1
|
Lenzen S, Jörns A. Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches. J Mol Med (Berl) 2024:10.1007/s00109-024-02494-w. [PMID: 39420138 DOI: 10.1007/s00109-024-02494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.
Collapse
Affiliation(s)
- Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, 30625, Hannover, Germany.
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Zuniga-Kennedy M, Wang OH, Fonseca LM, Cleveland MJ, Bulger JD, Grinspoon E, Hansen D, Hawks ZW, Jung L, Singh S, Sliwinski M, Verdejo A, Miller KM, Weinstock RS, Germine L, Chaytor N. Nocturnal hypoglycemia is associated with next day cognitive performance in adults with type 1 diabetes: Pilot data from the GluCog study. Clin Neuropsychol 2024; 38:1627-1646. [PMID: 38380810 PMCID: PMC11336034 DOI: 10.1080/13854046.2024.2315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE Individuals with type 1 diabetes (T1D) have increased risk for cognitive dysfunction and high rates of sleep disturbance. Despite associations between glycemia and cognitive performance using cross-sectional and experimental methods few studies have evaluated this relationship in a naturalistic setting, or the impact of nocturnal versus daytime hypoglycemia. Ecological Momentary Assessment (EMA) may provide insight into the dynamic associations between cognition, affective, and physiological states. The current study couples EMA data with continuous glucose monitoring (CGM) to examine the within-person impact of nocturnal glycemia on next day cognitive performance in adults with T1D. Due to high rates of sleep disturbance and emotional distress in people with T1D, the potential impacts of sleep characteristics and negative affect were also evaluated. METHODS This pilot study utilized EMA in 18 adults with T1D to examine the impact of glycemic excursions, measured using CGM, on cognitive performance, measured via mobile cognitive assessment using the TestMyBrain platform. Multilevel modeling was used to test the within-person effects of nocturnal hypoglycemia and hyperglycemia on next day cognition. RESULTS Results indicated that increases in nocturnal hypoglycemia were associated with slower next day processing speed. This association was not significantly attenuated by negative affect, sleepiness, or sleep quality. CONCLUSIONS These results, while preliminary due to small sample size, showcase the power of intensive longitudinal designs using ambulatory cognitive assessment to uncover novel determinants of cognitive fluctuation in real world settings, an approach that may be utilized in other populations. Findings suggest reducing nocturnal hypoglycemia may improve cognition in adults with T1D.
Collapse
Affiliation(s)
| | - Olivia H Wang
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Luciana M. Fonseca
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
- Old Age Research Group (PROTER), Department and Institute of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Devon Hansen
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | | | | | - Shifali Singh
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | | - Naomi Chaytor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
3
|
Samaha MM, Nour OA. Ranolazine ameliorates T1DM-induced testicular dysfunction in rats; role of NF-κB/TXNIP/GSDMD-N/IL-18/Beclin-1 signaling pathway. Eur J Pharmacol 2024; 977:176744. [PMID: 38897438 DOI: 10.1016/j.ejphar.2024.176744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Approximately 90% of diabetic males have varying degrees of testicular dysfunction. The current study investigates the possible beneficial consequences of ranolazine against T1DM-induced testicular dysfunction in rats. Thirty-two male Sprague Dawley rats were assorted into 4 groups; normal, diabetic (single 50 mg/kg STZ, I.P.) and ranolazine (40 and 80 mg/kg, orally). The present investigation revealed that the hypoglycemic impact of ranolazine significantly improved the testicular weight and body weight of the final rats, as well as the concentration of blood testosterone, sperm count, and viability, all of which were associated with STZ-induced testicular dysfunction. Furthermore, as demonstrated by elevated reduced glutathione (GSH) activity and lowered malondialdehyde (MDA) levels, diabetic rats administered ranolazine showed a noteworthy improvement in the oxidant/antioxidant ratio. Furthermore, a substantial rise in beclin-1 concentration was seen in conjunction with a significant decrease in thioredoxin-interacting protein (TXNIP) and interleukin-18 (IL-18) concentrations when ranolazine was administered. Although ranolazine exhibited a reduction in inflammation as seen by lower expression of nuclear factor-κB (NF-κB) and cluster of differentiation (CD68) in the testicles, these biochemical findings were validated by improvements in the morphological and histopathological outcomes of both the pancreatic and testicular tissues. In conclusion, daily oral administration of ranolazine (40 and 80 mg/kg) for 8 weeks could be a promising therapy for T1DM-induced testicular dysfunction through its dose-dependent anti-oxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mahmoud M Samaha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Omnia A Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Godzien J, Jablonowski K, Ruperez FJ, Kretowski A, Ciborowski M, Kalaska B. Metabolic profiling reveals the nutraceutical effect of Gongolaria abies-marina and Rosmarinus officinalis extracts in a type 1 diabetes animal model. Biomed Pharmacother 2024; 175:116731. [PMID: 38761421 DOI: 10.1016/j.biopha.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Francisco J Ruperez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Madrid, Spain
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Zhang X, Zhu Z, Tang G. Global prevalence of erectile dysfunction and its associated risk factors among men with type 1 diabetes: a systematic review and meta-analysis. Int J Impot Res 2024; 36:365-374. [PMID: 38396263 DOI: 10.1038/s41443-024-00855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Various observational studies have examined the prevalence and determinants of erectile dysfunction (ED) in men with type 1 diabetes across different geographical areas. Nevertheless, a comprehensive systematic review and meta-analysis to consolidate the worldwide prevalence and risk factors remains lacking. Hence, the primary study objective was to perform an extensive systematic review and meta-analysis that specifically examined ED prevalence and determinants in men with type 1 diabetes. A thorough exploration was conducted by examining electronic databases, such as PubMed, Embase, and Web of Science. The general ED prevalence and a 95% confidence interval (CI) in men with type 1 diabetes were summarized. The relevant risk factors were analyzed by deriving a comprehensive odds ratio (OR) from merging the ORs using fixed- or random-effects models. The sources of heterogeneity were investigated using subgroup analyses and meta-regression. This systematic review and meta-analysis included 19 articles involving 3788 men with type 1 diabetes. The meta-analysis revealed that men with type 1 diabetes had a combined ED prevalence of 42.5% (95% CI: 34.3%-50.8%). This prevalence showed significant heterogeneity (I2 = 96.2%, P < 0.01). Meta-regression revealed that age (P = 0.016) and type 1 diabetes duration (P = 0.004) were significant causes of heterogeneity. Furthermore, the ED risk in men with type 1 diabetes was significantly influenced by age, type 1 diabetes duration, body mass index, glycated hemoglobin (HbA1c), retinopathy, and smoking habits (all P < 0.05). In summary, this systematic review and meta-analysis revealed a significant prevalence of ED in men with type 1 diabetes, highlighting the importance of clinicians addressing concerns regarding ED in this specific group of individuals.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Zhirong Zhu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Guiliang Tang
- Department of Urology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|
6
|
Melander SA, Larsen AT, Karsdal MA, Henriksen K. Are insulin sensitizers the new strategy to treat Type 1 diabetes? A long-acting dual amylin and calcitonin receptor agonist improves insulin-mediated glycaemic control and controls body weight. Br J Pharmacol 2024; 181:1829-1842. [PMID: 38378168 DOI: 10.1111/bph.16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Insulin therapies for Type 1 diabetes (T1D) have limitations, such as glucose fluctuations, hypoglycaemia, and weight gain. Only pramlintide is approved with insulin. However, its short half-life limits efficacy, requiring multiple daily injections and increasing hypoglycaemia risk. New strategies are needed to improve glycaemic control. Dual amylin and calcitonin receptor agonists are potent insulin sensitizers developed for Type 2 diabetes (T2D) as they improve glucose control, reduce body weight, and attenuate hyperglucagonemia. However, it is uncertain if they could be used to treat T1D. EXPERIMENTAL APPROACH Sprague Dawley rats received a single intravenous injection of streptozotocin (STZ) (50 mg·kg-1) to induce T1D. Humulin (1 U/200 g·day-1 or 2 U/200 g·day-1) was continuously infused, while half of the rats received additional KBP-336 (4.5 nmol·kg-1 Q3D) treatment. Bodyweight, food intake, and blood glucose were monitored throughout the study. An oral glucose tolerance test was performed during the study. KEY RESULTS Treatment with Humulin or Humulin + KBP-336 improved the health of STZ rats. Humulin increased body weight in STZ rats, but KBP-336 attenuated these increases and maintained a significant weight loss. The combination exhibited greater blood glucose reductions than Humulin-treated rats alone, reflected by improved HbA1c levels and glucose control. The combination prevented hyperglucagonemia, reduced amylin levels, and increased pancreatic insulin content, indicating improved insulin sensitivity and beta-cell preservation. CONCLUSION AND IMPLICATIONS The insulin sensitizer KBP-336 lowered glucagon secretion while attenuating insulin-induced weight gain. Additionally, KBP-336 may prevent hypoglycaemia and improve insulin resistance, which could be a significant advantage for individuals with T1D seeking therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
7
|
Longendyke R, Grundman JB, Majidi S. Acute and Chronic Adverse Outcomes of Type 1 Diabetes. Endocrinol Metab Clin North Am 2024; 53:123-133. [PMID: 38272591 DOI: 10.1016/j.ecl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Type 1 diabetes is associated with both acute and chronic complications. Acute complications include diabetic ketoacidosis and severe hypoglycemia. Chronic complications can be microvascular or macrovascular. Microvascular complications include retinopathy, nephropathy, and neuropathy. The pathophysiology of microvascular complications is complex. Hyperglycemia is a common underlying risk factor, underscoring the importance of optimizing glycemic management. Patients with type 1 diabetes are also at increased risk of macrovascular complications including coronary artery disease and vascular disease. The American Diabetes Association provides screening guidelines for chronic complications of diabetes. Adherence to these guidelines is an important aspect of diabetes care.
Collapse
Affiliation(s)
- Rachel Longendyke
- Children's National Hospital, 111 Michigan Avenue Northwest, Washington, DC 20010, USA.
| | - Jody B Grundman
- Children's National Hospital, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| | - Shideh Majidi
- Children's National Hospital, 111 Michigan Avenue Northwest, Washington, DC 20010, USA
| |
Collapse
|
8
|
Lesch KJ, Hyrylä VV, Eronen T, Kupari S, Stenroth L, Venojärvi M, Tarvainen MP, Tikkanen HO. Young type 1 diabetes subjects sway more than healthy persons when somatosensory system is challenged in static standing postural stability tests. Clin Physiol Funct Imaging 2024; 44:56-62. [PMID: 37455246 DOI: 10.1111/cpf.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In type 1 diabetes, it is important to prevent diabetes-related complications and postural instability may be one clinically observable manifestation early on. This study was set to investigate differences between type 1 diabetics and healthy controls in variables of instrumented posturography assessment to inform about the potential of the assessment in early detection of diabetes-related complications. Eighteen type 1 diabetics with no apparent complications (HbA1c = 58 ± 9 mmol/L, diabetes duration = 15 ± 7 years) and 35 healthy controls underwent six 1-min two feet standing postural stability tests on a force plate. Study groups were comparable in age and anthropometric and performed the test with eyes open, eyes closed (EC), and EC head up with and without unstable padding. Type 1 diabetics exhibited greater sway (path length, p = 0.044 and standard deviation of velocity, p = 0.039) during the EC test with the unstable pad. Also, power spectral density indicated greater relative power (p = 0.043) in the high-frequency band in the test with EC head up on the unstable pad and somatosensory activity increased more (p = 0.038) when the unstable pad was added to the EC test. Type 1 diabetes may induce subtle changes in postural control requiring more active balancing when stability is challenged. Postural assessment using a portable easy-to-use force plate shows promise in detecting a diabetes-related decline in postural control that may be used as a sensitive biomarker of early-phase diabetes-related complications.
