1
|
Dobbelaar E, Goher SS, Vidal JL, Obhi NK, Felisilda BMB, Choo YSL, Ismail H, Lee HL, Nascimento V, Al Bakain R, Ranasinghe M, Davids BL, Naim A, Offiong NA, Borges J, John T. Towards a Sustainable Future: Challenges and Opportunities for Early-Career Chemists. Angew Chem Int Ed Engl 2024; 63:e202319892. [PMID: 39046086 DOI: 10.1002/anie.202319892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 07/25/2024]
Abstract
The concepts of sustainability and sustainable chemistry have attracted increasing attention in recent years, being of great importance to the younger generation. In this Viewpoint Article, we share how early-career chemists can contribute to the sustainable transformation of their discipline. We identify ways in which they can engage to catalyse action for change. This article does not attempt to answer questions about the most promising or pressing areas driving research and chemical innovation in the context of sustainability. Instead, we want to inspire and engage early-career chemists in pursuing sustainable actions by showcasing opportunities in education, outreach and policymaking, research culture and publishing, while highlighting existing challenges and the complexity of the topic. We want to empower early-career chemists by providing resources and ideas for engagement for a sustainable future globally. While the article focuses on students and early-career chemists, it provides insights to further stimulate the engagement of scientists from diverse backgrounds.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52-54, 67663, Kaiserslautern, Germany
- Current address, Freudenberg Technology Innovation SE & Co. KG, Höhnerweg 2-4, 69469, Weinheim, Germany
| | - Shaimaa S Goher
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Cairo, 1183, Egypt
| | | | | | - Bren M B Felisilda
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Yvonne S L Choo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, 43900, Selangor Darul Ehsan, Malaysia
| | - Hossny Ismail
- Dow Inc., Dow Egypt Services Limited, Katameya Heights Business Centre -, Office G01, Fifth Settlement, New Cairo, Egypt
| | - Hooi Ling Lee
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Ramia Al Bakain
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| | - Muhandiramge Ranasinghe
- Australian Centre for Research on Separation Science, School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Bianca L Davids
- School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Arish Naim
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Current address: Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
| | | | - João Borges
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Martínez-Ibarra A, Cerbón M, Martínez-Razo LD, Morales-Pacheco M, Torre-Villalvazo I, Kawa S, Rodríguez-Dorantes M. Impact of DEHP exposure on female reproductive health: Insights into uterine effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104391. [PMID: 38367918 DOI: 10.1016/j.etap.2024.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Several endocrine disrupting compounds released from plastics, including polyfluoroalkyl substances, bisphenols, flame retardants, phthalates and others, are of great concern to human health due to their high toxicity. This review discusses the effects of di-(2-ethylhexyl) phthalate (DEHP), the most common member of the phthalate family, on female reproduction. In vitro and in vivo studies link DEHP exposure to impaired hypothalamic-pituitary-ovarian s (HPO) axis function, alteration of steroid-hormone levels and dysregulation of their receptors, and changes in uterine morphophysiology. In addition, high urinary DEPH levels have been associated with several reproductive disorders in women, including endometriosis, fibromyoma, fetal growth restriction and pregnancy loss. These data suggest that DEHP may be involved in the pathophysiology of various female reproductive diseases. Therefore, exposure to these compounds should be considered a concern in clinician surveillance practices for women at reproductive age and should be regulated to protect their health and that of their progeny.
Collapse
Affiliation(s)
| | - Marco Cerbón
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | | | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico
| | - Iván Torre-Villalvazo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Simón Kawa
- Dirección General del Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
| | | |
Collapse
|
3
|
Dai L, Deng L, Wang W, Li Y, Wang L, Liang T, Liao X, Cho J, Sonne C, Shiung Lam S, Rinklebe J. Potentially toxic elements in human scalp hair around China's largest polymetallic rare earth ore mining and smelting area. ENVIRONMENT INTERNATIONAL 2023; 172:107775. [PMID: 36739854 DOI: 10.1016/j.envint.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
There is a growing concern about human health of residents living in areas where mining and smelting occur. In order to understand the exposure to the potentially toxic elements (PTEs), we here identify and examine the cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in scalp hair of residents living in the mining area (Bayan Obo, n = 76), smelting area (Baotou, n = 57) and a reference area (Hohhot, n = 61). In total, 194 hair samples were collected from the volunteers (men = 87, women = 107) aged 5-77 years old in the three areas. Comparing median PTEs levels between the young and adults, Ni levels were significantly higher in adults living in the smelting area while Cr was highest in adults from the mining area, no significant difference was found for any of the elements in the reference area. From the linear regression model, no significant relationship between PTEs concentration, log10(PTEs), and age was found. The concentrations of Ni, Cd, and Pb in hair were significantly lower in the reference area when compared to both mining and smelting areas. In addition, Cu was significantly higher in the mining area when compared to the smelting area. Factor analysis (FA) indicated that men and women from the smelting area (Baotou) and mining area (Bayan Obo), respectively, had different underlying communality of log10(PTEs), suggesting different sources of these PTEs. Multiple factor analysis quantilized the importance of gender and location when combined with PTEs levels in human hair. The results of this study indicate that people living in mining and/or smelting areas have significantly higher PTEs (Cu, Ni, Cd, and Pb) hair levels compared to reference areas, which may cause adverse health effects. Remediation should therefore be implemented to improve the health of local residents in the mining and smelting areas.
