1
|
Lee HA, Moon H, Kim Y, Lee JK, Lee HA, Kim HY. Effects of Intermittent Calorie Restriction in Nondiabetic Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. Clin Gastroenterol Hepatol 2025; 23:114-123.e13. [PMID: 39181426 DOI: 10.1016/j.cgh.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND & AIMS We compared the effects of a 12-week intermittent calorie restriction (ICR) and standard-of-care (SOC) diet on liver fat content (LFC) in metabolic dysfunction-associated steatotic liver disease patients. METHODS This randomized controlled trial included patients with magnetic resonance imaging-proton density fat fraction ≥8%. Patients were randomly assigned to the ICR (5:2 diet) or SOC (80% of the recommended calorie intake) groups and stratified according to the body mass index (≥25 or <25 kg/m2). The primary outcome was the proportion of patients who achieved a relative LFC reduction as measured by magnetic resonance imaging-proton density fat fraction ≥30%. RESULTS Seventy-two participants underwent randomization (36 patients with and 36 without obesity), and 63 (34 patients with and 29 without obesity) completed the trial. At week 12, a higher proportion of patients in the ICR arm achieved a relative LFC reduction of ≥30% compared with the SOC arm (72.2% vs 44.4%; P = .033), which was more prominent in the group with obesity (61.1% vs 27.7%; P = .033) than in the group without obesity (83.3% vs 61.1%; P = .352). The relative weight reduction was insignificant between the ICR and SOC arms (-5.3% vs -4.2%; P = .273); however, it was higher in the ICR arm compared with the SOC arm (-5.5% vs -2.9%; P = .039) in the group with obesity. Changes in fibrosis, muscle and fat mass, and liver enzyme levels were similar between the 2 groups (all P > .05). CONCLUSIONS The ICR diet reduced LFC more effectively than SOC in patients with metabolic dysfunction-associated steatotic liver disease, particularly in patients with obesity. Additional studies are warranted in larger and more diverse cohorts. CLINICALTRIALS gov, Number: NCT05309642.
Collapse
Affiliation(s)
- Han Ah Lee
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeyoung Moon
- Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Yuri Kim
- Nutritional Science and Food Management, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Kyong Lee
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review. Eat Weight Disord 2024; 29:77. [PMID: 39719521 DOI: 10.1007/s40519-024-01709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Time-restricted feeding (TRF), an intermittent fasting approach involving a shortened eating window within 24 h, has gained popularity as a weight management approach. This review addresses how TRF may favor fat redistribution and the function of the adipose organ. TRF trials (mainly 16:8 model, with a duration of 5-48 weeks) reported a significant weight loss (1.2-10.2%, ~ 1.4-9.4 kg), with a considerable decrease in total fat mass (1.6-21%, ~ 0.5-7 kg) and visceral adipose compartment (VAC, 11-27%) in overweight and obese subjects. Experimental TRF in normal-fed and obesogenic-diet-fed mice and rats (with a fasting duration ranging between 9 and 21 h within 1-17 weeks) reported a significant reduction in body weight (~ 7-40%), total fat mass (~ 17-71%), and intrahepatic fat (~ 25-72%). TRF also improves VAC and subcutaneous adipose compartment (SAC) function by decreasing adipocyte size, macrophage infiltration, M1-macrophage polarity, and downregulating inflammatory genes. In conclusion, beyond its effect on body weight loss, total fat mass, and intrahepatic fat accumulation, TRF favors adipose organ fat redistribution in overweight and obese subjects by decreasing VAC and improving the function of VAC and SAC.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran.
| |
Collapse
|
3
|
Lin Y, Ezzati A, McLaren C, Zeidan RS, Anton SD. Adherence and Retention in Early or Late Time-Restricted Eating: A Narrative Review of Randomized Controlled Trials. Nutr Rev 2024:nuae195. [PMID: 39707164 DOI: 10.1093/nutrit/nuae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Time-restricted eating (TRE) is a form of intermittent fasting that involves reducing the time-period in which food is typically consumed daily. While TRE is known to induce health benefits, particularly for adults with obesity, there is currently debate about whether the time of day in which food is consumed also contributes to the health benefits of TRE. Early TRE (eTRE) and late TRE (lTRE) are subtypes of TRE that involve consuming food and caloric beverages either in the early or later part of the day. A growing body of literature indicates that eTRE may offer additional health benefits compared with lTRE. An important and unanswered question, however, is whether most adults can adhere to this type of eating pattern and whether adherence and retention differ between eTRE and lTRE. This narrative review compared adherence and retention in studies that implemented either eTRE or lTRE in adults for 8 weeks or longer. Five databases were searched, and 10 studies met our eligibility criteria. The key finding was that participants had high and comparable levels of adherence and retention in both eTRE and lTRE interventions. Specifically, the mean adherence rate was 81.4% for eTRE and 82.3% for lTRE, while the mean retention rate was 81% for eTRE and 85.8% for lTRE in eligible studies. Thus, the findings support the feasibility of both approaches. The lowest adherence and retention rates occurred in studies in which either eTRE or lTRE regimens were combined with other dietary interventions. Notably, the duration of the eating window did not seem to negatively affect adherence and retention rates for either eTRE or lTRE. More research is warranted to determine the influence of other factors, such as age and study location, on adherence to and retention of both eTRE and lTRE interventions.
Collapse
Affiliation(s)
- Yi Lin
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, College of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, United States
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Armin Ezzati
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Christian McLaren
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
| | - Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Stephen D Anton
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
4
|
Bruno J, Walker JM, Nasserifar S, Upadhyay D, Ronning A, Vanegas SM, Popp CJ, Barua S, Alemán JO. Weight-neutral early time-restricted eating improves glycemic variation and time in range without changes in inflammatory markers. iScience 2024; 27:111501. [PMID: 39759025 PMCID: PMC11699278 DOI: 10.1016/j.isci.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Early time-restricted eating (eTRE) is a dietary strategy that restricts caloric intake to the first 6-8 h of the day and can effect metabolic benefits independent of weight loss. However, the extent of these benefits is unknown. We conducted a randomized crossover feeding study to investigate the weight-independent effects of eTRE on glycemic variation, multiple time-in-range metrics, and levels of inflammatory markers. Ten adults with prediabetes were randomized to eTRE (8-h feeding window, 80% of calories consumed before 14:00 h) or usual feeding (50% of calories consumed after 16:00 h) for 1 week followed by crossover to the other schedule. Using continuous glucose monitoring, we showed that eTRE decreased glycemic variation (mean amplitude of glycemic excursion) and time in hyperglycemia greater than 140 mg/dL without affecting inflammatory markers (erythrocyte sedimentation rate and C-reactive protein). These data implicate eTRE as a candidate dietary intervention for the weight-independent management of dysglycemia in high-risk individuals.
Collapse
Affiliation(s)
- Joanne Bruno
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Shabnam Nasserifar
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Dhairya Upadhyay
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Andrea Ronning
- The Rockefeller University Hospital, New York, NY 10065, USA
| | - Sally M. Vanegas
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Collin J. Popp
- Department of Population Health, Institute for Excellence in Health Equity, New York University Langone Health, New York, NY 10016, USA
| | - Souptik Barua
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - José O. Alemán
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA
- Holman Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Hu X, Xu Q, Ma X, Li L, Wu Y, Sun F. An interpretable machine learning model for precise prediction of biomarkers for intermittent fasting pattern. Nutr Metab (Lond) 2024; 21:106. [PMID: 39695671 DOI: 10.1186/s12986-024-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Intermittent fasting is currently a highly sought-after dietary pattern. To explore the potential biomarkers of intermittent fasting, untargeted metabolomics analysis of fecal metabolites in two groups of mice, intermittent fasting and normal feeding, was conducted using UPLC-HRMS. The data was further analyzed through interpretable machine learning (ML) to data mine the biomarkers for two dietary patterns. We developed five machine learning models and results showed that under three-fold cross-validation, Random Forest model was the most suitable for distinguishing the two dietary patterns. Finally, Shapely Additive exPlanations (SHAP) were explored to perform a weighted explanatory analysis on the Random Forest model, and the contribution of each metabolite to the model was calculated. Results indicated that Ganoderenic Acid C is the potential biomarkers to distinguish the two dietary patterns. Our work provides new insights for metabolic biomarker analysis and lays a theoretical foundation for the selection of a healthieir dietary lifestyle.
Collapse
Affiliation(s)
- Xiaoli Hu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Qingjun Xu
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xuan Ma
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China
| | - Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100017, China.
| |
Collapse
|
6
|
Tan LJ, Shin S. Impact of Eating Duration on Weight Management, Sleeping Quality, and Psychological Stress: A Pilot Study. J Nutr Biochem 2024:109835. [PMID: 39701471 DOI: 10.1016/j.jnutbio.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The daily eating window significantly impacts weight and metabolic health, yet its ideal duration remains uncertain. METHODS Thirty-four healthy middle-aged women were randomly assigned to two intervention groups: 8-hour time-restricted eating (TRE) and 14-hour time-extended eating (EXE). Each intervention lasted 4 weeks, with a 16-day washout period before switching to the other intervention. Clinical biomarkers were collected before and after each intervention, and sleep quality was assessed using the Korean Version of the Pittsburgh Sleep Quality Index (PSQI-K). Additionally, a daily visual analogue scale (VAS) was used to evaluate psychological changes. RESULTS The TRE group experienced significant weight reduction, lower fasting plasma glucose and total serum cholesterol levels compared to the EXE group, but with an increase in systolic blood pressure. The EXE group showed improved blood pressure. The TRE group reported higher stress levels on the VAS, but the PSQI-K indicated improved sleep quality during the second intervention. CONCLUSIONS An 8-hour TRE, without calorie restriction or diet composition changes, proves more beneficial for weight management and plasma glucose control compared to the 14-hour EXE among Korean women. Implementation of this approach is recommended to be gradual to mitigate psychological fluctuations and adverse blood pressure changes.
Collapse
Affiliation(s)
- Li-Juan Tan
- Department of Critical Care Medicine, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China; Nutritional Epidemiology Laboratory, Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea
| | - Sangah Shin
- Nutritional Epidemiology Laboratory, Department of Food and Nutrition, Chung-Ang University, Gyeonggi-do 17546, South Korea.
| |
Collapse
|
7
|
Pescari D, Mihuta MS, Bena A, Stoian D. Quantitative analysis of the caloric restriction versus isocaloric diets models based on macronutrients composition: impacts on body weight regulation, anthropometric, and bioimpedance parameters in women with obesity. Front Nutr 2024; 11:1493954. [PMID: 39726871 PMCID: PMC11670075 DOI: 10.3389/fnut.2024.1493954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Obesity is a growing public health issue, especially among young adults, with long-term management strategies still under debate. This prospective study compares the effects of caloric restriction and isocaloric diets with different macronutrient distributions on body composition and anthropometric parameters in obese women during a 12-week weight loss program, aiming to identify the most effective dietary strategies for managing obesity-related health outcomes. Methods A certified clinical nutritionist assigned specific diets over a 12-week period to 150 participants, distributed as follows: hypocaloric diets-low-energy diet (LED, 31 subjects) and very low-energy diet (VLED, 13 subjects); isocaloric diets with macronutrient distribution-low-carbohydrate diet (LCD, 48 subjects), ketogenic diet (KD, 23 subjects), and high-protein diet (HPD, 24 subjects); and isocaloric diet without macronutrient distribution-time-restricted eating (TRE, 11 subjects). Participants were dynamically monitored using anthropometric parameters: body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and bioelectrical impedance analysis (BIA) using the TANITA Body Composition Analyzer BC-418 MA III (T5896, Tokyo, Japan) at three key intervals-baseline, 6 weeks, and 12 weeks. The following parameters were evaluated: body weight, basal metabolic rate (BMR), percentage of total body fat, trunk fat, muscle mass, fat-free mass, and hydration status. Results All diets led to weight loss, but differences emerged over time. The TRE model resulted in significantly less weight loss compared to LED at the final follow-up (6.30 kg, p < 0.001), similar to the VLED (4.69 kg, p < 0.001). Isocaloric diets with varied macronutrient distributions showed significant weight loss compared to LED (p < 0.001). The KD reduced waist circumference at both 6 and 12 weeks (-4.08 cm, p < 0.001), while significant differences in waist-to-hip ratio reduction were observed across diet groups at 12 weeks (p = 0.01). Post-hoc analysis revealed significant fat mass differences at 12 weeks, with HPD outperforming IF (p = 0.01) and VLED (p = 0.003). LCD reduced trunk fat at 6 weeks (-2.36%, p = 0.001) and 12 weeks (-3.79%, p < 0.001). HPD increased muscle mass at 12 weeks (2.95%, p = 0.001), while VLED decreased it (-2.02%, p = 0.031). TRE showed a smaller BMR reduction at 12 weeks compared to LED. Conclusion This study highlights the superior long-term benefits of isocaloric diets with macronutrients distribution over calorie-restrictive diets in optimizing weight, BMI, body composition, and central adiposity.