Collapse
Affiliation(s)
- Kim J Lesch
- Institute of Biomedicine, Sports and Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vesa V Hyrylä
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Eronen
- Institute of Biomedicine, Sports and Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saana Kupari
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Lauri Stenroth
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mika Venojärvi
- Institute of Biomedicine, Sports and Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mika P Tarvainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Heikki O Tikkanen
- Institute of Biomedicine, Sports and Exercise Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Li L, Hua S, You L, Zhong T. Secretome Derived from Mesenchymal Stem/Stromal Cells: A Promising Strategy for Diabetes and its Complications. Curr Stem Cell Res Ther 2024; 19:1328-1350. [PMID: 37711134 DOI: 10.2174/1574888x19666230913154544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Diabetes is a complex metabolic disease with a high global prevalence. The health and quality of life of patients with diabetes are threatened by many complications, including diabetic foot ulcers, diabetic kidney diseases, diabetic retinopathy, and diabetic peripheral neuropathy. The application of mesenchymal stem/stromal cells (MSCs) in cell therapies has been recognized as a potential treatment for diabetes and its complications. MSCs were originally thought to exert biological effects exclusively by differentiating and replacing specific impaired cells. However, the paracrine function of factors secreted by MSCs may exert additional protective effects. MSCs secrete multiple compounds, including proteins, such as growth factors, chemokines, and other cytokines; nucleic acids, such as miRNAs; and lipids, extracellular vesicles (EVs), and exosomes (Exos). Collectively, these secreted compounds are called the MSC secretome, and usage of these chemicals in cell-free therapies may provide stronger effects with greater safety and convenience. Recent studies have demonstrated positive effects of the MSC secretome, including improved insulin sensitivity, reduced inflammation, decreased endoplasmic reticulum stress, enhanced M2 polarization of macrophages, and increased angiogenesis and autophagy; however, the mechanisms leading to these effects are not fully understood. This review summarizes the current research regarding the secretome derived from MSCs, including efforts to quantify effectiveness and uncover potential molecular mechanisms in the treatment of diabetes and related disorders. In addition, limitations and challenges are also discussed so as to facilitate applications of the MSC secretome as a cell-free therapy for diabetes and its complications.
Collapse
Affiliation(s)
- Ling Li
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Tianying Zhong
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
10
|
Oraibi O, Somaili M, Elmakki E, Alqassimi S, Madkhali MA, Mohrag M, Abusageah F, Alhazmi M, Alfaifi S, Ageeli R, Sumayli M, Arishi F, Alhazmi AH, Hummadi A. Effectiveness of Blood Glucose Time in Range to Reduce Risk of Blood Glucose Extrusion and Improve Blood Glucose Metrics in Type 1 Diabetic Patients. Endocr Metab Immune Disord Drug Targets 2024; 24:1197-1203. [PMID: 37957847 DOI: 10.2174/0118715303263019231029163336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND With evolving diabetes technology, continuous glucose monitoring (CGM) and time in range have been advanced as critical measurements to assess complications. They have shown improvement in A1C levels and decreased episodes of blood glucose extrusion. AIMS This study aimed to assess the awareness and utilization of blood glucose time in range and its effectiveness in reducing the risk of blood glucose extrusion and improving blood glucose metrics among patients with type 1 diabetes mellitus. METHODS A retrospective study included 342 patients who met the inclusion criteria and were using the CGM, aiming for a TIR of 70% daily. Glycemic control was followed using TIR data, blood glucose extrusion frequency (including hyperglycemia and hypoglycemia events), active sensor time, average blood glucose, and glucose management indicator (GMI) levels. RESULTS A total of 342 individuals participated in this study, the majority of whom were below 18 years of age (62.3%). The hypoglycemic frequency was significantly increased compared to the baseline, and most participants experienced hypoglycemia events (p = 0.0001). The incidences increased over time, with 90.9% and 93% having hypoglycemia at 60 and 90 days (p = 0.0001), respectively. The active scan and sensor time were not followed, which led to the blood glucose target not being achieved, with no improvement throughout the study. Consequently, no improvement occurred in glycemic control. CONCLUSION CGM technology has been promising and proven effective in improving glycemic. However, our study did not show these benefits as expected, which could be explained by the underutilization and improper use of the CGM.
Collapse
Affiliation(s)
- Omar Oraibi
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Somaili
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Erwa Elmakki
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Sameer Alqassimi
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Ali Madkhali
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mostafa Mohrag
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Faisal Abusageah
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Alhazmi
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Samar Alfaifi
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ruba Ageeli
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Sumayli
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Fatimah Arishi
- Internal Medicine Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Abdulaziz H Alhazmi
- Microbiology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | | |
Collapse
|
11
|
Panchawagh S, Ravichandran N, Barman B, Nune A, Javaid M, Gracia-Ramos AE, Day J, Joshi M, Kuwana M, Saha S, Pande AR, Caballero-Uribe CV, Velikova T, Parodis I, Knitza J, Kadam E, Tan AL, Shinjo SK, Boro H, Aggarwal R, Agarwal V, Chatterjee T, Gupta L. COVID-19 breakthrough infections in type 1 diabetes mellitus: a cross-sectional study by the COVID-19 Vaccination in Autoimmune Diseases (COVAD) Group. Rheumatol Int 2024; 44:73-80. [PMID: 38060005 PMCID: PMC10766674 DOI: 10.1007/s00296-023-05496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
To investigate the frequency, profile, and severity of COVID-19 breakthrough infections (BI) in patients with type I diabetes mellitus (T1DM) compared to healthy controls (HC) after vaccination. The second COVID-19 Vaccination in Autoimmune Diseases (COVAD-2) survey is a multinational cross-sectional electronic survey which has collected data on patients suffering from various autoimmune diseases including T1DM. We performed a subgroup analysis on this cohort to investigate COVID-19 BI characteristics in patients with T1DM. Logistic regression with propensity score matching analysis was performed. A total of 9595 individuals were included in the analysis, with 100 patients having T1DM. Among the fully vaccinated cohort, 16 (16%) T1DM patients had one BI and 2 (2%) had two BIs. No morbidities or deaths were reported, except for one patient who required hospitalization with oxygen without admission to intensive care. The frequency, clinical features, and severity of BIs were not significantly different between T1DM patients and HCs after adjustment for confounding factors. Our study did not show any statistically significant differences in the frequency, symptoms, duration, or critical care requirements between T1DM and HCs after COVID-19 vaccination. Further research is needed to identify factors associated with inadequate vaccine response in patients with BIs, especially in patients with autoimmune diseases.
Collapse
Affiliation(s)
| | - Naveen Ravichandran
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Bhupen Barman
- Department of Medicine, All India Institute of Medical Science (AIIMS), Guwahati, India
| | - Arvind Nune
- Department of Rheumatology, Southport and Ormskirk Hospital NHS Trust, Southport, PR8 6PN, UK
| | - Mahnoor Javaid
- Medical College, The Aga Khan University, Karachi, Pakistan
| | - Abraham Edgar Gracia-Ramos
- Department of Internal Medicine, General Hospital, National Medical Center "La Raza", Instituto Mexicano del Seguro Social, Av. Jacaranda S/N, Col. La Raza, C.P. 02990, Del. AzcapotzalcoMexico City, Mexico
| | - Jessica Day
- Department of Rheumatology, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mrudula Joshi
- Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Sreoshy Saha
- Mymensingh Medical College, Mymensingh, Bangladesh
| | | | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407, Sofia, Bulgaria
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johannes Knitza
- Medizinische Klinik 3-Rheumatologie und Immunologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Deutschland
| | - Esha Kadam
- Seth Gordhandhas Sunderdas Medical College and King Edwards Memorial Hospital, Mumbai, Maharashtra, India
| | - Ai Lyn Tan
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Hiya Boro
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Aggarwal
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Tulika Chatterjee
- Center for Outcomes Research, Department of Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, IL, USA
| | - Latika Gupta
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, WV10 0QP, UK.
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Department of Rheumatology, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.
| |
Collapse
|
12
|
Lu CS, Wu CY, Wang YH, Hu QQ, Sun RY, Pan MJ, Lu XY, Zhu T, Luo S, Yang HJ, Wang D, Wang HW. The protective effects of icariin against testicular dysfunction in type 1 diabetic mice Via AMPK-mediated Nrf2 activation and NF-κB p65 inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155217. [PMID: 37992492 DOI: 10.1016/j.phymed.2023.155217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Owing to the early suffering age and the rising incidence of type 1 diabetes (T1D), the resulting male reproductive dysfunction and fertility decline have become a disturbing reality worldwide, with no effective strategy being available. Icariin (ICA), a flavonoid extracted from Herba Epimedium, has been proved its promising application in improving diabetes-related complications including diabetic nephropathy, endothelial dysfunction and erectile dysfunction. Ensuring the future reproductive health of children and adolescents with T1D is crucial to improve global fertility. However, its roles in the treatment of T1D-induced testicular dysfunction and the potential mechanisms remain elusive. PURPOSE The purpose of this present study was to investigate whether ICA ameliorates T1D-induced testicular dysfunction as well as its potential mechanisms. METHODS T1D murine model was established by intraperitoneal injection of STZ with or without treated with ICA for eleven weeks. Morphological, pathological and serological experiments were used to determine the efficacy of ICA on male reproductive function of T1D mice. Western blotting, Immunohistochemistry analysis, qRT-PCR and kit determination were performed to investigated the underlying mechanisms. RESULTS We found that replenishment of ICA alleviated testicular damage, promoted testosterone production and spermatogenesis, ameliorated apoptosis and blood testis barrier impairment in streptozotocin-induced T1D mice. Functionally, ICA treatment triggered adenosine monophosphate protein kinase (AMPK) activation, which in turn inhibited the nuclear translocation of nuclear factor kappa B p65 (NF-κB p65) to reduce inflammatory responses in the testis and activated nuclear factor erythroid 2-related factor 2(Nrf2), thereby enhancing testicular antioxidant capacity. Further studies revealed that supplementation with the AMPK antagonist Compound C or depletion of Nrf2 weakened the beneficial effects of ICA on testicular dysfunction of T1D mice. CONCLUSION Collectively, these results demonstrate the feasibility of ICA in the treatment of T1D-induced testicular dysfunction, and reveal the important role of AMPK-mediated Nrf2 activation and NF-κB p65 inhibition in ICA-associated testicular protection during T1D.
