1
|
Tiddy IC, Cortese D, Munson A, Blewett TA, Killen SS. Impacts of anthropogenic pollutants on social group cohesion and individual sociability in fish: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125017. [PMID: 39341410 DOI: 10.1016/j.envpol.2024.125017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Anthropogenic pollutants are near-ubiquitous in aquatic systems. Aquatic animals such as fishes are subject to physiological stress induced by pollution present in aquatic systems, which can translate to changes in behaviour. Key adaptive behaviours such as shoaling and schooling may be subject to change as a result of physiological or metabolic stress or neurosensory impacts of pollution. This can result in fitness and ecological impacts such as increased predation risk and reduced foraging success. Here, we conducted a systematic metanalysis of the existing literature, comprising 165 studies, on the effects of anthropogenic pollution on sociability and group cohesion in fish species. Both organic (number of studies = 92, posterior mean (PM) = -0.483, p < 0.01) and inorganic (n = 24, PM = -1.453, p < 0.001) chemical pollutants, as well as light exposure (n = 21, PM = -3.038, p < 0.01) were found to reduce sociability. These pollutants did not reduce group cohesion, indicating that effects may be masked in group settings, though fewer studies were carried out on group cohesion and this is a key area for future research. Mixtures of chemical pollutants (n = 16) were found to reduce cohesion (PM = -43.71, p < 0.01), but increase sociability (PM = 44.27, p < 0.01). Evidence was found that fish may behaviourally acclimate to two forms of pollutant, namely mixed chemical pollutants (PM = -0.668, p < 0.01) and noise exposure (n = 22, PM = -4.043, p < 0.01). While aquatic systems are often subject to pollution from multiple sources and of multiple types, very few studies investigated the effects of multiple stressors concurrently. This review identifies trends in the existing literature, and highlights areas where further research is required in order to understand the behavioural and ecological impacts of anthropogenic pollutants in aquatic systems.
Collapse
Affiliation(s)
- Izzy C Tiddy
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Daphne Cortese
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Sete, France
| | - Amelia Munson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2M9
| | - Shaun S Killen
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Simonis C, Zink L, Johnston SE, Bogard M, Pyle GG. Effects of water quality on palladium-induced olfactory toxicity and bioaccumulation in rainbow trout (Oncorhynchus mykiss). INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1407-1419. [PMID: 38329152 DOI: 10.1002/ieam.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Through emission processes, palladium (Pd) particulates from industrial sources are introduced into a range of ecosystems including freshwater environments. Despite this, research on Pd-induced bioaccumulation, uptake, and toxicity is limited for freshwater fishes. Unlike other metals, there are currently no regulations or protective guidelines to limit Pd release into aquatic systems, indicating a global absence of measures addressing its environmental impact. To assess the olfactory toxicity potential of Pd, the present study aimed to explore Pd accumulation in olfactory tissues, olfactory disruption, and oxidative stress in rainbow trout (Oncorhynchus mykiss) following waterborne Pd exposure. Olfactory sensitivity, measured by electro-olfactography, demonstrated that Pd inhibits multiple pathways of the olfactory system following 96 h of Pd exposure. In this study, the concentrations of Pd for inhibition of olfactory function by 20% (2.5 μg/L; IC20) and 50% (19 μg/L; IC50) were established. Rainbow trout were then exposed to IC20 and IC50 Pd concentrations in combination with varying exposure conditions, as changes in water quality alter the toxicity of metals. Independent to Pd, increased water hardness resulted in decreased olfactory perception owing to ion competition at the olfactory epithelium. No other environmental parameter in this study significantly influenced Pd-induced olfactory toxicity. Membrane-associated Pd was measured at the olfactory rosette and gill following exposure; however, this accumulation did not translate to oxidative stress as measured by the production of malondialdehyde. Our data suggest that Pd is toxic to rainbow trout via waterborne contamination near field-measured levels. This study further demonstrated Pd bioavailability and uptake at water-adjacent tissues, adding to our collective understanding of the toxicological profile of Pd. Taken together, our results provide novel insights into the olfactory toxicity in fish following Pd exposure. Integr Environ Assess Manag 2024;20:1407-1419. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Carolyn Simonis
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Sarah E Johnston
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, USA
| | - Matthew Bogard
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
3
|
Arndt A, Emilson EJS, Dew WA. Copper-Induced Chemosensory Impairment is Reversed by a Short Depuration Period in Northern Clearwater Crayfish (Faxonius propinquus). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:45. [PMID: 38429565 DOI: 10.1007/s00128-024-03863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Crayfish rely on their chemosensory system for many essential behaviours including finding food, finding mates, and to recognize individuals. Copper can impair chemosensation in crayfish at low concentrations; however, it is not clear if the effect is ameliorated once copper is removed. To better understand the effect of and recovery from copper exposure in crayfish, we exposed Northern clearwater crayfish (Faxonius propinquus) to 31.3 [Formula: see text] copper for 24 h and measured the response of the crayfish to a food cue. The crayfish were then placed into clean water to depurate for an 24 h. The results demonstrated that the crayfish did not respond to a food cue if they had been exposed to copper, but showed a full response after a 24 h recovery period without copper. Higher concentrations of copper have shown a much longer-term effect in rusty crayfish (Faxonius rustics), indicating there is a concentration where the copper is causing longer-term damage instead of just impairing chemosensation. These results highlight the fact that even though contaminants like copper can have profound effects at low concentrations, by removing the contaminants the effect can be ameliorated.
Collapse
Affiliation(s)
- Andrew Arndt
- Department of Biology, Algoma University, 1520 Queen St E, Sault Ste. Marie, ON, Canada
| | - Erik J S Emilson
- Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
| | - William A Dew
- Department of Biology, Algoma University, 1520 Queen St E, Sault Ste. Marie, ON, Canada.
| |
Collapse
|
4
|
Edwards T, Bouyoucos IA, Hasler CT, Fry M, Anderson WG. Understanding olfactory and behavioural responses to dietary cues in age-1 lake sturgeon Acipenser fulvescens. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111560. [PMID: 38056556 DOI: 10.1016/j.cbpa.2023.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Detection of environmental cues is essential for all vertebrates and is typically established by the olfactory epithelium and olfactory sensory neurons (OSNs). In fishes, microvillous and ciliated OSNs are the principal types, typically detecting amino acids and bile salts, respectively. Activation of OSN receptors by specific ligands initiate downstream signal processing often leading to behavioural responses. In this study we used electrophysiological and behavioural techniques to evaluate olfactory detection and behaviour in juvenile lake sturgeon Acipenser fulvescens in response to hatchery- and natural dietary cues. We hypothesized that electro-olfactogram (EOG) and behavioural responses would be dependent on diet type. We predicted that inhibition of the phospholipase C/inositol 1,4,5-triphosphate (PLC/IP3) secondary transduction pathway would reduce EOG responses to dietary cues and, inhibition of the adenylyl cyclase/adenosine 3,5-cyclic monophosphate (cAMP) pathway, would have no effect. Furthermore, we predicted a strong EOG response would be manifested in a change in behaviour. We observed that both the PLC/IP3 and cAMP pathways were significantly involved in the detection of dietary cues. However, EOG responses did not manifest to behavioural responses, although the foraging activity to the hatchery cue was significantly greater compared to the control. Our results support the notion that lake sturgeon raised in a hatchery and fed a commercial pelleted diet may become accustomed to it prior to release into the wild. Further, this study suggests that, in conservation aquaculture settings, lake sturgeon should be exposed to natural dietary cues prior to release as one strategy to promote food recognition.
Collapse
Affiliation(s)
- Tyler Edwards
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada.
| | - Ian A Bouyoucos
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| | - Caleb T Hasler
- The University of Winnipeg, Department of Biology, 515 Portage Ave Winnipeg, Manitoba R3B 2E9, Canada
| | - Mark Fry
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| | - W Gary Anderson
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Blewett TA, Ackerly KL, Schlenker LS, Martin S, Nielsen KM. Implications of biotic factors for toxicity testing in laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168220. [PMID: 37924878 DOI: 10.1016/j.scitotenv.2023.168220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
There is an emerging call from scientists globally to advance the environmental relevance of laboratory studies, particularly within the field of ecotoxicology. To answer this call, we must carefully examine and elucidate the shortcomings of standardized toxicity testing methods that are used in the derivation of toxicity values and regulatory criteria. As a consequence of rapidly accelerating climate change, the inclusion of abiotic co-stressors are increasingly being incorporated into toxicity studies, with the goal of improving the representativeness of laboratory-derived toxicity values used in ecological risk assessments. However, much less attention has been paid to the influence of biotic factors that may just as meaningfully impact our capacity to evaluate and predict risks within impacted ecosystems. Therefore, the overarching goal is to highlight key biotic factors that should be taken into consideration during the experimental design and model selection phase. SYNOPSIS: Scientists are increasingly finding that lab reared results in toxicology might not be reflective of the external wild environment, we highlight in this review some key considerations when working between the lab and field.