Collapse
Affiliation(s)
- Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Deng
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Weili Wang
- Key Laboratory of Global Change and Marine Atmospheric Chemistry, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - You Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwoo Cho
- Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
4
|
Cytotoxic evaluation of YSL-109 in a triple negative breast cancer cell line and toxicological evaluations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1211-1222. [PMID: 36694011 DOI: 10.1007/s00210-023-02396-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Breast cancer (BC) is the leading cause of cancer-related death in women worldwide. Triple negative breast cancer (TNBC) is the most aggressive form of BC being with the worst prognosis and the worst survival rates. There is no specific pharmacological target for the treatment of TNBC; conventional therapy includes the use of non-specific chemotherapy that generally has a poor prognosis. Therefore, the search of effective therapies against to TNBC continues at both preclinical and clinical level. In this sense, the exploration of different pharmacological targets is a continue task that pave the way to epigenetic modulation using novel small molecules. Lately, the inhibition of histone deacetylases (HDACs) has been explored to treat different BC, including TNBC. HDACs remove the acetyl groups from the ɛ-amino lysine resides on histone and non-histone proteins. In particular, the inhibition of HDAC6 has been suggested to be useful for the treatment of TNBC due to it is overexpressed in TNBC. Therefore, in this work, an HDAC6 selective inhibitor, the (S)-4-butyl-N-(1-(hydroxyamino)-3-(naphthalen-1-yl)-1-oxopropan-2-yl) benzamide (YSL-109), was assayed on TNBC cell line (MDA-MB231) showing an antiproliferative activity (IC50 = 50.34 ± 1.11 µM), whereas on fibroblast, it was lesser toxic. After corroborating the in vitro antiproliferative activity of YSL-109 in TNBC, the toxicological profile was explored using combined approach with in silico tools and experimental assays. YSL-109 shows moderate mutagenic activity on TA-98 strain at 30 and 100 µM in the Ames test, whereas YSL-109 did not show in vivo genotoxicity and its oral acute toxicity (LD50) in CD-1 female mice was higher than 2000 mg/kg, which is in agreement with our in silico predictions. According to these results, YSL-109 represents an interesting compound to be explored for the treatment of TNBC under preclinical in vivo models.
Collapse
|
5
|
Grant CW, Juran BD, Ali AH, Schlicht EM, Bianchi JK, Hu X, Liang Y, Jarrell Z, Liu KH, Go YM, Jones DP, Walker DI, Miller GW, Folseraas T, Karlsen TH, LaRusso NF, Gores GJ, Athreya AP, Lazaridis KN. Environmental chemicals and endogenous metabolites in bile of USA and Norway patients with primary sclerosing cholangitis. EXPOSOME 2023; 3:osac011. [PMID: 36687160 PMCID: PMC9853141 DOI: 10.1093/exposome/osac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure-effect correlation networks by site. These networks demonstrate the shared and differential chemical-metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.