Collapse
Affiliation(s)
- Denisa Pescari
- Department of Doctoral Studies, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Simina Mihuta
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Bena
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dana Stoian
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
8
|
Mao L, Liu A, Zhang X. Effects of Intermittent Fasting on Female Reproductive Function: A Review of Animal and Human Studies. Curr Nutr Rep 2024; 13:786-799. [PMID: 39320714 DOI: 10.1007/s13668-024-00569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE OF REVIEW Intermittent fasting has gained significant attention, yet a comprehensive understanding of its impact on female reproductive health is lacking. This review aims to fill this gap by examining various intermittent fasting regimens and their effects on female reproductive function, along with potential mechanisms. RECENT FINDINGS In healthy non-overweight/obese or pregnant animal models, alternate-day fasting (ADF) and an 8-h time-restricted feeding (TRF) window may have adverse effects on reproductive function. However, these regimens show potential to mitigate negative consequences induced by a high-fat diet (HFD) or environmental exposure. A 10-h TRF demonstrates benefits in improving fertility in both normal-weight and HFD-fed animal models. In women with overweight/obesity or polycystic ovary syndrome (PCOS), the 5:2 diet and TRF significantly reduce the free androgen index while elevating sex hormone binding globulin, promising improvements in menstrual regulation. For pregnant Muslim women, available data do not strongly indicate adverse effects of Ramadan fasting on preterm delivery, but potential downsides to maternal weight gain, neonatal birthweight, and long-term offspring health need consideration. Factors linking intermittent fasting to female reproductive health include the circadian clock, gut microbiota, metabolic regulators, and modifiable lifestyles. Drawing definitive conclusions remains challenging in this evolving area. Nonetheless, our findings underscore the potential utility of intermittent fasting regimens as a therapeutic approach for addressing menstruation irregularities and infertility in women with obesity and PCOS. On the other hand, pregnant women should remain cognizant of potential risks associated with intermittent fasting practices.
Collapse
Affiliation(s)
- Lei Mao
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Aixia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| | - Xiaohui Zhang
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
9
|
Tan Y, Li M, Li H, Guo Y, Zhang B, Wu G, Li J, Zhang Q, Sun Y, Gao F, Yi W, Zhang X. Cardiac Urea Cycle Activation by Time-Restricted Feeding Protects Against Pressure Overload-Induced Heart Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407677. [PMID: 39467073 DOI: 10.1002/advs.202407677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/14/2024] [Indexed: 10/30/2024]
Abstract
Heart failure is a leading cause of mortality worldwide, necessitating the development of novel therapeutic and lifestyle interventions. Recent studies highlight a potential role of time-restricted feeding (TRF) in the prevention and treatment of cardiac diseases. Here, it is found that TRF protected against heart failure at different stages in mice. Metabolomic profiling revealed that TRF upregulated most circulating amino acids, and amino acid supplementation protected against heart failure. In contrast, TRF showed a mild effect on cardiac amino acid profile, but increased cardiac amino acid utilization and activated the cardiac urea cycle through upregulating argininosuccinate lyase (ASL) expression. Cardiac-specific ASL knockout abolished the cardioprotective effects afforded by TRF. Circulating amino acids also protected against heart failure through activation of the urea cycle. Additionally, TRF upregulated cardiac ASL expression through transcription factor Yin Yang 1, and urea cycle-derived NO contributes to TRF-afforded cardioprotection. Furthermore, arteriovenous gradients of circulating metabolites across the human hearts were measured, and found that amino acid utilization and urea cycle activity were impaired in patients with decreased cardiac function. These results suggest that TRF is a promising intervention for heart failure, and highlight the importance of urea cycle in regulation of cardiac function.
Collapse
Affiliation(s)
- Yanzhen Tan
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Cardiovascular Disease Laboratory, Chongqing Medical University, Chongqing, 400016, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guiling Wu
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Li
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
- Department of Rehabilitation, Air Force Medical Center, Beijing, 100142, China
| |
Collapse
|
10
|
Mishra A, Sobha D, Patel D, Suresh PS. Intermittent fasting in health and disease. Arch Physiol Biochem 2024; 130:755-767. [PMID: 37828854 DOI: 10.1080/13813455.2023.2268301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
CONTEXT Intermittent fasting, a new-age dietary concept derived from an age-old tradition, involves repetitive cycles of fasting/calorie restriction and eating. OBJECTIVE We aim to take a deep dive into the biological responses to intermittent fasting, delineate the disease-modifying and cognitive effects of intermittent fasting, and also shed light on the possible side effects. METHODS Numerous in vitro and in vivo studies were reviewed, followed by an in-depth analysis, and compilation of their implications in health and disease. RESULTS Intermittent fasting improves the body's stress tolerance, which is further amplified with exercise. It impacts various pathological conditions like cancer, obesity, diabetes, cardiovascular disease, and neurodegenerative diseases. CONCLUSION During dietary restriction, the human body experiences a metabolic switch due to the depletion of liver glycogen, which promotes a shift towards utilising fatty acids and ketones in the system, thereby significantly impacting adiposity, ageing and the immune response to various diseases.
Collapse
Affiliation(s)
- Anubhav Mishra
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Devika Sobha
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Dimple Patel
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Calicut, India
| |
Collapse
|
11
|
Chen H, Liu C, Cui S, Xia Y, Zhang K, Cheng H, Peng J, Yu X, Li L, Yu H, Zhang J, Zheng JS, Zhang B. Intermittent fasting triggers interorgan communication to suppress hair follicle regeneration. Cell 2024:S0092-8674(24)01311-4. [PMID: 39674178 DOI: 10.1016/j.cell.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/29/2024] [Accepted: 11/06/2024] [Indexed: 12/16/2024]
Abstract
Intermittent fasting has gained global popularity for its potential health benefits, although its impact on somatic stem cells and tissue biology remains elusive. Here, we report that commonly used intermittent fasting regimens inhibit hair follicle regeneration by selectively inducing apoptosis in activated hair follicle stem cells (HFSCs). This effect is independent of calorie reduction, circadian rhythm alterations, or the mTORC1 cellular nutrient-sensing mechanism. Instead, fasting activates crosstalk between adrenal glands and dermal adipocytes in the skin, triggering the rapid release of free fatty acids into the niche, which in turn disrupts the normal metabolism of HFSCs and elevates their cellular reactive oxygen species levels, causing oxidative damage and apoptosis. A randomized clinical trial (NCT05800730) indicates that intermittent fasting inhibits human hair growth. Our study uncovers an inhibitory effect of intermittent fasting on tissue regeneration and identifies interorgan communication that eliminates activated HFSCs and halts tissue regeneration during periods of unstable nutrient supply.
Collapse
Affiliation(s)
- Han Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Chao Liu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Shiyao Cui
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Yingqian Xia
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jingyu Peng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Xiaoling Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Luyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Hualin Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310000, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310000, China
| | - Bing Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310000, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310000, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
12
|
Parr EB, Radford BE, Hall RC, Steventon-Lorenzen N, Flint SA, Siviour Z, Plessas C, Halson SL, Brennan L, Kouw IWK, Johnston RD, Devlin BL, Hawley JA. Comparing the effects of time-restricted eating on glycaemic control in people with type 2 diabetes with standard dietetic practice: A randomised controlled trial. Diabetes Res Clin Pract 2024; 217:111893. [PMID: 39414086 DOI: 10.1016/j.diabres.2024.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
AIMS To test the efficacy of time-restricted eating (TRE) in comparison to dietitian-led individualised dietary guidance to improve HbA1c in people with Type 2 diabetes mellitus. METHODS In a parallel groups design, 51 adults (35-65 y) with Type 2 diabetes mellitus and overweight/obesity (HbA1c ≥6.5% (48 mmol/mol), BMI ≥25-≤40 kg/m2) commenced a six-month intervention. Following baseline, participants were randomised to TRE (1000-1900 h) or DIET (individualised dietetic guidance) with four consultations over four months. Changes in HbA1c (primary), body composition, and self-reported adherence (secondary) were analysed using linear mixed models. A non-inferiority margin of 0.3% (4 mmol/mol) HbA1c was set a priori. RESULTS Forty-three participants (56 ± 8 y, BMI: 33 ± 5 kg/m2, HbA1c: 7.6 ± 0.8%) completed the intervention. HbA1c was reduced (P=0.002; TRE: -0.4% (-5 mmol/mol), DIET: -0.3% (-4 mmol/mol)) with no group or interaction effects; TRE was non-inferior to DIET (-0.11%, 95%CI: -0.50% to 0.28%). Body mass reduced in both groups (TRE: -1.7 kg; DIET: -1.2 kg) via ∼900 kJ/d spontaneous energy reduction (P<0.001). Self-reported adherence was higher in TRE versus DIET (P<0.001). CONCLUSIONS When individualised dietary guidance is not available, effective, and/or suitable, TRE may be an alternative dietary strategy to improve glycaemic control in people with Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia.
| | - Bridget E Radford
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| | - Rebecca C Hall
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| | - Nikolai Steventon-Lorenzen
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia; School of Behavioural and Health Sciences, ACU, Melbourne, VIC, Australia; SPRINT Research and Faculty of Health Sciences, ACU, Melbourne, VIC, Australia
| | - Steve A Flint
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| | - Zoe Siviour
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| | - Connie Plessas
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| | - Shona L Halson
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia; SPRINT Research and Faculty of Health Sciences, Brisbane, QLD, Australia
| | - Leah Brennan
- School of Psychology and Public Health, La Trobe University, VIC, Australia
| | - Imre W K Kouw
- Division of Human Nutrition and Health, Wageningen University & Research, the Netherlands
| | - Rich D Johnston
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia; SPRINT Research and Faculty of Health Sciences, Brisbane, QLD, Australia; Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, United Kingdom
| | - Brooke L Devlin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia; Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| |
Collapse
|
13
|
Bakhsh JA, Vu MH, Salvy SJ, Goran MI, Vidmar AP. Effects of 8-h time-restricted eating on energy intake, dietary composition and quality in adolescents with obesity. Pediatr Obes 2024; 19:e13165. [PMID: 39188065 PMCID: PMC11486572 DOI: 10.1111/ijpo.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND The precise mechanisms underlying the health benefits of time-restricted eating (TRE) are unclear, particularly in adolescents. OBJECTIVES This secondary analysis examines the impact of 8-h TRE on energy intake, dietary composition and quality in adolescents with obesity, using data from a 12-week randomized, controlled pilot trial. METHODS Participants (14-18 years with BMI >95th percentile) were assigned to either 8-h TRE with real-time or blinded continuous glucose monitoring or a control group with a 12+ h eating window. Dietary intake was analysed using the Nutrient Data System Recall 24-h Dietary Recall and the Healthy Eating Index (HEI-2020) for assessing diet quality. RESULTS The study included 44 participants (32 TRE, 12 control), predominantly female and Hispanic/Latino. The TRE group showed a significant reduction in mean energy intake (-441 kcal/day), carbohydrates (-65 g/day), added sugar (-19 g/day) and fat (-19 g/day), while the control group had a similar reduction in energy intake (-437 kcal/day) and carbohydrates (-63 g/day), but no significant changes in added sugar or fat. The percent energy intake from protein increased more in the TRE group compared to the control. The TRE group experienced a significant improvement in diet quality, with a 6.3-point increase in HEI-2020 score; however, between-group comparisons were not statistically significant. CONCLUSION There were no significant differences between the TRE and control groups in energy intake, dietary composition or quality. Future research with larger sample sizes is needed to further evaluate the potential impact of TRE on dietary behaviours.