Collapse
Affiliation(s)
- Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Canada.
| | - Kerri Lynn Ackerly
- The University of Texas at Austin, Marine Science Institute, United States of America
| | - Lela S Schlenker
- East Carolina University, Department of Biology, United States of America
| | - Sidney Martin
- University of Alberta, Department of Biological Sciences, Canada
| | - Kristin M Nielsen
- The University of Texas at Austin, Marine Science Institute, United States of America
| |
Collapse
|
6
|
Mebane CA. Bioavailability and Toxicity Models of Copper to Freshwater Life: The State of Regulatory Science. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2529-2563. [PMID: 37818880 DOI: 10.1002/etc.5736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023]
Abstract
Efforts to incorporate bioavailability adjustments into regulatory water quality criteria in the United States have included four major procedures: hardness-based single-linear regression equations, water-effect ratios (WERs), biotic ligand models (BLMs), and multiple-linear regression models (MLRs) that use dissolved organic carbon, hardness, and pH. The performance of each with copper (Cu) is evaluated, emphasizing the relative performance of hardness-based versus MLR-based criteria equations. The WER approach was shown to be inherently highly biased. The hardness-based model is in widest use, and the MLR approach is the US Environmental Protection Agency's (USEPA's) present recommended approach for developing aquatic life criteria for metals. The performance of criteria versions was evaluated with numerous toxicity datasets that were independent of those used to develop the MLR models, including olfactory and behavioral toxicity, and field and ecosystem studies. Within the range of water conditions used to develop the Cu MLR criteria equations, the MLR performed well in terms of predicting toxicity and protecting sensitive species and ecosystems. In soft waters, the MLR outperformed both the BLM and hardness models. In atypical waters with pH <5.5 or >9, neither the MLR nor BLM predictions were reliable, suggesting that site-specific testing would be needed to determine reliable Cu criteria for such settings. The hardness-based criteria performed poorly with all toxicity datasets, showing no or weak ability to predict observed toxicity. In natural waters, MLR and BLM criteria versions were strongly correlated. In contrast, the hardness-criteria version was often out of phase with the MLR and, depending on waterbody and season, could be either strongly overprotective or underprotective. The MLR-based USEPA-style chronic criterion appears to be more generally protective of ecosystems than other models. Environ Toxicol Chem 2023;42:2529-2563. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
7
|
Bettini S, Lazzari M, Milani L, Maurizii MG, Franceschini V. Immunohistochemical Analysis of Olfactory Sensory Neuron Populations in the Developing Olfactory Organ of the Guppy, Poecilia reticulata (Cyprinodontiformes, Poecilidae). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1764-1773. [PMID: 37639707 DOI: 10.1093/micmic/ozad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Olfaction is fundamental for sensing environmental chemicals and has obvious adaptive advantages. In fish, the peripheral olfactory organ is composed of lamellae in which the olfactory mucosa contains three main categories of olfactory sensory neurons (OSNs) as follows: ciliated (cOSNs), microvillous (mOSNs), and crypt cells. We studied the appearance of these different OSNs during development of Poecilia reticulata, given its growing use as animal model system. We performed immunohistochemical detection of molecular markers specific for the different OSNs, carrying out image analyses for marked-cell counting and measuring optical density. The P. reticulata olfactory organ did not show change in size during the first weeks of life. The proliferative activity increased at the onset of secondary sexual characters, remaining high until sexual maturity. Then, it decreased in both sexes, but with a recovery in females, probably in relation to their almost double body growth, compared to males. The density of both cOSNs and mOSNs remained constant throughout development, probably due to conserved functions already active in the fry, independently of the sex. The density of calretinin-positive crypt cells decreased progressively until sexual maturity, whereas the increased density of calretinin-negative crypt cell fraction, prevailing in later developmental stages, indicated their probable involvement in reproductive activities.
Collapse
Affiliation(s)
- Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
8
|
Xu P, Lai S, Wu L, Chen W, Chen Y, Xu D, Xiang J, Cheng P, Chen Z, Wang X, Lou X, Tang J. Insights into the health status of the general population living near an electroplating industry zone: metal elevations and renal impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31905-31915. [PMID: 36459323 DOI: 10.1007/s11356-022-24411-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-β-D-glucosaminidase (NAG), retinol-binding protein (RBP), and β2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Xin'an District, Quzhou, 324003, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Weizhong Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
9
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
10
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:227-242. [PMID: 35177137 DOI: 10.1017/s1431927621013763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Olfactory sensory neurons (OSNs) of fish belong to three main types: ciliated olfactory sensory neurons (cOSNs), microvillous olfactory sensory neurons (mOSNs), and crypt cells. Mercury is a toxic metal harmful for olfaction. We exposed the olfactory epithelium of zebrafish to three sublethal Hg2+ concentrations. Molecular markers specific for the different types of OSNs were immunohistochemically detected. Image analysis of treated sections enabled counting of marked cells and measurement of staining optical density indicative of the response of OSNs to Hg2+ exposure. The three types of OSNs reacted to mercury in a different way. Image analysis revealed that mOSNs are more susceptible to Hg2+ exposure than cOSNs and crypt cell density decreases. Moreover, while the ratio between sensory/nonsensory epithelium areas is unchanged, epithelium thickness drops, and dividing cells increase in the basal layer of the olfactory epithelium. Cell death but also reduction of apical processes and marker expression could account for changes in OSN immunostaining. Also, the differential results between dorsal and ventral halves of the olfactory rosette could derive from different water flows inside the olfactory chamber or different subpopulations in OSNs.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Maria G Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna40126, Italy
| |
Collapse
|
12
|
Ionescu RA, Mitrovic D, Wilkie MP. Disturbances to energy metabolism in juvenile lake sturgeon (Acipenser fulvescens) following exposure to niclosamide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:112969. [PMID: 34922166 DOI: 10.1016/j.ecoenv.2021.112969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Since the 1960s, invasive sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes have been controlled by applying two chemicals, 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide, aka. Bayluscide®), to streams infested with larval sea lamprey. These "lampricide" applications primarily rely on TFM, and are often combined with 1-2% niclosamide, which increases treatment effectiveness. Niclosamide is also used alone to treat lentic habitats and in rivers with high discharge. However, little is known about niclosamide's possible adverse physiological effects on non-target organisms. Of particular concern is the lake sturgeon (Acipenser fulvescens), which is threatened throughout the Great Lakes basin where its habitat often overlaps with larval lamprey. Because niclosamide is believed to impair ATP production by uncoupling oxidative phosphorylation, we determined how it altered metabolic processes and acid-base balance in young-of-the-year (YOY) lake sturgeon exposed to their 9-h LC50 of niclosamide (0.11 mg L-1) for 9 h. Exposure to niclosamide led to decreased brain ATP and glucose reserves, and increased lactate, with no effect on brain glycogen. In contrast, substantial (60%) reductions in glycogen were observed in liver, suggesting that hepatic glycogen reserves were mobilized to meet the brain's glucose requirements when ATP supply was impaired during niclosamide exposure. Disturbances in carcass included reduced phosphocreatine (65-70%), 2- and 4-fold increases in pyruvate and lactate, and a slight metabolic acidosis, characterized by a 0.1 unit decrease in intracellular pH (pHi). Each of these disturbances were corrected within 24 h following depuration in clean (niclosamide-free) water. We conclude that if lake sturgeon survive exposure to niclosamide, they are able to rapidly replenish their energy stores (glycogen, ATP, phosphocreatine) and correct any corresponding metabolic disturbances within 24 h.
Collapse
Affiliation(s)
- R Adrian Ionescu
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Dejana Mitrovic
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada
| | - Michael P Wilkie
- Department of Biology, Wilfrid Laurier University and the Laurier Institute for Water Science, 75 Universtiy Avenue West, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
13
|
Damage to Olfactory Organs of Adult Zebrafish Induced by Diesel Particulate Matter. Int J Mol Sci 2021; 23:ijms23010407. [PMID: 35008830 PMCID: PMC8745429 DOI: 10.3390/ijms23010407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
Particulate matter (PM) is an environmental hazard that is associated with various human health risks. The olfactory system is directly exposed to PM; therefore, the influence of PM exposure on olfactory function must be investigated. In this study, we propose a zebrafish olfactory model to evaluate the effects of exposure to diesel particulate matter (DPM), which was labeled Korean diesel particulate matter (KDP20). KDP20 comprises heavy metals and polycyclic aromatic hydrocarbons (PAHs). KDP20 exposed olfactory organs exhibited reduced cilia and damaged epithelium. Olfactory dysfunction was confirmed using an odor-mediated behavior test. Furthermore, the olfactory damage was analyzed using Alcian blue and anti-calretinin staining. KDP20 exposed olfactory organs exhibited histological damages, such as increased goblet cells, decreased cell density, and calretinin level. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed that PAHs exposure related genes (AHR2 and CYP1A) were upregulated. Reactive oxidation stress (ROS) (CAT) and inflammation (IL-1B) related genes were upregulated. Furthermore, olfactory sensory neuron (OSN) related genes (OMP and S100) were downregulated. In conclusion, KDP20 exposure induced dysfunction of the olfactory system. Additionally, the zebrafish olfactory system exhibited a regenerative capacity with recovery conditions. Thus, this model may be used in future investigating PM-related diseases.
Collapse
|
14
|
Fischer AJ, Dew WA. Behavioural responses of fathead minnows to carbohydrates found in aquatic environments. JOURNAL OF FISH BIOLOGY 2021; 99:2040-2043. [PMID: 34431092 DOI: 10.1111/jfb.14888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates make up a significant portion of dissolved organic carbon in waterways. Apart from studies demonstrating that chondroitin causes avoidance behaviours in some fish species, no work has been done to determine how fish respond to carbohydrates commonly found in their environment. In this study fathead minnows (Pimephales promelas) were attracted to N-acetyl-d-glucosamine, avoided d-arabinose and had no response to either d-xylose or d-glucose using a behavioural assay. This study provides further evidence that carbohydrates may be important chemosensory cues for fish.