Collapse
Affiliation(s)
- Caroline W Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Brian D Juran
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ahmad H Ali
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA,Division of Gastroenterology and Hepatology, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO, USA
| | - Erik M Schlicht
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jackie K Bianchi
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xin Hu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Zachery Jarrell
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Ken H Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Young-Mi Go
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, GA, USA, Atlanta
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Trine Folseraas
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tom H Karlsen
- Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway,Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA,Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
6
|
Kim C, Zimmerman E, Huerta-Montañez G, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD, Watkins DJ. Associations between biomarkers of prenatal metals exposure and non-nutritive suck among infants from the PROTECT birth cohort in Puerto Rico. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1057515. [PMID: 38455310 PMCID: PMC10911005 DOI: 10.3389/fepid.2022.1057515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 03/09/2024]
Abstract
Background/Aim Infant non-nutritive suck (NNS) has been used as an early marker of neonatal brain function. Although there is an established relationship between prenatal exposure to certain metals and brain development, the association between metal exposure and NNS has not been explored. Therefore, in this study we assessed associations between maternal urinary metal(loid) concentrations and NNS measurements among infants from the Puerto Rico PROTECT birth cohort. We hypothesized that maternal urinary metal(loid) concentrations are significantly associated with infant NNS measures in a sex-dependent manner. Methods We measured urinary concentrations of 14 metal(loid)s in pregnant women at up to three time points in pregnancy. The geometric mean of each metal(loid) for each pregnant woman was calculated and used as an exposure measurement across gestation. NNS measurements (duration, frequency, amplitude, bursts/min, cycles/burst, cycles/min) were collected from infants between 4 and 6 (±2 weeks) weeks of age using our custom research pacifier. Linear regression was used to estimate associations between urinary metal(loid) concentrations across pregnancy and continuous NNS variables. Sex-specific effects were estimated using interaction terms between NNS variables and infant sex. Results We observed significant positive associations between mercury, manganese, and tin with NNS duration (mercury: %Δ = 1.08, 95% CI: 0.42, 1.74; manganese: %Δ = 0.67, 95% CI: 0.15, 1.20; tin: %Δ = 0.83, 95% CI: 0.17, 1.49) and NNS cycles/burst (mercury: %Δ = 1.85, 95% CI: 0.58, 3.11; manganese: (%Δ = 1.37, 95% CI: 0.40, 2.34; tin: %Δ = 1.68, 95% CI: 0.46, 2.91). Furthermore, the association between NNS cycles/min with cadmium (%Δ = 8.06, 95% CI: 3.33, 12.78), manganese (%Δ = 4.44, 95% CI: 1.40, 7.47), and tin (%Δ = 4.50, 95% CI: 0.81, 8.18) were in the opposite direction from its association with zinc (%Δ = -9.30, 95% CI: -14.71, -3.89), as well as with copper (%Δ = -6.58, 95% CI: -12.06, -1.10). For the sex-stratified analysis, the negative associations between metal(loid)s and NNS duration were predominantly driven by male infants; however, the negative associations between metal(loid)s and NNS bursts/min were mainly driven by female infants. Conclusion We observed significant associations between prenatal metal(loid) exposure and NNS measurements among infants from the ongoing Puerto Rico PROTECT cohort. Similar to previous studies that have demonstrated associations between NNS and subsequent neurodevelopment, this study highlights the potential of NNS as a quantitative index to measure altered neurodevelopment from prenatal metal(loid) exposures. We believe this study will inform future efforts aimed at reducing health risks related to early life metal exposures, such as developing early identification of metal-induced adverse outcomes in child neurodevelopment.
Collapse
Affiliation(s)
- Christine Kim
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
| | - Gredia Huerta-Montañez
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - Zaira Y. Rosario-Pabón
- UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico
| | - Carmen M. Vélez-Vega
- UPR Medical Sciences Campus, University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico
| | | | - José F. Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Deborah J. Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Ramachandran RV, Barman A, Modak P, Bhat R, Ghosh A, Saini DK. How safe are magnetic nanomotors: From cells to animals. BIOMATERIALS ADVANCES 2022; 140:213048. [PMID: 35939957 PMCID: PMC7614616 DOI: 10.1016/j.bioadv.2022.213048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/06/2023]
Abstract
Helical magnetic nanomotors can be actuated using an external magnetic field and have potential applications in drug delivery, colloidal manipulation, and bio-microrheology. Recently, they have been maneuvered in biological environments such as vitreous humour, dentinal tubules, peritoneal fluid, stromal matrix, and blood, which are promising developments for clinical applications. However, their biocompatibility and biodistribution are vital parameters that must be assessed before further use. An extensive quantitative evaluation has been performed for these parameters for the first time through in vitro and in vivo experiments. Investigations of cell death, proliferation, and DNA damage ascertain that the motors are non-toxic. Also, an unbiased transcriptomic analysis affirms that the motors are not genotoxic till 20 motors/ cell. Toxicity studies in mice reveal that the motors show no signs of toxicity up to a dose of 55 mg/ kg body weight. Further, the biodistribution studies show that they remain in the blood circulation after injection and at later stages possibly adhere to the walls of the blood vessel because of adsorption. However, perfusion with physiological saline decreases this adsorption/adhesion. Overall, we demonstrate the biocompatibility of nanomotors in live cellular and organismal systems, and a systemic biodistribution analysis reveals organ-specific retention of motors.