Collapse
Affiliation(s)
- Jomanah A. Bakhsh
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - My H. Vu
- Biostatistics and Data Management Core, Children’s Hospital Los Angeles, Los Angeles, CA, Los Angeles, CA 90027, USA
| | - Sarah Jeanne Salvy
- Research Center for Health Equity, Cedars-Sinai Medical Center, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Michael I. Goran
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism Los Angeles, CA 90027, USA
| | - Alaina P. Vidmar
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism Los Angeles, CA 90027, USA
| |
Collapse
|
14
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Zeng X, Ji QP, Jiang ZZ, Xu Y. The effect of different dietary restriction on weight management and metabolic parameters in people with type 2 diabetes mellitus: a network meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2024; 16:254. [PMID: 39468618 PMCID: PMC11514751 DOI: 10.1186/s13098-024-01492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a globally prevalent chronic condition. Individuals with T2DM are at increased risk of developing complications associated with both macrovascular and microvascular pathologies. These comorbidities reduce patient quality of life and increase mortality. Dietary restriction is a principal therapeutic approach for managing T2DM. This study assessed the effects of various dietary regimens on body weight and metabolic profiles in T2DM patients, aiming to determine the most beneficial interventions for enhancing clinical outcomes and overall well-being. METHODS We conducted a literature search in PubMed, Embase, and Web of Science from 2003 to April 15, 2024. The risk of bias was assessed via the Revised Cochrane risk-of-bias tool for randomized trials (RoB2). The certainty of the evidence was appraised via the confidence in network meta-analysis (CINeMA) framework. Intermittent fasting (IF) was directly compared with continuous energy restriction (CER) via Review Manager 5.4. Network meta-analysis was statistically assessed via R Studio 4.3.3 and STATA 14.0. RESULTS Eighteen studies involving 1,658 participants were included. The network meta-analysis indicated that intermittent energy restriction, the twice-per-week fasting, time-restricted eating, fasting-mimicking diets (FMD), and CER interventions were more effective than conventional diets. Direct comparisons revealed that IF was as effective as CER for reducing glycated haemoglobin A1c, body weight, and body mass index. The results of the cumulative ranking analysis demonstrated that FMD had the greatest combined intervention effect, followed by TRE in terms of overall effectiveness. CONCLUSIONS Both IF and CER exert positive influences on weight control and metabolic profile enhancement in individuals with T2DM, with FMD as part of IF demonstrating the greatest impact. To substantiate these findings, more rigorous randomized controlled trials that directly compare the effects of the different IF regimens with one another and with the CER regimen are needed.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qi-Pei Ji
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.
| |
Collapse
|
16
|
Johnson SL, Murray G, Manoogian ENC, Mason L, Allen JD, Berk M, Panda S, Rajgopal NA, Gibson JC, Bower CD, Berle EF, Joyner K, Villanueva R, Michalak EE, Kriegsfeld LJ. A pre-post trial to examine biological mechanisms of the effects of time-restricted eating on symptoms and quality of life in bipolar disorder. BMC Psychiatry 2024; 24:711. [PMID: 39434066 PMCID: PMC11492775 DOI: 10.1186/s12888-024-06157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND The primary objective of this trial is to examine the mechanisms of time-restricted eating (TRE) as an adjunct to psychiatric care for people with bipolar disorder (BD) with sleep or circadian disruptions. This study builds on prior studies of circadian disruption in BD as well as growing evidence that TRE improves circadian functioning. METHODS One-hundred fifty participants diagnosed with BD 1 or II will be recruited via advertising in the local community. Main inclusion criteria include: obtaining medical treatment for BD; current sleep or circadian problems; self-reported eating period of ≥ 12 h; no eating disorder or other health conditions that would hinder or limit the safety of following TRE; and not currently experiencing a mood episode, acute suicidality, psychosis, alcohol or substance use disorder. Participants will be asked to complete a baseline period in which daily food intake is logged online for two weeks. After baseline, participants will be asked to follow TRE for 8 weeks and to continue to complete daily food logging during this time. Symptom severity interviews will be conducted by phone or videoconference at baseline, mid-intervention (6 weeks post-baseline), end of intervention (10 weeks post-baseline), and 6 months post-baseline. Self-rated symptom severity and quality of life data will be gathered online at the same time points as symptom severity interviews, and at 16 weeks post-baseline (6 weeks after the TRE period ends). To assess potential mechanisms of change, we will examine the change in diurnal amplitude of 'clock' gene expression as a primary mediator at 8 weeks compared to baseline. We will further test whether diurnal amplitude of clock gene expression is predictive above and beyond the role of two covariate potential mediators, glucose tolerance and inflammation at 8 weeks relative to baseline. To provide an index of whether TRE successfully decreases emotional lability, participants will be asked to complete 5 mood assessments per day for 7 days at baseline and at 10 weeks. These mood assessments will be optional. DISCUSSION The planned research will provide novel and important information on whether TRE improves sleep/circadian rhythm problems, along with reductions in mood symptoms and improvements in quality of life, for individuals with BD. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT06555406.
Collapse
Affiliation(s)
- Sheri L Johnson
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Greg Murray
- Centre for Mental Health, Swinburne University, Melbourne, VIC, 3122, Australia
| | | | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - J D Allen
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Michael Berk
- IMPACT Institute, School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | | | - Jake C Gibson
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Carter D Bower
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Eline F Berle
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Keanan Joyner
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Robert Villanueva
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Erin E Michalak
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, USA.
- Department of Neuroscience, University of California, Berkeley, CA, USA.
| |
Collapse
|
17
|
Jóźwiak B, Domin R, Krzywicka M, Laudańska-Krzemińska I. Effect of exercise alone and in combination with time-restricted eating on cardiometabolic health in menopausal women. J Transl Med 2024; 22:957. [PMID: 39434160 PMCID: PMC11494798 DOI: 10.1186/s12967-024-05738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
There is a need to investigate the effect of lifestyle modifications on cardiometabolic health-related issues that occur during menopause. The aim of this study was to compare the effect of resistance and endurance circuit training program alone (exercise group, n = 34) with the effect of time-restricted eating (16:8) combined with a training program (combination group, n = 28) on cardiometabolic health in 62 menopausal women (aged 51.3 ± 4.69 years). Testing was conducted before and after a 12-week period and included an assessment of body composition, glycemic control, lipid panel, blood pressure, and anthropometric measurements. Decreases in body mass index and systolic blood pressure were significantly greater in the combination group than in the exercise group (F(1,60) = 4.482, p = 0.038, η2 = 0.07; F(1,57) = 5.215, p = 0.026, η2 = 0.08, respectively, indicating moderate effects). There were significant decreases in fat mass (p = 0.001, r = 0.654), glucose level (p = 0.017, r = 0.459), insulin level (p = 0.013, r = 0.467), homeostatic model assessment for insulin resistance (p = 0.009, r = 0.499), waist circumference (p = 0.002, r = 0.596), and waist-to-height ratio (p = 0.003, r = 0.588) (indicating moderate effect) in the combination group, while there were no significant changes in the exercise group. There were no changes in lipid panel indicators in either group. This is the first study to investigate the effect of time-restricted eating combined with exercise in menopausal women. The results of the study provide evidence that the combination of time-restricted eating and exercise leads to a greater body mass index reduction than exercise alone in menopausal women.Trial registration: ClinicalTrials.gov, NCT06138015 registered 18 November 2023-Retrospectively registered, https://clinicaltrials.gov/study/NCT06138015 .
Collapse
Affiliation(s)
- Beata Jóźwiak
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland.
| | - Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355, Poznan, Poland
| | - Monika Krzywicka
- Department of Cardiological and Rheumatological Rehabilitation, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Ida Laudańska-Krzemińska
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland
| |
Collapse
|
18
|
Akasheh RT, Ankireddy A, Gabel K, Ezpeleta M, Lin S, Tamatam CM, Reddy SP, Spring B, Cheng TYD, Fontana L, Khan SA, Varady KA, Cienfuegos S, Kalam F. Effect of Time-Restricted Eating on Circulating Levels of IGF1 and Its Binding Proteins in Obesity: An Exploratory Analysis of a Randomized Controlled Trial. Nutrients 2024; 16:3476. [PMID: 39458471 PMCID: PMC11510611 DOI: 10.3390/nu16203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is associated with alterations in circulating IGF1, IGF1-binding proteins (IGFBPs), insulin, inflammatory markers, and hormones implicated in cardiovascular disease, diabetes, cancer, and aging. However, the effects of 4 and 6 h time-restricted eating (TRE) on circulating IGF1 and IGFBPs is uncertain. OBJECTIVE This study aimed to investigate the effects of TRE on plasma IGF1, IGFBP1, IGFBP2, and IGFBP3, and whether these effects were mediated by weight loss or body composition changes. Insulin sensitivity, glucose control, adipokines, and inflammatory markers were also examined. DESIGN An exploratory analysis of an 8-week randomized controlled trial implementing a daily TRE intervention was carried out. PARTICIPANTS/SETTING This study was conducted at the University of Illinois at Chicago in 2019. Participants with obesity were randomized to 4 or 6 h TRE (n = 35) or a control (n = 14) group. Plasma biomarkers were measured by ELISA at baseline and week 8. In a sub-analysis, participants were stratified into higher- (>3.5%) and lower- (≤3.5%) weight-loss groups. INTERVENTION Participants fasted daily from 7 p.m. to 3 p.m. in the 4 h TRE group (20 h) and from 7 p.m. to 1 p.m. in the 6 h TRE group (18 h), followed by ad libitum eating for the remainder of the day. Controls received no dietary recommendations. MAIN OUTCOME MEASURES IGF1, IGFBPs, hsCRP, and adipokines were the main outcome measures of this analysis. STATISTICAL ANALYSIS Repeated measures ANOVA and mediation analysis were conducted. RESULTS Body weight significantly decreased with TRE (-3.6 ± 0.3%), contrasting with controls (+0.2 ± 0.5%, p < 0.001). Significant effects of TRE over time were observed on plasma IGFBP2, insulin, HOMA-IR, and 8-isoprostane levels, without affecting other biomarkers. In the sub-analysis, IGFBP2 increased while leptin and 8-isoprostane decreased significantly only in the "higher weight loss" subgroup. Changes in insulin and HOMA-IR were related to TRE adherence. CONCLUSIONS Eight-week daily 4 to 6 h TRE did not affect IGF1, IGFBP1, or IGFBP3 levels but improved insulin, HOMA-IR, and 8-isoprostane. IGFBP2 increased and leptin decreased when weight loss exceeded 3.5% of baseline.
Collapse
Affiliation(s)
- Rand Talal Akasheh
- Department of Nutrition and Dietetics, American University of Madaba, Madaba P.O. Box 2882, Jordan
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Columbus, OH 43214, USA (F.K.)
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60607, USA (S.P.R.)
| | - Aparna Ankireddy
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60607, USA (S.P.R.)
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60607, USA (S.L.)
| | - Mark Ezpeleta
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60607, USA (S.L.)
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60607, USA (S.L.)
| | - Chandra Mohan Tamatam
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60607, USA (S.P.R.)
| | - Sekhar P. Reddy
- Department of Pediatrics, University of Illinois Chicago, Chicago, IL 60607, USA (S.P.R.)
| | - Bonnie Spring
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ting-Yuan David Cheng
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Columbus, OH 43214, USA (F.K.)
| | - Luigi Fontana
- Charles Perkins Centre RPA Clinic, Sydney Medical School, University of Sydney, Sydney 2009, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Seema Ahsan Khan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60607, USA (S.L.)
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60607, USA (S.L.)
| | - Faiza Kalam
- Division of Cancer Prevention and Control, Department of Internal Medicine, The Ohio State University, Columbus, OH 43214, USA (F.K.)
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Čermáková E, Forejt M, Čermák M. The Influence of Intermittent Fasting on Selected Human Anthropometric Parameters. Int J Med Sci 2024; 21:2630-2639. [PMID: 39512696 PMCID: PMC11539393 DOI: 10.7150/ijms.99116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024] Open
Abstract
Background: Intermittent fasting may be an effective tool for weight loss, but it is still unclear from previous studies to date whether it is as effective as a continuous energy restriction in terms of reducing adipose tissue and whether it leads to unwanted muscle loss. Objectives: The aim of this study was to compare the effect of intermittent fasting (IF) with continuous energy restriction (CER) on the body weight and body composition and to assess the effect of intermittent fasting also in isolation from the energy restriction. Methods: After completion of a three-week dietary intervention, differences in the weight loss and differences in the body composition were compared between three groups. The first group consumed 75% of their calculated energy intake requirements in a six-hour time window. The second group consumed 75% of their calculated energy intake requirements without a time window and the third group consumed 100% of their calculated energy intake requirements in a six-hour time window. The changes in the weight and body composition were assessed by BIA. Results: Of the 95 randomized participants, 75 completed the intervention phase of the study. The highest mean weight loss was achieved by the IF with ER (energy restriction) group (2.3 ± 1.4 kg), followed by the CER group (2.2 ± 1.1 kg); the difference between the groups did not reach statistical significance. The lowest mean weight loss was observed in the IF without ER group (1.1 ± 1.2 kg), the difference reaching statistical significance compared to the IF with ER (p=0.003) and CER (p=0.012) groups. The highest mean adipose tissue loss was observed in the CER group (1.5 ± 1.2 kg) followed by the IF with ER group (1.3 ± 1.1 kg), with no statistically significant differences between the groups. A mean adipose tissue loss was found in the IF without ER group (0.9 ± 1.1 kg) with no statistically significant differences compared to the IF with ER and CER groups. The highest mean fat-free mass loss was found in the IF with ER group (1.1 ± 1.0 kg), followed by the CER group (0.65 ± 0.91 kg) with no statistically significant differences. The IF without ER group showed the lowest mean fat-free mass loss (0.2 ± 1.3 kg), which reached statistical significance compared to the IF with ER group (p=0.027). Conclusion: The results showed a comparable effect in the weight loss and body fat reduction regardless of the timing of the food intake. The diet quality, together with the energy intake, appeared to be one of the most important factors influencing the body composition.
