hyperactivity and cognitive ability impairment were more severe with increasing PFOS concentrations. Further investigation showed that PFOS exposure resulted in a decrease in the DA content, accompanied by a decrease in the number of dopaminergic neurons and a disturbance in the transcription profiles of genes associated with the dopaminergic system. Treatment with Ritalin effectively alleviated PFOS-induced ADHD-like behavior and restored DA levels, number of dopaminergic neurons, and expression of DA metabolism-related genes, suggesting that PFOS exposure induced ADHD-like behavior by triggering DA secretion disorder. This study enriches our understanding of the pathogenic mechanisms underlying ADHD development and emphasizes the importance of focusing on the health risks pertaining to environmental exposure.
Collapse
Affiliation(s)
- Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Zaijun Xin
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241002, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mi Deng
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
10
|
Traktirov DS, Nazarov IR, Artemova VS, Gainetdinov RR, Pestereva NS, Karpenko MN. Alterations in Serotonin Neurotransmission in Hyperdopaminergic Rats Lacking the Dopamine Transporter. Biomedicines 2023; 11:2881. [PMID: 38001881 PMCID: PMC10669523 DOI: 10.3390/biomedicines11112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Biogenic amines dopamine (DA) and serotonin (5-HT) are among the most significant monoaminergic neurotransmitters in the central nervous system (CNS). Separately, the physiological roles of DA and 5-HT have been studied in detail, and progress has been made in understanding their roles in normal and various pathological conditions (Parkinson's disease, schizophrenia, addiction, depression, etc.). In this article we showed that knockout of the gene encoding DAT leads not only to a profound dysregulation of dopamine neurotransmission in the striatum but also in the midbrain, prefrontal cortex, hippocampus, medulla oblongata and spinal cord. Furthermore, significant changes were observed in the production of mRNA of enzymes of monoamine metabolism, as well as to a notable alteration in the tissue level of serotonin, most clearly manifested in the cerebellum and the spinal cord. The observed region-specific changes in the tissue levels of serotonin and in the expression of dopamine and serotonergic metabolism enzymes in rats with an excess of dopamine can indicate important consequences for the pharmacotherapy of drugs that modulate the dopaminergic system. The drugs that affect the dopaminergic system could potently affect the serotonergic system, and this fact is important to consider when predicting their possible therapeutic or side effects.
Collapse
Affiliation(s)
- Dmitrii S. Traktirov
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
| | - Ilya R. Nazarov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Valeria S. Artemova
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Nina S. Pestereva
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
| | - Marina N. Karpenko
- Department of Physiology (Pavlov’s), Institute of Experimental Medicine, 197022 St. Petersburg, Russia (M.N.K.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
11
|
Karabulut M, Yıldırım K. Superior Vena Cava Flow in Children With Attention Deficit Hyperactivity Disorder. Psychiatry Investig 2023; 20:888-895. [PMID: 37794671 PMCID: PMC10555513 DOI: 10.30773/pi.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVE Attention deficit/hyperactivity disorder (ADHD), whose definition, diagnosis and treatment has been the subject of debate in the scientific community for a long time, is the most common neurobehavioral disorder in childhood. There are many studies on the pathophysiology of attention deficit. However, there is no study in the literature based on direct or indirect measurement of cerebral venous circulation in ADHD, and the effect of methylphenidate (MPH) treatment on cerebral venous circulation. Therefore, it was aimed to noninvasively measure superior vena cava (SVC) flow, which is an indirect indicator of cerebral venous flow, by transthoracic echocardiography in patients with ADHD. METHODS In the study, 44 healthy children, and 40 ADHD patients who were planned to start on osmotic-release oral system (OROS)- MPH were included. SVC flows were measured in healthy children and before and after drug therapy of ADHD patients. RESULTS SVC flow was found to be higher in ADHD patients compared to healthy children. A significant decrease was found in SVC flow of ADHD patients after OROS-MPH treatment. There was no decrease in SVC flow of patients who did not respond adequately to MPH treatment. CONCLUSION This first study of SVC flow in children with ADHD showed that ADHD was associated with increased SVC flow and MPH treatment had a reducing effect on this increased SVC flow. We believe that noninvasive, easily measurable, and reproducible SVC flow may be a new focus of interest for future comprehensive studies as a biomarker to support clinical evaluation in the diagnosis and treatment follow-up of ADHD patients.
Collapse
Affiliation(s)
- Muhammed Karabulut
- Department of Paediatric Cardiology, Clinical of Paediatric Health and Diseases, Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Kübra Yıldırım
- Department of Child and Adolescent Psychiatry, Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
12
|
Zhang Y, Chen Y, Xin Y, Peng B, Liu S. Norepinephrine system at the interface of attention and reward. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110751. [PMID: 36933778 DOI: 10.1016/j.pnpbp.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023]
Abstract
Reward learning is key to survival for individuals. Attention plays an important role in the rapid recognition of reward cues and establishment of reward memories. Reward history reciprocally guides attention to reward stimuli. However, the neurological processes of the interplay between reward and attention remain largely elusive, due to the diversity of the neural substrates that participate in these two processes. In this review, we delineate the complex and differentiated locus coeruleus norepinephrine (LC-NE) system in relation to different behavioral and cognitive substrates of reward and attention. The LC receives reward related sensory, perceptual, and visceral inputs, releases NE, glutamate, dopamine and various neuropeptides, forms reward memories, drives attentional bias and selects behavioral strategies for reward. Preclinical and clinical studies have found that abnormalities in the LC-NE system are involved in a variety of psychiatric conditions marked by disturbed functions in reward and attention. Therefore, we propose that the LC-NE system is an important hub in the interplay between reward and attention as well as a critical therapeutic target for psychiatric disorders characterized by compromised functions in reward and attention.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Yan Chen
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Yushi Xin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Beibei Peng
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.
| |
Collapse
|
13
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|
14
|
Koevoet D, Deschamps PKH, Kenemans JL. Catecholaminergic and cholinergic neuromodulation in autism spectrum disorder: A comparison to attention-deficit hyperactivity disorder. Front Neurosci 2023; 16:1078586. [PMID: 36685234 PMCID: PMC9853424 DOI: 10.3389/fnins.2022.1078586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by social impairments and restricted, repetitive behaviors. Treatment of ASD is notoriously difficult and might benefit from identification of underlying mechanisms that overlap with those disturbed in other developmental disorders, for which treatment options are more obvious. One example of the latter is attention-deficit hyperactivity disorder (ADHD), given the efficacy of especially stimulants in treatment of ADHD. Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine (NE)] in ADHD are obvious targets for stimulant treatment. Recent findings suggest that dysfunction in catecholaminergic systems may also be a factor in at least a subgroup of ASD. In this review we scrutinize the evidence for catecholaminergic mechanisms underlying ASD symptoms, and also include in this analysis a third classic ascending arousing system, the acetylcholinergic (ACh) network. We complement this with a comprehensive review of DA-, NE-, and ACh-targeted interventions in ASD, and an exploratory search for potential treatment-response predictors (biomarkers) in ASD, genetically or otherwise. Based on this review and analysis we propose that (1) stimulant treatment may be a viable option for an ASD subcategory, possibly defined by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively small ADHD subgroup but much more common in ASD and in both cases may point toward NE- or ACh-directed intervention; (3) deficiency of the cortical salience network is sizable in subgroups of both disorders, and biomarkers such as eye blink rate and pupillometric data may predict the efficacy of targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands,*Correspondence: Damian Koevoet,
| | - P. K. H. Deschamps
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. L. Kenemans
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Kundu D, Zhu A, Kim E, Paudel S, Jang CG, Lee YS, Kim KM. Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure-Activity Relationship. Biomol Ther (Seoul) 2023; 31:108-115. [PMID: 36098044 PMCID: PMC9810443 DOI: 10.4062/biomolther.2022.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 01/13/2023] Open
Abstract
Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DA-induced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.