Collapse
Affiliation(s)
- Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chen-Yu Wu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi-Hong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qing-Qing Hu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rong-Yue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Min-Jie Pan
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xin-Yu Lu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; The First Clinical Medical College of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ting Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuang Luo
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Jing Yang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Hong-Wei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
13
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
14
|
Dolatshahi M, Sanjari Moghaddam H, Saberi P, Mohammadi S, Aarabi MH. Central nervous system microstructural alterations in Type 1 diabetes mellitus: A systematic review of diffusion Tensor imaging studies. Diabetes Res Clin Pract 2023; 205:110645. [PMID: 37004976 DOI: 10.1016/j.diabres.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 02/18/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
AIMS Type 1 diabetes mellitus (T1DM) is a chronic childhood disease with potentially persistent CNS disruptions. In this study, we aimed to systematically review diffusion tensor imaging studies in patients with T1DM to understand the microstructural effects of this entity on individuals' brains METHODS: We performed a systematic search and reviewed the studies to include the DTI studies in individuals with T1DM. The data for the relevant studies were extracted and a qualitative synthesis was performed. RESULTS A total of 19 studies were included, most of which showed reduced FA widespread in optic radiation, corona radiate, and corpus callosum, as well as other frontal, parietal, and temporal regions in the adult population, while most of the studies in the juvenile patients showed non-significant differences or a non-persistent pattern of changes. Also, reduced AD and MD in individuals with T1DM compared to controls and non-significant differences in RD were noted in the majority of studies. Microstructural alterations were associated with clinical profile, including age, hyperglycemia, diabetic ketoacidosis and cognitive performance. CONCLUSION T1DM is associated with microstructural brain alterations including reduced FA, MD, and AD in widespread brain regions, especially in association with glycemic fluctuations and in adult age.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- NeuroImaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, United States; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Parastoo Saberi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soheil Mohammadi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
15
|
Prendin F, Pavan J, Cappon G, Del Favero S, Sparacino G, Facchinetti A. The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP. Sci Rep 2023; 13:16865. [PMID: 37803177 PMCID: PMC10558434 DOI: 10.1038/s41598-023-44155-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Machine learning has become a popular tool for learning models of complex dynamics from biomedical data. In Type 1 Diabetes (T1D) management, these models are increasingly been integrated in decision support systems (DSS) to forecast glucose levels and provide preventive therapeutic suggestions, like corrective insulin boluses (CIB), accordingly. Typically, models are chosen based on their prediction accuracy. However, since patient safety is a concern in this application, the algorithm should also be physiologically sound and its outcome should be explainable. This paper aims to discuss the importance of using tools to interpret the output of black-box models in T1D management by presenting a case-of-study on the selection of the best prediction algorithm to integrate in a DSS for CIB suggestion. By retrospectively "replaying" real patient data, we show that two long-short term memory neural networks (LSTM) (named p-LSTM and np-LSTM) with similar prediction accuracy could lead to different therapeutic decisions. An analysis with SHAP-a tool for explaining black-box models' output-unambiguously shows that only p-LSTM learnt the physiological relationship between inputs and glucose prediction, and should therefore be preferred. This is verified by showing that, when embedded in the DSS, only p-LSTM can improve patients' glycemic control.
Collapse
Affiliation(s)
- Francesco Prendin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Jacopo Pavan
- Department of Information Engineering, University of Padova, Padova, Italy
- Department of Psychiatry and Neurobehavioral Sciences, Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA
| | - Giacomo Cappon
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Simone Del Favero
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Giovanni Sparacino
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Zhang S, Wang Q, Qu M, Chen Q, Bai X, Zhang Z, Zhou Q, Xie L. Hyperglycemia Induces Tear Reduction and Dry Eye in Diabetic Mice through the Norepinephrine-α 1 Adrenergic Receptor-Mitochondrial Impairment Axis of Lacrimal Gland. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:913-926. [PMID: 37088455 DOI: 10.1016/j.ajpath.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Abstract
Dry eye syndrome is a common complication in diabetic patients with a prevalence of up to 54.3%. However, the pathogenic mechanisms underlying hyperglycemia-induced tear reduction and dry eye remain less understood. The present study indicated that both norepinephrine (NE) and tyrosine hydroxylase levels were elevated in the lacrimal gland of diabetic mice, accompanied by increased Fos proto-oncogene (c-FOS)+ cells in the superior cervical ganglion. However, the elimination of NE accumulation by surgical and chemical sympathectomy significantly ameliorated the reduction in tear production, suppressed abnormal inflammation of the lacrimal gland, and improved the severity of dry eye symptoms in diabetic mice. Among various adrenergic receptors (ARs), the α1 subtype played a predominant role in the regulation of tear production, as treatments of α1AR antagonists improved tear secretion in diabetic mice compared with βAR antagonist propranolol. Moreover, the α1AR antagonist alfuzosin treatment also alleviated functional impairments of the meibomian gland and goblet cells in diabetic mice. Mechanically, the α1AR antagonist rescued the mitochondrial bioenergetic deficit, increased the mitochondrial DNA copy numbers, and elevated the glutathione levels of the diabetic lacrimal gland. Overall, these results deciphered a previously unrecognized involvement of the NE-α1AR-mitochondrial bioenergetics axis in the regulation of tear production in the lacrimal gland, which may provide a potential strategy to counteract diabetic dry eye by interfering with the α1AR activity.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qing Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xiaofei Bai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute of Shandong First Medical University, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
18
|
Lodde V, Floris M, Zoroddu E, Zarbo IR, Idda ML. RNA-binding proteins in autoimmunity: From genetics to molecular biology. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1772. [PMID: 36658783 DOI: 10.1002/wrna.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Enrico Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Neurology Unit Azienza Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), Sassari, Italy
| |
Collapse
|
19
|
Skoufa L, Makri E, Barkoukis V, Papagianni M, Triantafyllou P, Kouidi E. Effects of a Diabetes Sports Summer Camp on the Levels of Physical Activity and Dimensions of Health-Related Quality of Life in Young Patients with Diabetes Mellitus Type 1: A Randomized Controlled Trial. CHILDREN 2023; 10:children10030456. [PMID: 36980016 PMCID: PMC10046943 DOI: 10.3390/children10030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
Physical activity (PA) is considered an important part of the treatment of children with diabetes mellitus type 1 (T1DM). Furthermore, health-related quality of life (HRQoL) affects both the physical and mental health of patients with T1DM. The purpose of the study was to evaluate through a randomized controlled trial the impact of participation in a summer diabetes sports camp on the PA and HRQoL of children and adolescents with T1DM. Eighty-four children and adolescents with T1DM were randomly assigned into an intervention (M = 12.64, SD = 1.82, 30 female) and a control group (M = 12.67, SD = 2.50, 30 female). Intervention group participants attended a ten-day summer diabetes sports camp which included an intensive program of PA (6 h of daily PA), educational and entertaining activities as well as education on the importance of PA in the management of the disease. At baseline and at the end of the study, participants completed measures of physical activity, self-esteem, depression, health status, intention to change behavior, and life satisfaction. Results of the two-way repeated measures analysis showed no statistically significant group differences in PA levels (p < 0.05) and HRQoL parameters (p < 0.05 for all parameters). In conclusion, the results did not support the effectiveness of a 10-day diabetes sports camp on PA levels and HRQoL for children with T1DM. Longer interventions may be more effective in exerting positive influence on trait parameters of children with T1DM’s quality of life. Participation in such programs on multiple occasions should be evaluated in the future.
Collapse
Affiliation(s)
- Lida Skoufa
- Laboratory of Human Research and Sport Psychology, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Eleni Makri
- Laboratory of Sports Medicine, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Vassilis Barkoukis
- Laboratory of Human Research and Sport Psychology, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, Diabetes and Metabolism 3rd Department of Pediatrics, School of Health Sciences, Aristotle University of Thessaloniki, Hippokration Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Panagiota Triantafyllou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Evangelia Kouidi
- Laboratory of Sports Medicine, Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310992189
| |
Collapse
|
20
|
Green Coffee Bean Extract Potentially Ameliorates Liver Injury due to HFD/STZ-Induced Diabetes in Rats. J Food Biochem 2023. [DOI: 10.1155/2023/1500032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The goal of the current study was to examine the therapeutic potential of green coffee bean extract (GCBE) in the treatment of diabetic hepatic damage induced by high-fat diet (HFD) and streptozotocin (STZ) administration. The novelty of this study lies in constructing a newly stabilized in vivo obese diabetic animal model in rats using HFD/STZ for investigating the dose-dependent effect of two commonly used doses of GCBE in hepatoprotection against oxidative stress-induced hepatic damage by measuring many parameters that have not been carried out previously in other studies. GCBE that was used in this study was a hot water extract of green coffee beans with a concentration of 0.1 g ml−1. Male albino rats were given a single dose of STZ (35 mg kg−1), and HFD to induce diabetes mellitus (DM). For 28 days, two separate doses of GCBE 50 mg kg−1 and 100 mg kg−1 were administered orally to diabetic animals. Leptin, liver enzymes, oxidative stress parameters, inflammatory parameters, fasting plasma glucose (FPG), fasting plasma insulin (FPI), and lipid profile levels were examined. Real-time PCR and ELISA were used to quantitatively detect the mRNAs of the genes involved in the insulin signaling pathway, the genes involved in glucose metabolism, and the amounts of proteins. The levels of FPG, lipid profile, liver enzymes, inflammatory markers, and leptin in the HFD/STZ diabetic group revealed a considerable spike, while they considerably decreased after GCBE treatment in a dose-dependent manner. After GCBE treatment, the diabetic group showed a significant rise in the antioxidant markers glutathione, superoxide dismutase, and catalase, as well as a decrease in malondialdehyde and nitric oxide levels. The liver changes caused by HFD/STZ were entirely reversed by GCBE, and most intriguingly, in a dose-dependent manner. We concluded that GCBE can repair the hepatic oxidative damage caused by HFD and STZ by reversing all the previously measured parameters and improving the insulin signaling pathways. GCBE demonstrated strong antifree radical activity and significantly protected cells from oxidative damage caused by HFD/STZ.
Collapse
|
21
|
Li Y, Peng Q, Shang J, Dong W, Wu S, Guo X, Xie Z, Chen C. The role of taurine in male reproduction: Physiology, pathology and toxicology. Front Endocrinol (Lausanne) 2023; 14:1017886. [PMID: 36742382 PMCID: PMC9889556 DOI: 10.3389/fendo.2023.1017886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Taurine, a sulfur-containing amino acid, has a wide range of biological effects, such as bile salt formation, osmotic regulation, oxidative stress inhibition, immunomodulation and neuromodulation. Taurine has been proved to be synthesized and abundant in male reproductive organs. Recently, accumulating data showed that taurine has a potential protective effect on reproductive function of male animals. In physiology, taurine can promote the endocrine function of the hypothalamus-pituitary-testis (HPT) axis, testicular tissue development, spermatogenesis and maturation, delay the aging of testicular structure and function, maintain the homeostasis of the testicular environment, and enhance sexual ability. In pathology, taurine supplement may be beneficial to alleviate pathological damage of male reproductive system, including oxidative damage of sperm preservation in vitro, testicular reperfusion injury and diabetes -induced reproductive complications. In addition, taurine acts as a protective agent against toxic damage to the male reproductive system by exogenous substances (e.g., therapeutic drugs, environmental pollutants, radiation). Related mechanisms include reduced oxidative stress, increased antioxidant capacity, inhibited inflammation and apoptosis, restored the secretory activity of the HPT axis, reduced chromosomal variation, enhanced sperm mitochondrial energy metabolism, cell membrane stabilization effect, etc. Therefore, this article reviewed the protective effect of taurine on male reproductive function and its detailed mechanism, in order to provide reference for further research and clinical application.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jia Shang
- Arts Department, School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Wanglin Dong
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Sijia Wu
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Xiajun Guo
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Henan, Kaifeng, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| |
Collapse
|
22
|
He I, Smart G, Poirier BF, Sethi S, Jensen ED. An update on dental caries in children with type 1 diabetes mellitus. PEDIATRIC DENTAL JOURNAL 2022. [DOI: 10.1016/j.pdj.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
The microenvironment of silk/gelatin nanofibrous scaffold improves proliferation and differentiation of Wharton's jelly-derived mesenchymal cells into islet-like cells. Gene 2022; 833:146586. [PMID: 35597530 DOI: 10.1016/j.gene.2022.146586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
The use of umbilical cord-derived mesenchymal stem cells along with three-dimensional (3D) scaffolds in pancreatic tissue engineering can be considered as a treatment for diabetes. This study aimed to investigate the differentiation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into pancreatic islet-insulin producing cells (IPCs) on silk/gelatin nanofibers as a 3D scaffold. Mesenchymal markers were evaluated at the mesenchymal stem cells (MSCs) level by flow cytometry. WJ-MSCs were then cultured on 3D scaffolds and treated with a differential medium. Immunocytochemical assays showed efficient differentiation of WJ-MSCs into IPCs. Also, Real-time PCR results showed a significant increase in the expression of pancreatic genes in the 3D culture group compared to the two-dimensional (2D) culture group. Despite these cases, the secretion of insulin and C-peptide in response to different concentrations of glucose in the 3D group was significantly higher than in the 2D culture. The results of our study showed that silk/gelatin scaffold with WJ-MSCs could be a good option in the production of IPCs in regenerative medicine and pancreatic tissue engineering.