Collapse
Affiliation(s)
- Erika Čermáková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Forejt
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | | |
Collapse
|
20
|
Xie Y, Zhou K, Shang Z, Bao D, Zhou J. The Effects of Time-Restricted Eating on Fat Loss in Adults with Overweight and Obese Depend upon the Eating Window and Intervention Strategies: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3390. [PMID: 39408357 PMCID: PMC11478505 DOI: 10.3390/nu16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Time-restricted eating (TRE) is a circadian rhythm-based intermittent fasting intervention that has been used to treat obesity. However, the efficacy and safety of TRE for fat loss have not been comprehensively examined and the influences of TRE characteristics on such effects are unknown. This systematic review and meta-analysis comprehensively characterized the efficacy and safety of TRE for fat loss in adults with overweight and obese, and it explored the influence of TRE characteristics on this effect. METHODS A search strategy based on the PICOS principle was used to find relevant publications in seven databases. The outcomes were body composition, anthropometric indicators, and blood lipid metrics. Twenty publications (20 studies) with 1288 participants, covering the period from 2020 to 2024, were included. RESULTS Compared to the control group, TRE safely and significantly reduced body fat percentage, fat mass, lean mass, body mass, BMI, and waist circumference (MDpooled = -2.14 cm, 95% CI = -2.88~-1.40, p < 0.001), and increased low-density lipoprotein (LDL) (MDpooled = 2.70, 95% CI = 0.17~5.22, p = 0.037), but it did not alter the total cholesterol, high-density lipoprotein, and triglycerides (MDpooled = -1.09~1.20 mg/dL, 95% CI -4.31~5.47, p > 0.05). Subgroup analyses showed that TRE only or TRE-caloric restriction with an eating window of 6 to 8 h may be appropriate for losing body fat and overall weight. CONCLUSIONS This work provides moderate to high evidence that TRE is a promising dietary strategy for fat loss. Although it may potentially reduce lean mass and increase LDL, these effects do not pose significant safety concerns. This trial was registered with PROSPERO as CRD42023406329.
Collapse
Affiliation(s)
- Yixun Xie
- College of Education, Beijing Sport University, Beijing 100084, China;
| | - Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing 401331, China;
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing 400065, China;
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
21
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Tang W, Yin X, Liu K, Shao T, Gao Q, Shen H, Zhong X, Zhang Z. The reduction of imidazole propionate induced by intermittent fasting promotes recovery of peripheral nerve injury by enhancing migration of Schwann cells. Exp Cell Res 2024; 442:114261. [PMID: 39303838 DOI: 10.1016/j.yexcr.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Peripheral nerve injury (PNI) accompanied with sensory and motor dysfunction has serious effect on the quality of life of patients. Intermittent fasting (IF), as a dietary pattern, has rarely been reported to influence imidazole propionate (ImP), a microbial metabolite, in vivo. To date, the link between ImP and PNI is unknown. This study aimed to explore the impact of ImP on the recovery after PNI and determine whether IF could reduce the concentration of ImP in vivo. Sciatic nerve injury rat model and RSC96 cells were utilized with 16s RNA seq, HE staining, CCK-8 assay, Western blot (WB), Transmission electron microscopy (TEM), immunofluorescence, transwell and scratch wound healing assays as read outs. WB, TEM, transwell and wound healing assay showed an inhibitory effect of ImP on autophagy and migration of Schwann cells. This negative effect on migration was reversed by rapamycin. Detection of p-Erk and p-mTOR confirmed that the MAPK/Erk/mTOR pathway was involved in this process. In vivo, IF changed the composition of gut microbiome, including bacteria related to ImP production and reduced the concentration of ImP in serum. In sum, IF influenced the composition of gut microbiome and reduced the concentration of ImP in vivo. The reduction of ImP promoted migration of SCs through enhancing autophagy which involved MAPK/Erk/mTOR pathway.
Collapse
Affiliation(s)
- Weilong Tang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Yin
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kunyu Liu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Shao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichang Gao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Shen
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Zhenyu Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
24
|
Karras SN, Michalakis K, Tekos F, Skaperda Z, Vardakas P, Ziakas PD, Kypraiou M, Anemoulis M, Vlastos A, Tzimagiorgis G, Haitoglou C, Georgopoulos N, Papanikolaou EG, Kouretas D. Effects of Religious Fasting on Markers of Oxidative Status in Vitamin D-Deficient and Overweight Orthodox Nuns versus Implementation of Time-Restricted Eating in Lay Women from Central and Northern Greece. Nutrients 2024; 16:3300. [PMID: 39408266 PMCID: PMC11478604 DOI: 10.3390/nu16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: The Mediterranean diet has been widely suggested to exert significant beneficial effects on endothelial oxidative status and cardiometabolic health. Greek Orthodox monasteries, due to their specific nutritional and sartorial habits, comprise a population thatstrictly adheres to nutritional patterns with restricted eating and a plant-based subset of the Mediterranean diet, often accompanied by profound hypovitaminosis D. Time-restricted eating (TRE) is also adopted bya large part of the general lay Greek population for health-promoting reasons, without restrictions on animal product consumption, as imposed by Orthodox religious fasting. However, the comparative effects of these nutritional patterns on oxidative stress markers remain scarce. Methods: The present study attempted to evaluate the effects of Christian Orthodox fasting (COF) in a group of vitamin D-deficient and overweight Orthodox nuns from Central and Northern Greece compared to the implementation of TRE, a 16:8 dietary regimen (16 h of food abstinence and 8 h of feeding) in a cohort of adult women from the general population from the same region with regard to markers of endothelial oxidative status. A group of 50 women from two Orthodox monasteries in Northern Greece and one group of 50 healthy lay women were included. During the enrollment, a detailed recording of their dietary habits was performed, along with a scientific registry of their demographic and anthropometric characteristics (via bioimpedance). The Orthodox nuns followed a typical Orthodox fasting regimen [daily feeding window (8 a.m.-4 p.m.)], whereas the lay women followed a TRE 16:8 regimen with the same feeding time-window with a recommendation to follow a low-fat diet, without characteristics of the Mediterranean diet. We included a complete biochemical analysis, as well as calciotropic profiles [calcium-Ca, albumin, parathyroid hormone-PTH, and 25-hydroxyvitamin D-25(OH)D] and markers of TAC (total antioxidant capacity), GSH (glutathione),and thiobarbituric acid reactive substances (TBARSs) concentrations as markers of oxidative status. Results: All the groups were compared at the baseline regarding their calcium, PTH, and 25(OH)D concentrations, with no statistically significant differences between the groups apart from higher PTH levels in the nuns due to lower 25(OH)D levels. The Orthodox nuns manifested a lower median GSH compared to the controls (6.0 vs. 7.2, p 0.04) and a higher median TAC (0.92 vs. 0.77, p < 0.001). The TBARS comparisons showed no significant difference between the two groups. No significant associations of oxidative status with 25(OH)D, PTH, and the markers of glucose homeostasis were evident. Conclusions: The results of this small pilot study indicate that both dietary regimens have advantages over the oxidative markers compared to each other, with increased TAC in the group of Orthodox nuns after a 16-week period of COF compared to a 16:8 TRE and increased GSH concentrations in the lay women group. Future randomized trials are required to investigate the superiority or non-inferiority between these dietary patterns in the daily clinical setting.
Collapse
Affiliation(s)
- Spyridon N. Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 55535 Thessaloniki, Greece; (G.T.); (C.H.)
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.)
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.)
| | - Periklis Vardakas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.)
| | | | - Maria Kypraiou
- Assisting Nature Centre of Reproduction and Genetics, 57001 Thessaloniki, Greece
| | - Marios Anemoulis
- Medical School, Aristotle University, 55535 Thessaloniki, Greece (A.V.)
| | - Antonios Vlastos
- Medical School, Aristotle University, 55535 Thessaloniki, Greece (A.V.)
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 55535 Thessaloniki, Greece; (G.T.); (C.H.)
| | - Costas Haitoglou
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 55535 Thessaloniki, Greece; (G.T.); (C.H.)
| | - Neoklis Georgopoulos
- Division of Endocrinology, Department of Internal Medicine, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | | | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.)
| |
Collapse
|
25
|
Skarstad HMS, Haganes KL, Sujan MAJ, Gellein TM, Johansen MK, Salvesen KÅ, Hawley JA, Moholdt T. A randomized feasibility trial of time-restricted eating during pregnancy in people with increased risk of gestational diabetes. Sci Rep 2024; 14:22476. [PMID: 39341847 PMCID: PMC11439041 DOI: 10.1038/s41598-024-72913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Time-restricted eating (TRE) is a nutritional intervention that confines the daily time-window for energy intake. TRE reduces fasting glucose concentrations in non-pregnant individuals, but whether this eating protocol is feasible and effective for glycemic control in pregnancy is unknown. The aim of this randomized controlled trial was to investigate the adherence to and effect of a 5-week TRE intervention (maximum 10 h daily eating window) among pregnant individuals at risk of gestational diabetes mellitus (GDM), compared with a usual-care control group. Participants underwent 2-h oral glucose tolerance tests and estimation of body composition, before and after the intervention. Interstitial glucose levels were continuously measured, and adherence rates and ratings of hunger were recorded daily. Thirty of 32 participants completed the trial. Participants allocated to TRE reduced their daily eating window from 12.3 (SD 1.3) to 9.9 (SD 1.0) h, but TRE did not affect glycemic measures, blood pressure, or body composition, compared with the control group. TRE increased hunger levels in the evening, but not in the morning, and induced only small changes in dietary intake. Adhering to a 5-week TRE intervention was feasible for pregnant individuals with increased risk of GDM but had no effect on cardiometabolic outcomes.
Collapse
Affiliation(s)
- Hanna M S Skarstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kamilla L Haganes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
| | - Md Abu Jafar Sujan
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
| | - Trine M Gellein
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariell K Johansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjell Å Salvesen
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Hawley
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway.