Collapse
Affiliation(s)
- Abraham J Fischer
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - William A Dew
- Department of Biology, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
15
|
Volz SN, Hausen J, Nachev M, Ottermanns R, Schiwy S, Hollert H. Short exposure to cadmium disrupts the olfactory system of zebrafish (Danio rerio) - Relating altered gene expression in the olfactory organ to behavioral deficits. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105555. [PMID: 32645607 DOI: 10.1016/j.aquatox.2020.105555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Fish strongly rely on olfaction as a variety of essential behaviors such as foraging and predator avoidance are mediated by the olfactory system. Cadmium (Cd) is known to impair olfaction and accumulate in the olfactory epithelium (OE) and bulb (OB) of fishes. In the present study, the acute toxicity of Cd on olfaction in zebrafish (Danio rerio) was characterized on the molecular and behavioral level. To this end, quantitative real-time PCR was performed in order to analyze the expression of selected genes in both the OE and OB. Moreover, the response of zebrafish to an alarm cue was investigated. Following 24 h of exposure to Cd, the expression of genes associated with olfactory sensory neurons was reduced in the OE. Furthermore, the antioxidant genes peroxiredoxin 1 (prdx1) and heme oxygenase 1 (hmox1), as well as the metallothionein 2 gene (mt2) were upregulated in the OE, whereas hmox1 and the stress-inducible heat shock protein 70 gene (hsp70) were upregulated in the OB upon exposure to Cd. Following stimulation with a conspecific skin extract, zebrafish displayed a considerable disruption of the antipredator behavior with increasing Cd concentration. Taken together, Cd impaired olfaction in zebrafish, thereby disrupting the antipredator response, which is crucial for the survival of individuals. Cellular stress followed by disruption of olfactory sensory neurons may have contributed to the observed behavioral deficits.
Collapse
Affiliation(s)
- Sina N Volz
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Jonas Hausen
- Core Unit for Bioinformatics Data Analysis, University of Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.
| | - Richard Ottermanns
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Sabrina Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
16
|
Olsén KH, Olsén HL. Exposure to carbamate fungicide iodocarb does not affect reproductive behavior or milt volumes in precocious male brown trout (Salmo trutta L.) parr. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1451-1460. [PMID: 32296996 PMCID: PMC7347672 DOI: 10.1007/s10695-020-00803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Previous studies with olfactory-disturbing pesticides resulted after exposure in disturbed behavior and physiology in fish. In the present experiment, reproductive behavior and milt volumes of precocious brown trout (Salmo trutta L.) male parr were studied in a large stream aquarium after exposure to the olfactory-disturbing fungicide 15 μg l-1 IPBC (iodocarb; 3-iodo-2-propynyl butyl carbamate) for 96 h. The statistical analyses did not reveal any significant differences for time attending females between controls and IPBC-exposed males. Furthermore, there were no significant differences in milt volumes. However, when taking all fish into consideration, there were significant differences in milt volumes between parr that had been attending females and those had not been attending females. Controls that had attended females had significantly higher milt volumes than controls or IPBC-exposed males that had not attended females. Taking all control and IPBC parr into consideration, there was a statistically significant positive correlation between time attended females and volume of milt and gonadosomatic index (GSI), respectively. In summary, 15 μg l-1 IPBC did not have any significant effects on mature male parr reproductive behavior and milt volumes.
Collapse
Affiliation(s)
- K Håkan Olsén
- School of Natural Science, Technology and Environmental Studies, Södertörn University, SE-141 89, Huddinge, Sweden.
| | - Hanna L Olsén
- School of Natural Science, Technology and Environmental Studies, Södertörn University, SE-141 89, Huddinge, Sweden
| |
Collapse
|
17
|
Karjalainen J, Arola HE, Wallin J, Väisänen A, Karjalainen AK. Condition and Sperm Characteristics of Perch Perca fluviatilis inhabiting Boreal Lakes Receiving Metal Mining Effluents. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:270-281. [PMID: 32696228 PMCID: PMC7382660 DOI: 10.1007/s00244-020-00752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
One of the world's largest, but low-grade, sulfide nickel deposits in northeastern Finland has been exploited by a bioheapleaching technology since 2008. Bioheapleaching is a relatively new, cost-effective technology, but humid climate, e.g., in boreal temperate environments, causes challenges to the management of the water balance in the ore heaps with wide catchment area, and the mining effluents have caused substantial metal and salting contamination of the receiving waterbodies. In our study, the impacts of metal-extracting bioheapleaching mine effluents on muscle and liver element concentrations, body condition, liver and testes mass, and sperm count and motility of male perch Perca fluviatilis were analysed. Liver, testes, and carcass mass of perch in relation to their length were lower in the mining-impacted lakes than in the reference lake, which may be due to the metal contamination, food availability, and energy demand under multistressor conditions. The sperm counts of the males in the mining-impacted lakes were lower, but the endurance of their sperm motility was longer than the endurance of sperm of the reference males. These findings suggested that the condition and sperm characteristics of perch were altered in lakes receiving metal mining effluents. Measured variables seem to be useful indicators for metal mining impacts on freshwater fish but only if high natural variation in these characteristics can be controlled by multiyear monitoring scheme.
Collapse
Affiliation(s)
- Juha Karjalainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Hanna E Arola
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Jaana Wallin
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Ari Väisänen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Anna K Karjalainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
18
|
Heerema J, Bogart S, Helbing C, Pyle G. Olfactory epithelium ontogenesis and function in postembryonic North American Bullfrog (Rana (Lithobates) catesbeiana) tadpoles. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During metamorphosis, the olfactory system remodelling in anuran tadpoles — to transition from detecting waterborne odorants to volatile odorants as frogs — is extensive. How the olfactory system transitions from the larval to frog form is poorly understood, particularly in species that become (semi-)terrestrial. We investigated the ontogeny and function of the olfactory epithelium of North American Bullfrog (Rana (Lithobates) catesbeiana Shaw, 1802) tadpoles at various stages of postembryonic development. Changes in sensory components observable at the epithelial surface were examined by scanning electron microscopy. Functionality of the developing epithelium was tested using a neurophysiological technique (electro-olfactography (EOG)), and behaviourally, using a choice maze to assess tadpole response to olfactory stimuli (algae extract, amino acids). The youngest (premetamorphic) tadpoles responded behaviourally to an amino acid mixture despite having underdeveloped olfactory structures (cilia, olfactory knobs) and no EOG response. The consistent appearance of olfactory structures in older (prometamorphic) tadpoles coincided with reliably obtaining EOG responses to olfactory stimuli. However, as tadpoles aged further, and despite indistinguishable differences in sensory components, behavioural- and EOG-based olfactory responses were drastically reduced, most strongly near metamorphic climax. This work demonstrates a more complex relationship between structure and function of the olfactory system during tadpole life history than originally thought.
Collapse
Affiliation(s)
- J.L. Heerema
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - S.J. Bogart
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - C.C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 1700, Station CSC, Victoria, BC V8W 2Y2, Canada
| | - G.G. Pyle
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
19
|
Puglis HJ, Farag AM, Mebane CA. Copper Concentrations in the Upper Columbia River as a Limiting Factor in White Sturgeon Recruitment and Recovery. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:378-391. [PMID: 31912635 DOI: 10.1002/ieam.4240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Currently there is little natural recruitment of white sturgeon (Acipenser transmontanus) in the Upper Columbia River located in British Columbia, Canada and Washington, USA. This review of life history, physiology, and behavior of white sturgeon, along with data from recent toxicological studies, suggest that trace metals, especially Cu, affect survival and behavior of early life stage fish. Sturgeon free embryos, first feeding embryos, and mixed feeding embryos utilize interstitial spaces between gravel. Although concentrations of Cu in the water column of the Upper Columbia River are typically less than US water quality criteria defined to protect aquatic life, samples at the sediment-water interface were as large as 24 µg/L and exceed the criteria. Toxicological studies reviewed here demonstrate mortality, loss of equilibrium, and immobility at Cu concentrations of 1.5 to <16 µg/L and reduced swimming activity was documented at 0.88 to 7 μg/L. Contaminated invertebrates and slag particles provide other routes of exposure. These additional routes of exposure can cause indirect effects from starvation due to potential lack of prey items and ingestion of contaminated prey or slag particles. The lack of food in stomachs during these critical early life stages may coincide with a threshold "point of no return" at which sturgeon will be unable to survive even if food becomes available following that early time frame. These findings become especially important as work progresses to enhance white sturgeon recruitment in the Upper Columbia River. To date, decisions against including trace metals as a factor in sturgeon recovery have focused on surface-water concentrations and measurements of lethality (LC50) to establish threshold concentrations for sturgeon sensitivity. However, information provided here suggests that measurements from the sediment-water interface and effect concentrations (EC50) be considered with white sturgeon life history characteristics. These data support minimizing Cu exposure risk to enhance a successful white sturgeon recovery effort. Integr Environ Assess Manag 2020;16:378-391. Published 2020. This article is a US Government work and is in the public domain inthe USA.