Collapse
Affiliation(s)
- Dooti Kundu
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Anlin Zhu
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Suresh Paudel
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea
| | - Choon-Gon Jang
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Sup Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyeong-Man Kim
- College of Pharmacy, Chonnam National University, Gwangju 61146, Republic of Korea,Corresponding Author E-mail: , Tel: +82-62-530-2936, Fax: +82-62-530-2949
| |
Collapse
|
16
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
17
|
Wada M, Umesawa Y, Sano M, Tajima S, Kumagaya S, Miyazaki M. Weakened Bayesian Calibration for Tactile Temporal Order Judgment in Individuals with Higher Autistic Traits. J Autism Dev Disord 2023; 53:378-389. [PMID: 35064873 PMCID: PMC9889458 DOI: 10.1007/s10803-022-05442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Previous psychophysical studies reported a positive aftereffect in tactile temporal order judgments, which can be explained by the Bayesian estimation model ('Bayesian calibration'). We investigated the relationship between Bayesian calibration and autistic traits in participants with typical development (TD) and autism spectrum disorder (ASD). Bayesian calibration was weakened in TD participants with high autistic traits, consistent with the 'hypo-priors' hypothesis for autistic perceptions. The results from the ASD group were generally observed as a continuation of those from the TD groups. Meanwhile, two ASD participants showed irregularly large positive or negative aftereffects. We discussed the mechanisms behind the general results among TD and ASD participants and two particular results among ASD participants based on the Bayesian estimation model.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan.
- Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-8011, Japan.
| | - Yumi Umesawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan
- Faculty of Medicine, Kyorin University, Mitaka, Tokyo, 181-8611, Japan
| | - Misako Sano
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 461-8673, Japan
| | - Seiki Tajima
- Department of Child Psychiatry, Hospital of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-8555, Japan
| | - Shinichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, 153-8904, Japan
| | - Makoto Miyazaki
- Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-8011, Japan.
| |
Collapse
|
18
|
Manolov S, Ivanov I, Bojilov D, Nedialkov P. Synthesis, In Vitro Anti-Inflammatory Activity, and HRMS Analysis of New Amphetamine Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010151. [PMID: 36615344 PMCID: PMC9822421 DOI: 10.3390/molecules28010151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Herein, we report the obtaining of new hybrid molecules of amphetamine with different profens (amfens). The obtained amfens are characterized by their melting points, UV, 1H-, 13C-NMR, and HRMS spectra. A complete and detailed mass spectral analysis of the newly obtained derivatives of amphetamine with ibuprofen, flurbiprofen, ketoprofen, naproxen, and carprofen was performed. In vitro inhibition of albumin denaturation of each new compound was assessed, and they showed significant activity. The IC50 values of the obtained amphetamine-profen derivatives ranged from 92.81 to 159.87 µg/mL. This indicates that the new hybrids inherit the anti-inflammatory properties of profens. Using in silico method, the toxicity was also calculated. The obtained results are given in LD50 values. Depending on the route of administration, the amfens are less toxic compared to the standard amphetamine.
Collapse
Affiliation(s)
- Stanimir Manolov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Iliyan Ivanov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence: ; Tel./Fax:+359-32-261-349
| | - Dimitar Bojilov
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
19
|
Neurotoxicity induced by the pyrethroid lambda-cyhalothrin: Alterations in monoaminergic systems and dopaminergic and serotoninergic pathways in the rat brain. Food Chem Toxicol 2022; 169:113434. [PMID: 36126889 DOI: 10.1016/j.fct.2022.113434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/20/2022]
Abstract
The effects of Type II pyrethroid lambda-cyhalothrin on dopamine (DA) and serotonin (5-HT) synthesis in rat brain regions (striatum, hippocampus, prefrontal cortex, hypothalamus and midbrain) were studied. Lambda-cyhalothrin (1, 4 and 8 mg/kg bw, oral gavage, 6 days) induced a decrease of DA, 5-HT and metabolites contents, in a brain regional- and dose-related manner. The major decreases in DA and 5-HT contents were observed in hippocampus and prefrontal cortex tissues. This research study also showed in hippocampus and prefrontal cortex, that lambda-cyhalothrin modified the mRNA levels of DA transporter gene (Dat1 up-regulation), 5-HT transporter gene (SERT down-regulation), DA receptor genes (Drd1and Drd2 down-regulation), 5-HT receptor genes (5-HT1A and 5-HT2A down-regulation/up-regulation), DA synthesis gene (TH down-regulation), 5-HT synthesis gene (TPH2 down-regulation), DA and 5-HT degradation genes (MAOA and MAOB up-regulation). These results reveal that lambda-cyhalothrin altered central nervous system (CNS) monoaminergic neurotransmitters. Lambda-cyhalothrin evoked a selective neurotoxic injury to dopaminergic and serotoninergic pathways. These findings may clarify on the pyrethroids-induced neurotoxicity mechanisms and could involve pyrethroids as environmental risk factors leading to the development of neurodegenerative diseases.
Collapse
|
20
|
Sogard AS, Mickleborough TD. The therapeutic potential of exercise and caffeine on attention-deficit/hyperactivity disorder in athletes. Front Neurosci 2022; 16:978336. [PMID: 36033633 PMCID: PMC9412016 DOI: 10.3389/fnins.2022.978336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is characterized by evident and persistent inattention, hyperactivity, impulsivity, and social difficulties and is the most common childhood neuropsychiatric disorder, and which may persist into adulthood. Seventy to 80% of children and adults with ADHD are treated with stimulant medication, with positive response rates occurring for both populations. Medicated ADHD individuals generally show sustained and improved attention, inhibition control, cognitive flexibility, on-task behavior, and cognitive performance. The ethics of ADHD medication use in athletics has been a debated topic in sport performance for a long time. Stimulants are banned from competition in accordance with World Anti-Doping Association and National Collegiate Athletic Association regulations, due to their ability to not only enhance cognitive performance but also exercise performance. Limited research has been conducted looking at the differences in exercise performance variables in unmedicated ADHD verses medicated ADHD. Not all ADHD athletes choose stimulant medication in their treatment plan due to personal, financial, or other reasons. Non-stimulant treatment options include non-stimulant medication and behavioral therapy. However, the use of caffeinated compounds and exercise has both independently been shown to be effective in the management of ADHD symptoms in human studies and animal models. This mini review will discuss the effect of exercise and caffeine on neurobehavioral, cognitive, and neurophysiological factors, and exercise performance in ADHD athletes, and whether exercise and caffeine should be considered in the treatment plan for an individual with ADHD.