Collapse
Affiliation(s)
| | - Anaxee Barman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Paramita Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ramray Bhat
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
8
|
Schulte PA, Iavicoli I, Fontana L, Leka S, Dollard MF, Salmen-Navarro A, Salles FJ, Olympio KPK, Lucchini R, Fingerhut M, Violante FS, Seneviratne M, Oakman J, Lo O, Alfredo CH, Bandini M, Silva-Junior JS, Martinez MC, Cotrim T, Omokhodion F, Fischer FM. Occupational Safety and Health Staging Framework for Decent Work. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710842. [PMID: 36078562 PMCID: PMC9518038 DOI: 10.3390/ijerph191710842] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/05/2023]
Abstract
The 2030 United Nations Goal 8 for sustainable development focuses on decent work. There is utility in identifying the occupational safety and health aspects of Goal 8, as they pertain to the four pillars of decent work: job creation, social protection, rights of workers, and social dialogue. A workgroup of the International Commission on Occupational Health and collaborators addressed the issue of decent work and occupational safety and health (OSH) with the objective of elaborating a framework for guidance for practitioners, researchers, employers, workers, and authorities. This article presents that framework, which is based on an examination of the literature and the perspectives of the workgroup. The framework encompasses the intersection of the pillars of decent (employment creation, social protection, rights of workers, and social dialogue) work with new and emerging hazards and risks related to various selected determinants: new technologies and new forms of work; demographics (aging and gender); globalization; informal work; migration; pandemics; and OSH policies and climate change. The OSH field will need an expanded focus to address the future of decent work. This focus should incorporate the needs of workers and workforces in terms of their well-being. The framework identifies a starting point for the OSH community to begin to promote decent work.
Collapse
Affiliation(s)
- Paul A. Schulte
- Advanced Technologies and Laboratories International, Inc., Gaithersburg, MD 20878, USA
| | - Ivo Iavicoli
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7462430
| | - Luca Fontana
- Section of Occupational Medicine, Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Stavroula Leka
- Business School, University College Cork, T12 K8AF Cork, Ireland
| | - Maureen F. Dollard
- PSC Global Observatory, University of South Australia, Adelaide, SA 5000, Australia
| | - Acran Salmen-Navarro
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Fernanda J. Salles
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Kelly P. K. Olympio
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Roberto Lucchini
- Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL 33199, USA
- Occupational Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Marilyn Fingerhut
- Advanced Technologies and Laboratories International, Inc., Gaithersburg, MD 20878, USA
| | - Francesco S. Violante
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | | | - Jodi Oakman
- Center for Ergonomics and Human Factors, LaTrobe University, Melbourne, VIC 3086, Australia
| | - Olivier Lo
- Medical Services Division, International SOS, Singapore 486018, Singapore
| | - Camila H. Alfredo
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Marcia Bandini
- Department of Public Health, School of Medicine, University of Campinas, Campinas 13083-970, Brazil
| | | | | | - Teresa Cotrim
- Ergonomics Laboratory, CIAUD, Faculdade de Motricidade Humana, University of Lisbon, 1499-002 Lisbon, Portugal
| | - Folashade Omokhodion
- Division of Occupational Health, College of Medicine, University of Ibadan, Ibadan 200132, Nigeria
| | - Frida M. Fischer
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
9
|
King DE. The Inclusion of Sex and Gender Beyond the Binary in Toxicology. FRONTIERS IN TOXICOLOGY 2022; 4:929219. [PMID: 35936387 PMCID: PMC9355551 DOI: 10.3389/ftox.2022.929219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dillon E. King
- Integrated Toxicology and Environmental Health, Nicholas School of the Environment, Duke University, Durham, NC, United States,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, United States,*Correspondence: Dillon E. King,
| |
Collapse
|
10
|
Dickerson AS, Deng Z, Ransome Y, Factor-Litvak P, Karlsson O. Associations of prenatal exposure to mixtures of organochlorine pesticides and smoking and drinking behaviors in adolescence. ENVIRONMENTAL RESEARCH 2022; 206:112431. [PMID: 34848208 PMCID: PMC11108254 DOI: 10.1016/j.envres.2021.112431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