Collapse
Affiliation(s)
- Holly J Puglis
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri
| | - Aïda M Farag
- US Geological Survey, CERC, Jackson Field Research Station, Jackson, Wyoming
| | | |
Collapse
|
20
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
Volz SN, Hausen J, Smith K, Ottermanns R, Schaeffer A, Schiwy S, Hollert H. Do you smell the danger? Effects of three commonly used pesticides on the olfactory-mediated antipredator response of zebrafish (Danio rerio). CHEMOSPHERE 2020; 241:124963. [PMID: 31604193 DOI: 10.1016/j.chemosphere.2019.124963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Fish are warned about the presence of predators via an alarm cue released from the skin of injured conspecifics. The detection of this odor inherently initiates an antipredator response, which increases the chance of survival for the individual. In the present study, we assessed the effect of three commonly used pesticides on the antipredator response of zebrafish (Danio rerio). For this, we analyzed the behavioral response of zebrafish to a conspecific skin extract following 24 h of exposure to the respective contaminants. Results demonstrate that fish exposed to 20 μg/L of the organophosphate insecticide chlorpyrifos significantly reduced bottom-dwelling and freezing behavior, suggesting an impairment of the antipredator response. For the urea-herbicide linuron and the pyrethroid insecticide permethrin, no statistically significant effects could be detected. However, linuron-exposed fish appeared to respond in an altered manner to the skin extract; some individuals failed to perform the inherent behaviors such as erratic movements and instead merely increased their velocity. Furthermore, we determined whether zebrafish would avoid the pesticides in a choice maze. While fish avoided permethrin, they behaved indifferently to chlorpyrifos and linuron. The study demonstrates that pesticides may alter the olfactory-mediated antipredator response of zebrafish in distinct ways, revealing that particularly fish exposed to chlorpyrifos may be more prone to predation.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Jonas Hausen
- Core Unit for Bioinformatics Data Analysis, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kilian Smith
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Richard Ottermanns
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Andreas Schaeffer
- Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Sabrina Schiwy
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Ågerstrand M, Arnold K, Balshine S, Brodin T, Brooks BW, Maack G, McCallum ES, Pyle G, Saaristo M, Ford AT. Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:49-65. [PMID: 31898699 DOI: 10.1039/c9em00463g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interest in behavioural ecotoxicology is growing, partly due to technological and computational advances in recording behaviours but also because of improvements of detection capacity facilitating reporting effects at environmentally relevant concentrations. The peer-reviewed literature now contains studies investigating the effects of chemicals, including pesticides and pharmaceuticals, on migration, dispersal, aggression, sociability, reproduction, feeding and anti-predator behaviours in vertebrates and invertebrates. To understand how behavioural studies could be used in regulatory decision-making we: (1) assessed the legal obstacles to using behavioural endpoints in EU chemicals regulation; (2) analysed the known cases of use of behavioural endpoints in EU chemicals regulation; and (3) provided examples of behavioural endpoints of relevance for population level effects. We conclude that the only legal obstacle to the use of behavioural endpoints in EU chemicals regulation is whether an endpoint is considered to be relevant at the population level or not. We also conclude that ecotoxicity studies investigating behavioural endpoints are occasionally used in the EU chemicals regulation, and underscore that behavioural endpoints can be relevant at the population level. To improve the current use of behavioural studies in regulatory decision-making contribution from all relevant stakeholders is required. We have the following recommendations: (1) researchers should conduct robust, well-designed and transparent studies that emphasize the relevance of the study for regulation of chemicals; (2) editors and scientific journals should promote detailed, reliable and clearly reported studies; (3) regulatory agencies and the chemical industry need to embrace new behavioural endpoints of relevance at the population level.
Collapse
Affiliation(s)
- Marlene Ågerstrand
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden.
| | - Kathryn Arnold
- Department of Environment and Geography, University of York, York, UK
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Canada
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Baylor University, Waco, TX, USA and School of Environment, Jinan University, Guangzhou, China
| | - Gerd Maack
- Department of Pharmaceuticals, German Environment Agency (UBA), Dessau, Germany
| | - Erin S McCallum
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Greg Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
23
|
Pilehvar A, Town RM, Blust R. The interactive effect of copper(II) and conspecific alarm substances on behavioural responses of zebrafish (Danio rerio). Behav Brain Res 2019; 381:112452. [PMID: 31881231 DOI: 10.1016/j.bbr.2019.112452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Environmental contaminants such as metal ions can have detrimental effects on aquatic organisms at the molecular, organismal and population levels. In the present work, we examined the interactive effect of Cu(II) and conspecific alarm substance on zebrafish behavioural responses utilizing the novel tank diving assay. To this end, 3 novel tank diving tests (on day 0, 3 and 10 of the experimental phase) were conducted on zebrafish in 4 experimental groups: (1) control: no Cu(II) and no alarm substance, (2) Cu(II) only: exposed to 0.78 μM Cu(II) (25 % of the 240 h LC50) in the home tank for 10 days, (3) alarm substance only: exposed to alarm substance for 6 min concomitant with behavioural testing, and (4) Cu(II) + alarm substance: exposed to 0.78 μM Cu(II) in the home tank for 10 days and treated with alarm substance for 6 min during the behavioural testing. Results showed robust habituation response of zebrafish. Exposure to Cu(II) did not affect the behavioural phenotypes of zebrafish in the novel tank diving test or habituation responses. Alarm substance treatment evoked strong anxiety-like behaviour. Finally, zebrafish in the Cu(II) + alarm substance group lost their sensitivity to alarm substance in repeated novel tank assays throughout the concomitant Cu(II) exposure; this observation is tentatively ascribed to Cu(II)-induced olfactory impairment.
Collapse
Affiliation(s)
- Ali Pilehvar
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Raewyn M Town
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Ronny Blust
- Laboratory of Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
24
|
Schlenker LS, Welch MJ, Meredith TL, Mager EM, Lari E, Babcock EA, Pyle GG, Munday PL, Grosell M. Damsels in Distress: Oil Exposure Modifies Behavior and Olfaction in Bicolor Damselfish ( Stegastes partitus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10993-11001. [PMID: 31449401 DOI: 10.1021/acs.est.9b03915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the Deepwater Horizon disaster, exposing marine organisms to this environmental contaminant. We examined the ability of bicolor damselfish (Stegastes partitus), exposed to the water accommodated fraction (WAF) of crude oil, to respond to chemical alarm cue (CAC) using a two-channel flume. Control bicolor damselfish avoided CAC in the flume choice test, whereas WAF-exposed conspecifics did not. This lack of avoidance persisted following 8 days of control water conditions. We then examined the physiological response to CAC, brine shrimp rinse, bile salt, and amino acid cues using the electro-olfactogram (EOG) technique and found that WAF-exposed bicolor damselfish were less likely to detect CAC as an olfactory cue but showed no difference in EOG amplitude or duration compared to controls. These data indicate that a sublethal WAF exposure directly modifies detection and avoidance of CAC beyond the exposure period and may suggest reduced predator avoidance behavior in oil-exposed fish in the wild.
Collapse
Affiliation(s)
- Lela S Schlenker
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| | - Megan J Welch
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville , QLD , Australia 4811
| | - Tricia L Meredith
- Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Edward M Mager
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
- Department of Biological Sciences and Advanced Environmental Research Institute , University of North Texas , 1511 W. Sycamore Street , Denton , Texas 76203 , United States
| | - Ebrahim Lari
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Elizabeth A Babcock
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| | - Greg G Pyle
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville , QLD , Australia 4811
| | - Martin Grosell
- Department of Marine Biology and Ecology , University of Miami, Rosenstiel School of Marine and Atmospheric Sciences , 4600 Rickenbacker Causeway Miami , Florida 33149 , United States
| |
Collapse
|
25
|
Barkhymer AJ, Garrett SG, Wisenden BD. Olfactorily-mediated cortisol response to chemical alarm cues in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 95:287-292. [PMID: 30387143 DOI: 10.1111/jfb.13860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Chemical cues released as a by-product of predation mediate antipredator behaviour, but little is known about the physiological responses to olfactory detection of predation risk. In this study, zebrafish Danio rerio were exposed to either chemical alarm cues from conspecifics, or water (control). Compared with water controls, D. rerio exposed to alarm cues responded behaviourally with antipredator behaviours such as erratic dashing and an increase in time spent near the bottom of the test aquarium. Danio rerio were sacrificed 5 min after exposure to test cues (alarm cues or water). Enzyme-linked immunosorbent assay (ELISA) revealed whole-body levels of cortisol that were significantly higher for fish exposed to alarm cues (mean ± SE, 11.9 ± 3.4 ng g-1 ) than control fish (1.5 ± 0.7 ng g-1 ). These data provide a benchmark for future studies of the proximate mechanisms of olfactorily mediated antipredator responses, modelling effects on aquatic life in a changing climate and, as a model organism, Danio rerio can further our understanding of anxiety in humans.
Collapse
Affiliation(s)
- Alison J Barkhymer
- Biosciences Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
- Chemistry and Biochemistry Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| | - Shawn G Garrett
- Chemistry and Biochemistry Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| | - Brian D Wisenden
- Biosciences Department, Minnesota State University Moorhead, Moorhead, Minnesota, USA
| |
Collapse
|
26
|
Lari E, Steinkey D, Razmara P, Mohaddes E, Pyle GG. Oil sands process-affected water impairs the olfactory system of rainbow trout (Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:62-67. [PMID: 30529621 DOI: 10.1016/j.ecoenv.2018.11.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Oil sands process-affected water (OSPW), a byproduct of the extraction of bitumen in the surface mining of oil sands, is currently stored in massive on-site tailings ponds. Determining the potential effects of OSPW on aquatic ecosystems is of main concern to oil sands companies and legislators concerned about the reclamation of mining sites. In the present study, the interaction of OSPW with the chemosensory system of rainbow trout was studied. Using an electro-olfactography (EOG) technique, a 24 h inhibition curve was established and concentrations that inhibit the olfactory system by 20% and 80% (IC20 and IC80) were estimated at 3% and 22% OSPW, respectively. To study the interaction of exposure time and concentration along with the mechanism of the toxic effects, rainbow trout were exposed to 3% and 22% OSPW for 2, 24, and 96 h. An EOG investigation of olfactory sensitivity demonstrated a positive interaction between exposure time and concentration of OSPW concentration, because an increase in either or both elevated the inhibitory effect. To investigate whether or not structural damage of the olfactory epithelium could account for the observed inhibitory effects of OSPW on fish olfaction, the ultrastructure of the olfactory epithelium of exposed fish was investigated using scanning electron microscopy (SEM) and light microscopy (LM). The SEM micrographs showed no changes in the structure of the olfactory epithelium. The light micrographs revealed an increase in the number of mucous cells in 22% OSPW. The results of the present study demonstrated that exposure to OSPW impairs the olfactory system of rainbow trout and its effects increase gradually with increasing exposure time. The present study demonstrated that structural epithelial damage did not contribute to the inhibitory effects of OSPW on the olfactory system.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada.