Collapse
|
24
|
Sachdeva P, M AR, Shukla R, Sahani A. A review on artificial pancreas and regenerative medicine used in the management of Type 1 diabetes mellitus. J Med Eng Technol 2022; 46:693-702. [PMID: 35801984 DOI: 10.1080/03091902.2022.2095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is one of the fastest-growing lifestyle disorders in the world. While numerous regimes have been developed to manage diabetes, there continue to be high numbers of diabetes-related deaths worldwide. The review gives a brief introduction to the pathology and aetiology of the disorder, different solutions developed over time with their advantages and disadvantages, and highlights the technological components and challenges of the latest technologies: artificial pancreas and regenerative medicine. The study is restricted to a set of high-quality publications from the last decade.
Collapse
Affiliation(s)
- Pallavi Sachdeva
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Ashrit R M
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Rahul Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Ashish Sahani
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
25
|
Ujah G, Emmanuel IB, Ansa F, Ukoh A, Ani EJ, Osim EE. Insulin and Zinc Co-Administration Ameliorate Diabetes Mellitus-Induced Reproductive Dysfunction in Male Rats. Niger J Physiol Sci 2022; 37:49-58. [PMID: 35947835 DOI: 10.54548/njps.v37i1.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Impaired male reproductive function is a major complication associated with diabetes mellitus (DM). Whether or not insulin, when co-administered with zinc will reverse or ameliorate reproductive dysfunction in male diabetics is not known. This study thus sought to establish if co-administration of insulin and zinc reverses or ameliorates male reproductive dysfunction in DM better than either insulin or zinc. Five (5) normal and twenty (20) diabetic sexually mature rats were assigned into five groups of five animals each. Group A consisted of normal rats and had access to only food and water. Group B consisted of diabetic animals with no treatment and served as DM control. Groups C and D consisted of diabetic animals and received insulin and zinc respectively. Group E consisted of diabetic animals and received both insulin and zinc. All diabetic animals had free access to food and water. Insulin in all cases was given subcutaneously twice daily in the morning and evening at 1 unit and 4 units respectively. Zinc (10mg/kg) was given orally once daily. Treatments in all cases commenced two weeks after DM was confirmed. The treatment lasted ten days. Samples were thereafter collected for analyses. DM decreased sperm count, sperm motility, sperm viability, normal sperm cells, semen pH, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone, while increasing sperm cells with defective tails. DM also impaired testicular morphology. Insulin and zinc co-administration improved sperm viability, sertoli cell count, Johnsen's score, serum FSH, LH and testosterone. Co-administration also improved semen pH towards normal. Insulin or zinc ameliorated several aspects of DM-induced male sexual dysfunction. However, the co-administration of insulin and zinc provided better results.
Collapse
Affiliation(s)
- G Ujah
- University of Calabar, Calabar.
| | | | | | | | | | | |
Collapse
|
26
|
Lacy ME, Moran C, Gilsanz P, Beeri MS, Karter AJ, Whitmer RA. Comparison of cognitive function in older adults with type 1 diabetes, type 2 diabetes, and no diabetes: results from the Study of Longevity in Diabetes (SOLID). BMJ Open Diabetes Res Care 2022; 10:10/2/e002557. [PMID: 35346969 PMCID: PMC8961108 DOI: 10.1136/bmjdrc-2021-002557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/06/2022] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The incidence of both type 1 diabetes (T1D) and type 2 diabetes (T2D) is increasing. Life expectancy is improving in T1D, resulting in a growing population of elderly adults with diabetes. While it is well established that older adults with T2D are at increased risk of cognitive impairment, little is known regarding cognitive aging in T1D and how their cognitive profiles may differ from T2D. RESEARCH DESIGN AND METHODS We compared baseline cognitive function and low cognitive function by diabetes status (n=734 T1D, n=232 T2D, n=247 without diabetes) among individuals from the Study of Longevity in Diabetes (mean age=68). We used factor analysis to group cognition into five domains and a composite measure of total cognition. Using linear and logistic regression models, we examined the associations between diabetes type and cognitive function, adjusting for demographics, comorbidities, depression, and sleep quality. RESULTS T1D was associated with lower scores on total cognition, language, executive function/psychomotor processing speed, and verbal episodic memory, and greater odds of low executive function/psychomotor processing speed (OR=2.99, 95% CI 1.66 to 5.37) and verbal episodic memory (OR=1.92, 95% CI 1.07 to 3.46), compared with those without diabetes. T2D was associated with lower scores on visual episodic memory. Compared with T2D, T1D was associated with lower scores on verbal episodic memory and executive function/psychomotor processing speed and greater odds of low executive function/psychomotor processing speed (OR=1.74, 95% CI 1.03 to 2.92). CONCLUSIONS Older adults with T1D had significantly poorer cognition compared with those with T2D and those without diabetes even after accounting for a range of comorbidities. Future studies should delineate how to reduce risk in this vulnerable population who are newly surviving to old age.
Collapse
Affiliation(s)
- Mary E Lacy
- Department of Epidemiology, University of Kentucky, Lexington, Kentucky, USA
- Division of Research, Kaiser Permanente, Oakland, California, USA
| | - Chris Moran
- Academic Unit, Peninsula Clinical School, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Paola Gilsanz
- Division of Research, Kaiser Permanente, Oakland, California, USA
| | - Michal S Beeri
- Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Joseph Sagol Neuroscience, Sheba Medical Center, Tel Hashomer, Israel
| | - Andrew J Karter
- Division of Research, Kaiser Permanente, Oakland, California, USA
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, California, USA
- Department of Epidemiology, University of California Davis School of Medicine, Davis, California, USA
| |
Collapse
|
27
|
Mahameed M, Xue S, Stefanov B, Hamri GC, Fussenegger M. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105619. [PMID: 35048556 PMCID: PMC8948567 DOI: 10.1002/advs.202105619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 05/14/2023]
Abstract
Rapid insulin release plays an essential role in maintaining blood-glucose homeostasis in mammalians. Patients diagnosed with type-I diabetes mellitus experience chronic and remarkably high blood-sugar levels, and require lifelong insulin injection therapy, so there is a need for more convenient and less invasive insulin delivery systems to increase patients' compliance and also to enhance their quality of life. Here, an endoplasmic-reticulum-localized split sec-tobacco etch virus protease (TEVp)-based rapamycin-actuated protein-induction device (RAPID) is engineered, which is composed of the rapamycin-inducible dimerization domains FK506 binding protein (FKBP) and FKBP-rapamycin binding protein fused with modified split sec-TEVp components. Insulin accumulation inside the endoplasmic reticulum (ER) is achieved through tagging its C-terminus with KDEL, an ER-retention signal, spaced by a TEVp cleavage site. In the presence of rapamycin, the split sec-TEVp-based RAPID components dimerize, regain their proteolytic activity, and remove the KDEL retention signal from insulin. This leads to rapid secretion of accumulated insulin from cells within few minutes. Using liver hydrodynamic transfection methodology, it is shown that RAPID quickly restores glucose homeostasis in type-1-diabetic (T1DM) mice treated with an oral dose of clinically licensed rapamycin. This rapid-release technology may become the foundation for other cell-based therapies requiring instantaneous biopharmaceutical availability.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Bozhidar‐Adrian Stefanov
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ghislaine Charpin‐El Hamri
- Département Génie BiologiqueInstitut Universitaire de TechnologieUniversité Claude Bernard Lyon 1Villeurbanne CedexF‐69622France
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- University of BaselFaculty of Life ScienceBaselCH‐4058Switzerland
| |
Collapse
|
28
|
Mahameed M, Fussenegger M. Engineering autonomous closed-loop designer cells for disease therapy. iScience 2022; 25:103834. [PMID: 35243222 PMCID: PMC8857602 DOI: 10.1016/j.isci.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mohamed Mahameed
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, 4001 Basel, Switzerland
- Corresponding author
| |
Collapse
|
29
|
Evidence and possible mechanisms of probiotics in the management of type 1 diabetes mellitus. J Diabetes Metab Disord 2022; 21:1081-1094. [PMID: 35673472 PMCID: PMC9167374 DOI: 10.1007/s40200-022-01006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Abstract Type 1 diabetes mellitus (T1DM) is one of the most common chronic immune-mediated diseases. The prevalence is worldwide especially among children and young adults. The destruction of the pancreatic β-cells due to some abnormalities in the immune system characterizes T1DM. Considering the high burden of the disease and its impact on human health, researchers have made great efforts during the last decades; investigating the disease pathogenesis and discovering new strategies for its management. Fortunately, probiotics have been found as potential remedies for T1DM. This review aims to explore the potentialities of probiotics in managing T1DM and its complications. Based on the outcomes of human and animal studies carried out from 2016 to 2021, the review hopes to assess the effectiveness of probiotics in the prevention and treatment of T1DM and its complications. We first tried to explain the disease's pathogenesis, and highlighted the possible mechanisms involved in these potentialities of probiotics. We concluded that, probiotics can be used as possible therapeutic tools for the management of T1DM. Possible mechanisms of action of probiotics include; the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of short chain fatty acids (SCFAs), and the regulation of GLP-1. However, we recommend further studies especially human trials should be carried out to investigate these potentialities of probiotics. Highlights • T1DM is highly prevalent worldwide, causing high morbidity and mortality especially among children and young adults• Gut microbiota plays a significant role in the pathogenesis of T1DM via an interconnection with the immune system• Probiotics can be used as possible therapeutic tools for the management of T1DM• Possible mechanisms of action of probiotics include the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of SCFAs, and the regulation of GLP-1.