| |
Collapse
|
26
|
Huang J, Li Y, Chen M, Cai Z, Cai Z, Jiang Z. Comparing caloric restriction regimens for effective weight management in adults: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 2024; 21:108. [PMID: 39327619 PMCID: PMC11425986 DOI: 10.1186/s12966-024-01657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Randomized controlled trials have confirmed the effectiveness of four prevalent caloric restriction regimens in reducing obesity-related health risks. However, there is no consensus on the optimal regimen for weight management in adults. METHODS We systematically searched PubMed, Embase, Web of Science, and Cochrane CENTRAL up to January 15, 2024, for randomized controlled trials (RCT) involving adults, evaluating the weight-loss effects of alternate day fasting (ADF), short-term fasting (STF), time-restricted eating (TRE), and continuous energy restriction (CER). The primary outcome was body weight, with secondary outcomes including BMI, fat mass, lean mass, waist circumference, fasting glucose, HOMA-IR, and adverse events. Bayesian network meta-analysis was conducted, ranking regimens using the surface under the cumulative ranking curve and the probability of being the best. Study quality was assessed using the Confidence in Network Meta-Analysis tool. RESULTS Data from 47 RCTs (representing 3363 participants) were included. ADF showed the most significant body weight loss (Mean difference (MD): -3.42; 95% Confidence interval (CI): -4.28 to -2.55), followed by TRE (MD: -2.25; 95% CI: -2.92 to -1.59). STF (MD: -1.87; 95% CI: -3.32 to -0.56) and CER (MD: -1.59; 95% CI: -2.42 to -0.79) rank third and fourth, respectively. STF lead to decline in lean mass (MD: -1.26; 95% CI: -2.16, -0.47). TRE showed benefits on fasting glucose (MD: -2.98; 95% CI: -4.7, -1.26). Subgroup analysis revealed all four caloric restriction regimens likely lead to modest weight loss after 1-3 months, with ADF ranked highest, but by 4-6 months, varying degrees of weight regain occur, particularly with CER, while interventions lasting 7-12 months may result in effective weight loss, with TRE potentially ranking first during both the 4-6 months and 7-12 months periods. ADF showing fewer and shorter-lasting physical symptoms. CONCLUSION All four included regiments were effective in reducing body weight, with ADF likely having the most significant impact. Each regimen likely leads to modest weight loss after 1-3 months, followed by weight regain by 4-6 months. However, interventions lasting 7-12 months achieve greater weight loss overall. TRIAL REGISTRATION PROSPERO: CRD42022382478.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Maohua Chen
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhaolun Cai
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Wang X, Zhang J, Xu X, Pan S, Cheng L, Dang K, Qi X, Li Y. Associations of daily eating frequency and nighttime fasting duration with biological aging in National Health and Nutrition Examination Survey (NHANES) 2003-2010 and 2015-2018. Int J Behav Nutr Phys Act 2024; 21:104. [PMID: 39300516 DOI: 10.1186/s12966-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Information on the influences of daily eating frequency (DEF) and nighttime fasting duration (NFD) on biological aging is minimal. Our study investigated the potential associations of DEF and NFD with accelerated aging. METHODS Out of 24212 participants in NHANES 2003-2010 and 2015-2018, 4 predicted age metrics [homeostatic dysregulation (HD), Klemera-Doubal method (KDM), phenoAge (PA), and allostatic load (AL)] were computed based on 12 blood chemistry parameters. Utilizing 24-h dietary recall, DEF was measured by the frequency of eating occurrences, while NFD was determined by assessing the timing of the initial and final meals throughout the day. Weighted multivariate linear regression models and restricted cubic spline (RCS) were utilized to examine the associations. RESULTS Compared to DEF of ≤ 3.0 times, subjects with DEF ≥ 4.6 times demonstrated lower KDM residual [β: -0.57, 95% confidence-interval (CI): (-0.97, -0.17)] and PA residual [β: -0.47, 95% CI: (-0.69, -0.25)]. In comparison to NFD between 10.1 and 12.0 h, individuals with NFD ≤ 10.0 h were at higher HD [β: 0.03, 95% CI: (0.01, 0.04)], KDM residual [β: 0.34, 95% CI: (0.05, 0.63)], and PA residual [β: 0.38, 95% CI: (0.18, 0.57)]. Likewise, those with NFD ≥ 14.1 h also had higher HD [β: 0.02, 95% CI: (0.01, 0.04)] and KDM residual [β: 0.33, 95% CI: (0.03, 0.62)]. The results were confirmed by the dose-response relationships of DEF and NFD with predicted age metrics. Lactate dehydrogenase (LDH) and globulin (Glo) were acknowledged as implicated in and mediating the relationships. CONCLUSIONS DEF below 3.0 times and NFD less than 10.0 or more than 14.1 h were independently associated with higher predicted age metrics.
Collapse
Affiliation(s)
- Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Xiaoqing Xu
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Keke Dang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Xiang Qi
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road, Harbin, 150081, P. R. China.
| |
Collapse
|
28
|
Aamir AB, Kumari R, Latif R, Ahmad S, Rafique N, Salem AM, Alasoom LI, Alsunni A, Alabdulhadi AS, Chander S. Effects of intermittent fasting and caloric restriction on inflammatory biomarkers in individuals with obesity/overweight: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2024:e13838. [PMID: 39289905 DOI: 10.1111/obr.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Obesity is characterized by chronic low-grade inflammation. This study presents an updated systematic review and meta-analysis on the effect of caloric restriction (CR) and intermittent fasting (IF) on plasma inflammatory biomarkers (C-reactive protein [CRP], tumor necrosis factor [TNF]-alpha, and interleukin [IL]-6) in individuals with obesity/overweight compared with unrestricted or ad libitum feeding. METHODS PubMed, Web of Science, and SCOPUS databases were searched for randomized controlled trials (RCTs) reporting inflammatory biomarkers after at least 8 weeks of intervention. Standardized mean differences (SMDs) were calculated using a fixed effect model. Heterogeneity was determined using I2 statistics. Sensitivity analysis was conducted using the "leave-one-out" approach. RESULTS Relatively few RCTs have investigated the effect of IF on inflammatory biomarkers than with CR (6 vs. 15). Analysis of pooled data showed that CR was associated with a significant reduction in CRP with low heterogeneity (SMD -0.15 mg/L [95% CI -0.30 to -0.00], p = 0.04; I2 = 0%, p = 0.69) and IL-6 with high heterogeneity (SMD -0.31 pg/mL [95% CI -0.51 to -0.10], p = 0.004; I2 = 73%, p = 0.001). IF was associated with a significant decrease in TNF-alpha with moderate heterogeneity (SMD -0.32 pg/mL [95% CI -0.63 to -0.02], p = 0.04; I2 = 44%, p = 0.13). No associations were detected between IF and CRP or IL-6 and CR and TNF-alpha. CONCLUSION CR may be more effective in reducing chronic low-grade inflammation than IF. However, there were some concerns regarding the included studies' randomization and allocation sequence concealment process.
Collapse
Affiliation(s)
- Ahmad Bin Aamir
- Punjab Medical College, Faisalabad Medical University, Faisalabad, Pakistan
| | - Roopa Kumari
- Department of Surgical Pathology, Mayo Clinic Rochester, MN, USA
| | - Rabia Latif
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shakil Ahmad
- Directorate of Library Affairs, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nazish Rafique
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ayad M Salem
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lubna I Alasoom
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Alsunni
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aseel S Alabdulhadi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Subhash Chander
- Department of Critical Care Medicine, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
29
|
Zhang H, Du J, Zhang M, Li T, Zhang P, Wang X, Sun Z. Effects of Different Caloric Restriction Patterns on Blood Pressure and Other Cardiovascular Risk Factors: A Systematic Review and Network Meta-Analysis of Randomized Trials. Nutr Rev 2024:nuae114. [PMID: 39254522 DOI: 10.1093/nutrit/nuae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
CONTEXT All types of caloric restriction are preventive against cardiovascular risk factors, but the best restriction method and most affected factors have not been identified. OBJECTIVE The objective of this study was to explore the effects of different caloric restriction methods on various cardiovascular risk factors by horizontally comparing program advantages and disadvantages via network meta-analysis. DATA SOURCES The PubMed, Web of Science, Cochrane Library, and Embase literature databases were searched (October 2013 to October 2023). DATA EXTRACTION Eligible randomized controlled trials involving participants who underwent caloric restriction and systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), and high-density lipoprotein (HDL) cholesterol level measurements were included. DATA ANALYSIS Thirty-six of 13 208 records (0.27%) were included. Two researchers reviewed the articles, extracted data, and assessed article quality. RESULTS Alternate-day fasting (ADF) reduced SBP (4.88 mmHg; CI, 2.06-7.15) and DBP (5.10 mmHg; CI, 2.44-7.76). Time-restricted eating reduced SBP (2.46 mmHg; CI, 0.16-4.76) but not DBP. Continuous energy restriction (CER) significantly reduced BMI (1.11 kg/m2; CI = 0.16, 2.06) and waist circumference (3.28 cm; CI, 0.62-5.94). CONCLUSIONS This meta-analysis confirmed the preventive effect of CER and ADF on various cardiovascular risk factors. Additionally, CER is more likely to reduce obesity, and ADF is more likely to reduce blood pressure (BP). Based on this meta-analysis, CER is recommended to control obesity only for people who are obese and do not have elevated BP or other abnormal indicators. Additionally, ADF for early control or prevention is recommended for patients who have abnormal BP or other cardiovascular risk factors. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023455889.
Collapse
Affiliation(s)
- Hui Zhang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Jinchao Du
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Mingchen Zhang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Tingting Li
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Pingping Zhang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Xiaowen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Zhongguang Sun
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
30
|
Xie Y, Gu Y, Li Z, He B, Zhang L. Effects of Different Exercises Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-Analysis. Nutrients 2024; 16:3007. [PMID: 39275322 PMCID: PMC11397086 DOI: 10.3390/nu16173007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Exercise and dietary interventions are essential for maintaining weight and reducing fat accumulation. With the growing popularity of various dietary strategies, evidence suggests that combining exercise with dietary interventions offers greater benefits than either approach alone. Consequently, this combined strategy has become a preferred method for many individuals aiming to maintain health. Calorie restriction, 5/2 intermittent fasting, time-restricted feeding, and the ketogenic diet are among the most popular dietary interventions today. Aerobic exercise, resistance training, and mixed exercise are the most widely practiced forms of physical activity. Exploring the best combinations of these approaches to determine which yields the most effective results is both meaningful and valuable. Despite this trend, a comparative analysis of the effects of different exercise and diet combinations is lacking. This study uses network meta-analysis to evaluate the impact of various combined interventions on body composition and to compare their efficacy. METHODS We systematically reviewed literature from database inception through May 2024, searching PubMed, Web of Science, Embase, and the Cochrane Library. The study was registered in PROSPERO under the title: "Effects of Exercise Combined with Different Dietary Interventions on Body Composition: A Systematic Review and Network Meta-Analysis" (identifier: CRD42024542184). Studies were meticulously selected based on specific inclusion and exclusion criteria (The included studies must be randomized controlled trials involving healthy adults aged 18 to 65 years. Articles were rigorously screened according to the specified inclusion and exclusion criteria.), and their risk of bias was assessed using the Cochrane risk of bias tool. Data were aggregated and analyzed using network meta-analysis, with intervention efficacy ranked by Surface Under the Cumulative Ranking (SUCRA) curves. RESULTS The network meta-analysis included 78 randomized controlled trials with 5219 participants, comparing the effects of four combined interventions: exercise with calorie restriction (CR+EX), exercise with time-restricted eating (TRF+EX), exercise with 5/2 intermittent fasting (5/2F+EX), and exercise with a ketogenic diet (KD+EX) on body composition. Intervention efficacy ranking was as follows: (1) Weight Reduction: CR+EX > KD+EX > TRF+EX > 5/2F+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 2.94 (-3.64, 9.52); 2.37 (-0.40, 5.15); 1.80 (-1.75, 5.34)). (2) BMI: CR+EX > KD+EX > 5/2F+EX > TRF+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 1.95 (-0.49, 4.39); 2.20 (1.08, 3.32); 1.23 (-0.26, 2.71)). (3) Body Fat Percentage: CR+EX > 5/2F+EX > TRF+EX > KD+EX (Relative to CR+EX, the effect sizes of 5/2F+EX, TRF+EX and KD+EX are 2.66 (-1.56, 6.89); 2.84 (0.56, 5.13); 3.14 (0.52, 5.75).). (4) Lean Body Mass in Male: CR+EX > TRF+EX > KD+EX (Relative to CR+EX, the effect sizes of TRF+EX and KD+EX are -1.60 (-6.98, 3.78); -2.76 (-7.93, 2.40)). (5) Lean Body Mass in Female: TRF+EX > CR+EX > 5/2F+EX > KD+EX (Relative to TRF+EX, the effect sizes of CR+EX, 5/2F+EX and KD+EX are -0.52 (-2.58, 1.55); -1.83 (-4.71, 1.04); -2.46 (-5.69,0.76).). CONCLUSION Calorie restriction combined with exercise emerged as the most effective strategy for reducing weight and fat percentage while maintaining lean body mass. For women, combining exercise with time-restricted eating proved optimal for preserving muscle mass. While combining exercise with a ketogenic diet effectively reduces weight, it is comparatively less effective at decreasing fat percentage and preserving lean body mass. Hence, the ketogenic diet combined with exercise is considered suboptimal.
Collapse
Affiliation(s)
- Yongchao Xie
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| | - Yu Gu
- Henan Sports Medicine and Rehabilitation Center, Henan Sport University, Zhengzhou 450044, China;
| | - Zhen Li
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| | - Bingchen He
- Department of Physical Education, South China University of Technology, Guangzhou 510641, China;
| | - Lei Zhang
- Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China; (Y.X.); (Z.L.)
| |
Collapse
|
31
|
Zambrano C, González E, Salmeron D, Ruiz-Ojeda FJ, Luján J, Scheer FA, Garaulet M. Time-restricted eating affects human adipose tissue fat mobilization. Obesity (Silver Spring) 2024; 32:1680-1688. [PMID: 39073251 PMCID: PMC11357894 DOI: 10.1002/oby.24057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Time-restricted eating (TRE), a dietary approach that confines food intake to specific time windows, has shown metabolic benefits. However, its impact on body weight loss remains inconclusive. The objective of this study was to investigate the influence of early TRE (eTRE) and delayed TRE (dTRE) on fat mobilization using human adipose tissue (AT) cultures. METHODS Subcutaneous AT was collected from 21 participants with severe obesity. We assessed fat mobilization by measuring glycerol release in AT culture across four treatment conditions: control, eTRE, dTRE, and 24-h fasting. RESULTS TRE had a significant impact on lipolysis (glycerol release [mean (SD)] in micromoles per hour per gram: control, 0.05 [0.003]; eTRE, 0.10 [0.006]; dTRE, 0.08 [0.005]; and fasting, 0.17 [0.008]; p < 0.0001). Both eTRE and dTRE increased lipolysis compared with the control group, with eTRE showing higher glycerol mobilization than dTRE during the overall 24-h time window, especially at the nighttime/habitual sleep episode (p < 0.0001). Further analysis of TRE based on fasting duration revealed that, independently of the time window, glycerol release increased with fasting duration (in micromoles per hour per gram: 8 h = 0.08 [0.001]; 12 h = 0.09 [0.008]; and 16 h of fasting = 0.12 [0.011]; p < 0.0001). CONCLUSIONS This study provides insights into the potential benefits of TRE on fat mobilization and may guide the design of future dietary strategies for weight management and metabolic health.