| | - Dylan Steinkey
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Effat Mohaddes
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
27
|
Calvo-Ochoa E, Byrd-Jacobs CA. The Olfactory System of Zebrafish as a Model for the Study of Neurotoxicity and Injury: Implications for Neuroplasticity and Disease. Int J Mol Sci 2019; 20:ijms20071639. [PMID: 30986990 PMCID: PMC6480214 DOI: 10.3390/ijms20071639] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
The olfactory system, composed of the olfactory organs and the olfactory bulb, allows organisms to interact with their environment and through the detection of odor signals. Olfaction mediates behaviors pivotal for survival, such as feeding, mating, social behavior, and danger assessment. The olfactory organs are directly exposed to the milieu, and thus are particularly vulnerable to damage by environmental pollutants and toxicants, such as heavy metals, pesticides, and surfactants, among others. Given the widespread occurrence of olfactory toxicants, there is a pressing need to understand the effects of these harmful compounds on olfactory function. Zebrafish (Danio rerio) is a valuable model for studying human physiology, disease, and toxicity. Additionally, the anatomical components of the zebrafish olfactory system are similar to those of other vertebrates, and they present a remarkable degree of regeneration and neuroplasticity, making it an ideal model for the study of regeneration, reorganization and repair mechanisms following olfactory toxicant exposure. In this review, we focus on (1) the anatomical, morphological, and functional organization of the olfactory system of zebrafish; (2) the adverse effects of olfactory toxicants and injury to the olfactory organ; and (3) remodeling and repair neuroplasticity mechanisms following injury and degeneration by olfactory toxicant exposure.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| | - Christine A Byrd-Jacobs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA.
| |
Collapse
|
28
|
Jones J, Wellband K, Zielinski B, Heath DD. Transcriptional Basis of Copper-Induced Olfactory Impairment in the Sea Lamprey, a Primitive Invasive Fish. G3 (BETHESDA, MD.) 2019; 9:933-941. [PMID: 30670609 PMCID: PMC6404594 DOI: 10.1534/g3.118.200920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/19/2019] [Indexed: 11/18/2022]
Abstract
Olfaction mediates behaviors necessary for survival and reproduction in fishes. Anthropogenic inputs of contaminants into aquatic environments, specifically copper, are known to disrupt a broad range of olfactory-mediated behaviors and can cause long-lasting damage even at low concentrations that have profound impacts on the biology of aquatic organisms. The sea lamprey (Petromyzon marinus) is a primitive fish species invasive to the North American Great Lakes that relies on olfaction to navigate during natal homing and in mate choice during reproduction. To investigate effects of copper on sea lamprey olfaction and the potential for maintenance of olfactory function during copper exposure, we exposed juvenile sea lamprey to environmentally ecologically relevant copper concentrations (0, 5, 10 and 30 µg/L) for 24 hr and characterized gene transcription response in olfactory tissue (i.e., peripheral olfactory organ and olfactory bulb) and forebrain using whole transcriptome sequencing. Copper exposure induced a pattern of positive dose-dependent transcriptional response. Expression changes primarily reflected up-regulation of genes involved in apoptosis and wound healing. Unlike higher vertebrates, genes specifically related to the olfactory senses of the sea lamprey, e.g., olfactory receptors, exhibited little transcriptional response to copper exposure, suggesting the mechanism of copper-induced olfactory impairment is through necrosis of the olfactory bulb and not copper-selective inhibition of olfactory receptors. Fully two-thirds of the differentially expressed genes at higher doses of copper have no known function and thus represent important candidates for further study of the responses to copper-induced olfactory injury. Our results shed light on the evolution of vertebrate olfactory repair mechanisms and have important implications for the conservation and management of both invasive and native populations of lamprey.
Collapse
Affiliation(s)
- Jenna Jones
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Kyle Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Barbara Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| | - Daniel D Heath
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada N9B 3P4
| |
Collapse
|
29
|
Lari E, Razmara P, Bogart SJ, Azizishirazi A, Pyle GG. An epithelium is not just an epithelium: Effects of Na, Cl, and pH on olfaction and/or copper-induced olfactory deficits. CHEMOSPHERE 2019; 216:117-123. [PMID: 30366265 DOI: 10.1016/j.chemosphere.2018.10.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
While the toxic effects of several substances on fish olfaction are well known, studies on how water chemistry affects contaminant-induced olfactory toxicity are rare. In the present study, the effect of water pH or Na concentration on fish olfactory response and Cu-induced olfactory toxicity was investigated. Also, the effects of two sodium salts, NaCl and NaNO3, on olfaction were studied. Juvenile rainbow trout were exposed to 6 and 32 μg/L Cu, each under five different conditions (pH 9, pH 6.5, 20 or 40 mg/L sodium added, or culture water), for 10 days before characterizing fish olfactory response using electro-olfactography (EOG). The results demonstrated that reducing the pH to 6.5 or adding 20 or 40 mg/L Na impairs the fish response to a standard olfactory cue. None of the water treatments were protective against, or synergic with, the toxic effect of Cu on the olfactory system. Of the two Na salts, NaCl caused significantly higher impairment than NaNO3. The results of the present study demonstrate that water quality modifies contaminant-induced olfactory toxicity, but differently than what is known for other tissues (i.e. gill).
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Parastoo Razmara
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J Bogart
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Ali Azizishirazi
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; British Columbia Ministry of Environment and Climate Change Strategy, 525 Superior Street, Victoria, BC V8V 1T7, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Weiss LC. Sensory Ecology of Predator-Induced Phenotypic Plasticity. Front Behav Neurosci 2019; 12:330. [PMID: 30713490 PMCID: PMC6345714 DOI: 10.3389/fnbeh.2018.00330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Ecological communities are organized in trophic levels that share manifold interactions forming complex food webs. Infochemicals can further modify these interactions, e.g., by inducing defenses in prey. The micro-crustacean Daphnia is able to respond to predator-specific chemical cues indicating an increased predation risk. Daphnia shows plastic responses by adapting its morphology, behavior, and physiology, increasing organism, and population fitness. This stabilizes community structures. This review will describe the progress that has been made in understanding the high degree of plasticity observed in the model crustacean Daphnia. I summarize current knowledge on the processes of predator detection, ranging from the nature of biologically active chemical cues to the underlying neurophysiological mechanisms. With this, I aim to provide a comprehensive overview on the molecular mechanisms of ad hoc environmental phenotypic adaptation. In times of climate change and pollution understanding information transfer in aquatic systems is valuable as it will allow us to predict whether and how community structures are being affected.
Collapse
Affiliation(s)
- Linda C. Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Differential nickel-induced responses of olfactory sensory neuron populations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:14-23. [PMID: 30415017 DOI: 10.1016/j.aquatox.2018.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
The olfactory epithelium of fish includes three main types of olfactory sensory neurons (OSNs). Whereas ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs) are common to all vertebrates, a third, smaller group, the crypt cells, is exclusive for fish. Dissolved pollutants reach OSNs, thus resulting in impairment of the olfactory function with possible neurobehavioral damages, and nickel represents a diffuse olfactory toxicant. We studied the effects of three sublethal Ni2+ concentrations on the different OSN populations of zebrafish that is a widely used biological model. We applied image analysis with cell count and quantification of histochemically-detected markers of the different types of OSNs. The present study shows clear evidence of a differential responses of OSN populations to treatments. Densitometric values for Gα olf, a marker of cOSNs, decreased compared to control and showed a concentration-dependent effect in the ventral half of the olfactory rosette. The densitometric analysis of TRPC2, a marker of mOSNs, revealed a statistically significant reduction compared to control, smaller than the decrease for Gα olf and without concentration-dependent effects. After exposure, olfactory epithelium stained with anti-calretinin, a marker of c- and mOSNs, revealed a decrease in thickness while the sensory area appeared unchanged. The thickness reduction together with increased densitometric values for HuC/D, a marker of mature and immature neurons, suggests that the decrements in Gα olf and TRPC2 immunostaining may depend on cell death. However, reductions in the number of apical processes and of antigen expression could be a further explanation. We hypothesize that cOSNs are more sensitive than mOSNs to Ni2+ exposure. Difference between subpopulations of OSNs or differences in water flux throughout the olfactory cavity could account for the greater susceptibility of the OSNs located in the ventral half of the olfactory rosette. Cell count of anti-TrkA immunopositive cells reveals that Ni2+ exposure does not affect crypt cells. The results of this immunohistochemical study are not in line with those obtained by electro-olfactogram.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
32
|
Araújo CVM, Roque D, Blasco J, Ribeiro R, Moreira-Santos M, Toribio A, Aguirre E, Barro S. Stress-driven emigration in complex field scenarios of habitat disturbance: The heterogeneous multi-habitat assay system (HeMHAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:31-36. [PMID: 29980082 DOI: 10.1016/j.scitotenv.2018.06.336] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Lines of evidence used in ecological risk assessment (ERA) are essentially three: chemistry, biology and ecotoxicology. Until now, the fundamental assumption made when measuring ecological risks is that organisms are forcedly exposed to stressors. However, when organisms can avoid disturbed habitats by escaping to less stressful areas, the assumption that exposure is mandatory to pose risk may not match field disturbance scenarios. A non-forced exposure approach using a linear free-choice multi-compartmented system has been proposed previously as a complementary tool to assess the effects on organisms' spatial avoidance/preference responses. Yet, the linearity of the latter system limits avoidance measurements to one spatial dimension. A novel, heterogeneous multi-habitat assay system (HeMHAS) consisting of 18 connected circular compartments (3 compartments on a vertical axis in each one of 6 zones on a longitudinal axis; a 2D system) is put forward here to be used in heterogeneous-habitat selection studies, as it makes it possible to assess the ability of organisms to detect contamination and other stressors and select more favorable habitats. In the present study, the avoidance to copper by zebrafish (Danio rerio) was tested after exposing organisms to a copper gradient in the HeMHAS and compared with that in the linear system. Avoidance occurred for all copper concentrations: 43% in the lowest (21 μg·L-1) to 72% in the highest (221 μg·L-1). Results obtained within the HeMHAS (AC50: 60 μg·L-1) were statistically (p = 0.72) similar to avoidance of copper by D. rerio in the linear non-forced system (AC50: 89 μg·L-1). In summary, the simulation of a copper gradient in the HeMHAS (2D system) allowed to assess the potential repellency of copper to zebrafish and to corroborate the ability of organisms to detect and avoid potentially toxic concentrations.