Collapse
|
21
|
Zhu K, Liu Q, Xie X, Jiang Q, Feng Y, Xiao P, Wu X, Zhu B, Song R. Interaction between manganese and SLC6A3 genetic polymorphisms in relation to dyslexia. Neurotoxicology 2022; 92:102-109. [DOI: 10.1016/j.neuro.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/09/2022]
|
22
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
23
|
D’Aiello B, Battisti A, Lazzaro G, Pani P, De Rossi P, Di Vara S, Pretelli I, Costanzo F, Vicari S, Menghini D. Comparing the Effect of Methylphenidate and Anodal tDCS on Inhibitory Control and Working-Memory in Children and Adolescents with Attention Deficit/Hyperactivity Disorder: A Study Protocol for a Randomized, within-Subject Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084575. [PMID: 35457447 PMCID: PMC9030177 DOI: 10.3390/ijerph19084575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inappropriate levels of attention, hyperactivity, and impulsivity that interfere with individual functioning. The international guidelines recommend targeting ADHD-related neurochemical brain abnormalities by intervening via drug treatment, such as methylphenidate (MPH), as first choice. Drug treatments are usually associated with a huge amount of cost for families and the healthcare system, suspension for low compliance, poor long-term efficacy, and side effects. Transcranial direct current stimulation (tDCS) has been suggested as a possible noninvasive means to safely manipulate brain activity and, in turn, improve behavior and cognition in developmental ages. Several studies have shown that tDCS has the potential to improve ADHD-related cognitive deficits, but the effect of tDCS compared with MPH has never been evaluated. The aim of the present within-subject, sham-controlled, randomized proof-of-concept study is to demonstrate the positive effect of one-session anodal tDCS analogous to the MPH drug on inhibitory control and working memory in children and adolescents with ADHD. We strongly believe that this study protocol will serve to accelerate research into low-cost, drug-free, feasible interventions for ADHD.
Collapse
Affiliation(s)
- Barbara D’Aiello
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy;
| | - Pietro De Rossi
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
| | - Silvia Di Vara
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
| | - Italo Pretelli
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Centro di Riabilitazione, Casa San Giuseppe, Opera Don Guanella, 00165 Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (B.D.); (A.B.); (G.L.); (P.D.R.); (S.D.V.); (I.P.); (F.C.); (S.V.)
- Correspondence:
| |
Collapse
|
24
|
Phillips RA, Tuscher JJ, Black SL, Andraka E, Fitzgerald ND, Ianov L, Day JJ. An atlas of transcriptionally defined cell populations in the rat ventral tegmental area. Cell Rep 2022; 39:110616. [PMID: 35385745 PMCID: PMC10888206 DOI: 10.1016/j.celrep.2022.110616] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 01/06/2023] Open
Abstract
The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.
Collapse
Affiliation(s)
- Robert A Phillips
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J Tuscher
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samantha L Black
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emma Andraka
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N Dalton Fitzgerald
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology & Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Droguerre M, Vidal B, Valdebenito M, Mouthon F, Zimmer L, Charvériat M. Impaired Local and Long-Range Brain Connectivity and Visual Response in a Genetic Rat Model of Hyperactivity Revealed by Functional Ultrasound. Front Neurosci 2022; 16:865140. [PMID: 35401075 PMCID: PMC8987929 DOI: 10.3389/fnins.2022.865140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Attention-Deficit hyperactivity disorder (ADHD) is a central nervous system (CNS) disorder frequently associated with other psychiatric disorders. Pathophysiology processes at stake in ADHD are still under investigation and interestingly neuroimaging data points to modulated brain connectivity in patients. The genetic spontaneously hypertensive rat (SHR) model has been widely used to study pathophysiological underpinnings of ADHD and resting-state brain connectivity using functional magnetic resonance imaging. Here, functional ultrasound imaging, a new technique enabling fast measurement of cerebral blood volume (CBV), was used to further characterize resting-state functional connectivity - at both local and long-range - and visual response in SHR. We demonstrated that response to visual stimulation was increased in SHR in the visual cortex and the superior colliculus. They displayed altered long-range functional connectivity between spatially distinct regions. SHR also displayed modulated local connectivity, with strong increases of regional homogeneity in parts of the motor and visual cortex, along with decreases in the secondary cingulate cortex, the superior colliculus and the pretectal area. As CBV is intricately coupled to cerebral activity, these results suggest an abnormal neural activity in the SHR animal model, consistent with previous clinical studies and demonstrate the potential of functional ultrasound imaging as a translational tool in ADHD.
Collapse
Affiliation(s)
| | - Benjamin Vidal
- Theranexus, Lyon, France
- CNRS, UMR 5292, INSERM U1028, Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Luc Zimmer
- CNRS, UMR 5292, INSERM U1028, Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- CERMEP-Imaging Platform, Bron, France
- Hospices Civils de Lyon, Lyon, France
| | | |
Collapse
|
26
|
Suarez I, De Los Reyes Aragón C, Grandjean A, Barceló E, Mebarak M, Lewis S, Pineda-Alhucema W, Casini L. Two sides of the same coin: ADHD affects reactive but not proactive inhibition in children. Cogn Neuropsychol 2022; 38:349-363. [PMID: 35209797 DOI: 10.1080/02643294.2022.2031944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) present a deficit in inhibitory control. Still, it remains unclear whether it comes from a deficit in reactive inhibition (ability to stop the action in progress), proactive inhibition (ability to exert preparatory control), or both.We compared the performance of 39 children with ADHD and 42 typically developing children performing a Simon choice reaction time task. The Simon task is a conflict task that is well-adapted to dissociate proactive and reactive inhibition. Beyond classical global measures (mean reaction time, accuracy rate, and interference effect), we used more sophisticated dynamic analyses of the interference effect and accuracy rate to investigate reactive inhibition. We studied proactive inhibition through the congruency sequence effect (CSE).Our results showed that children with ADHD had impaired reactive but not proactive inhibition. Moreover, the deficit found in reactive inhibition seems to be due to both a stronger impulse capture and more difficulties in inhibiting impulsive responses. These findings contribute to a better understanding of how ADHD affects inhibitory control in children.
Collapse
Affiliation(s)
- Isabel Suarez
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia.,CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| | | | - Aurelie Grandjean
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Universidad de la Costa, Barranquilla, Colombia
| | - Moises Mebarak
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | - Soraya Lewis
- Department of Psychology, Universidad del Norte, Barranquilla, Colombia
| | - Wilmar Pineda-Alhucema
- Programa de Psicología, facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Laurence Casini
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France
| |
Collapse
|
27
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
28
|
Sugimoto A, Suzuki Y, Yoshinaga K, Orime N, Hayashi T, Egawa J, Ono S, Sugai T, Someya T. Influence of Atomoxetine on Relationship Between ADHD Symptoms and Prefrontal Cortex Activity During Task Execution in Adult Patients. Front Hum Neurosci 2021; 15:755025. [PMID: 34899218 PMCID: PMC8663632 DOI: 10.3389/fnhum.2021.755025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We conducted this non-randomized prospective interventional study to clarify the relationship between improved attention-deficit hyperactivity disorder (ADHD) symptoms and regional brain activity. Methods: Thirty-one adult patients underwent near-infrared spectroscopy examinations during a go/no-go task, both before and 8 weeks after atomoxetine administration. Results: Clinical symptoms, neuropsychological results of the go/no-go task, and bilateral lateral prefrontal activity significantly changed. A positive correlation was observed between right dorsolateral prefrontal cortex activity and Conners' Adult ADHD Rating Scales scores. Before atomoxetine administration, no correlations between prefrontal cortex activity and clinical symptoms were observed in all cases. When participants were divided into atomoxetine-responder and non-responder groups, a positive correlation was observed between prefrontal cortex activity and clinical symptoms in the non-responder group before treatment but not in the responder group, suggesting that non-responders can activate the prefrontal cortex without atomoxetine. Conclusions: Individuals with increased ADHD symptoms appear to recruit the right dorsolateral prefrontal cortex more strongly to perform the same task than those with fewer symptoms. In clinical settings, individuals with severe symptoms are often observed to perform more difficultly when performing the tasks which individuals with mild symptoms can perform easily. The atomoxetine-responder group was unable to properly activate the right dorsolateral prefrontal cortex when necessary, and the oral administration of atomoxetine enabled these patients to activate this region. In brain imaging studies of heterogeneous syndromes such as ADHD, the analytical strategy used in this study, involving drug-responsivity grouping, may effectively increase the signal-to-noise ratio.