Collapse
Affiliation(s)
- Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
| | - Elena González
- Department of Nutrition and integrative physiology, University of Utah, Salt Lake City, Utah, United States
| | - Diego Salmeron
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
- Health and Social Sciences Department, University of Murcia, Murcia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quiron salud Murcia, Spain
| | - Frank A.J.L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, Cambridge, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, 30100 Murcia, Spain
- Biomedical Research Institute of Murcia, IMIB-Arrixaca-UMU, University Clinical Hospital 30120, Murcia, Spain
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
32
|
Diab R, Dimachkie L, Zein O, Dakroub A, Eid AH. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health. Cell Biochem Biophys 2024; 82:1583-1597. [PMID: 38847940 PMCID: PMC11445340 DOI: 10.1007/s12013-024-01314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 10/02/2024]
Abstract
Obesity is a leading cause of morbidity and mortality globally. While the prevalence of obesity has been increasing, the incidence of its related complications including dyslipidemia and cardiovascular disease (CVD) has also been rising. Recent research has focused on modalities aimed at reducing obesity. Several modalities have been suggested including behavioral and dietary changes, medications, and bariatric surgery. These modalities differ in their effectiveness and invasiveness, with dietary changes gaining more interest due to their minimal risks compared to other modalities. Specifically, intermittent fasting (IF) has been gaining interest in the past decade. IF is characterized by cycles of alternating fasting and eating windows, with several different forms practiced. IF has been shown to reduce weight and alleviate obesity-related complications. Our review of clinical and experimental studies explores the effects of IF on the lipid profile, white adipose tissue (WAT) dynamics, and the gut microbiome. Notably, IF corrects dyslipidemia, reduces WAT accumulation, and decreases inflammation, which reduces CVD and obesity. This comprehensive analysis details the protective metabolic role of IF, advocating for its integration into public health practices.
Collapse
Affiliation(s)
- Rawan Diab
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
33
|
Wu Y, Nie Q, Wang Y, Liu Y, Liu W, Wang T, Zhang Y, Cao S, Li Z, Zheng J, Nie Z, Zhou L. Associations between temporal eating patterns and body composition in young adults: a cross-sectional study. Eur J Nutr 2024; 63:2071-2080. [PMID: 38700577 DOI: 10.1007/s00394-024-03414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/20/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The aim of this study was to examine the associations between body composition and temporal eating patterns, including time of first eating occasion, time of last eating occasion, eating window, and eating jet lag (the variability in meal timing between weekdays and weekends). METHODS A total of 131 participants were included in the study. Temporal eating pattern information was collected through consecutive 7-day eat timing questionnaires and photographic food records. Body composition was assessed by bioelectrical impedance analysis. Multiple linear regression models were used to evaluate the relationships of temporal eating patterns with body composition, and age was adjusted. Eating midpoint was additionally adjusted in the analysis of eating window. RESULTS On weekdays, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with lower body fat percentage. On weekends, both later first eating occasion and last eating occasion were associated with lower lean mass, and longer eating window was associated with higher FFMI. Longer first eating occasion jet lag was associated with lower lean mass. CONCLUSION Our study suggested that earlier and more regular eating patterns may have a benefit on body composition.
Collapse
Affiliation(s)
- Yuchi Wu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Qi Nie
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yuqian Wang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yuqin Liu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Weibo Liu
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Tian Wang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Yaling Zhang
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Sisi Cao
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Zhengrong Li
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Jianghong Zheng
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Zichun Nie
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China
| | - Li Zhou
- Department of Nutrition Hygiene and Toxicology, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 10, Huangjiahu Road, Wuhan, China.
| |
Collapse
|
34
|
Khalafi M, Habibi Maleki A, Symonds ME, Rosenkranz SK, Rohani H, Ehsanifar M. The effects of intermittent fasting on body composition and cardiometabolic health in adults with prediabetes or type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2024; 26:3830-3841. [PMID: 38956175 DOI: 10.1111/dom.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024]
Abstract
AIM To perform a meta-analysis to investigate the effects of intermittent fasting (IF), as compared with either a control diet (CON) and/or calorie restriction (CR), on body composition and cardiometabolic health in individuals with prediabetes and type 2 diabetes (T2D). METHODS PubMed, Web of Science, and Scopus were searched from their inception to March 2024 to identify original randomized trials with parallel or crossover designs that studied the effects of IF on body composition and cardiometabolic health. Weighted mean differences (WMDs) or standardized mean differences with 95% confidence intervals (CIs) were calculated using random-effects models. RESULTS Overall, 14 studies involving 1101 adults with prediabetes or T2D were included in the meta-analysis. IF decreased body weight (WMD -4.56 kg [95% CI -6.23 to -2.83]; p = 0.001), body mass index (BMI; WMD -1.99 kg.m2 [95% CI -2.74 to -1.23]; p = 0.001), glycated haemoglobin (HbA1c; WMD -0.81% [95% CI -1.24 to -0.38]; p = 0.001), fasting glucose (WMD -0.36 mmol/L [95% CI -0.63 to -0.09]; p = 0.008), total cholesterol (WMD -0.31 mmol/L [95% CI -0.60 to -0.02]; p = 0.03) and triglycerides (WMD -0.14 mmol/L [95% CI -0.27 to -0.01]; p = 0.02), but did not significantly decrease fat mass, insulin, low-densitiy lipoprotein, high-density lipoprotein, or blood pressure as compared with CON. Furthermore, IF decreased body weight (WMD -1.14 kg [95% CI -1.69 to -0.60]; p = 0.001) and BMI (WMD -0.43 kg.m2 [95% CI -0.58 to -0.27]; p = 0.001), but did not significantly affect fat mass, lean body mass, visceral fat, insulin, HbA1c, lipid profiles or blood pressure. CONCLUSION Intermittent fasting is effective for weight loss and specific cardiometabolic health markers in individuals with prediabetes or T2D. Additionally, IF is associated with a reduction in body weight and BMI compared to CR, without effects on glycaemic markers, lipid profiles or blood pressure.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Aref Habibi Maleki
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Michael E Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Hadi Rohani
- Department of Exercise Physiology, Sport Sciences Research Institute, Tehran, Iran
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
35
|
Sukkriang N, Buranapin S. Effect of intermittent fasting 16:8 and 14:10 compared with control-group on weight reduction and metabolic outcomes in obesity with type 2 diabetes patients: A randomized controlled trial. J Diabetes Investig 2024; 15:1297-1305. [PMID: 38932663 PMCID: PMC11363092 DOI: 10.1111/jdi.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS/INTRODUCTION To compare the percent weight change and metabolic outcomes among diabetic participants with obesity on intermittent fasting (IF) 16:8, IF 14:10, or normal controlled diets. MATERIALS AND METHODS A randomized controlled trial was conducted to randomize participants into three groups. Each group followed IF 16:8, IF 14:10, according to the protocol 3 days/week for 3 months or a control group. RESULTS A total of 99 participants completed the study. The percentage weight change from baseline was -4.02% (95% CI, -4.40 to -3.64) in IF 16:8, -3.15% (95% CI, -3.41 to -2.89) in IF 14:10, and -0.55% (95% CI, -1.05 to -0.05) in the control group. The percentage weight loss from baseline was significantly more in both IF groups (P < 0.001, both) when compared with the control group. Weight loss was significantly more in the IF 16:8 group than in that of the IF 14:10 group (P < 0.001). Metabolic outcomes (decrease in FBS and HbA1C, and improvement in lipid profiles) were significantly improved from baseline in both IF groups in comparison with the control group. CONCLUSIONS Either IF 16:8 or 14:10 had a benefit in the percentage weight change, glucose and lipid profiles in obese diabetic patients compared with the control group when consumed for 3 days a week for 3 months.
Collapse
Affiliation(s)
| | - Supawan Buranapin
- Division of Endocrinology, Department of Internal Medicine, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| |
Collapse
|
36
|
Emara MH, Soliman H, Said EM, Elbatae H, Elazab M, Elhefnawy S, Zaher TI, Abdel-Razik A, Elnadry M. Intermittent fasting and the liver: Focus on the Ramadan model. World J Hepatol 2024; 16:1070-1083. [PMID: 39221099 PMCID: PMC11362902 DOI: 10.4254/wjh.v16.i8.1070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Intermittent fasting (IF) is an intervention that involves not only dietary modifications but also behavioral changes with the main core being a period of fasting alternating with a period of controlled feeding. The duration of fasting differs from one regimen to another. Ramadan fasting (RF) is a religious fasting for Muslims, it lasts for only one month every one lunar year. In this model of fasting, observers abstain from food and water for a period that extends from dawn to sunset. The period of daily fasting is variable (12-18 hours) as Ramadan rotates in all seasons of the year. Consequently, longer duration of daily fasting is observed during the summer. In fact, RF is a peculiar type of IF. It is a dry IF as no water is allowed during the fasting hours, also there are no calorie restrictions during feeding hours, and the mealtime is exclusively nighttime. These three variables of the RF model are believed to have a variable impact on different liver diseases. RF was evaluated by different observational and interventional studies among patients with non-alcoholic fatty liver disease and it was associated with improvements in anthropometric measures, metabolic profile, and liver biochemistry regardless of the calorie restriction among lean and obese patients. The situation is rather different for patients with liver cirrhosis. RF was associated with adverse events among patients with liver cirrhosis irrespective of the underlying etiology of cirrhosis. Cirrhotic patients developed new ascites, ascites were increased, had higher serum bilirubin levels after Ramadan, and frequently developed hepatic encephalopathy and acute upper gastrointestinal bleeding. These complications were higher among patients with Child class B and C cirrhosis, and some fatalities occurred due to fasting. Liver transplant recipients as a special group of patients, are vulnerable to dehydration, fluctuation in blood immunosuppressive levels, likelihood of deterioration and hence observing RF without special precautions could represent a real danger for them. Patients with Gilbert syndrome can safely observe RF despite the minor elevations in serum bilirubin reported during the early days of fasting.
Collapse
Affiliation(s)
- Mohamed H Emara
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
- Department of Medicine, Alyousif Hospital, Alkhobar 34622, Saudi Arabia.
| | - Hanan Soliman
- Department of Tropical Medicine and Infectious Diseases, Tanta University, Tanta 31512, Egypt
| | - Ebada M Said
- Department of Hepatology, Gastroenterology and Infectious Diseases, Benha University, Benha 13511, Egypt
| | - Hassan Elbatae
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Mostafa Elazab
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Shady Elhefnawy
- Department of Hepatology, Gastroenterology and Infectious Diseases, Kafrelsheikh University, Kafr-Elshikh 33516, Egypt
| | - Tarik I Zaher
- Department of Tropical Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Abdel-Razik
- Department of Tropical Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Elnadry
- Department of Hepato-Gastroenterology and Infectious Diseases, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
37
|
Rius-Bonet J, Macip S, Massip-Salcedo M, Closa D. Effects of Fasting on THP1 Macrophage Metabolism and Inflammatory Profile. Int J Mol Sci 2024; 25:9029. [PMID: 39201723 PMCID: PMC11354302 DOI: 10.3390/ijms25169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Fasting can affect the body's inflammatory response, and this has been linked to potential health benefits, including improvements for people with rheumatic diseases. In this work, we evaluated, in vitro, how changes in nutrient availability alter the inflammatory response of macrophages. Macrophage-differentiated THP1 cells were cultured, deprived of FCS or subjected to cycles of FCS deprivation and restoration to mimic intermittent fasting. Changes in the macrophage phenotype, the cells' response to inflammatory stimuli and the level of mitochondrial alteration were assessed. The results indicate that while periods of serum starvation are associated with a decrease in IL1β and TNFα expression, consistent with an anti-inflammatory response, intermittent serum starvation cycles promote a pro-inflammatory phenotype. Rapid changes in reducing capacity and mitochondrial response were also observed. Of note, while some changes, such as the production of oxygen free radicals, were reversed with refeeding, others, such as a decrease in reducing capacity, were maintained and even increased. This study shows that different fasting protocols can have diverging effects and highlights that time-limited nutrient changes can significantly affect macrophage functions in cell cultures. These findings help elucidate some of the mechanisms by which specific fasting dietary interventions could help control inflammatory diseases.