Collapse
Affiliation(s)
- Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain; Center for Functional Ecology (CEF), University of Coimbra, Portugal.
| | - David Roque
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), 11510 Puerto Real, Cádiz, Spain
| | - Rui Ribeiro
- Center for Functional Ecology (CEF), University of Coimbra, Portugal
| | | | - Asier Toribio
- Aquatic BioTechnology, El Puerto de Santa María, Spain
| | | | - Sergio Barro
- Aquatic BioTechnology, El Puerto de Santa María, Spain
| |
Collapse
|
33
|
Ma EY, Heffern K, Cheresh J, Gallagher EP. Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish. Neurotoxicology 2018; 69:141-151. [PMID: 30292653 DOI: 10.1016/j.neuro.2018.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Fish rely heavily on their sense of smell to maintain behaviors essential for survival, such as predator detection and avoidance, prey selection, social behavior, imprinting, and homing to natal streams and spawning sites. Due to its direct contact with the outside environment, the peripheral olfactory system of fish is particularly susceptible to dissolved contaminants. In particular, environmental exposures to copper (Cu) can cause a rapid loss of olfactory function. In this study, confocal imaging of double-transgenic zebrafish larvae with differentially labeled ciliated and microvillous olfactory sensory neurons (OSNs) were used to examine cell death and regeneration following Cu exposure. Changes in cell morphologies were observed at varying degrees within both ciliated and microvillous OSNs, including the presence of round dense cell bodies, cell loss and fragmentation, retraction or loss of axons, disorganized cell arrangements, and loss of cells and fluorescence signal intensity, which are all indicators of cell death after Cu exposure. A marked loss of ciliated OSNs relative to microvillous OSNs occurred after exposure to low Cu concentrations for 3 h, with some regeneration observed after 72 h. At higher Cu concentrations and 24-h exposures, ciliated and microvillous OSNs were damaged with increased severity of injury with longer Cu exposures. Interestingly, microvillous, but not ciliated OSNs, regenerated rapidly within the 72-h time period of recovery after death from Cu exposure, suggesting that microvillous OSNs may be replaced in lieu of ciliated OSNs. An increase in bromodeoxyuridine labeling was observed 24 h after Cu-induced OSN death, suggesting that increased proliferation of the olfactory stem cells replaced the damaged OSNs. Olfactory behavioral analyses supported our imaging studies and revealed both initial loss and restoration of olfactory function after Cu exposures. In summary, our studies indicate that following zebrafish OSN damage by Cu, regeneration of microvillous OSNs may occur exceeding ciliated OSNs, likely via increased proliferation of the cellular reservoir of neuronal OSC precursors. Transgenic zebrafish are a valuable tool to study metal olfactory injury and recovery and to characterize sensitive olfactory neuron populations in fish exposed to environmental pollutants.
Collapse
Affiliation(s)
- Eva Y Ma
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Kevin Heffern
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Julia Cheresh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| |
Collapse
|
34
|
Klemish JL, Bogart SJ, Luek A, Lannoo MJ, Pyle GG. Nickel toxicity in wood frog tadpoles: Bioaccumulation and sublethal effects on body condition, food consumption, activity, and chemosensory function. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2458-2466. [PMID: 29920776 DOI: 10.1002/etc.4210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/26/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Nickel (Ni) concentrations in aquatic ecosystems can be amplified by anthropogenic activities including resource extraction. Compared with fish and invertebrates, knowledge of Ni toxicity in amphibians is limited, especially for northern species. We examined the effect of Ni on wood frog (Lithobates sylvaticus) tadpoles, the species with the widest and most northern distribution of any anuran in North America. Wood frog tadpoles were exposed to a Ni concentration gradient (0.02-5.5 mg/L of Ni at 164 mg/L as CaCO3 water hardness) for 8 d and examined for lethality, Ni bioaccumulation, and several sublethal endpoints including body condition, food consumption, activity, and chemosensory function. Nickel induced a sublethal effect on body condition (8-d 10 and 20% effect concentrations [EC10 and EC20] of 1.07 ± 0.38 and 2.44 ± 0.51 mg/L of Ni ± standard error [SE], respectively) but not on food consumption, activity, or chemosensory function. Nickel accumulation in tadpole tissues was positively related to an increase in aqueous Ni concentration but was not lethal. Both the acute and chronic US Environmental Protection Agency water quality guideline concentrations for Ni (0.71 and 0.08 mg/L at 164 mg/L as CaCO3 water hardness, respectively) were protective against lethal and sublethal effects in wood frog tadpoles. In the present study, wood frog tadpoles were protected by current water quality guidelines for Ni and are likely not as useful as other taxa for environmental effects monitoring for this particular metal. Environ Toxicol Chem 2018;37:2458-2466. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Andreas Luek
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Michael J Lannoo
- Indiana University School of Medicine-Terre Haute, Terre Haute, Indiana, USA
| | - Greg G Pyle
- University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
35
|
Saaristo M, Brodin T, Balshine S, Bertram MG, Brooks BW, Ehlman SM, McCallum ES, Sih A, Sundin J, Wong BBM, Arnold KE. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc Biol Sci 2018; 285:rspb.2018.1297. [PMID: 30135169 DOI: 10.1098/rspb.2018.1297] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are changing ecosystems via effects on wildlife. Indeed, recent work explicitly performed under environmentally realistic conditions reveals that chemical contaminants can have both direct and indirect effects at multiple levels of organization by influencing animal behaviour. Altered behaviour reflects multiple physiological changes and links individual- to population-level processes, thereby representing a sensitive tool for holistically assessing impacts of environmentally relevant contaminant concentrations. Here, we show that even if direct effects of contaminants on behavioural responses are reasonably well documented, there are significant knowledge gaps in understanding both the plasticity (i.e. individual variation) and evolution of contaminant-induced behavioural changes. We explore implications of multi-level processes by developing a conceptual framework that integrates direct and indirect effects on behaviour under environmentally realistic contexts. Our framework illustrates how sublethal behavioural effects of contaminants can be both negative and positive, varying dynamically within the same individuals and populations. This is because linkages within communities will act indirectly to alter and even magnify contaminant-induced effects. Given the increasing pressure on wildlife and ecosystems from chemical pollution, we argue there is a need to incorporate existing knowledge in ecology and evolution to improve ecological hazard and risk assessments.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Tomas Brodin
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Ontario, Canada
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, TX, USA
| | - Sean M Ehlman
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Erin S McCallum
- Department of Ecology and Environmental Science, Umeå University, Sweden
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| | | |
Collapse
|
36
|
Heffern K, Tierney K, Gallagher EP. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:83-90. [PMID: 29890505 PMCID: PMC6062444 DOI: 10.1016/j.aquatox.2018.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
Studies have shown that olfactory-mediated behaviors that are critical to survival can be disrupted by exposure to certain metals. Polluted waterways often contain elevated levels of metals, yet only a subset have been characterized for their potential to cause olfactory toxicity. A larval zebrafish behavioral assay was developed to characterize concentration-response curves for zinc (Zn), hexavalent chromium (Cr), and arsenate (As) olfaction inhibition. Cadmium (Cd), an established olfactory toxicant, was used as a positive control. As expected, following a 24-hour exposure to Cd, we observed a reduced response to taurocholic acid (TCA), a substrate for ciliated olfactory sensory neurons (OSNs), thus validating the behavioral assay. Zn exposure similarly decreased the olfactory response toward TCA, (IC50: 36 μg/L and 76 μg/L, for Cd and Zn, respectively). The response towards a secondary odorant L-cysteine (Cys), a substrate for ciliated and microvillous OSNs, was significantly altered by both Cd and Zn exposure, although the response to Cys was not completely removed in Zn treated larvae, suggesting preferential toxicity towards ciliated OSNs. No significant changes in olfactory responses were observed following Cr and As exposures. Exposures to binary mixtures of Cd and Zn indicated that Zn had a protective effect against Cd toxicity at low Zn concentrations. QuantiGene (QDP) RNA analysis revealed Cd to be a potent inducer of metallothionein 2 (mt2) mRNA in zebrafish larvae, and Zn to be a weak mt2 inducer, suggesting a protective role of mt2 in Cd and Zn olfactory injury. By contrast, QDP analysis of eight other genes important in mitigating the effects of oxidative stress suggested an antioxidant response to Cd, but not Zn, As, and Cr suggesting that oxidative stress was not a primary mechanism of Zn-induced olfactory dysfunction. In summary, our study indicates that Zn inhibits zebrafish olfaction at environmental concentrations and may potentially mitigate Cd induced olfactory dysfunction when present in mixtures. The zebrafish behavioral trough assay incorporating the odorants L-cysteine and TCA is an effective assay to assess the effects of metals on olfactory function.
Collapse
Affiliation(s)
- Kevin Heffern
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States
| | - Keith Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105-6099, United States.
| |
Collapse
|
37
|
Meyer JS, DeForest DK. Protectiveness of Cu water quality criteria against impairment of behavior and chemo/mechanosensory responses: An update. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1260-1279. [PMID: 29341250 DOI: 10.1002/etc.4096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/07/2017] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
A meta-analysis was conducted of studies that reported behavior and chemo/mechanosensory responses by fish, amphibians, and aquatic invertebrates in Cu-containing waters and also reported sufficient water chemistry for calculation of hardness-based and biotic ligand model (BLM)-based water quality criteria (WQC) for Cu. The calculated WQC concentrations were then compared with the corresponding 20% impairment concentrations (IC20) of Cu for those behavior and chemo/mechanosensory responses. The hardness-based acute and chronic WQC for Cu would not have been protective (i.e., the IC20 would have been lower than the WQC) in 33.6 and 26.2%, respectively, of the 107 combined behavior- and chemo/mechanosensory-response cases that also had adequate water chemistry data for BLM-based WQC calculations (32.7% inconclusive). In comparison, the BLM-based acute and chronic WQC for Cu would not have been protective in only 10.3 and 4.7%, respectively, of the same 107 cases (29.9% inconclusive). To improve evaluations of regulatory effectiveness, researchers conducting aquatic Cu toxicity tests should measure and report complete BLM-input water chemistry and bracket the hardness-based and BLM-based WQC concentrations for Cu that would be applicable in their exposure waters. This meta-analysis demonstrates that, overall, the BLM-based WQC for Cu were considerably more protective than the hardness-based WQC for Cu against impairment of behavior and chemo/mechanosensory responses. Environ Toxicol Chem 2018;37:1260-1279. © 2018 SETAC.