Collapse
|
30
|
Martínez-Ortega AJ, Muñoz-Gómez C, Gros-Herguido N, Remón-Ruiz PJ, Acosta-Delgado D, Losada-Viñau F, Pumar-López A, Mangas-Cruz MÁ, González-Navarro I, López-Gallardo G, Bellido V, Soto-Moreno AM. Description of a Cohort of Type 1 Diabetes Patients: Analysis of Comorbidities, Prevalence of Complications and Risk of Hypoglycemia. J Clin Med 2022; 11:1039. [PMID: 35207312 PMCID: PMC8875497 DOI: 10.3390/jcm11041039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite major medical advances, Type 1 Diabetes (T1D) patients still have greater morbimortality than the general population. Our aim was to describe our cohort of T1D patients and identify potential risk factors susceptible to prevention strategies. METHODS Cross-sectional, observational study, including T1D patients treated at our center, from 1 March 2017 to 31 March 2020. INCLUSION CRITERIA T1D, age > 14 years and signed informed consent. EXCLUSION CRITERIA diabetes other than T1D, age < 14 years and/or refusal to participate. RESULTS Study population n = 2181 (49.8% females, median age at enrollment 41 years, median HbA1c 7.7%; 38.24% had at least one comorbidity). Roughly 7.45% had severe hypoglycemia (SH) within the prior year. Macro/microvascular complications were present in 42.09% (5.83% and 41.14%, respectively). The most frequent microvascular complication was diabetic retinopathy (38.02%), and coronary disease (3.21%) was the most frequent macrovascular complication. The risk of complications was higher in males than in females, mainly macrovascular. Patients with SH had a higher risk of complications (OR 1.42; 1.43 in males versus 1.42 in females). CONCLUSIONS Our T1D population is similar to other T1D populations. We should minimize the risk of SH, and male patients should perhaps be treated more aggressively regarding cardiovascular risk factors.
Collapse
Affiliation(s)
- Antonio J. Martínez-Ortega
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
- Endocrine Diseases Laboratory, Institute of Biomedicine of Seville, Manuel Siurot Av., 41013 Seville, Spain
| | - Cristina Muñoz-Gómez
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Noelia Gros-Herguido
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Pablo Jesús Remón-Ruiz
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Domingo Acosta-Delgado
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Fernando Losada-Viñau
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Alfonso Pumar-López
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Miguel Ángel Mangas-Cruz
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Irene González-Navarro
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Gema López-Gallardo
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Virginia Bellido
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
| | - Alfonso Manuel Soto-Moreno
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, Manuel Siurot Av., 41013 Seville, Spain; (C.M.-G.); (N.G.-H.); (P.J.R.-R.); (D.A.-D.); (F.L.-V.); (A.P.-L.); (M.Á.M.-C.); (I.G.-N.); (G.L.-G.); (V.B.); (A.M.S.-M.)
- Endocrine Diseases Laboratory, Institute of Biomedicine of Seville, Manuel Siurot Av., 41013 Seville, Spain
- Medicine Department, Faculty of Medicine, University of Sevilla, Dr. Fedriani Av., 41009 Seville, Spain
| |
Collapse
|
31
|
Zaharia OP, Lanzinger S, Rosenbauer J, Karges W, Müssig K, Meyhöfer SM, Burkart V, Hummel M, Raddatz D, Roden M, Szendroedi J, Holl RW. Comorbidities in Recent-Onset Adult Type 1 Diabetes: A Comparison of German Cohorts. Front Endocrinol (Lausanne) 2022; 13:760778. [PMID: 35721726 PMCID: PMC9205191 DOI: 10.3389/fendo.2022.760778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
AIMS Restrictive exclusion criteria from different study populations may limit the generalizability of the observations. By comparing two differently designed German cohorts, we assessed the prevalence of cardiovascular risk factors and diabetes-related complications in recent-onset adult type 1 diabetes. METHODS This study evaluated 1511 persons with type 1 diabetes of the prospective diabetes follow-up registry (DPV) and 268 volunteers of the prospective observational German Diabetes Study (GDS) with a known diabetes duration <1 year. Participants had similar age (36 years), sex distribution (41% female) and BMI (26 kg/m2) in both cohorts. RESULTS The average HbA1c was 6.4 ± 0.8% in the GDS and 7.0 ± 1.1% in the DPV. Prevalence of hypertension (24%) was similar, while more DPV participants had dyslipidemia and lipid-lowering medication than GDS participants (77% vs. 41% and 7% vs. 2%, respectively; p<0.05). Prevalence of retinopathy and nephropathy was higher in DPV compared to GDS participants (10% vs. 3% and 18% vs. 7%, respectively; p<0.001). CONCLUSIONS Diabetic nephropathy and retinopathy are the most frequent complications in type 1 diabetes, affecting up to every 10th patient within the first year after diagnosis, underlining the need for more stringent risk factor management already at the time of diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Oana P. Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stefanie Lanzinger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology and Medical Biometry, Zentralinstitut für Biomedizinische Technik (ZIBMT), University of Ulm, Ulm, Germany
| | - Joachim Rosenbauer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Wolfram Karges
- Division of Endocrinology and Diabetes, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Internal Medicine/Gastroenterology, Franziskus-Hospital Harderberg, Georgsmarienhütte, Germany
| | - Sebastian M. Meyhöfer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Rosenheim, Lübeck, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Dirk Raddatz
- Division of Gastroenterology and Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Julia Szendroedi,
| | - Reinhard W. Holl
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Epidemiology and Medical Biometry, Zentralinstitut für Biomedizinische Technik (ZIBMT), University of Ulm, Ulm, Germany
| |
Collapse
|
32
|
Ergun DD, Dursun S, Ergun S, Ozcelik D. The Association Between Trace Elements and Osmolality in Plasma and Aqueous Humor Fluid in Diabetic Rabbits. Biol Trace Elem Res 2021; 199:4154-4161. [PMID: 33409916 DOI: 10.1007/s12011-020-02538-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Trace element metabolism plays an important role in the formation of diabetes and complications of diabetes. Although trace elements changes in lenses in diabetic cataract and glaucoma formation have been investigated, there were few studies evaluating trace elements levels in plasma and aqueous humor fluid in diabetic and non-diabetic conditions. Therefore, we aimed to investigate zinc (Zn), copper (Cu), and chromium (Cr) levels in plasma and aqueous humor fluids of rabbits in the diabetic rabbit model. New Zealand male rabbits were divided into two groups as control (n = 8), and diabetes (n = 8) induced by alloxane. At the end of the experimental period, the osmolality in blood, plasma, and aqueous humor fluids from rabbits were measured by osmometer and Zn, Cu, and Cr levels in plasma and aqueous humor fluid were measured by inductively coupled plasma-optical emission spectrophotometer (ICP-OES). The osmolality in blood, plasma, and aqueous humor fluid of the diabetic group was significantly increased compared to the control group (respectively p < 0.01, p < 0.001, p < 0.001). It was analyzed that plasma Zn and Cu levels of diabetic rabbits increased significantly (respectively, p < 0.01; p < 0.001), whereas Cr level significantly decreased according to the control group (p < 0.01). It was observed that Cr and Zn levels in aqueous humor fluid in diabetes group decreased (respectively p < 0.001 and p < 0.01), and a significantly increased in Cu level (p < 0.001) compared to the control group. Related with these changes that may occur in the eye due to the measured parameters, we consider that comparative studies of these types of diabetic animal models would be useful in the evaluation of diabetes and its complications.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Sefik Dursun
- Department of Biophysics, Medical Faculty, Uskudar University, Istanbul, Turkey
| | - Sefa Ergun
- Department of General Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
33
|
Ding H, Yao J, Xie H, Wang C, Chen J, Wei K, Ji Y, Liu L. MicroRNA-195-5p Downregulation Inhibits Endothelial Mesenchymal Transition and Myocardial Fibrosis in Diabetic Cardiomyopathy by Targeting Smad7 and Inhibiting Transforming Growth Factor Beta 1-Smads-Snail Pathway. Front Physiol 2021; 12:709123. [PMID: 34658906 PMCID: PMC8514870 DOI: 10.3389/fphys.2021.709123] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus, which is associated with fibrosis and microRNAs (miRs). This study estimated the mechanism of miR-195-5p in endothelial mesenchymal transition (EndMT) and myocardial fibrosis in DCM. After the establishment of DCM rat models, miR-195-5p was silenced by miR-195-5p antagomir. The cardiac function-related indexes diastolic left ventricular anterior wall (LVAW, d), systolic LVAW (d), diastolic left ventricular posterior wall (LVPW, d), systolic LVPW (d), left ventricular ejection fraction (LVEF), and fractional shortening (FS) were measured and miR-195-5p expression in myocardial tissue was detected. Myocardial fibrosis, collagen deposition, and levels of fibrosis markers were detected. Human umbilical vein endothelial cells (HUVECs) were exposed to high glucose (HG) and miR-195-5p was silenced. The levels of fibrosis proteins, endothelial markers, fibrosis markers, EndMT markers, and transforming growth factor beta 1 (TGF-β1)/Smads pathway-related proteins were measured in HUVECs. The interaction between miR-195-5p and Smad7 was verified. In vivo, miR-195-5p was highly expressed in the myocardium of DCM rats. Diastolic and systolic LVAW, diastolic and systolic LVPW were increased and LVEF and FS were decreased. Inhibition of miR-195-5p reduced cardiac dysfunction, myocardial fibrosis, collagen deposition, and EndMT, promoted CD31 and VE-cadehrin expressions, and inhibited α-SMA and vimentin expressions. In vitro, HG-induced high expression of miR-195-5p and the expression changes of endothelial markers CD31, VE-cadehrin and fibrosis markers α-SMA and vimentin were consistent with those in vivo after silencing miR-195-5p. In mechanism, miR-195-5p downregulation blocked EndMT by inhibiting TGF-β1-smads pathway. Smad7 was the direct target of miR-195-5p and silencing miR-195-5p inhibited EndMT by promoting Smad7 expression. Collectively, silencing miR-195-5p inhibits TGF-β1-smads-snail pathway by targeting Smad7, thus inhibiting EndMT and alleviating myocardial fibrosis in DCM.
Collapse
Affiliation(s)
- Huaisheng Ding
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jianhui Yao
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Hongxiang Xie
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Chengyu Wang
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Jing Chen
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Kaiyong Wei
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Yangyang Ji
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| | - Lihong Liu
- Cardiovascular Department, Meishan People's Hospital, Meishan, China
| |
Collapse
|
34
|
Huo Y, Mijiti A, Cai R, Gao Z, Aini M, Mijiti A, Wang Z, Qie R. Scutellarin alleviates type 2 diabetes (HFD/low dose STZ)-induced cardiac injury through modulation of oxidative stress, inflammation, apoptosis and fibrosis in mice. Hum Exp Toxicol 2021; 40:S460-S474. [PMID: 34610774 DOI: 10.1177/09603271211045948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetes is a serious global health concern which severely affected public health as well as socio-economic growth worldwide. Scutellarin (SCU), a bioactive flavonoid, is known for its efficacious action against a range of ailments including cardiovascular problems. The present study was conducted to find out possible protective effect and its associated mechanisms of SCU on experimental type 2 diabetes-induced cardiac injury. METHODS Type 2 diabetes was induced by treating animals with high fat diet for 4 weeks and a single intraperitoneal dose (35 mg/kg body weight) of streptozotocin and diabetic animals received SCU (10 or 20 mg/kg/day) for 6 weeks. RESULTS Scutellarin attenuated type 2 diabetes-induced hyperglycemia, bodyweight loss, hyperlipidaemia, cardiac functional damage with histopathological alterations and fibrosis. Scutellarin treatment to type 2 diabetic mice ameliorated oxidative stress, inflammatory status and apoptosis in heart. Furthermore, the underlying mechanisms for such mitigation of oxidative stress, inflammation and apoptosis in heart involved modulation of Nrf2/Keap1 pathway, TLR4/MyD88/NF-κB mediated inflammatory pathway and intrinsic (mitochondrial) apoptosis pathway, respectively. CONCLUSIONS The current findings suggest that SCU is effective in protecting type 2 diabetes-induced cardiac injury by attenuating oxidative stress and inflammatory responses and apoptosis, and it is also worth considering the efficacious potential of SCU to treat diabetic cardiomyopathy patients.