It is important to identify the factors that influence the prevalence of disinhibitory behaviors, as tobacco and alcohol use in adolescence is a strong predictor of continued use and substance abuse into adulthood. Organochlorine pesticides (OCPs) are persistent organic pollutants that pose a potential risk to the developing fetus and offspring long-term health. We examined associations between prenatal exposure OCPs and their metabolites (i.e., p,p'-DDT, p,p'-DDE, o,p'-DDT, oxychlordane, and hexachlorobenzene (HCB)), both as a mixture and single compounds, and alcohol consumption and smoking at adolescence in a sample (n = 554) from the Child Health and Development Studies prospective birth cohort. Bayesian Kernel Machine Regression demonstrated a trend of higher risk of alcohol use and smoking with higher quartile mixture levels. Single-component analysis showed increased odds of smoking and drinking with increases in lipid-adjusted p,p'-DDE serum levels (aOR = 2.06, 95% CI 0.99-4.31, p = 0.05, per natural log unit increase). We found significant effect modification in these associations by sex with higher p,p'-DDT serum levels (aOR = 0.26, 95% CI 0.09-0.076, p = 0.01, per natural log unit increase) was associated with lower odds of smoking and drinking in female adolescents, while higher p,p'-DDE serum levels (aOR = 2.98, 95% CI 1.04-8.51, p = 0.04, per natural log unit increase) was associated with higher odds of the outcomes. Results of the mutually adjusted model were not significant for male adolescents. Further research to understand reasons for these sex-differences are warranted.
Collapse
Affiliation(s)
- Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 615 N Wolfe Street, E7638, Baltimore, MD 21205, USA
| | - Zhengyi Deng
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 615 N Wolfe Street, E7638, Baltimore, MD 21205, USA
| | - Yusuf Ransome
- Department of Social and Behavioral Sciences, Yale School of Public Health, 60 College Street, LEPH 4th Floor, New Haven, CT 06510, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Stockholm, 114 18, Sweden.
| |
Collapse
|
11
|
Sex Difference and Benzene Exposure: Does It Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042339. [PMID: 35206525 PMCID: PMC8872447 DOI: 10.3390/ijerph19042339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
Sex-related biological differences might lead to different effects in women and men when they are exposed to risk factors. A scoping review was carried out to understand if sex could be a discriminant in health outcomes due to benzene. Studies on both animals and humans were collected. In vivo surveys, focusing on genotoxicity, hematotoxicity and effects on metabolism suggested a higher involvement of male animals (mice or rats) in adverse health effects. Conversely, the studies on humans, focused on the alteration of blood parameters, myeloid leukemia incidence and biomarker rates, highlighted that, overall, women had significantly higher risk for blood system effects and a metabolization of benzene 23-26% higher than men, considering a similar exposure situation. This opposite trend highlights that the extrapolation of in vivo findings to human risk assessment should be taken with caution. However, it is clear that sex is a physiological parameter to consider in benzene exposure and its health effects. The topic of sex difference linked to benzene in human exposure needs further research, with more numerous samples, to obtain a higher strength of data and more indicative findings. Sex factor, and gender, could have significant impacts on occupational exposures and their health effects, even if there are still uncertainties and gaps that need to be filled.
Collapse
|
12
|
Yang J, Xie Q, Wang Y, Wang J, Zhang Y, Zhang C, Wang D. Exposure of the residents around the Three Gorges Reservoir, China to chromium, lead and arsenic and their health risk via food consumption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112997. [PMID: 34808509 DOI: 10.1016/j.ecoenv.2021.112997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrological management of the Three Gorges Dam has resulted in the interception of heavy metals in the Three Gorges Reservoir (TGR). However, the exposure to heavy metals and health risks among local residents remained poorly understood. Here we collected 208 biomarker samples (hair) and 20 food species from typical regions in the TGR to assess the exposure levels of three toxic metals (Cr, Pb and As) in residents of the TGR, and subsequently investigated their health risk via dietary intake. Results indicated that hair Cr and As levels were below the reference value for normal people and threshold of skin lesions, respectively, whereas about 22% hair Pb exceeded the reference for clinical medicine, indicating a potential Pb exposure of local residents. Smoking habit and fish consumption were found to be predictors for hair Pb. In addition, the concentrations of heavy metals in all investigated food samples were below the limits of contaminants in food in China, except for Pb in the sweet potato and fish. The estimated daily intake of metals (DIMs) revealed that the intakes of Cr and As from studied food were under the recommended thresholds of Cr and As. However, the intake of Pb via diet exceeded the limit of the prevalence of chronic kidney disease and closed to the threshold for cardiovascular, which was probably associated with the high Pb concentrations of fish and sweet potato. Overall, residents around the TGR were at low exposure to Cr and As, but Pb exposure may need more attention.