Collapse
Affiliation(s)
- Atsunori Sugimoto
- Department of Community Psychiatric Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Psychiatry, Niigata Psychiatric Center, Nagaoka, Japan
| | - Yutaro Suzuki
- Department of Psychiatry, Niigata University Medical and Dental Hospital, Niigata, Japan.,Department of Psychiatry, Suehirobashi Hospital Keiaikai, Niigata, Japan
| | - Kiyohiro Yoshinaga
- Department of Psychiatry, Niigata Psychiatric Center, Nagaoka, Japan.,Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Orime
- Department of Psychiatry, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Taketsugu Hayashi
- Department of Psychiatry, Niigata Psychiatric Center, Nagaoka, Japan.,Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shin Ono
- Department of Community Psychiatric Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Psychiatry, Niigata Psychiatric Center, Nagaoka, Japan
| | - Takuro Sugai
- Comprehensive Medical Education Center, Niigata University School of Medicine, Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
29
|
Zhang J, Fan Y, Zhou J, Ma T, Gao K, Xu M, Xiao Y, Zhu Y. Methylation quantitative trait locus rs5326 is associated with susceptibility and effective dosage of methadone maintenance treatment for heroin use disorder. Psychopharmacology (Berl) 2021; 238:3511-3518. [PMID: 34476566 DOI: 10.1007/s00213-021-05968-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023]
Abstract
RATIONALE Opioid use disorder is a complicated brain disease with high heritability. The underlying mechanisms of the genetic underpinnings in the susceptibility and treatment response of opioid use disorder remain elusive. OBJECTIVES To reveal the potential associations of genotypes and gene methylations of dopaminergic system genes, as well as roles of them in opioid use disorder. In the present study, we detected the DNA methylation in the promoter regions of five representative dopaminergic system genes (DRD1, DRD2, SLC6A3, TH, and COMT) between 120 patients with heroin use disorder in methadone maintenance treatment (MMT) program and 111 healthy controls. The associations of 25 SNPs in the above genes and methylation of 237 CpG sites, known as methylation quantitative trait loci (mQTLs), were determined. Then, the correlations of the above mQTLs and traits of heroin use disorder were analyzed in a sample set of 801 patients with heroin use disorder and 930 healthy controls. RESULTS Our results demonstrated that several mQTLs in the DRD1 and DRD2 genes were identified both in the heroin use disorder and healthy control groups. Interestingly, rs4867798-CpG_174872884 and rs5326-CpG_174872884 in the DRD1 gene were the unique SNP-CpG pairs in the patients with heroin use disorder. Furthermore, mQTL rs5326 was associated with the susceptibility and effective dosage of MMT for heroin use disorder, and demonstrated allele-specific correlation with the expression of the DRD1 gene in the human caudate. CONCLUSIONS Our findings suggest that some mQTLs may be associated with traits of opioid use disorder by implicating the DNA methylation and gene expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Yajuan Fan
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jinting Zhou
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Min Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yifan Xiao
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Yongsheng Zhu
- Key Laboratory of National Health Commission for Forensic Science, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Bio-evidence Sciences Academy, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
| |
Collapse
|
30
|
Kapr J, Petersilie L, Distler T, Lauria I, Bendt F, Sauter CM, Boccaccini AR, Rose CR, Fritsche E. Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties. Adv Healthc Mater 2021; 10:e2100131. [PMID: 34197049 PMCID: PMC11468953 DOI: 10.1002/adhm.202100131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Stable and predictive neural cell culture models are a necessary premise for many research fields. However, conventional 2D models lack 3D cell-material/-cell interactions and hence do not reflect the complexity of the in vivo situation properly. Here two alginate/gellan gum/laminin (ALG/GG/LAM) hydrogel blends are presented for the fabrication of human induced pluripotent stem cell (hiPSC)-based 3D neural models. For hydrogel embedding, hiPSC-derived neural progenitor cells (hiNPCs) are used either directly or after 3D neural pre-differentiation. It is shown that stiffness and stress relaxation of the gel blends, as well as the cell differentiation strategy influence 3D model development. The embedded hiNPCs differentiate into neurons and astrocytes within the gel blends and display spontaneous intracellular calcium signals. Two fit-for-purpose models valuable for i) applications requiring a high degree of complexity, but less throughput, such as disease modeling and long-term exposure studies and ii) higher throughput applications, such as acute exposures or substance screenings are proposed. Due to their wide range of applications, adjustability, and printing capabilities, the ALG/GG/LAM based 3D neural models are of great potential for 3D neural modeling in the future.
Collapse
Affiliation(s)
- Julia Kapr
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Laura Petersilie
- Institute of NeurobiologyHeinrich Heine UniversityDüsseldorf40225Germany
| | - Thomas Distler
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91054Germany
| | - Ines Lauria
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Farina Bendt
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Clemens M. Sauter
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐University Erlangen‐NurembergErlangen91054Germany
| | - Christine R. Rose
- Institute of NeurobiologyHeinrich Heine UniversityDüsseldorf40225Germany
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental MedicineDüsseldorf40225Germany
- Medical FacultyHeinrich Heine UniversityDüsseldorf40225Germany
| |
Collapse
|
31
|
Nature and nurture? A review of the literature on childhood maltreatment and genetic factors in the pathogenesis of borderline personality disorder. J Psychiatr Res 2021; 137:131-146. [PMID: 33677217 DOI: 10.1016/j.jpsychires.2020.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/22/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Borderline Personality Disorder (BPD) is a psychiatric disorder associated with significant morbidity and mortality. However, the neurobiological alterations underlying the condition remain poorly understood. As a result, existing treatments remain inadequate. One of the main risk factors for the development of BPD is a history of childhood maltreatment. However, it is considered neither causative nor specific to the condition. Current theory is therefore increasingly moving toward a 'Gene x Environment' (GxE) model of the condition. The purpose of the current work was to conduct a systematic literature review, which comprehensively identifies all published molecular level GxE studies that have explored the role of specific genetic loci, in influencing the risk of BPD following exposure to childhood abuse or neglect. METHODS Four electronic databases were used to systematically search for molecular level GxE studies of any design, which focused on the development of BPD following exposure to childhood abuse or neglect, without language or date restrictions. Articles were screened independently by two reviewers and results were synthesized narratively. RESULTS A total of 473 articles were screened of which sixteen were selected for inclusion in our review. Implicated genes were categorised according to their influence on; Neurotransmitter Systems, Neurodevelopment and Neuroendocrine Systems. CONCLUSIONS The identified studies have produced several relevant and statistically significant results. Of particular note, is the repeated finding that genes involved in HPA axis regulation, may be altered by exposure to childhood maltreatment, influencing subsequent susceptibility to BPD. This is both biologically plausible and of potential clinical significance.
Collapse
|
32
|
Kurzina NP, Volnova AB, Aristova IY, Gainetdinov RR. A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition. Front Behav Neurosci 2021; 15:654469. [PMID: 33967714 PMCID: PMC8100052 DOI: 10.3389/fnbeh.2021.654469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is believed to be connected with a high level of hyperactivity caused by alterations of the control of dopaminergic transmission in the brain. The strain of hyperdopaminergic dopamine transporter knockout (DAT-KO) rats represents an optimal model for investigating ADHD-related pathological mechanisms. The goal of this work was to study the influence of the overactivated dopamine system in the brain on a motor cognitive task fulfillment. The DAT-KO rats were trained to learn an object recognition task and store it in long-term memory. We found that DAT-KO rats can learn to move an object and retrieve food from the rewarded familiar objects and not to move the non-rewarded novel objects. However, we observed that the time of task performance and the distances traveled were significantly increased in DAT-KO rats in comparison with wild-type controls. Both groups of rats explored the novel objects longer than the familiar cubes. However, unlike controls, DAT-KO rats explored novel objects significantly longer and with fewer errors, since they preferred not to move the non-rewarded novel objects. After a 3 months' interval that followed the training period, they were able to retain the learned skills in memory and to efficiently retrieve them. The data obtained indicate that DAT-KO rats have a deficiency in learning the cognitive task, but their hyperactivity does not prevent the ability to learn a non-spatial cognitive task under the presentation of novel stimuli. The longer exploration of novel objects during training may ensure persistent learning of the task paradigm. These findings may serve as a base for developing new ADHD learning paradigms.