Collapse
Affiliation(s)
- Yan Huo
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Abudureheman Mijiti
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Ruonan Cai
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Zhaohua Gao
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Maierpu Aini
- Department of Cardiac electrophysiology group, The Second People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Abudukadier Mijiti
- Department of Emergency Medicine, The First People's Hospital in Kashgar, Kashgar, Xinjiang, China
| | - Zhaoling Wang
- Department of Endocrinology, 38044Xuzhou first People's Hospital (The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Rui Qie
- Department of Emergency, 118437First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Haerbin, Heilongjiang, China
| |
Collapse
|
35
|
Can Resistance Exercise Be a Tool for Healthy Aging in Post-Menopausal Women with Type 1 Diabetes? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168716. [PMID: 34444464 PMCID: PMC8393224 DOI: 10.3390/ijerph18168716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022]
Abstract
Due to improvements in diabetes care, people with type 1 diabetes (T1D) are living longer. Studies show that post-menopausal T1D women have a substantially elevated cardiovascular risk compared to those without T1D. As T1D may also accelerate age-related bone and muscle loss, the risk of frailty may be considerable for T1D women. Exercise and physical activity may be optimal preventative therapies to maintain health and prevent complications in this population: They are associated with improvements in, or maintenance of, cardiovascular health, bone mineral density, and muscle mass in older adults. Resistance exercise, in particular, may provide important protection against age-related frailty, due to its specific effects on bone and muscle. Fear of hypoglycemia can be a barrier to exercise in those with T1D, and resistance exercise may cause less hypoglycemia than aerobic exercise. There are currently no exercise studies involving older, post-menopausal women with T1D. As such, it is unknown whether current guidelines for insulin adjustment/carbohydrate intake for activity are appropriate for this population. This review focuses on existing knowledge about exercise in older adults and considers potential future directions around resistance exercise as a therapeutic intervention for post-menopausal T1D women.
Collapse
|
36
|
Khamis T, Abdelalim AF, Saeed AA, Edress NM, Nafea A, Ebian HF, Algendy R, Hendawy DM, Arisha AH, Abdallah SH. Breast milk MSCs upregulated β-cells PDX1, Ngn3, and PCNA expression via remodeling ER stress /inflammatory /apoptotic signaling pathways in type 1 diabetic rats. Eur J Pharmacol 2021; 905:174188. [PMID: 34004210 DOI: 10.1016/j.ejphar.2021.174188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the autoimmune diseases characterized by beta-cell dysfunction with serious health complications. Br-MSCs represent a novel valid candidate in regenerative medicine disciplines. Yet, the full potential of Br-MSCs in managing type 1 diabetes remains elusive. Indeed, this study was designed to explore a novel approach investigating the possible regenerative capacity of Br-MSCs in type1 diabetic islet on the level of the cellular mRNA expression of different molecular pathways involved in pancreatic beta-cell dysfunction. Sixty adult male Sprague-Dawley rats were randomly assigned into 3 groups (20 rats each); the control group, type1 diabetic group, and the type 1 diabetic Br-MSCs treated group. And, for the first time, our results revealed that intraperitoneally transplanted Br-MSCs homed to the diabetic islet and improved fasting blood glucose, serum insulin level, pancreatic oxidative stress, upregulated pancreatic mRNA expression for: regenerative markers (Pdx1, Ngn3, PCNA), INS, beta-cell receptors (IRS1, IRβ, PPARγ), pancreatic growth factors (IGF-1, VEGFβ1, FGFβ), anti-inflammatory cytokine (IL10) and anti-apoptotic marker (BCL2) too, Br-MSCs downregulated pancreatic mRNA expression for: inflammatory markers (NFKβ, TNFα, IL1β, IL6, IL8, MCP1), apoptotic markers for both intrinsic and extrinsic pathways (FAS, FAS-L, P53, P38, BAX, Caspase3), ER stress markers (ATF6, ATF3, ATF4, BIP, CHOP, JNK, XBP1) and autophagy inhibitor (mTOR). In conclusion, Br-MSCs could be considered as a new insight in beta cell regenerative therapy improving the deteriorated diabetic islet microenvironment via modulating; ER stress, inflammatory, and apoptotic signaling pathways besides, switching on the cellular quality control system (autophagy) thus enhancing beta-cell function.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Abdelalim F Abdelalim
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Ahmed A Saeed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Nagah M Edress
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Alaa Nafea
- Department of Pediatrics, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Huda F Ebian
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Reem Algendy
- Department of Milk Hygiene, Food Control Department, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Doaa M Hendawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt.
| | - Somia Hassan Abdallah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, 44511, Zagazig, Egypt
| |
Collapse
|
37
|
Okan A, Doğanyiğit Z, Eroğlu E, Akyüz E, Demir N. Immunoreactive definition of TNF- α, HIF-1 α, Kir6.2, Kir3.1 and M2 muscarinic receptor for cardiac and pancreatic tissues in a mouse model for type 1 diabetes. Life Sci 2021; 284:119886. [PMID: 34389402 DOI: 10.1016/j.lfs.2021.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Aslı Okan
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Züleyha Doğanyiğit
- Department of Histology and Embryology, School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Ece Eroğlu
- School of Medicine, Yozgat Bozok University, Yozgat 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, School of International Medicine, University of Health Sciences, Istanbul 34668, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey.
| |
Collapse
|
38
|
O'Carroll-Lolait A, Urwin A, Doughty I, Schofield J, Thabit H, Leelarathna L. Trends in HbA1c and other biochemical outcomes of individuals with newly diagnosed type 1 diabetes. Ir J Med Sci 2021; 190:999-1004. [PMID: 33231831 PMCID: PMC8302503 DOI: 10.1007/s11845-020-02434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is limited data on glycaemic control and cardiovascular risk factor management in newly diagnosed individuals with type 1 diabetes in the first 2 years. METHODS Retrospective, single centre study from the North West of England, newly diagnosed with type 1 diabetes between 2014 and 2018 (n = 58). HbA1c, blood pressure, lipids and body mass index (BMI) data were collected from electronic patient records from the time of diagnosis until the end of 2 years, stratified by age 16-24 years or ≥ 25 years at presentation. RESULTS For those aged 16-24 years (n = 31), median (IQR), HbA1c improved at 6 months from 83 (63-93) to 51.5 (46-75) mmol/mol (p = 0.001) and remained stable 6-24 months. For those ≥ 25 years (n = 27), HbA1c declined from 91 (70-107) to 65 (50-89) mmol/mol, (p < 0.01) at 6 months and declined further to 52 mmol/mol (44-70) at 24 months. At 24 months, 27.8% of all individuals had an HbA1c ≥ 69 mmol/mol. Approximately, a third met LDL (< 2 mmol/L) and total cholesterol (< 4 mmol/L) targets. A total of 58.6% of individuals were overweight/obese (BMI > 25 kg/m2) at 24 months compared to 45.8% at baseline. There were no significant blood pressure changes during the follow-up. CONCLUSIONS In both age groups, significant improvement of HbA1c occurred within the first 6 months of diagnosis with no statistical difference between the two groups at any of the time points up to 24 months. Despite significant improvements in HbA1c, majority had levels > 53 mmol/mol at 24 months. Alongside the high incidence of obesity and dyslipidaemia, our data support the need for further intensification of therapy from diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- A O'Carroll-Lolait
- School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Urwin
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - I Doughty
- Royal Manchester Children's Hospital, Manchester University NHS foundation Trust, Manchester, UK
| | - J Schofield
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - H Thabit
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - L Leelarathna
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
39
|
Lam PY, Chow SC, Lam WC, Chow LLW, Fung NSK. Management of Patients with Newly Diagnosed Diabetic Mellitus: Ophthalmologic Outcomes in Intensive versus Conventional Glycemic Control. Clin Ophthalmol 2021; 15:2767-2785. [PMID: 34234400 PMCID: PMC8243595 DOI: 10.2147/opth.s301317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objective Diabetic retinopathy, a microvascular complication of diabetes mellitus, is one of the most important causes of visual loss in developed countries. Our objective is to evaluate the efficacy of intensive versus conventional glycemic control of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients in terms of ophthalmologic outcome, pathogenesis of the early worsening of diabetic retinopathy, risk factors for early worsening and diabetic retinopathy progression. Methods A literature search on publications concerning glycaemic control in diabetic retinopathy and management of newly diagnosed diabetes mellitus by intensive versus conventional glycaemic control. Results A total of 22 articles were reviewed after curation by the authors for relevance. Nineteen articles are randomized control trial, 2 articles are observational studies and 1 is clinical trial. Fifteen articles investigated the glycaemic control in T1DM-related diabetic retinopathy and 8 on T2DM-related diabetic retinopathy. The level of glycemia (in terms of HbA1c level) is significantly related to the diabetic retinopathy progression in both T1DM and T2DM. Intensive glycemic control was found to reduce the development of severe diabetic retinopathy, including severe non-proliferative diabetic retinopathy, neovascularization, clinically significant macular edema and loss of vision. Early worsening of diabetic retinopathy commonly occurs during the first year of intensive treatment, especially those initially present with proliferative or severe non-proliferative retinopathy. However, most patients with early worsening can recover and their long-term ophthalmologic outcomes are better when compared to conventional glycemic control. Conclusion The current guideline on HbA1c level is considered sufficient for the minimization of diabetic retinopathy progression. More frequent monitoring for early worsening should be recommended for newly diagnosed diabetes cases already presenting with retinopathy.
Collapse
Affiliation(s)
- Pun Yuet Lam
- The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shing Chuen Chow
- The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wai Ching Lam
- The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Queen Mary Hospital & Grantham Hospital, Hong Kong
| | - Loraine Lok Wan Chow
- The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Queen Mary Hospital & Grantham Hospital, Hong Kong
| | - Nicholas Siu Kay Fung
- The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Queen Mary Hospital & Grantham Hospital, Hong Kong
| |
Collapse
|
40
|
Peng W, Xu B, Ge X, Du J, Xi L, Xia L, Wang Q, Huang S. Vof16-miR-205-Gnb3 axis regulates hippocampal neuron functions in cognitively impaired diabetic rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:965. [PMID: 34277765 PMCID: PMC8267322 DOI: 10.21037/atm-21-2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Background Diabetes is a chronic metabolic disease and an independent risk factor for cognitive damage. Non-protein coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are involved in various pathophysiological conditions. Methods In this study, cognitive impairment was induced in diabetics rats by streptozotocin (STZ) injection, and the differential lncRNAs and mRNAs in rat hippocampal tissue between control and STZ-treated groups were analyzed with microarray. Results In the hippocampus of STZ-treated diabetic rats, lncRNA Vof-16, and Gnb3 mRNA were significantly upregulated and silicon analysis showed that Vof-16 and miR-205 share the same miRNA response element (MRE). In addition, the overexpression of Vof-16 in primary hippocampal neurons inhibited the expression of miR-205, and vice versa. Dual luciferase assay verified the binding between Vof-16 and miR-205, and Vof-16 was seen to promote the proliferation of primary hippocampal neurons via sponging miR-205. Silicon analysis predicted that miR-205 could bind with Gnb3, which was verified with dual luciferase assay, and the overexpression of miR-205 could inhibit the protein level of Gnb3, which could be rescued by co-expression with Vof-16. In conclusion, lncRNA Vof-16 regulated Gnb3 expression by competitively binding to miR-205. Conclusions These results provided a novel regulation axis for the pathogenesis of STZ-induced diabetes.