Collapse
Affiliation(s)
- Jingwen Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qing Xie
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongjiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Department of Environment and Quality Test, Chongqing Chemical Industry Vocational College, Chongqing 401220, China
| | - Cheng Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Bolte G, Jacke K, Groth K, Kraus U, Dandolo L, Fiedel L, Debiak M, Kolossa-Gehring M, Schneider A, Palm K. Integrating Sex/Gender into Environmental Health Research: Development of a Conceptual Framework. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12118. [PMID: 34831873 PMCID: PMC8621533 DOI: 10.3390/ijerph182212118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
There is a growing awareness about the need to comprehensively integrate sex and gender into health research in order to enhance the validity and significance of research results. An in-depth consideration of differential exposures and vulnerability is lacking, especially within environmental risk assessment. Thus, the interdisciplinary team of the collaborative research project INGER (integrating gender into environmental health research) aimed to develop a multidimensional sex/gender concept as a theoretically grounded starting point for the operationalization of sex and gender in quantitative (environmental) health research. The iterative development process was based on gender theoretical and health science approaches and was inspired by previously published concepts or models of sex- and gender-related dimensions. The INGER sex/gender concept fulfills the four theoretically established prerequisites for comprehensively investigating sex and gender aspects in population health research: multidimensionality, variety, embodiment, and intersectionality. The theoretical foundation of INGER's multidimensional sex/gender concept will be laid out, as well as recent sex/gender conceptualization developments in health sciences. In conclusion, by building upon the latest state of research of several disciplines, the conceptual framework will significantly contribute to integrating gender theoretical concepts into (environmental) health research, improving the validity of research and, thus, supporting the promotion of health equity in the long term.
Collapse
Affiliation(s)
- Gabriele Bolte
- Department of Social Epidemiology, Institute of Public Health and Nursing Research, University of Bremen, 28359 Bremen, Germany;
- Health Sciences Bremen, University of Bremen, 28359 Bremen, Germany
| | - Katharina Jacke
- Gender and Science Research Unit, Institute of History, Humboldt-University of Berlin, 10099 Berlin, Germany; (K.J.); (L.F.); (K.P.)
| | - Katrin Groth
- Section II 1.2 Toxicology, Health-Related Environmental Monitoring, German Environment Agency, 14195 Berlin, Germany; (K.G.); (M.D.); (M.K.-G.)
| | - Ute Kraus
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (U.K.); (A.S.)
| | - Lisa Dandolo
- Department of Social Epidemiology, Institute of Public Health and Nursing Research, University of Bremen, 28359 Bremen, Germany;
- Health Sciences Bremen, University of Bremen, 28359 Bremen, Germany
| | - Lotta Fiedel
- Gender and Science Research Unit, Institute of History, Humboldt-University of Berlin, 10099 Berlin, Germany; (K.J.); (L.F.); (K.P.)
| | - Malgorzata Debiak
- Section II 1.2 Toxicology, Health-Related Environmental Monitoring, German Environment Agency, 14195 Berlin, Germany; (K.G.); (M.D.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- Section II 1.2 Toxicology, Health-Related Environmental Monitoring, German Environment Agency, 14195 Berlin, Germany; (K.G.); (M.D.); (M.K.-G.)
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (U.K.); (A.S.)
| | - Kerstin Palm
- Gender and Science Research Unit, Institute of History, Humboldt-University of Berlin, 10099 Berlin, Germany; (K.J.); (L.F.); (K.P.)