Collapse
Affiliation(s)
- Natalia P. Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Physiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Irina Y. Aristova
- Department of Physiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Saint Petersburg State University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
33
|
Grandjean A, Suarez I, Miquee A, Da Fonseca D, Casini L. Differential response to pharmacological intervention in ADHD furthers our understanding of the mechanisms of interference control. Cogn Neuropsychol 2021; 38:138-152. [PMID: 33840374 DOI: 10.1080/02643294.2021.1908979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The deficit in "interference control" found in children with Attention Deficit Hyperactivity Disorder (ADHD) could be due to two distinct processes, which are not disentangled in most studies: a larger susceptibility to activating prepotent response impulses and a deficit in suppressing them. Here, we investigated the effect of 1/ADHD and 2/ methylphenidate (MPH), on these two components of interference control. We compared interference control between untreated children with ADHD, children with ADHD under MPH, and typically developing children performing a Simon task. The main findings were that 1/ children with ADHD were more susceptible to reacting impulsively and less efficient at suppressing impulsive actions, and 2/ MPH improved the selective inhibition of impulsive actions but did not modify the strength of response impulse. This work provides an example of how pharmacological interventions and selective responses to them can be used to investigate and further our understanding of cognitive processing.
Collapse
Affiliation(s)
- Aurélie Grandjean
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France.,CNRS, FR 3C, Aix Marseille Univ, Marseille, France
| | - Isabel Suarez
- Departamento de Psicología, Universidad del Norte, Barranquilla, Colombia
| | - Aline Miquee
- Child and Adolescent Psychiatry Unit, Hôpital Salvator, Marseille, France
| | - David Da Fonseca
- Child and Adolescent Psychiatry Unit, Hôpital Salvator, Marseille, France
| | - Laurence Casini
- CNRS, LNC, Laboratoire de Neurosciences Cognitives, Aix Marseille Univ, Marseille, France.,CNRS, FR 3C, Aix Marseille Univ, Marseille, France
| |
Collapse
|
34
|
Weber I, Niehaus H, Krause K, Molitor L, Peper M, Schmidt L, Hakel L, Timmermann L, Menzler K, Knake S, Oehrn CR. Trust your gut: vagal nerve stimulation in humans improves reinforcement learning. Brain Commun 2021; 3:fcab039. [PMID: 33928247 PMCID: PMC8066886 DOI: 10.1093/braincomms/fcab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Whereas the effect of vagal nerve stimulation on emotional states is well established, its effect on cognitive functions is still unclear. Recent rodent studies show that vagal activation enhances reinforcement learning and neuronal dopamine release. The influence of vagal nerve stimulation on reinforcement learning in humans is still unknown. Here, we studied the effect of transcutaneous vagal nerve stimulation on reinforcement learning in eight long-standing seizure-free epilepsy patients, using a well-established forced-choice reward-based paradigm in a cross-sectional, within-subject study design. We investigated vagal nerve stimulation effects on overall accuracy using non-parametric cluster-based permutation tests. Furthermore, we modelled sub-components of the decision process using drift-diffusion modelling. We found higher accuracies in the vagal nerve stimulation condition compared to sham stimulation. Modelling suggests a stimulation-dependent increase in reward sensitivity and shift of accuracy-speed trade-offs towards maximizing rewards. Moreover, vagal nerve stimulation was associated with increased non-decision times suggesting enhanced sensory or attentional processes. No differences of starting bias were detected for both conditions. Accuracies in the extinction phase were higher in later trials of the vagal nerve stimulation condition, suggesting a perseverative effect compared to sham. Together, our results provide first evidence of causal vagal influence on human reinforcement learning and might have clinical implications for the usage of vagal stimulation in learning deficiency.
Collapse
Affiliation(s)
- Immo Weber
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Hauke Niehaus
- Faculty of Psychology, Neuropsychology Section, Philipps-University Marburg, 35032 Marburg, Germany.,Faculty of Psychology, Theoretical Neuroscience Section, Philipps-University Marburg, 35032 Marburg, Germany
| | - Kristina Krause
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Lena Molitor
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Martin Peper
- Faculty of Psychology, Neuropsychology Section, Philipps-University Marburg, 35032 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Laura Schmidt
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lukas Hakel
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lars Timmermann
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany
| | - Katja Menzler
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| | - Carina R Oehrn
- Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), Philipps-University Marburg, 35032 Marburg, Germany.,Department of Neurology, Epilepsy Center Hessen, Philipps University, 35043 Marburg, Germany
| |
Collapse
|
35
|
Wilczek-Rużyczka E, Grzywniak C, Korab M, Cielebąk K. ERPS AS AN INDEX OF IMPAIRED WORKING MEMORY IN AN ISCHEMIC BRAIN STROKE APHASIC PATIENT AWAKENED FROM A LONG-TERM COMA FOLLOWING AN AMPHETAMINE OVERDOSE. ACTA NEUROPSYCHOLOGICA 2021. [DOI: 10.5604/01.3001.0014.8032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, amphetamines constitute the prescription drugs most commonly abused by adolescents and young adults (Berman, O’Neill, Fears et al. 2008). The prevalence of problematic (mainly illegal) use of amphetamines as a stimulant by college students, and here especially before serious examinations, has also been rising. This fact represents a serious public health concern.
The patient, aged 19, was awakened from from a long-term coma that had lasted 21 days following an amphetamine overdose and manifested tetraparesis, cortical blindness and deficits in cognitive and emotional processes. After a year of rehabilitation the majority of symptoms had disappeared, but cortical blindness andworking memory deficits remained. In addition, frontal lobe syndrome symptoms appeared. After two years of therapy as a result of immense tiredness caused by all an night wedding reception she started to manifest Charles-Bonnet syndrome. She experienced strange visual sensations such as visual hallucinations and saw various non-existing shapes (coloured blots, patterns and fireworks of vivid colours). She also saw objects (often terrifying) as well as animals (mainly African) and people with deformed faces and long teeth, and persons in African dress with feathers and coral beads in their hair. Her real identity was not remembered by the patient for longer than 2 hours and even then she insisted on being referred to as Shakira. She was given a qEEG examination (in open and closed eyes conditions) and ERPs with the use of auditory stimuli at the period when the hallucinations (to a small degree) still occurred.
Studies conducted into the functional neuroimaging of the brain work in milliseconds in the examined patient can explain her symptoms. A comparison of the subject’s ERPs with the grand average of ERPs in healthy controls shows that the N170 and N 250 components are impaired in the subject: the occipital-temporal area of the subject brain shows a strong positivity instead of negativities. This positivity might reflect an enhanced reactivity of neurons in the corresponding area induced by the removal of lateral inhibition from the neurons as a result of local damage.