Collapse
Affiliation(s)
- Joseph S Meyer
- Applied Limnology Professionals LLC, Golden, Colorado, USA
| | | |
Collapse
|
38
|
Colón-Cruz L, Kristofco L, Crooke-Rosado J, Acevedo A, Torrado A, Brooks BW, Sosa MA, Behra M. Alterations of larval photo-dependent swimming responses (PDR): New endpoints for rapid and diagnostic screening of aquatic contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:670-680. [PMID: 28934711 PMCID: PMC5681395 DOI: 10.1016/j.ecoenv.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/29/2017] [Accepted: 09/09/2017] [Indexed: 05/06/2023]
Abstract
Detection and toxicity assessment of waterborne contaminants are crucial for protecting human health and the environment. Development of easy-to-implement, rapid and cost-effective tools to measure anthropogenic effects on watersheds are critical for responsible management, particularly in times of increasing development and urbanization. Traditionally, environmental toxicology has focused on limited endpoints, such as lethality and fertility, which are directly affecting population levels. However, more sensitive readings are needed to assess sub-lethal effects. Monitoring of contaminant-induced behavior alterations was proposed before, but is difficult to implement in the wild and performing it in aquatic laboratory models seem more suited. For this purpose, we adapted a photo-dependent swimming response (PDR) that was previously described in zebrafish larva. We first asked if PDR was present in other aquatic animals. We measured PDR in larvae from two freshwater prawn species (Macrobrachium rosenbergii, MR, and Macrobrachium carcinus, MC) and from another fish the fathead minnow (FHM, Pimephales promelas). In all, we found a strong and reproducible species-specific PDR, which is arguing that this behavior is important, therefore an environmental relevant endpoint. Next, we measured PDR in fish larvae after acute exposure to copper, a common waterborne contaminant. FHM larvae were hyperactive at all tested concentrations in contrast to ZF larvae, which exhibited a concentration-dependent hyperactivity. In addition to this well-accepted anxiety-like behavior, we examined two more: photo-stimulated startle response (PSSR) and center avoidance (CA). Both were significantly increased. Therefore, PDR measures after acute exposure to this waterborne contaminant provided as sensitive readout for its detection and toxicity assessment. This approach represents an opportunity to diagnostically examine any substance, even when present in complex mixtures like ambient surface waters. Mechanistic studies of toxicity using the extensive molecular tool kit of ZF could be a direct extension of such approaches.
Collapse
Affiliation(s)
- Luis Colón-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Lauren Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - Jonathan Crooke-Rosado
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Agnes Acevedo
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Aranza Torrado
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| | - María A Sosa
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| | - Martine Behra
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus of the University of Puerto Rico (UPR-MSC), San Juan, PR, USA; Puerto Rico Center for Environmental Neuroscience, Institute of Neurobiology, Medical Sciences Campus of the University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
39
|
Heerema JL, Helbing CC, Pyle GG. Use of electro-olfactography to measure olfactory acuity in the North American bullfrog (Lithobates (Rana) catesbeiana) tadpole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:643-647. [PMID: 28926819 DOI: 10.1016/j.ecoenv.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Olfaction is an important sense for aquatic organisms because it provides information about their surroundings, including nearby food, mates, and predators. Electro-olfactography (EOG) is an electrophysiological technique that measures the response of olfactory tissue to olfactory stimuli, and responses are indicative of olfactory acuity. Previous studies have used this technique on a variety of species including frogs, salamanders, daphniids and, most extensively, fish. In the present study, we introduce a novel modified EOG method for use on Lithobates (Rana) catesbeiana tadpoles. Responses to a number of olfactory stimuli including amino acids, an algal extract (Spirulina), and taurocholic acid were tested, as measured by EOG. Tadpoles exhibited consistent and reliable responses to L-alanine and Spirulina extract. Tadpoles also exhibited concentration-dependent responses to Spirulina extract. These findings indicate that tadpole EOG is a viable electrophysiology technique that can be used in future research to study olfactory physiology and impairment in tadpoles.
Collapse
Affiliation(s)
- Jody L Heerema
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 6T5.
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8P 5C2.
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada T1K 6T5.
| |
Collapse
|
40
|
Blunt BJ, Singh A, Wu L, Gamal El-Din M, Belosevic M, Tierney KB. Reuse water: Exposure duration, seasonality and treatment affect tissue responses in a model fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1117-1125. [PMID: 28724250 DOI: 10.1016/j.scitotenv.2017.07.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Partially remediated gray (reuse) water will likely find increasing use in a variety of applications owing to the increasing scarcity of freshwater. We aimed to determine if a model fish, the goldfish, could sense reuse water using olfaction (smell), and if 30min or 7d (acute) and 60d (sub-chronic) exposures would affect their olfactory responses to natural odorants. We examined olfaction as previous studies have found that numerous chemicals can impair the olfactory sense, which is critical to carrying out numerous life-sustaining behaviors from feeding to mating. We also examined if fish olfactory and liver tissues would mount a response in terms of biotransformation enzyme gene expression, and whether treatment of reuse water with UV/H2O2 ameliorated adverse effects following reuse water exposure. We found that fish olfactory tissue responded to reuse water as it would to a natural odorant and that UV/H2O2 treatment had no influence on this. With acute exposures, olfactory impairment was apparent regardless of water type (e.g. responses of 23-55% of control), but in sub-chronic exposures, only the untreated reuse water caused olfactory impairment. The exposure of fish to reuse water increased the expression of one enzyme (CYP1A; >2.5-6.5 fold change) and reuse water treatment with UV/H2O2 reversed the effect. There was a seasonal effect that was likely due to changes in water quality (60d summer exposure impaired olfaction whereas spring and fall exposures did not). Overall, the data suggest that reuse water may be detected by olfaction, impair olfactory responses in fish receiving unavoidable exposures, and that exposure duration and season are important factors to consider regarding adverse effects.
Collapse
Affiliation(s)
- B J Blunt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - A Singh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - L Wu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - M Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - M Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - K B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
41
|
Reichert M, Blunt B, Gabruch T, Zerulla T, Ralph A, Gamal El-Din M, Sutherland BR, Tierney KB. Sensory and Behavioral Responses of a Model Fish to Oil Sands Process-Affected Water with and without Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7128-7137. [PMID: 28525709 DOI: 10.1021/acs.est.7b01650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
If oil sands process-affected water (OSPW) is to be returned to the environment, a desire is that it not adversely affect aquatic life. We investigated whether a relevant model fish (rainbow trout, Oncorhynchus mykiss) could detect OSPW using its olfactory sense (smell) and whether exposure to it would result in behavioral changes. We also investigated whether ozonation of OSPW, which lowers the concentration of organic compounds attributed with toxicity (naphthenic acids), would ameliorate any observed adverse effects. We found that OSPW, regardless of ozonation, evoked olfactory tissue responses similar to those expected of natural odorants, suggesting that fish could smell OSPW. In 30 min OSPW exposures, olfactory responses to a food odorant and a pheromone were reduced to a similar degree by OSPW, again regardless of ozonation. However, olfactory responses returned within minutes of exposure cessation. In contrast, in longer (7 d) exposures, olfactory responses remained impaired, but not in fish that had received ozone-treated OSPW. In the behavioral assay, fish avoided an introduced plume of OSPW, and this response was not affected by ozonation. Taken together, our data suggest that fish smell OSPW, that they may use this sense to mount an avoidance response, and that, if they cannot avoid it, their sensory responses may be impaired, unless the OSPW has received some remediation.