Collapse
Affiliation(s)
- Julia Rius-Bonet
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- Mechanisms of Cancer and Aging Laboratory—South, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain
| | - Salvador Macip
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- Mechanisms of Cancer and Aging Laboratory—South, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marta Massip-Salcedo
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- Mechanisms of Cancer and Aging Laboratory—South, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916 Barcelona, Spain
| | - Daniel Closa
- Department of Experimental Pathology, Institut d’Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
38
|
Wang YY, Tian F, Qian XL, Ying HM, Zhou ZF. Effect of 5:2 intermittent fasting diet versus daily calorie restriction eating on metabolic-associated fatty liver disease-a randomized controlled trial. Front Nutr 2024; 11:1439473. [PMID: 39229586 PMCID: PMC11368853 DOI: 10.3389/fnut.2024.1439473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Objective Both 5:2 IF diet (intermittent fasting) and daily caloric restriction eating had been suggested for management of MAFLD (Metabolic-Associated Fatty Liver Disease), this study aimed to evaluate the effects of 5:2 IF diet on body weight and metabolic parameters in adults with MAFLD, in comparison to daily caloric restriction eating. Methods This single-center, double-blind, prospective, randomized controlled trial included 60 patients with MAFLD, who were administered either a 5:2 IF diet limited calories consumed for 2 days each week with no restrictions on the remaining 5 (Group 5:2 IF diet) or a daily calorie restriction eating (Group daily calorie restriction). Fibrotouch-B instrument assessment, ultrasound assessment of hepatic steatosis, anthropometric indices and body composition analysis, blood sample measurements were conducted during two distinct visits: initially on the day of study commencement (T1), and subsequently at the conclusion of the 12-week intervention period (T2). Results In comparison to daily calorie restriction eating, the 5:2 IF diet significantly decreased the proportion of hepatic steatosis ≥moderate (29.6% vs. 59.3%, p = 0.028) and the degree of hepatic fibrosis F ≥ 2 (3.7% vs. 25.9%, p = 0.05), and fewer percentage of patients were diagnosed with fatty liver via upper abdominal ultrasound in the 5:2 intermittent fasting diet group (33.3% vs. 63.0%, p = 0.029). Additionally, the CAP (controlled attenuation parameter) and LSM (liver stiffness measurements) value were significantly lower in the 5:2 IF diet group (p < 0.05). No statistically significant differences were observed between the two groups in terms of weight, BMI (body mass index), WC (waist circumference), HC (hip circumference), and WHR (waist to hip ratio). Similarly, there were no significant differences in lipid profile, glycemic indices and adverse events (p > 0.05). Conclusion In summary, although both 5:2 IF diet and daily caloric restriction eating achieved similar effect on body weight, liver enzymes, lipid profile and glycemic indices after 12 weeks treatment, 5:2 IF diet demonstrates better improvement in fibrosis and steatosis scores independently from weight regulation. Consequently, it is anticipated to emerge as a viable dietary modality for lifestyle intervention among patients diagnosed with MAFLD. Clinical trial registration https://www.crd.york.ac.uk/PROSPERO, identifier ChiCTR2400080292.
Collapse
Affiliation(s)
- Yuan-yuan Wang
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Fang Tian
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Xiao-lu Qian
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Hui-min Ying
- Department of Endocrinology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang, China
| | - Zhen-feng Zhou
- Department of Anesthesiology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People’s Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China
| |
Collapse
|
39
|
Martínez-López MF, López-Gil JF. Meal Duration and Obesity-Related Indicators among Adolescents: Insights from the EHDLA Study. Nutrients 2024; 16:2769. [PMID: 39203904 PMCID: PMC11356952 DOI: 10.3390/nu16162769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
PURPOSE This paper aims to examine the association between meal duration and obesity indicators among Spanish adolescents. METHODS We conducted a cross-sectional analysis using data from the Eating Healthy and Daily Life Activities (EHDLA) project involving 755 adolescents aged 12 to 17 years (54.8% girls) from three secondary schools in the Valle de Ricote Region of Murcia, Spain. To evaluate overall meal duration, participants were asked how long (on average) breakfast, morning snacks, lunch, afternoon snacks, and dinner typically last. Subsequently, global meal duration was measured, and the participants were categorized into tertiles. Obesity-related indicators, including body mass index (BMI) z score, waist circumference (WC), and skinfold thickness, were assessed. The analyses were adjusted for potential confounders such as sex, age, socioeconomic status, physical activity, sedentary behavior, diet quality, and energy intake. RESULTS Concerning meal duration status, adolescents with long meal durations had the lowest estimated marginal means of BMI z score, WC, and body fat percentage (using the sum of triceps and calf skinfolds). However, significant differences between adolescents with a long meal duration and those with a short meal duration were observed only for BMI z score (p = 0.008), and WC (p = 0.020). Furthermore, significant differences in BMI z score (p = 0.017) between adolescents with a long meal duration and those with a moderate meal duration were identified. CONCLUSIONS These findings underscore the importance of promoting slower eating habits as part of obesity prevention strategies. Future studies should explore the causality of this association and its potential for behavioral interventions.
Collapse
Affiliation(s)
| | - José Francisco López-Gil
- One Health Research Group, Universidad de Las Américas, Quito 170124, Ecuador;
- Department of Communication and Education, Universidad Loyola Andalucía, 41704 Seville, Spain
| |
Collapse
|
40
|
Xie X, Zhang M, Luo H. Regulation of metabolism by circadian rhythms: Support from time-restricted eating, intestinal microbiota & omics analysis. Life Sci 2024; 351:122814. [PMID: 38857654 DOI: 10.1016/j.lfs.2024.122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Circadian oscillatory system plays a key role in coordinating the metabolism of most organisms. Perturbation of genetic effects and misalignment of circadian rhythms result in circadian dysfunction and signs of metabolic disorders. The eating-fasting cycle can act on the peripheral circadian clocks, bypassing the photoperiod. Therefore, time-restricted eating (TRE) can improve metabolic health by adjusting eating rhythms, a process achieved through reprogramming of circadian genomes and metabolic programs at different tissue levels or remodeling of the intestinal microbiota, with omics technology allowing visualization of the regulatory processes. Here, we review recent advances in circadian regulation of metabolism, focus on the potential application of TRE for rescuing circadian dysfunction and metabolic disorders with the contribution of intestinal microbiota in between, and summarize the significance of omics technology.
Collapse
Affiliation(s)
- Ximei Xie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China
| | - Mengjie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China.
| |
Collapse
|
41
|
Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol 2024; 15:1428601. [PMID: 39175542 PMCID: PMC11338815 DOI: 10.3389/fphar.2024.1428601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR versus IF remain inconclusive, this review focuses on various forms of IF, particularly time-restricted eating (TRE). Methods This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as "Obesity," "Intermittent Fasting," "Time-restricted eating," "Chronotype," and "Circadian rhythms" guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge. Results This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joan Vendrell
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
42
|
Koppold DA, Breinlinger C, Hanslian E, Kessler C, Cramer H, Khokhar AR, Peterson CM, Tinsley G, Vernieri C, Bloomer RJ, Boschmann M, Bragazzi NL, Brandhorst S, Gabel K, Goldhamer AC, Grajower MM, Harvie M, Heilbronn L, Horne BD, Karras SN, Langhorst J, Lischka E, Madeo F, Mitchell SJ, Papagiannopoulos-Vatopaidinos IE, Papagiannopoulou M, Pijl H, Ravussin E, Ritzmann-Widderich M, Varady K, Adamidou L, Chihaoui M, de Cabo R, Hassanein M, Lessan N, Longo V, Manoogian ENC, Mattson MP, Muhlestein JB, Panda S, Papadopoulou SK, Rodopaios NE, Stange R, Michalsen A. International consensus on fasting terminology. Cell Metab 2024; 36:1779-1794.e4. [PMID: 39059384 PMCID: PMC11504329 DOI: 10.1016/j.cmet.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Although fasting is increasingly applied for disease prevention and treatment, consensus on terminology is lacking. Using Delphi methodology, an international, multidisciplinary panel of researchers and clinicians standardized definitions of various fasting approaches in humans. Five online surveys and a live online conference were conducted with 38 experts, 25 of whom completed all 5 surveys. Consensus was achieved for the following terms: "fasting" (voluntary abstinence from some or all foods or foods and beverages), "modified fasting" (restriction of energy intake to max. 25% of energy needs), "fluid-only fasting," "alternate-day fasting," "short-term fasting" (lasting 2-3 days), "prolonged fasting" (≥4 consecutive days), and "religious fasting." "Intermittent fasting" (repetitive fasting periods lasting ≤48 h), "time-restricted eating," and "fasting-mimicking diet" were discussed most. This study provides expert recommendations on fasting terminology for future research and clinical applications, facilitating communication and cross-referencing in the field.
Collapse
Affiliation(s)
- Daniela A Koppold
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany; Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Carolin Breinlinger
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany.
| | - Etienne Hanslian
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christian Kessler
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| | - Holger Cramer
- Institute for General Practice and Interprofessional Care, University Hospital Tübingen, Tübingen, Germany; Robert Bosch Center for Integrative Medicine and Health, Bosch Health Campus, Stuttgart, Germany
| | - Anika Rajput Khokhar
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Courtney M Peterson
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Grant Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Richard J Bloomer
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| | - Michael Boschmann
- Experimental & Clinical Research Center - A joint co-operation between Charité Universitätsmedizin und Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Clinical Research Unit, Berlin, Germany
| | - Nicola L Bragazzi
- Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
| | - Sebastian Brandhorst
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612, USA
| | - Alan C Goldhamer
- TrueNorth Health Foundation, Santa Rosa, CA 95404, USA; TrueNorth Health Center, Santa Rosa, CA 95404, USA
| | - Martin M Grajower
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Michelle Harvie
- Prevent Breast Cancer Research Unit, The Nightingale Centre, Manchester University NHS Foundation Trust, Manchester, England; Division of Cancer Sciences, The University of Manchester, Manchester, England
| | - Leonie Heilbronn
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Nutrition, Metabolism & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Benjamin D Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Spyridon N Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54636 Thessaloniki, Greece
| | - Jost Langhorst
- Department for Internal and Integrative Medicine, Sozialstiftung Bamberg Hospital, Bamberg, Germany; Department for Integrative Medicine, University of Duisburg-Essen, Medical Faculty, Bamberg, Germany
| | - Eva Lischka
- Klinik Buchinger Wilhelmi, Überlingen, Germany
| | - Frank Madeo
- BioTechMed Graz, Graz, Austria; Institute of Molecular Biosciences, University of Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sarah J Mitchell
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | | | | | - Hanno Pijl
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Martha Ritzmann-Widderich
- Praxis für Ernährungsmedizin und Prävention in Rottweil, Hochbrücktorstraße 22, 78628 Rottweil, Germany
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, 1919 West Taylor Street, Chicago, IL 60612, USA
| | - Lilian Adamidou
- Department of Dietetics and Nutrition, AHEPA University Hospital, Thessaloniki, Greece
| | - Melika Chihaoui
- Department of Endocrinology, University Hospital La Rabta, Faculty of medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mohamed Hassanein
- Department of Endocrinology and Diabetes, Dubai Hospital, Dubai Academic Health Cooperation, United Arab Emirates
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Valter Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Emily N C Manoogian
- Regulatory Biology Department, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Satchidananda Panda
- Regulatory Biology Department, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece
| | - Nikolaos E Rodopaios
- Department of Social Medicine, Preventive Medicine and Nutrition Clinic, School of Medicine, University of Crete, Voutes, 71003 Iraklion, Greece
| | - Rainer Stange
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| | - Andreas Michalsen
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Department of Internal Medicine and Nature-Based Therapies, Immanuel Hospital Berlin, 14109 Berlin, Germany
| |
Collapse
|
43
|
Hegedus E, Vu MH, Salvy SJ, Bakhsh J, Goran MI, Raymond JK, Espinoza JC, Vidmar AP. Randomized Controlled Feasibility Trial of Late 8-Hour Time-Restricted Eating for Adolescents With Type 2 Diabetes. J Acad Nutr Diet 2024; 124:1014-1028. [PMID: 39464252 PMCID: PMC11507361 DOI: 10.1016/j.jand.2023.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2024]
Abstract
Background No trial to date has tested the effects of late time-restricted eating (lTRE) on glycemic control or body composition in adolescents with type 2 diabetes (T2D). Objective The objective of the current study was to examine the feasibility, acceptability, and preliminary efficacy of lTRE compared to a prolonged eating window in adolescents with T2D. Design A 12-week, randomized, controlled, feasibility study of lTRE compared to control in adolescents with obesity and new onset T2D was conducted. Participants/setting Eligible participants were 13-21 years old; with a diagnosis of T2D, on metformin monotherapy, recruited from Children's Hospital Los Angeles, between January 2021 and December of 2022. From 36 eligible participants, 27 were enrolled (75% recruitment rate; age: 16.5 ± 1.7 years, HbA1c: 6.6 ± 0.9%, 22/27 [81%] Hispanic, 17/27 [63%] female, 23/27 [85%] public insurance; all p-values >.05), and 23 of 27 completed the protocol. Intervention Participants wore a continuous glucose monitor (CGM) daily and were randomized to one of two meal-timing schedules for 12-weeks: (1) lTRE (eating all food between 12:00 PM and 20:00 PM without calorie counting or recommended daily caloric intake) or (2) Control (eating over a period of 12 or more hours per day). Main outcome measures Study recruitment, retention and adherence to intervention arms were captured to operationalize feasibility. Glucose control (HbA1c), weight loss (%BMIp95), total body fat mass on DEXA, sleep, and dietary intake were explored as secondary outcomes. Statistical Analysis Analyses were based on the intention to treat (ITT) population. Between-group differences in clinical outcomes were assessed using mixed-effects longitudinal regression models. Results Overall adherence to the 8-hr lTRE was 6.2 ± 1.1 d/wk and Control was 5.9 ± 0.9 d/wk. Participants assigned to lTRE indicated that limiting their eating window did not negatively affect their daily functioning and no adverse events were reported. In this pilot study, lTRE led to a reduction in %BMIp95 (-3.4%-95%CI: -6.1, -0.7, p = 0.02), HbA1c (-0.4%, 95%CI: -0.9, -0.01, p = .06), and ALT (-31.1 U/L, 95%CI: -60, -2, p = .05) within the group. There was no significant difference observed between lTRE and control across these measures (all p > .05). The lTRE group had a -271.4 (95% CI, -565.2, 5.2) kcal/day energy reduction compared to a +293.2 (95% CI: 30.4, 552.7) kcal/day increase in Control (p = .01). There were no significant changes observed in sleep or eating behaviors over the study period between groups. Conclusions Recruitment and retention rates suggest a trial of lTRE in adolescents with T2D was feasible. lTRE was seen as acceptable by participants and adherence was high. A revised intervention, building on the successful elements of this pilot alongside adapting implementations strategies to augment adherence and engagement, should therefore be considered.