------------------------------------------------------------------------------------------------------------------------------------
Collapse
Affiliation(s)
- Ewa Wilczek-Rużyczka
- Department of Health Psychology,The Andrzej Frycz Modrzewski University, Krakow, Poland
| | | | - Maciej Korab
- The Polish Neuropsychological Society’s Reintegrative and Teaching Centre
| | - Ksenia Cielebąk
- Chair of Neuropsychology and Neurorehabilitation, The Andrzej Frycz-Modrzewski Kraków Academy, Kraków, Poland
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Childhood obesity is escalating globally. Lifestyle and behavioral changes, which are the frequently used interventions in clinical practice, lead to only modest improvements in children with established obesity. Bariatric surgery is currently the most effective obesity treatment but has very limited utilization in pediatric obesity and is preferentially used for children with worsening comorbidities. There exists a massive treatment gap for children suffering with obesity especially after the failure of lifestyle modifications. Pharmacotherapy that is an established management tool in adults is very infrequently used in children. Only two medications, Phentermine and Orlistat are approved by the Food and Drug Administration (FDA) for use in adolescent obesity. Herein, we discuss the current landscape and available literature on the use of antiobesity pharmacotherapy in children. RECENT FINDINGS There are emerging pediatric data about the efficacy of the many weight loss medications that are FDA approved in adults. Moreover, more clinical trials are underway on the rarer, intractable forms of obesity such as monogenic, syndromic, and hypothalamic obesity. SUMMARY Weight loss medications in children, like adults, have variable efficacy and similar side effect profiles. Rigorous research and improved education of providers about weight loss medications may address the huge treatment gap in severe pediatric obesity.
Collapse
Affiliation(s)
- Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- MGH Weight Center, Harvard Medical School, Boston, MA
| | - Aluma Chovel Sella
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sonali Malhotra
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- MGH Weight Center, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Boswell RG, Potenza MN, Grilo CM. The Neurobiology of Binge-eating Disorder Compared with Obesity: Implications for Differential Therapeutics. Clin Ther 2021; 43:50-69. [PMID: 33257092 PMCID: PMC7902428 DOI: 10.1016/j.clinthera.2020.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Emerging work indicates divergence in the neurobiologies of binge-eating disorder (BED) and obesity despite their frequent co-occurrence. This review highlights specific distinguishing aspects of BED, including elevated impulsivity and compulsivity possibly involving the mesocorticolimbic dopamine system, and discusses implications for differential therapeutics for BED. METHODS This narrative review describes epidemiologic, clinical, genetic, and preclinical differences between BED and obesity. Subsequently, this review discusses human neuroimaging work reporting differences in executive functioning, reward processing, and emotion reactivity in BED compared with obesity. Finally, on the basis of the neurobiology of BED, this review identifies existing and new therapeutic agents that may be most promising given their specific targets based on putative mechanisms of action relevant specifically to BED. FINDINGS BED is characterized by elevated impulsivity and compulsivity compared with obesity, which is reflected in divergent neurobiological characteristics and effective pharmacotherapies. Therapeutic agents that influence both reward and executive function systems may be especially effective for BED. IMPLICATIONS Greater attention to impulsivity/compulsivity-related, reward-related, and emotion reactivity-related processes may enhance conceptualization and treatment approaches for patients with BED. Consideration of these distinguishing characteristics and processes could have implications for more targeted pharmacologic treatment research and interventions.
Collapse
Affiliation(s)
- Rebecca G Boswell
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA.
| | - Marc N Potenza
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Yale School of Medicine, Child Study Center, New Haven, CT, USA; Yale University, Department of Neuroscience, New Haven, CT, USA
| | - Carlos M Grilo
- Yale School of Medicine, Department of Psychiatry, New Haven, CT, USA; Yale University, Department of Psychology, New Haven, CT, USA
| |
Collapse
|
38
|
Effects of methylphenidate on reinforcement learning depend on working memory capacity. Psychopharmacology (Berl) 2021; 238:3569-3584. [PMID: 34676440 PMCID: PMC8629893 DOI: 10.1007/s00213-021-05974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Brain catecholamines have long been implicated in reinforcement learning, exemplified by catecholamine drug and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear. OBJECTIVES AND METHODS Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, oral) on a novel probabilistic reversal learning paradigm in a within-subject, double-blind randomised design. The paradigm was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large individual variability in methylphenidate's effects, we stratified our effects by working memory capacity and trait impulsivity, putatively modulating the effects of methylphenidate, in a large sample (n = 102) of healthy volunteers. RESULTS Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. Our key finding is that methylphenidate altered learning of choice-outcome contingencies in a manner that depended on individual variability in working memory span. Specifically, methylphenidate improved performance by adaptively reducing the effective learning rate in participants with higher working memory capacity. CONCLUSIONS This finding emphasises the important role of working memory in reinforcement learning, as reported in influential recent computational modelling and behavioural work, and highlights the dependence of this interplay on catecholaminergic function.
Collapse
|
39
|
Zafeiri A, Mitchell RT, Hay DC, Fowler PA. Over-the-counter analgesics during pregnancy: a comprehensive review of global prevalence and offspring safety. Hum Reprod Update 2020; 27:67-95. [PMID: 33118024 DOI: 10.1093/humupd/dmaa042] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Analgesia during pregnancy is often necessary. Due to their widespread availability, many mothers opt to use over-the-counter (OTC) analgesics. Those analgesic compounds and their metabolites can readily cross the placenta and reach the developing foetus. Evidence for safety or associations with adverse health outcomes is conflicting, limiting definitive decision-making for healthcare professionals. OBJECTIVE AND RATIONALE This review provides a detailed and objective overview of research in this field. We consider the global prevalence of OTC analgesia during pregnancy, explain the current mechanistic understanding of how analgesic compounds cross the placenta and reach the foetus, and review current research on exposure associations with offspring health outcomes. SEARCH METHODS A comprehensive English language literature search was conducted using PubMed and Scopus databases. Different combinations of key search terms were used including 'over-the-counter/non-prescription analgesics', 'pregnancy', 'self-medication', 'paracetamol', 'acetaminophen', 'diclofenac', 'aspirin', 'ibuprofen', 'in utero exposure', 'placenta drug transport', 'placental transporters', 'placenta drug metabolism' and 'offspring outcomes'. OUTCOMES This article examines the evidence of foetal exposure to OTC analgesia, starting from different routes of exposure to evidence, or the lack thereof, linking maternal consumption to offspring ill health. There is a very high prevalence of maternal consumption of OTC analgesics globally, which is increasing sharply. The choice of analgesia selected by pregnant women differs across populations. Location was also observed to have an effect on prevalence of use, with more developed countries reporting the highest consumption rates. Some of the literature focuses on the association of in utero exposure at different pregnancy trimesters and the development of neurodevelopmental, cardiovascular, respiratory and reproductive defects. This is in contrast to other studies which report no associations. WIDER IMPLICATIONS The high prevalence and the challenges of reporting exact consumption rates make OTC analgesia during pregnancy a pressing reproductive health issue globally. Even though some healthcare policy-making authorities have declared the consumption of some OTC analgesics for most stages of pregnancy to be safe, such decisions are often based on partial review of literature. Our comprehensive review of current evidence highlights that important knowledge gaps still exist. Those areas require further research in order to provide pregnant mothers with clear guidance with regard to OTC analgesic use during pregnancy.