Collapse
Affiliation(s)
- Wenfang Peng
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Bojin Xu
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xiaoxu Ge
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Juan Du
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Liuqing Xi
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Lili Xia
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Wang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Shan Huang
- Department of Endocrinology, Shanghai Tongren Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
41
|
Bianchetti G, Viti L, Scupola A, Di Leo M, Tartaglione L, Flex A, De Spirito M, Pitocco D, Maulucci G. Erythrocyte membrane fluidity as a marker of diabetic retinopathy in type 1 diabetes mellitus. Eur J Clin Invest 2021; 51:e13455. [PMID: 33210748 DOI: 10.1111/eci.13455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND A high level of glycosylated haemoglobin (HbA1c), which is a nonenzymatic glycosylation product, is correlated with an increased risk of developing microangiopathic complications in Diabetes Mellitus (DM). Erythrocyte membrane fluidity could provide a complementary index to monitor the development of complications since it is influenced by several hyperglycaemia-induced pathways and other independent risk factors. MATERIALS AND METHODS 15 healthy controls and 33 patients with long-duration (≥20 years) type 1 Diabetes Mellitus (T1DM) were recruited. Diabetic subjects were classified into two groups: T1DM, constituted by 14 nonretinopathic patients, and T1DM + RD, constituted by 19 patients in any stage of diabetic retinopathy. Red blood cells (RBC) were incubated with the fluorescent Laurdan probe and median values of Generalized Polarization (GP), representative of membrane fluidity, were compared between the two groups. Baseline characteristics among groups have been compared with Student's t test or ANOVA. Values of P < .05 were considered statistically significant. RESULTS All the participants were comparable for age, Body Mass Index (BMI), creatinine and lipid profile. The duration of diabetes was similar for T1DM (34.4 ± 7.8 years) and T1DM + RD (32.8 ± 7.5 years) subjects as well as values of HbA1c: (55.6 ± 8.1) mmol/mol for T1DM and (61.2 ± 11.0) mmol/mol for T1DM + RD, respectively. Erythrocyte plasmatic membranes of RD patients were found to be more fluid (GP: 0.40 ± 0.04) than non-RD patients (GP: 0.43 ± 0.03) with a statistically significant difference (P = .035). CONCLUSIONS Altered erythrocyte membrane fluidity may therefore represent a marker of retinopathy in T1DM patients as a result of post-translational modifications of multifactorial aetiology (nonenzymatic glycosylation of proteins, generation of reactive oxygen species, lipid peroxidation).
Collapse
Affiliation(s)
- Giada Bianchetti
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Luca Viti
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Andrea Scupola
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Mauro Di Leo
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Linda Tartaglione
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Cardiovascular Disease Division, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
42
|
Beeve AT, Shen I, Zhang X, Magee K, Yan Y, MacEwan MR, Scheller EL. Neuroskeletal Effects of Chronic Bioelectric Nerve Stimulation in Health and Diabetes. Front Neurosci 2021; 15:632768. [PMID: 33935630 PMCID: PMC8080454 DOI: 10.3389/fnins.2021.632768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background/Aims Bioelectric nerve stimulation (eStim) is an emerging clinical paradigm that can promote nerve regeneration after trauma, including within the context of diabetes. However, its ability to prevent the onset of diabetic peripheral neuropathy (DPN) has not yet been evaluated. Beyond the nerve itself, DPN has emerged as a potential contributor to sarcopenia and bone disease; thus, we hypothesized that eStim could serve as a strategy to simultaneously promote neural and musculoskeletal health in diabetes. Methods To address this question, an eStim paradigm pre-optimized to promote nerve regeneration was applied to the sciatic nerve, which directly innervates the tibia and lower limb, for 8 weeks in control and streptozotocin-induced type 1 diabetic (T1D) rats. Metabolic, gait, nerve and bone assessments were used to evaluate the progression of diabetes and the effect of sciatic nerve eStim on neuropathy and musculoskeletal disease, while also considering the effects of cuff placement and chronic eStim in otherwise healthy animals. Results Rats with T1D exhibited increased mechanical allodynia in the hindpaw, reduced muscle mass, decreased cortical and cancellous bone volume fraction (BVF), reduced cortical bone tissue mineral density (TMD), and decreased bone marrow adiposity. Type 1 diabetes also had an independent effect on gait. Placement of the cuff electrode alone resulted in altered gait patterns and unilateral reductions in tibia length, cortical BVF, and bone marrow adiposity. Alterations in gait patterns were restored by eStim and tibial lengthening was favored unilaterally; however, eStim did not prevent T1D-induced changes in muscle, bone, marrow adiposity or mechanical sensitivity. Beyond this, chronic eStim resulted in an independent, bilateral reduction in cortical TMD. Conclusion Overall, these results provide new insight into the pathogenesis of diabetic neuroskeletal disease and its regulation by eStim. Though eStim did not prevent neural or musculoskeletal complications in T1D, our results demonstrate that clinical applications of peripheral neuromodulation ought to consider the impact of device placement and eStim on long-term skeletal health in both healthy individuals and those with metabolic disease. This includes monitoring for compounded bone loss to prevent unintended consequences including decreased bone mineral density and increased fracture risk.
Collapse
Affiliation(s)
- Alec T Beeve
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ivana Shen
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Xiao Zhang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kristann Magee
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Erica L Scheller
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
43
|
Castro VMDD, Medeiros KCDP, Lemos LICD, Pedrosa LDFC, Ladd FVL, Carvalho TGD, Araújo Júnior RFD, Abreu BJ, Farias NBDS. S-methyl cysteine sulfoxide ameliorates duodenal morphological alterations in streptozotocin-induced diabetic rats. Tissue Cell 2021; 69:101483. [PMID: 33444959 DOI: 10.1016/j.tice.2020.101483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease associated with several intestinal disorders. S-methyl cysteine sulfoxide (SMCS) is an amino acid present in Allium cepa L with hypoglycemic effects. However, the effects of SMCS on diabetic intestinal changes are unknown. Thus, we aimed to investigate the effects of SMCS on duodenal morphology and immunomodulatory markers in diabetic rats. Twenty-six rats were divided into three groups: control (C), diabetic (D) and diabetic +200 mg/kg SMCS (DSM). DM was induced by intraperitoneal injection of streptozotocin (50 mg/kg). After 30 days, duodenum samples were processed to assess histopathological and stereological alterations in volume, villus length, and immunohistochemical expression of NF-kB, IL-10, BCL-2, and caspase-3. SMCS reduced hyperglycemia and mitigated the increase in total reference volume of the duodenum, the absolute volume of the mucosa, and the length of the intestinal crypts in the DMS group when compared to D. IL-10 immunostaining was reduced in D when compared to C, while NF-kB was increased in D in comparison to the other groups. SMCS supplementation could decrease the NF-kB immunostaining observed in D. Positive staining for BCL-2 and caspase-3 were not statistically different between groups. In summary, SMCS decreased hyperglycemia and mitigated the morphological changes of the duodenum in diabetic animals, and these beneficial effects can be partially explained by NF-kB modulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | |
Collapse
|
44
|
Al‐Sari N, Schmidt S, Suvitaival T, Kim M, Trošt K, Ranjan AG, Christensen MB, Overgaard AJ, Pociot F, Nørgaard K, Legido‐Quigley C. Changes in the lipidome in type 1 diabetes following low carbohydrate diet: Post-hoc analysis of a randomized crossover trial. Endocrinol Diabetes Metab 2021; 4:e00213. [PMID: 33855215 PMCID: PMC8029500 DOI: 10.1002/edm2.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/14/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Lipid metabolism might be compromised in type 1 diabetes, and the understanding of lipid physiology is critically important. This study aimed to compare the change in plasma lipid concentrations during carbohydrate dietary changes in individuals with type 1 diabetes and identify links to early-stage dyslipidaemia. We hypothesized that (1) the lipidomic profiles after ingesting low or high carbohydrate diet for 12 weeks would be different; and (2) specific annotated lipid species could have significant associations with metabolic outcomes. Methods Ten adults with type 1 diabetes (mean ± SD: age 43.6 ± 13.8 years, diabetes duration 24.5 ± 13.4 years, BMI 24.9 ± 2.1 kg/m2, HbA1c 57.6 ± 2.6 mmol/mol) using insulin pumps participated in a randomized 2-period crossover study with a 12-week intervention period of low carbohydrate diet (< 100 g carbohydrates/day) or high carbohydrate diet (> 250 g carbohydrates/day), respectively, separated by a 12-week washout period. A large-scale non-targeted lipidomics was performed with mass spectrometry in fasting plasma samples obtained before and after each diet intervention. Longitudinal lipid levels were analysed using linear mixed-effects models. Results In total, 289 lipid species were identified from 14 major lipid classes. Comparing the two diets, 11 lipid species belonging to sphingomyelins, phosphatidylcholines and LPC(O-16:0) were changed. All the 11 lipid species were significantly elevated during low carbohydrate diet. Two lipid species were most differentiated between diets, namely SM(d36:1) (β ± SE: 1.44 ± 0.28, FDR = 0.010) and PC(P-36:4)/PC(O-36:5) (β ± SE: 1.34 ± 0.25, FDR = 0.009) species. Polyunsaturated PC(35:4) was inversely associated with BMI and positively associated with HDL cholesterol (p < .001). Conclusion Lipidome-wide outcome analysis of a randomized crossover trial of individuals with type 1 diabetes following a low carbohydrate diet showed an increase in sphingomyelins and phosphatidylcholines which are thought to reduce dyslipidaemia. The polyunsaturated phosphatidylcholine 35:4 was inversely associated with BMI and positively associated with HDL cholesterol (p < .001). Results from this study warrant for more investigation on the long-term effect of single lipid species in type 1 diabetes.