| |
Collapse
|
14
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Zheng J, Li M, Tang B, Luo W, Ma Y, Ren M, Yu Y, Luo X, Mai B. Levels, Spatial Distribution, and Impact Factors of Heavy Metals in the Hair of Metropolitan Residents in China and Human Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10578-10588. [PMID: 34296597 DOI: 10.1021/acs.est.1c02001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic exposure to low levels of heavy metals threatens human health. However, few studies evaluated the health effects and spatial distributions of chronic exposure to heavy metals in metropolitan residents throughout mainland China using unified sampling methods and evaluation indicators at the national level. Here, the concentrations and spatial distributions of heavy metals (As, Cd, Cr, Sb, Pb, and Hg) in the hair of 1202 metropolitan residents from mainland China were analyzed, and differences in age and sex were evaluated. Most target metals exhibited higher concentrations in the hair of residents from South Central China. Generally, male hair had higher As and Se concentrations, whereas female hair had higher Cd and Pb levels (p < 0.05). A significant pairwise correlation existed between most metals in hair, especially Cd-Pb (r = 0.638, p < 0.05). The Se/heavy metal molar ratio is used as an indicator to assess the detoxification ability. The results demonstrated that protecting metropolitan residents in South Central China from heavy metals in their daily life is crucial, particularly for Hg, Pb, and Cr with Se/(Hg, Pb, or Cr) molar ratios < 1. This is the first study to comprehensively consider the antagonistic effects of Se and heavy metals using the molar ratio of Se/heavy metals to evaluate health implications and propose health management policies for metropolitan residents in China.
Collapse
Affiliation(s)
- Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Mingzhong Ren
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou 510655, P. R. China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Willey JB, Pollock T, Thomson EM, Liang CL, Maquiling A, Walker M, St-Amand A. Exposure Load: Using biomonitoring data to quantify multi-chemical exposure burden in a population. Int J Hyg Environ Health 2021; 234:113704. [PMID: 33690093 DOI: 10.1016/j.ijheh.2021.113704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
People are often concurrently exposed to numerous chemicals. Here we sought to leverage existing large biomonitoring datasets to improve our understanding of multi-chemical exposures in a population. Using nationally-representative data from the 2012-2015 Canadian Health Measures Survey (CHMS), we developed Exposure Load, a metric that counts the number of chemicals measured in people above a defined concentration threshold. We calculated Exposure Loads based on five concentration thresholds: the analytical limit of detection (LOD) and the 50th, 75th, 90th and 95th percentiles. Our analysis considered 44 analyte biomarkers representing 26 chemicals from the 2012-2015 CHMS; complete biomarker data were available for 1858 participants aged 12-79 years following multiple imputation of results that were missing due to sample loss. Chemicals may have one or more biomarkers, and for the purposes of Exposure Load calculation, participants were considered to be exposed to a chemical if at least one biomarker was above the threshold. Distributions of Exposure Loads are reported for the total population, as well as by age group, sex and smoking status. Canadians had an Exposure Load between 9 and 21 (out of 26) when considering LOD as the threshold, with the majority between 13 and 18. At higher thresholds, such as the 95th percentile, the majority of Canadians had an Exposure Load between 0 and 3, although some people had an Exposure Load of up to 15, indicating high exposures to multiple chemicals. Adolescents aged 12-19 years had significantly lower Exposure Loads than adults aged 40-79 years at all thresholds and adults aged 20-39 years at the 50th and 75th percentiles. Smokers had significantly higher Exposure Loads than nonsmokers at all thresholds except the LOD, which was expected given that tobacco smoke is a known source of certain chemicals included in our analysis. No differences in Exposure Loads were observed between males and females at any threshold. These findings broadly suggest that Canadians are concurrently exposed to many chemicals at lower concentrations and to fewer chemicals at high concentrations. They should assist in identifying vulnerable subpopulations disproportionately exposed to numerous chemicals at high concentrations. Future work will use Exposure Loads to identify prevalent chemical combinations and their link with adverse health outcomes in the Canadian population. The Exposure Load concept can be applied to other large datasets, through collaborative efforts in human biomonitoring networks, in order to further improve our understanding of multiple chemical exposures in different populations.
Collapse
Affiliation(s)
- Jeff B Willey
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | - Chun Lei Liang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Aubrey Maquiling
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mike Walker
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
17
|
Yang M, Xu Y, Ke H, Chen H. Cumulative Effect and Content Variation of Toxic Trace Elements in Human Hair around Xiaoqinling Gold Mining Area, Northwestern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042074. [PMID: 33672642 PMCID: PMC7924185 DOI: 10.3390/ijerph18042074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
The harm of toxic trace element polluted living environments to human health in mining areas has attracted extensive attention. In this study, human hair samples from a toxic trace element polluted area (village A) in a mineral processing area collected in 2015 and 2019 were studied in detail and the nonpolluted human hair samples from a contrast area (village B) with a relatively clean environment were also collected for comparison. The Hg and As in human hair samples were analyzed by Atomic Fluorescence Spectrometry (AFS) and the Pb, Cd, Cr, and Cu in human hair samples were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The single cumulative index (Pi) and the Nemerrow index (Pz) were used to evaluate the single and comprehensive cumulative pollution index. The results indicated that the average toxic trace element contents in human hair from different ages in the polluted area exhibited certain statistical significance. The average single cumulative indexes indicated a significant accumulation of Hg, Pb, and Cd in human hair of both genders and different ages from the polluted area, and the comprehensive cumulative pollution indexes revealed higher accumulation of toxic trace elements in the hair of males than in females. In general, the content of toxic trace elements in human hair from polluted area was still growing in accumulation. The high content of toxic trace elements in human hair shows a notable correlation with human health, and the environmental pollution in gold mining areas is seriously harmful to human health.