Collapse
Affiliation(s)
- Megan Reichert
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Brian Blunt
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tia Gabruch
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Tanja Zerulla
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Allison Ralph
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
| | - Mohamed Gamal El-Din
- Department of Civil & Environmental Engineering, University of Alberta T6G 1H9, Edmonton, Alberta, Canada
| | - Bruce R Sutherland
- Department of Physics and of Earth & Atmospheric Sciences, University of Alberta T6G 2E1, Edmonton, Alberta, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta T6G 2E9, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta T6G 1C9, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Lari E, Pyle GG. Rainbow trout (Oncorhynchus mykiss) detection, avoidance, and chemosensory effects of oil sands process-affected water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:40-46. [PMID: 28347902 DOI: 10.1016/j.envpol.2017.03.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Oil sands process-affected water (OSPW) - a byproduct of the oil sands industry in Northern Alberta, Canada - is currently stored in on-site tailings ponds. The goal of the present study was to investigate the interaction of OSPW with the olfactory system and olfactory-mediated behaviours of fish upon the first encounter with OSPW. The response of rainbow trout (Oncorhynchus mykiss) to different concentrations (0.1, 1, and 10%) of OSPW was studied using a choice maze and electro-olfactography (EOG), respectively. The results of the present study showed that rainbow trout are capable of detecting and avoiding OSPW at a concentration as low as 0.1%. Exposure to 1% OSPW impaired (i.e. reduced sensitivity) the olfactory response of rainbow trout to alarm and food cues within 5 min or less. The results of the present study demonstrated that fish could detect and avoid minute concentrations of OSPW. However, if fish were exposed to OSPW-contaminated water and unable to escape, their olfaction would be impaired.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
43
|
Lari E, Goater CP, Cone DK, Pyle GG. Parasites and a host's sense of smell: reduced chemosensory performance of fathead minnows (Pimephales promelas) infected with a monogenean parasite. J Anim Ecol 2017; 86:434-441. [PMID: 28127759 DOI: 10.1111/1365-2656.12642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/10/2017] [Indexed: 11/29/2022]
Abstract
Parasites residing within the central nervous system of their hosts have the potential to reduce various components of host performance, but such effects are rarely evaluated. We assessed the olfactory acuity of fathead minnows (Pimephales promelas) infected experimentally with the monogenean Dactylogyrus olfactorius, the adults of which live within the host's olfactory chambers. Olfactory acuity was compared between infected and uninfected hosts by assessing electro-olfactography (EOG) neural responses to chemical stimuli that indicate the presence of food (L-alanine) or the presence of conspecifics (taurocholic acid). We also compared differences in gross morphology of the olfactory epithelium in infected and uninfected minnows. Differences in EOG responses between infected and uninfected minnows to both cue types were non-significant at 30 days post-exposure. By days 60 and 90, coincident with a two times increase in parasite intensity in the olfactory chambers, the EOG responses of infected minnows were 70-90% lower than controls. When infected fish were treated with a parasiticide (Prazipro), olfactory acuity returned to control levels by day 7 post-treatment. The observed reduction in olfactory acuity is best explained by the reduced density of cilia covering the olfactory chambers of infected fish, or by the concomitant increase in the density of mucous cells that cover the olfactory chambers. These morphological changes are likely due to the direct effects of attachment and feeding by individual worms or by indirect effects associated with host responses. Our results show that infection of a commonly occurring monogenean in fathead minnows reduces olfactory acuity. Parasite-induced interference with olfactory performance may reduce a fish's ability to detect, or respond to, chemical cues originating from food, predators, competitors or mates.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Cameron P Goater
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - David K Cone
- 83 Rhodenizer Lake Rd., Dayspring, NS, B4V 5R7, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
44
|
Orexin-A Rescues Chronic Copper-Dependent Behavioral and HSP90 Transcriptional Alterations in the Ornate Wrasse Brain. Neurotox Res 2017; 31:578-589. [DOI: 10.1007/s12640-017-9706-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
|
45
|
Lazzari M, Bettini S, Milani L, Maurizii MG, Franceschini V. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:54-62. [PMID: 27992776 DOI: 10.1016/j.aquatox.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30μgL-1. Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2, revealed a statistically significant decrease of about 30% compared to the control. For cOSNs and mOSNs, the decrement in staining intensity may be indicative of cell death, but reduction in antigen expression may not be excluded. In the post-exposure period of 1 month we did not find recovery of mOSNs. We hypothesize that cOSNs are more sensitive than mOSNs to copper treatment, but also more prompted to tissue repair. Anti-TrkA-immunopositive crypt cells appeared not to be affected by copper exposure since statistical analysis excluded any significant difference between the control and treated fish. Comparative studies on OSNs would greatly enhance our understanding of the mechanisms of olfaction.
Collapse
Affiliation(s)
- Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
46
|
Williams CR, MacDonald JW, Bammler TK, Paulsen MH, Simpson CD, Gallagher EP. From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch). Toxicol Sci 2016; 154:267-277. [PMID: 27621283 DOI: 10.1093/toxsci/kfw172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.
Collapse
Affiliation(s)
- Chase R Williams
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
47
|
Sakamoto K, Dew WA, Hecnar SJ, Pyle GG. Effects of Lampricide on Olfaction and Behavior in Young-of-the-Year Lake Sturgeon (Acipenser fulvescens). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3462-3468. [PMID: 27015540 DOI: 10.1021/acs.est.6b01051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), is a primary component to sea lamprey control in the Laurentian Great Lakes. Though the lethal effects of TFM are well-known, the sublethal effects on fishes are virtually unknown. Here we studied the effects of TFM on the olfactory capabilities and behavior of young-of-the-year (YOY) lake sturgeon (Acipenser fulvescens). At ecologically relevant concentrations of TFM there was reduced olfactory response to all three cues (l-alanine, taurocholic acid, food cue) tested, suggesting that TFM inhibits both olfactory sensory neurons tested. Sturgeon exposed to TFM also showed a reduced attraction to the scent of food and reduced consumption of food relative to unexposed fish. Exposed fish were more active than control fish, but with slower acceleration. Fish were able to detect the scent of TFM, but failed to avoid it in behavioral trials. The connection between neurophysiological and behavioral changes, and the commonality of habitats between sturgeon and lamprey ammocoetes, suggests that there may be effects at the ecosystem level in streams that undergo lamprey control treatments.
Collapse
Affiliation(s)
- Kathrine Sakamoto
- Department of Biology, Lakehead University , 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - William A Dew
- Department of Biological Sciences, University of Lethbridge , 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
- Department of Biology, Trent University , 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Stephen J Hecnar
- Department of Biology, Lakehead University , 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Gregory G Pyle
- Department of Biological Sciences, University of Lethbridge , 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
48
|
Dew WA, Veldhoen N, Carew AC, Helbing CC, Pyle GG. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 172:86-94. [PMID: 26775207 DOI: 10.1016/j.aquatox.2015.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 12/17/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
A functioning olfactory response is essential for fish to be able to undertake essential behaviors. The majority of work investigating the effects of metals on the olfactory response of fish has focused on single-metal exposures. In this study we exposed rainbow trout to cadmium, copper, nickel, zinc, or a mixture of these four metals at or below the current Canadian Council of Ministers of the Environment guidelines for the protection of aquatic life. Measurement of olfactory acuity using an electro-olfactogram demonstrated that cadmium causes significant impairment of the entire olfactory system, while the other three metals or the mixture of all four metals did not. Binary mixtures with cadmium and each of the other metals demonstrated that nickel and zinc, but not copper, protect against cadmium-induced olfactory dysfunction. Testing was done to determine if the protection from cadmium-induced olfactory dysfunction could be explained by binding competition between cadmium and the other metals at the cell surface, or if the protection could be explained by an up-regulation of an intracellular detoxification pathway, namely metallothionein. This study is the first to measure the effects of binary and quaternary metal mixtures on the olfactory response of fish, something that will aid in future assessments of the effects of metals on the environment.
Collapse
Affiliation(s)
- William A Dew
- Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4, Canada; Department of Biology, Trent University, Peterborough, Ontario K9 J 7B8, Canada
| | - Nik Veldhoen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8 P 5C2 Canada
| | - Amanda C Carew
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8 P 5C2 Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8 P 5C2 Canada
| | - Greg G Pyle
- Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1 K 3M4, Canada.
| |
Collapse
|
49
|
Lari E, Cone DK, Goater CP, Pyle GG. Spatial Distribution of Gyrodactylus salmonis (Monogenea) on the Body of Captive Fingerling Oncorhynchus mykiss, Including Attachment Within the Olfactory Chamber. J Parasitol 2016; 102:174-8. [PMID: 26786588 DOI: 10.1645/15-901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gyrodactylus salmonis is a common ectoparasite on the fins and body of North American salmonids in fresh water. In this study, the spatial distribution of G. salmonis on 60 captive hatchery-reared rainbow trout, Oncorhynchus mykiss , is reported. The highest parasite densities occurred on 5 × 5-mm(2) sections of the dorsal fin followed by the trunk, other fins, and the olfactory chamber, with the lowest densities on the head. The finding of infections within the olfactory chamber of 93% of the fish was unexpected. One possibility is that such infections represented spillover from high-density infrapopulations that occur on the skin and fins. However, this possibility is unlikely, because worm densities at various sites along the body surface of infected fish did not correlate with densities within the olfactory chamber. The parasite conceivably enters the chamber either via water incurrent or by crawling in from the head and subsequently remaining at this site to feed and reproduce. Results from scanning electron microscopy are consistent with physical modification to the olfactory epithelium associated with the attachment/reattachment of the opisthaptor and epithelial grazing.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - David K Cone
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cameron P Goater
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
50
|
Lari E, Abtahi B, Hashtroudi MS, Mohaddes E, Døving KB. The effect of sublethal concentrations of the water-soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (YAKOVLEV, 1870). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1826-1832. [PMID: 25904082 DOI: 10.1002/etc.2994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/25/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The water-soluble fraction of crude oil is a complex and toxic mixture of hydrocarbons. Because aquatic organisms directly encounter it, the water-soluble fraction plays an important role in the toxicity of crude oil in aquatic environments. To determine whether fish are attracted to or avoid the water-soluble fraction, Caspian roaches (Rutilus caspicus) were exposed to different concentrations of the water-soluble fraction in a choice maze apparatus. The results showed that Caspian roaches can detect and avoid 2 mg/L of the water-soluble fraction. To study the effect of the water-soluble fraction on the olfactory function of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction for 96 h; afterward, exposed fish encountered food extract in a choice maze apparatus. The present study showed that the water-soluble fraction significantly impairs the olfactory function of roaches. To investigate the effect of olfactory system dysfunction on the feeding behavior of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction. After 4 d, 8 d, and 12 d of exposure, the feeding behavior toward the food extract was tested. The results showed that both 3.2 mg/L and 16 mg/L of the water-soluble fraction suppress the feeding behavior of Caspian roaches. The present study demonstrates that sublethal concentrations of crude oil's water-soluble fraction impair the olfactory function of fish and consequently suppress the feeding behavior.
Collapse
Affiliation(s)
- Ebrahim Lari
- Faculty of Biological Sciences, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Behrooz Abtahi
- Faculty of Biological Sciences, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Mehri Seyed Hashtroudi
- Department of Marine Living Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| | - Effat Mohaddes
- Department of Marine Biology, Faculty of Marine Sciences and Technology, Islamic Azad University of Iran, Tehran Sciences and Researches Branch, Tehran, Iran
| | - Kjell B Døving
- Program for Physiology and Neurobiology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|