Collapse
Affiliation(s)
| | - Signe Schmidt
- Steno Diabetes Center CopenhagenGentofteDenmark
- Danish Diabetes AcademyOdenseDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Min Kim
- Steno Diabetes Center CopenhagenGentofteDenmark
| | - Kajetan Trošt
- Steno Diabetes Center CopenhagenGentofteDenmark
- Present address:
Novo Nordisk foundation Center for Basic Metabolic ResearchKøbenhavn NDenmark
| | - Ajenthen G. Ranjan
- Steno Diabetes Center CopenhagenGentofteDenmark
- Danish Diabetes AcademyOdenseDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Merete B. Christensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | | | - Flemming Pociot
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of Clinical MedicineUniversity of CopenhagenKøbenhavnDenmark
| | - Kirsten Nørgaard
- Steno Diabetes Center CopenhagenGentofteDenmark
- Department of EndocrinologyCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Cristina Legido‐Quigley
- Steno Diabetes Center CopenhagenGentofteDenmark
- Institute of Pharmaceutical ScienceKing’s College LondonLondonUK
| |
Collapse
|
45
|
Purohit S, Tran PMH, Tran LKH, Satter KB, He M, Zhi W, Bai S, Hopkins D, Gardiner M, Wakade C, Bryant J, Bernard R, Morgan J, Bode B, Reed JC, She JX. Serum Levels of Inflammatory Proteins Are Associated With Peripheral Neuropathy in a Cross-Sectional Type-1 Diabetes Cohort. Front Immunol 2021; 12:654233. [PMID: 33868296 PMCID: PMC8044415 DOI: 10.3389/fimmu.2021.654233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic low-grade inflammation is involved in the pathogenesis of type-1 diabetes (T1D) and its complications. In this cross-section study design, we investigated association between serum levels of soluble cytokine receptors with presence of peripheral neuropathy in 694 type-1 diabetes patients. Sex, age, blood pressure, smoking, alcohol intake, HbA1c and lipid profile, presence of DPN (peripheral and autonomic), retinopathy and nephropathy was obtained from patient’s chart. Measurement of soluble cytokine receptors, markers of systemic and vascular inflammation was done using multiplex immunoassays. Serum levels were elevated in in DPN patients, independent of gender, age and duration of diabetes. Crude odds ratios were significantly associated with presence of DPN for 15/22 proteins. The Odds ratio (OR) remained unchanged for sTNFRI (1.72, p=0.00001), sTNFRII (1.45, p=0.0027), sIL2Rα (1.40, p=0.0023), IGFBP6 (1.51, p=0.0032) and CRP (1.47, p=0.0046) after adjusting for confounding variables, HbA1C, hypertension and dyslipidemia. Further we showed risk of DPN is associated with increase in serum levels of sTNFRI (OR=11.2, p<10), sIL2Rα (8.69, p<10-15), sNTFRII (4.8, p<10-8) and MMP2 (4.5, p<10-5). We combined the serum concentration using ridge regression, into a composite score, which can stratify the DPN patients into low, medium and high-risk groups. Our results here show activation of inflammatory pathway in DPN patients, and could be a potential clinical tool to identify T1D patients for therapeutic intervention of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States.,Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Undergraduate Health Professionals, College of Allied Health Sciences, Augusta University, Augusta, GA, United States
| | - Paul Minh Huy Tran
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Lynn Kim Hoang Tran
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Khaled Bin Satter
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Mingfang He
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Diane Hopkins
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Melissa Gardiner
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Chandramohan Wakade
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Jennifer Bryant
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - Risa Bernard
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - John Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Bruce Bode
- Atlanta Diabetes Associates, Atlanta, GA, United States
| | - John Chip Reed
- Southeastern Endocrine & Diabetes, Atlanta, GA, United States
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States.,Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
46
|
Karahan M, Demirtaş AA, Erdem S, Ava S, Dursun ME, Beştaş A, Haspolat YK, Keklikçi U. Evaluation of anterior segment parameters with Pentacam in children with poorly-controlled type 1 Diabetes Mellitus without diabetic retinopathy. Photodiagnosis Photodyn Ther 2021; 33:102206. [PMID: 33556617 DOI: 10.1016/j.pdpdt.2021.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE To determine the effect of abnormal glucose metabolism on the cornea, lens, anterior chamber volume (ACV), and anterior chamber depth (ACD) in children with poorly-controlled type 1 diabetes mellitus (DM) without diabetic retinopathy (DR). METHODS After the complete ophthalmologic examination of children with poorly-controlled (glycosylated hemoglobin [HbA1c] >7.0 %) type 1 DM without DR and age-matched healthy subjects (control group), the central corneal thickness (CCT), keratometry (K) values (Kmean front and back, and Kmax), radius (R) values (Rmin front and back), corneal volume (CV), ACD, ACV, pupil diameter, mean lens density (MLD), lens density standard deviation (LD SD), and maximum lens density (LD max) were measured using Pentacam High Resolution. Endothelial cell density was measured using a specular microscope. The results were assessed and compared between the two groups. RESULTS There were 60 patients (38 boys and 22 girls) in the DM group and 30 (14 boys, 16 girls) in the control group. There were considerable differences between the groups in terms of CCT, CV, ACD, MLD, LD SD and LD max, and Kmean back. Further, there was a positive correlation between HbA1c and MLD, LD SD, CV, and CCT in patients with DM. CONCLUSION The results of our study demonstrate that poorly-controlled type 1 DM without DR affects the cornea, ACD, and LD based on anterior segment measurements taken with a Scheimpflug camera. CCT, CV, LD SD, and MLD values may be parameters that can be used to follow-up patients with type 1 DM.
Collapse
Affiliation(s)
- Mine Karahan
- Department of Ophthalmology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | - Atılım Armağan Demirtaş
- Department of Ophthalmology, Health Sciences University, Izmir Tepecik Training and Research Hospital, Izmir, Turkey; Department of Ophthalmology, Health Sciences University, Diyarbakır Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey.
| | - Seyfettin Erdem
- Department of Ophthalmology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | - Sedat Ava
- Department of Ophthalmology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | - Mehmet Emin Dursun
- Department of Ophthalmology, Health Sciences University, Diyarbakır Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Aslı Beştaş
- Department of Pediatric Endocrinology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | - Yusuf Kenan Haspolat
- Department of Pediatric Endocrinology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | - Uğur Keklikçi
- Department of Ophthalmology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| |
Collapse
|
47
|
de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu AR, Kern TS, Ramakrishnan P. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021; 31:812-826. [PMID: 33442719 PMCID: PMC8351495 DOI: 10.1093/glycob/cwab001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.
Collapse
Affiliation(s)
- Tristan J de Jesus
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Joshua T Centore
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Ruchira A Agarwal
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Timothy S Kern
- Department of Ophthalmology, School of Medicine, University of California Irvine, 850 Health Sciences Road Irvine, CA 92697, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,Department of Biochemistry, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| |
Collapse
|
48
|
P N, P D, Mansour RF, Almazroa A. Artificial Flora Algorithm-Based Feature Selection with Gradient Boosted Tree Model for Diabetes Classification. Diabetes Metab Syndr Obes 2021; 14:2789-2806. [PMID: 34188504 PMCID: PMC8232854 DOI: 10.2147/dmso.s312787] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/16/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Classification of medical data is essential to determine diabetic treatment options; therefore, the objective of the study was to develop a model to classify the three diabetes type diagnoses according to multiple patient attributes. METHODS Three different datasets are used to develop a novel medical data classification model. The proposed model involved preprocessing, artificial flora algorithm (AFA)-based feature selection, and gradient boosted tree (GBT)-based classification. Then, the processing occurred in two steps, namely, format conversion and data transformation. AFA was applied for selecting features, such as demographics, vital signs, laboratory tests, medications, from the patients' electronic health records. Lastly, the GBT-based classification model was applied for classifying the patients' cases to type I, type II, or gestational diabetes mellitus. RESULTS The effectiveness of the proposed AFA-GBT model was validated using three diabetes datasets to classify patient cases into one of the three different types of diabetes. The proposed model showed a maximum average precision of 91.64%, a recall of 97.46%, an accuracy of 99.93%, an F-score of 94.19%, and a kappa of 96.61%. CONCLUSION The AFA-GBT model could classify patient diagnoses into the three diabetes types efficiently.
Collapse
Affiliation(s)
- Nagaraj P
- Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Virudhunagar, Tamil Nadu, India
- Correspondence: Nagaraj P Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Anand Nagar, Krishnankoil, Srivilliputtur, Virudhunagar, Tamil Nadu, 626126, India Email
| | - Deepalakshmi P
- Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research and Education, Virudhunagar, Tamil Nadu, India
| | - Romany F Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga, Egypt
| | - Ahmed Almazroa
- Department of imaging Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
Chetan MR, Miksza JK, Lawrence I, Anjana RM, Unnikrishnan R, Amutha A, Shanthi Rani CS, Jebarani S, Mohan V, Khunti K, Narendran P. The increased risk of microvascular complications in South Asians with type 1 diabetes is influenced by migration. Diabet Med 2020; 37:2136-2142. [PMID: 31721280 DOI: 10.1111/dme.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
AIM We aimed to explore the association between South Asian ethnicity and complications of type 1 diabetes, and whether this is affected by migration. METHODS In this retrospective cohort study, data on diabetes control and complications were obtained for South Asians in India (South AsiansIndia , n = 2592) and the UK (South AsiansUK , n = 221) and white Europeans in the UK (n = 1431). Multivariable logistic regression was used to identify associations between ethnicity and diabetic kidney disease, retinopathy and neuropathy adjusting for age, sex, BMI, disease duration, HbA1c , blood pressure (BP) and cholesterol. RESULTS South AsiansIndia had significantly greater adjusted odds of diabetic kidney disease [odds ratio (OR) 5.0, 95% confidence intervals (CI) 3.6-7.1] and retinopathy (OR 1.8, 95% CI 1.2-2.5), but lower odds of neuropathy (OR 0.5, 95% CI 0.4-0.6) than white Europeans. South AsiansIndia had significantly greater adjusted odds of diabetic kidney disease (OR 3.0, 95% 1.8-5.3) than South AsiansUK , but there was no significant difference in the odds of other complications. CONCLUSIONS In this hypothesis-generating study, we report that South Asian ethnicity is associated with greater risk of diabetic kidney disease and retinopathy, and lower risk of neuropathy than white European ethnicity. Part of the excess diabetic kidney disease risk is reduced in South AsiansUK . These associations cannot be accounted for by differences in vascular risk factors. Our findings in South Asians with type 1 diabetes mirror previous findings in type 2 diabetes and now need to be validated in a study of the effect of ethnicity on type 1 diabetes complications where healthcare is provided in the same setting.
Collapse
Affiliation(s)
- M R Chetan
- College of Medical and Dental Sciences, Birmingham, UK
| | - J K Miksza
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - I Lawrence
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - R M Anjana
- Madras Diabetes Research Foundation, Chennai, India
| | | | - A Amutha
- Madras Diabetes Research Foundation, Chennai, India
| | | | - S Jebarani
- Madras Diabetes Research Foundation, Chennai, India
| | - V Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | - K Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - P Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
Al-Brakati A, Albarakati AJA, Daabo HMA, Baty RS, Salem FEH, Habotta OA, Elmahallawy EK, Abdel-Mohsen DM, Taha H, Akabawy AMA, Kassab RB, Abdel Moneim AE, Amin HK. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 2020; 35:1175-1187. [PMID: 32548708 DOI: 10.1007/s11011-020-00583-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is an increasing metabolic disease worldwide associated with central nervous system disorders. Coffee is a widely consumed beverage that enriched with antioxidants with numerous medicinal applications. Accordingly, the present study aimed to investigate the therapeutic potential of orally administered green coffee bean water extract (GCBWE) against cortical damage induced by high fat diet (HFD) followed by a single injection of streptozotocin (STZ) in rats. Metformin (Met) was used as standard antidiabetic drug. Animals were allocated into six groups: control, GCBWE (100 mg/kg), HFD/STZ (40 mg/kg), HFD/STZ + GCBWE (50 mg/kg), HFD/STZ + GCBWE (100 mg/kg) and HFD/STZ + Met (200 mg/kg) which were treated daily for 28 days. Compared to control rats, HFD/STZ-treated rats showed decreased levels of cortical dopamine, norepinephrine and serotonin with marked increases in their metabolites. Further, HFD/STZ treatment resulted in notable elevations in malondialdehyde, protein carbonyl and total nitrite levels paralleled with declines in antioxidant markers (SOD, CAT, GPx, GR and GSH) and down-regulations of Sod2, Cat, GPx1 and Gsr gene expression. Neuroinflammation was evident in diabetic animals by marked elevations in TNF-α, IL-1β and up-regulation of inducible nitric oxide synthase. Significant rises incaspase-3 and Bax with decline in Bcl-2 level were noticed in diabetic rats together with similar results in their gene expressions. Cortical histopathological examination supported the biochemical and molecular findings. GCBWE administration achieved noteworthy neuroprotection in diabetic animals in most assessed parameters. The overall results suggested that antioxidant, anti-inflammatory; anti-apoptotic activities of GCBWE restored the cortical neurochemistry in diabetic rats.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamid M A Daabo
- Pharmacy Department, Duhok Technical Institute, Duhok Polytechnic University, Duhok, Iraq
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Fatma Elzahraa H Salem
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Doaa M Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Hatim K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|