Collapse
Affiliation(s)
- Aikaterini Zafeiri
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
40
|
GC-TOF-MS-Based Metabolomic Analysis and Evaluation of the Effects of HX106, a Nutraceutical, on ADHD-Like Symptoms in Prenatal Alcohol Exposed Mice. Nutrients 2020; 12:nu12103027. [PMID: 33023237 PMCID: PMC7600704 DOI: 10.3390/nu12103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that occurs in children characterized by inattention and hyperactivity. Prenatal alcohol exposure (PAE) can disrupt fetal neuronal development and cause an ADHD-like hyperactive behavior in the offspring. In this study, we hypothesized that metabolic disturbance would involve in ADHD neuropathology and aimed to investigate the changes in metabolite profile in PAE-induced ADHD-like model and the effects of HX106, a nutraceutical, on ADHD-like pathophysiology and metabolite changes. To this end, we administered HX106 to the mouse offspring affected by PAE (OPAE) and assessed the hyperactivity using the open field test. We observed that HX106-treated OPAE showed less hyperactive behavior than vehicle-treated OPAE. The effects of HX106 were found to be related to the regulation of dopamine transporter and D2 dopamine receptor expression. Furthermore, using gas chromatography time-of-flight mass spectrometry-based metabolomics, we explored the metabolite changes among the experimental groups. The metabolite profile, particularly related with the amino acids, linoleic acid and amino sugar pathways, was altered by PAE and reversed by HX106 treatment partially similar to that observed in the control group. Overall, this study suggest that metabolite alteration would be involved in ADHD pathology and that HX106 can be an efficient supplement to overcome ADHD by regulating dopamine signaling-related protein expression and metabolite changes.
Collapse
|
41
|
Lee WS, Lim YH, Kim BN, Shin CH, Lee YA, Kim JI, Hong YC, Kim KN. Residential pyrethroid insecticide use, urinary 3-phenoxybenzoic acid levels, and attention-deficit/hyperactivity disorder-like symptoms in preschool-age children: The Environment and Development of Children study. ENVIRONMENTAL RESEARCH 2020; 188:109739. [PMID: 32504851 DOI: 10.1016/j.envres.2020.109739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/07/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Previous animal studies have reported that pyrethroids can cause dopamine system abnormalities and attention-deficit/hyperactivity disorder (ADHD) phenotypes. However, epidemiological studies investigating the associations between pyrethroid exposure and ADHD are limited. We aimed to investigate the association between pyrethroid exposure and ADHD-like symptoms among preschool-age children. We used data from 385 children at 4 years of age participating in the Environment and Development of Children (EDC) study. We evaluated pyrethroid exposure through questionnaires and urinary 3-phenoxybenzoic acid (3-PBA) concentrations. We assessed ADHD-like symptoms using the Korean ADHD rating scale (K-ARS). We conducted negative binomial regressions to evaluate the associations between pyrethroid exposure and ADHD-like symptoms. Residential use of insecticide adhesive (β = 0.42, 95% CI: 0.11, 0.74) and insecticide spray (β = 0.33, 95% CI: 0.08, 0.59) was associated with an increase in log-transformed creatinine-adjusted urinary 3-PBA concentrations. Residential insecticide adhesive use was associated with a 51.6% increase in K-ARS scores (95% confidence interval [CI]: 6.3, 116.1) among boys, when compared with non-users. When compared with creatinine-adjusted 3-PBA levels <0.50 μg/g creatinine, creatinine-adjusted 3-PBA levels ≥3.80 μg/g creatinine were associated with a 58% increase in K-ARS scores (95% CI: 0.1, 150.5) among boys. We found associations of residential pyrethroid insecticide use and urinary 3-PBA concentrations with K-ARS scores among preschool-age boys. Since the present study explored cross-sectional associations in preschool-age children, the possibility of reverse causality cannot be dismissed. Further studies implementing a cohort study design are warranted.
Collapse
Affiliation(s)
- Woo-Seok Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Modafinil potentiates cocaine self-administration by a dopamine-independent mechanism: possible involvement of gap junctions. Neuropsychopharmacology 2020; 45:1518-1526. [PMID: 32340023 PMCID: PMC7360549 DOI: 10.1038/s41386-020-0680-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
Modafinil and methylphenidate are medications that inhibit the neuronal reuptake of dopamine, a mechanism shared with cocaine. Their use as "smart drugs" by healthy subjects poses health concerns and requires investigation. We show that methylphenidate, but not modafinil, maintained intravenous self-administration in Sprague-Dawley rats similar to cocaine. Both modafinil and methylphenidate pretreatments potentiated cocaine self-administration. Cocaine, at self-administered doses, stimulated mesolimbic dopamine levels. This effect was potentiated by methylphenidate, but not by modafinil pretreatments, indicating dopamine-dependent actions for methylphenidate, but not modafinil. Modafinil is known to facilitate electrotonic neuronal coupling by actions on gap junctions. Carbenoxolone, a gap junction inhibitor, antagonized modafinil, but not methylphenidate potentiation of cocaine self-administration. Our results indicate that modafinil shares mechanisms with cocaine and methylphenidate but has a unique pharmacological profile that includes facilitation of electrotonic coupling and lower abuse liability, which may be exploited in future therapeutic drug design for cocaine use disorder.
Collapse
|
43
|
Mini Nutritional Assessment May Identify a Dual Pattern of Perturbed Plasma Amino Acids in Patients with Alzheimer's Disease: A Window to Metabolic and Physical Rehabilitation? Nutrients 2020; 12:nu12061845. [PMID: 32575805 PMCID: PMC7353235 DOI: 10.3390/nu12061845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Conflicting results about alterations of plasma amino acid (AA) levels are reported in subjects with Alzheimer’s disease (AD). The current study aimed to provide more homogeneous AA profiles and correlations between AAs and cognitive tests. Venous plasma AAs were measured in 54 fasting patients with AD (37 males, 17 females; 74.63 ± 8.03 yrs; 3.2 ± 1.9 yrs from symptom onset). Seventeen matched subjects without neurodegenerative symptoms (NNDS) served as a control group (C-NNDS). Patients were tested for short-term verbal memory and attention capacity and stratified for nutritional state (Mini Nutritional Assessment, MNA). Compared to C-NNDS, patients exhibited lower plasma levels of aspartic acid and taurine (p < 0.0001) and higher 3-methylhistidine (p < 0.0001), which were independent of patients’ MNA. In comparison to normonourished AD, the patients at risk of and with malnutrition showed a tendency towards lower ratios of Essential AAs/Total AAs, Branched-chain AAs/Total AAs, and Branched-chain AAs/Essential AAs. Serine and histidine were positively correlated with verbal memory and attention capacity deficits, respectively. Total AAs negatively correlated with attention capacity deficits. Stratifying patients with AD for MNA may identify a dual pattern of altered AAs, one due to AD per se and the other linked to nutritional state. Significant correlations were observed between several AAs and cognitive tests.
Collapse
|
44
|
Kurzina NP, Aristova IY, Volnova AB, Gainetdinov RR. Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze. Behav Brain Res 2020; 390:112642. [PMID: 32428629 DOI: 10.1016/j.bbr.2020.112642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022]
Abstract
Understanding the role of the dopamine system in learning and memory processes is very important for uncovering central mechanisms underlying complex behavioral responses that can be impaired in patients with neuropsychiatric disorders caused by dopamine system dysfunction. One of the most useful animal models for dopaminergic dysregulation is the strain of dopamine transporter knockout (DAT-KO) rats that have no dopamine re-uptake and thus elevated extracellular dopamine levels. It is known that dopamine is involved in various cognitive processes such as learning, memory and attention. This investigation was focused on the ability of DAT-KO rats to learn and perform a behavioral task in the 8-arm radial maze test. It was found that DAT-KO rats are able to learn the behavioral task, but the level of task performance did not reach that of WT group. The behavioral tactics used by animals during training significantly differ in mutants. The behavioral tactics used by DAT-KO rats involved perseverations and resulted in worse task fulfillment in comparison to wild-type controls. The data obtained indicate that deficient dopamine reuptake results in an impairment of working memory and perseverative behavioral tactics in DAT-KO rats.