Collapse
Affiliation(s)
- Elizabeth Hegedus
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
| | - My H Vu
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, the Saban Research Institute Biostatics Core
| | - Sarah Jeanne Salvy
- Department of Population and Public Health Sciences, University of Southern California
| | - Jomanah Bakhsh
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
- Department of Population and Public Health Sciences, University of Southern California
| | - Michael I Goran
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
| | - Jennifer K Raymond
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
| | - Juan C Espinoza
- Research Center for Health Equity, Cedars-Sinai Medical Center, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, and Lurie Children's Hospital, Department of Pediatrics
| | - Alaina P Vidmar
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
| |
Collapse
|
44
|
Liang X, Chen J, An X, Ren Y, Liu Q, Huang L, Zhang P, Qu P, Li J. The optimal time restricted eating interventions for blood pressure, weight, fat mass, glucose, and lipids: A meta-analysis and systematic review. Trends Cardiovasc Med 2024; 34:389-401. [PMID: 37838299 DOI: 10.1016/j.tcm.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND No previous systematic review or meta-analysis has evaluated the effect of optimal time-restricted eating (TRE) interventions on cardiovascular (CVD) risk factors. This meta-analysis aimed to illustrate the effect of a suitable TRE on CVD risk factors. METHODS A systematic review was performed to identify trials reporting the effects of TRE, relative to non-diet controls, on CVD risk factors in humans. A random-effects model was used to evaluate the effect sizes, and the results are expressed as the mean difference (MD) and 95% confidence intervals (CIs). Subgroup analyses were performed to examine the influence of the study population, age, duration of intervention, and baseline mean BMI on the CVD indexes. RESULTS TRE intervention significantly reduced systolic pressure (SBP) (MD: -3.45 mmHg; 95%CI:(-6.20,-0.71) mmHg; P = 0.01), body weight (MD: -1.63 Kg; 95%CI:(-2.09,-1.17) Kg; P<0.001), body mass index (BMI) (MD: -0.47 Kg/m2; 95% CI: (-0.72, -0.22) Kg/m2; P<0.001), and fat mass (MD: -0.98 Kg; 95% CI: (-1.51,-0.44) Kg; P<0.001), and reduced blood glucose levels. Based on the results of subgroup analysis, this meta-analysis identified the optimal TRE for BP (with a 6 h feeding window, last eating time point at 6-8 PM, and male participants with obesity and aged ≥ 45 years), obesity (with a 6 h feeding window, last eating time point at 6-8 PM, and female participants aged ≥ 45 years), lipids (with an 8 h feeding window, last eating time point at 6-8 PM, and male participants aged < 45 years), and glucose (with a 10-12 h feeding window, last eating time point before 6 PM, and female participants aged < 45years). CONCLUSIONS Relative to a non-diet control, TRE is effective for the improvement of CVD risks. Moreover, individual TRE interventions should be developed for different populations to achieve the most effective health improvement for CVD risk factors.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China.
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Xizou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Qin Liu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Lan Huang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
45
|
Lin Z, Sun L. Research advances in the therapy of metabolic syndrome. Front Pharmacol 2024; 15:1364881. [PMID: 39139641 PMCID: PMC11319131 DOI: 10.3389/fphar.2024.1364881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Metabolic syndrome refers to the pathological state of metabolic disorder of protein, fat, carbohydrate, and other substances in the human body. It is a syndrome composed of a group of complex metabolic disorders, whose pathogenesis includes multiple genetic and acquired entities falling under the category of insulin resistance and chronic low-grade inflammationand. It is a risk factor for increased prevalence and mortality from diabetes and cardiovascular disease. Cardiovascular diseases are the predominant cause of morbidity and mortality globally, thus it is imperative to investigate the impact of metabolic syndrome on alleviating this substantial disease burden. Despite the increasing number of scientists dedicating themselves to researching metabolic syndrome in recent decades, numerous aspects of this condition remain incompletely understood, leaving many questions unanswered. In this review, we present an epidemiological analysis of MetS, explore both traditional and novel pathogenesis, examine the pathophysiological repercussions of metabolic syndrome, summarize research advances, and elucidate the mechanisms underlying corresponding treatment approaches.
Collapse
Affiliation(s)
- Zitian Lin
- Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Luning Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
46
|
Jin X, Deng Y, Zhang W, Xu X, Rong S. Counting hours or calories? Metabolic regulatory role of time-restricted eating in adults with overweight and obesity: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39069716 DOI: 10.1080/10408398.2024.2382344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Time-restricted eating (TRE) effectively improves healthspan, including controlling obesity and improving metabolic health. To date, few meta-analyses have been conducted to explore the effects of various protocols of TRE in participants with overweight/obesity. PubMed, Embase and the Cochrane Central Register of Controlled Trials were searched up until October 15, 2022. Randomized and non-randomized clinical trials that investigated the effect of TRE on body weight, body composition and cardiometabolic parameters in participants with overweight/obesity were included. Mean differences of changes from the baseline were used for all analyses between the two groups. Prespecified subgroup analyses based on different protocols of TRE were performed. Twenty-three studies were included in the meta-analysis with 1867 participants. TRE interventions led to significant changes in body weight. When energy restriction strategies were conducted in both the TRE and control groups, the weight-loss effect of TRE remained significant. TRE with 4 ∼ 8h feeding window, morning or late eating strategies, led to reduction in body weight and fat mass for at least 8 wk. Hence TRE is a potential and effective approach for weight loss for participants with overweight/obesity. An 8h-TRE intervention with a morning eating strategy for at least eight weeks might be the optimum TRE intervention mode.
Collapse
Affiliation(s)
- Xin Jin
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Deng
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenxue Zhang
- Department of Nutrition, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xintian Xu
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, China
- Department of Nutrition, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
47
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Mena-Hernández DR, Jiménez-Domínguez G, Méndez JD, Olvera-Hernández V, Martínez-López MC, Guzmán-Priego CG, Reyes-López Z, Ramos-García M, Juárez-Rojop IE, Zavaleta-Toledo SS, Ble-Castillo JL. Effect of Early Time-Restricted Eating on Metabolic Markers and Body Composition in Individuals with Overweight or Obesity. Nutrients 2024; 16:2187. [PMID: 39064630 PMCID: PMC11279456 DOI: 10.3390/nu16142187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the effect of early time-restricted eating (eTRE) on metabolic markers and body composition in individuals with overweight or obesity. Seventeen subjects completed a randomized, crossover, and controlled clinical trial. Twelve women and five men participated, with a mean age of 25.8 ± 10.0 years and a BMI of 32.0 ± 6.3 kg/m2. The eTRE intervention included 16 h of fasting (3:00 pm to 7:00 am) and 8 h of ad libitum eating (7:00 am to 03:00 pm) (16:8). The trial included four weeks of interventions followed by a four-week washout period. Body weight, waist and hip circumferences, and body composition measurements were taken. Additionally, a venous blood sample was collected for biochemical determinations. In a before-after analysis, eTRE induced a reduction in BW and BMI in women but this was not significant when compared to the control group. eTRE did not modify any other anthropometric measurements, fasting biochemical parameters, glycemic and insulinemic responses, blood pressure, or subjective appetite. In conclusion, eTRE did not induce beneficial effects on the glycemic and lipid metabolisms, body composition, subjective appetite, or blood pressure. These findings may be attributed to the special characteristics of the population and the short intervention period.
Collapse
Affiliation(s)
- Dalila Rubí Mena-Hernández
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Guadalupe Jiménez-Domínguez
- Departamento de Medicina Interna, Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa 86060, Mexico
| | - José D. Méndez
- Hospital de Cardiología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06703, Mexico
| | - Viridiana Olvera-Hernández
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Mirian C. Martínez-López
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Crystell G. Guzmán-Priego
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Zeniff Reyes-López
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Meztli Ramos-García
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Isela E. Juárez-Rojop
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| | - Selene S. Zavaleta-Toledo
- Departamento de Medicina Interna, Hospital General de Zona No. 46, Instituto Mexicano del Seguro Social (IMSS), Villahermosa 86060, Mexico
| | - Jorge L. Ble-Castillo
- Centro de Investigación, División Académica de Ciencias de la Salud (DACS), Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa 86150, Mexico
| |
Collapse
|
49
|
Yuan Y, Hu R, Park J, Xiong S, Wang Z, Qian Y, Shi Z, Wu R, Han Z, Ong SG, Lin S, Varady KA, Xu P, Berry DC, Shu G, Jiang Y. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. SCIENCE ADVANCES 2024; 10:eadn5229. [PMID: 38924414 PMCID: PMC11204298 DOI: 10.1126/sciadv.adn5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Collapse
Affiliation(s)
- Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Brogi S, Tabanelli R, Puca S, Calderone V. Intermittent Fasting: Myths, Fakes and Truth on This Dietary Regimen Approach. Foods 2024; 13:1960. [PMID: 38998465 PMCID: PMC11241639 DOI: 10.3390/foods13131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Intermittent fasting (IF) has been indicated as a valuable alternative to the classical caloric restriction dietary regimen for lowering body weight and preventing obesity-related complications, such as metabolic syndrome and type II diabetes. However, is it effective? In this review article, we analyzed over 50 clinical studies in which IF, conducted by alternate day fasting (ADF) or time-restricted feeding (TRF), was compared with the caloric restriction approach. We evaluated the different roles of IF in treating and preventing human disorders such as metabolic syndrome, type II diabetes, and some types of cancer, as well as the usefulness of IF in reducing body weight and cardiovascular risk factors such as hypertension. Furthermore, we explored the cellular pathways targeted by IF to exert their beneficial effects by activating effector proteins that modulate cell functions and resistance to oxidative stress. In contrast, we investigated concerns regarding human health related to the adoption of IF dietary regimens, highlighting the profound debate surrounding weight loss regimens. We examined and compared several clinical trials to formulate an updated concept regarding IF and its therapeutic potential.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rita Tabanelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| | - Sara Puca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (R.T.); (S.P.); (V.C.)
| |
Collapse
|