Collapse
Affiliation(s)
- N P Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - I Y Aristova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russia
| | - A B Volnova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.
| | - R R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia; Saint Petersburg State University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
45
|
Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. Neurotoxicol Teratol 2020; 80:106887. [PMID: 32348866 DOI: 10.1016/j.ntt.2020.106887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders and manifests inattention, hyperactivity, and impulsivity symptoms in childhood that can last throughout life. Genetic and environmental studies implicate the dopamine system in ADHD pathogenesis. Work from our group and that of others indicates that deltamethrin insecticide and stress exposure during neurodevelopment leads to alterations in dopamine function, and we hypothesized that exposure to both of these factors together would lead to synergistic effects on DNA methylation of key genes within the midbrain, a highly dopaminergic region, that could contribute to these findings. Through targeted next-generation sequencing of a panel of cortisol and dopamine pathway genes, we observed hypermethylation of the glucocorticoid receptor gene, Nr3c1, in the midbrain of C57/BL6N males in response to dual deltamethrin and corticosterone exposures during development. This is the first description of DNA methylation studies of Nr3c1 and key dopaminergic genes within the midbrain in response to a pyrethroid insecticide, corticosterone, and these two exposures together. Our results provide possible connections between environmental exposures that impact the dopamine system and the hypothalamic-pituitary-adrenal axis via changes in DNA methylation and provides new information about the presence of epigenetic effects in adulthood after exposure during neurodevelopment.
Collapse
|
46
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Kovalev GI, Salimov RM, Sukhorukova NA, Kondrakhin EA, Vasil’eva EV. Neuroreceptor Profile and Behavior of CD-1 Mice Subpopulations with Different Attention Stability. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Takagi S, Yamashiro Y, Sugihara G, Takahashi H, Matsuura M. Very early-onset of RBD with ADHD: a case report study. Neurocase 2020; 26:60-63. [PMID: 31777313 DOI: 10.1080/13554794.2019.1697823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We experienced a case of very early-onset REM sleep behavior disorder (RBD) with ADHD. This case showed typical RBD symptoms with REM sleep without atonia on polysomnography. Methylphenidate, which enhances the dopamine system, attenuated his ADHD symptoms but not RBD symptoms. We speculate that the dysfunction of the laterodorsal tegmental nucleus in the pontine was responsible for the symptoms of RBD and ADHD in this case. Very early-onset RBD is rare, and its profile is not well known. ADHD with dysfunction in the laterodorsal tegmental nucleus may form asubtype of ADHD that is commonly comorbid with very early-onset RBD.
Collapse
Affiliation(s)
- Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of sleep medicine, Ureshinogaoka Samariyabito Hospital, Okinawa, Japan
| | - Yoshihiro Yamashiro
- Department of sleep medicine, Ureshinogaoka Samariyabito Hospital, Okinawa, Japan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Matsuura
- Department of sleep medicine, Ureshinogaoka Samariyabito Hospital, Okinawa, Japan.,Department of psychiatry, Tazaki Hospital, Okinawa, Japan
| |
Collapse
|
49
|
Prediction of sleep side effects following methylphenidate treatment in ADHD youth. NEUROIMAGE-CLINICAL 2019; 26:102030. [PMID: 31711956 PMCID: PMC7229354 DOI: 10.1016/j.nicl.2019.102030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
Sleep problems after stimulant use in ADHD were predicted using machine learning. Step-wise combination of multi-level features enhanced prediction performance. Fronto-striatal connectivity and DAT1, ADRA2A, SLC6A2 SNPs were key features. An accuracy of 95.5% was achieved by Logistic Ridge Regression in the training data. An accuracy of 86.1% was achieved by J48 in the independent validation analysis.
Objective Sleep problems is the most common side effect of methylphenidate (MPH) treatment in ADHD youth and carry potential to negatively impact long-term self-regulatory functioning. This study aimed to examine whether applying machine learning approaches to pre-treatment demographic, clinical questionnaire, environmental, neuropsychological, genetic, and neuroimaging features can predict sleep side effects following MPH administration. Method The present study included 83 ADHD subjects as a training dataset. The participants were enrolled in an 8-week, open-label trial of MPH. The Barkley Stimulant Side Effects Rating Scale was used to determine the presence/absence of sleep problems at the 2nd week of treatment. Prediction of sleep side effects were performed with step-wise addition of variables measured at baseline: demographics (age, gender, IQ, height/weight) and clinical variables (ADHD Rating Scale-IV (ADHD-RS) and Disruptive Behavior Disorder rating scale) at stage 1, neuropsychological test (continuous performance test (CPT), Stroop color word test) and genetic/environmental variables (dopamine and norepinephrine receptor gene (DAT1, DRD4, ADRA2A, and SLC6A2) polymorphisms, blood lead, and urine cotinine level) at stage 2, and structural connectivities of frontostriatal circuits at stage 3. Three different machine learning algorithms ((Logistic Ridge Regression (LR), support vector machine (SVM), J48) were used for data analysis. Robustness of classifier model was validated in the independent dataset of 36 ADHD subjects. Results Classification accuracy of LR was 95.5% (area under receiver operating characteristic curve (AUC) 0.99), followed by SVM (91.0%, AUC 0.85) and J48 (90.0%, AUC 0.87) at stage 3 for predicting sleep problems. The inattention symptoms of ADHD-RS, CPT response time variability, the DAT1, ADRA2A DraI, and SLC6A2 A-3081T polymorphisms, and the structural connectivities between frontal and striatal brain regions were identified as the most differentiating subset of features. Validation analysis achieved accuracy of 86.1% (AUC 0.92) at stage 3 with J48. Conclusions Our results provide preliminary support to the combination of multimodal classifier, in particular, neuroimaging features, as an informative method that can assist in predicting MPH side effects in ADHD.
Collapse
|
50
|
Pantoni MM, Carmack SA, Hammam L, Anagnostaras SG. Dopamine and norepinephrine transporter inhibition for long-term fear memory enhancement. Behav Brain Res 2019; 378:112266. [PMID: 31580915 DOI: 10.1016/j.bbr.2019.112266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Psychostimulants are highly effective cognitive-enhancing therapeutics yet have a significant potential for abuse and addiction. While psychostimulants likely exert their rewarding and addictive properties through dopamine transporter (DAT) inhibition, the mechanisms of their procognitive effects are less certain. By one prevalent view, psychostimulants exert their procognitive effects exclusively through norepinephrine transporter (NET) inhibition, however increasing evidence suggests that DAT also plays a critical role in their cognitive-enhancing properties, including long-term memory enhancement. The present experiments test the hypothesis that combined strong NET and weak DAT inhibition will mimic the fear memory-enhancing but not the addiction-related effects of psychostimulants in mice. We examined the effects of the high affinity NET inhibitors atomoxetine or nisoxetine and the low affinity DAT inhibitor bupropion, either alone or in combination, on short- and long-term memory of Pavlovian fear conditioning. We also examined the addiction-related effects of combined strong NET and weak DAT inhibition using conditioned place preference and a locomotor activity test. While atomoxetine or nisoxetine alone enhanced short-term fear memory, the addition of bupropion was required to significantly enhance long-term fear memory. Additionally, combined atomoxetine and bupropion did not produce substantial motor stimulation or place preference. These findings suggest that combining strong NET and weak DAT inhibition could lead to the development of a highly effective cognitive enhancer that lacks the potential for addiction.
Collapse
Affiliation(s)
- Madeline M Pantoni
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA.
| | - Stephanie A Carmack
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Leen Hammam
- Division of Biology, University of California San Diego, La Jolla, CA 92093-0109, USA
| | - Stephan G Anagnostaras
- Molecular Cognition Laboratory, Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA; Program in Neurosciences, University of California San Diego, La Jolla, CA 92093-0109, USA
| |
Collapse
|