Collapse
Affiliation(s)
- Min Yang
- School of Resources Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China
- Shaanxi Tongguan Observation Base on Geological Environment of Mines, Xi’an Center of China Geological Survey, Xi’an 710054, China; (Y.X.); (H.K.)
- Correspondence: (M.Y.); (H.C.)
| | - Youning Xu
- Shaanxi Tongguan Observation Base on Geological Environment of Mines, Xi’an Center of China Geological Survey, Xi’an 710054, China; (Y.X.); (H.K.)
| | - Hailing Ke
- Shaanxi Tongguan Observation Base on Geological Environment of Mines, Xi’an Center of China Geological Survey, Xi’an 710054, China; (Y.X.); (H.K.)
| | - Huaqing Chen
- Shaanxi Tongguan Observation Base on Geological Environment of Mines, Xi’an Center of China Geological Survey, Xi’an 710054, China; (Y.X.); (H.K.)
- Correspondence: (M.Y.); (H.C.)
| |
Collapse
|
18
|
Koblihová E, Mrázová I, Vaňourková Z, Maxová H, Ryska M, Froněk J. Sex-linked differences in the course of thioacetamide-induced acute liver failure in Lewis rats. Physiol Res 2020; 69:835-845. [PMID: 32901492 DOI: 10.33549/physiolres.934499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acute liver failure (ALF) is a clinical syndrome with high mortality rate, resulting from widespread hepatocyte damage. Its pathophysiological background is still poorly understood and preclinical studies evaluating pathophysiology and new potential therapeutic measures are needed. The model of ALF induced by administration of thioacetamide (TAA) in Lewis rats is recommended as optimal; however, the limitation of previous studies was that they were performed predominantly in male rats. In view of the growing recognition that sex as a biological variable should be taken into consideration in preclinical research, we examined its role in the development of TAA-induced ALF in Lewis rats. We found that, first, intact male Lewis rats showed lower survival rate than their female counterparts, due to augmented liver injury documented by higher plasma ammonia, and bilirubin levels and alanine aminotransferase activity. Second, in female rats castration did not alter the course of TAA-induced ALF whereas in the male gonadectomy improved the survival rate and attenuated liver injury, reducing it to levels observed in their female counterparts. In conclusion, we found that Lewis rats show a remarkable sexual dimorphism with respect to TAA-induced ALF, and male rats display dramatically poorer prognosis as compared with the females. We showed that testosterone is responsible for the deterioration of the course of TAA-induced ALF in male rats. In most general terms, our findings indicate that in the preclinical studies of the pathophysiology and treatment of ALF (at least of the TAA-induced form) the sex-linked differences should be seriously considered.
Collapse
Affiliation(s)
- E Koblihová
- Department of Surgery, Second Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
Rechtman E, Curtin P, Papazaharias DM, Renzetti S, Cagna G, Peli M, Levin-Schwartz Y, Placidi D, Smith DR, Lucchini RG, Wright RO, Horton MK. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl Psychiatry 2020; 10:358. [PMID: 33087698 PMCID: PMC7578810 DOI: 10.1038/s41398-020-01041-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
The predisposition, severity, and progression of many diseases differ between males and females. Sex-related differences in susceptibility to neurotoxicant exposures may provide insight into the cause of the observed discrepancy. Early adolescence, a period of substantial structural and functional brain changes, may present a critical window of vulnerability to environmental exposures. This study aimed to examine sex-specific associations between co-exposure to multiple metals and visuospatial memory in early adolescence. Manganese (Mn), lead (Pb), chromium (Cr), and copper (Cu) were measured in blood, urine, hair, nails, and saliva of 188 participants (88 girls; 10-14 years of age). Visuospatial memory skills were assessed using a computerized maze task, the virtual radial arm maze (VRAM). Using generalized weighted quantile sum regression, we investigated sex-specific associations between the combined effect of exposure to the metal mixture and visuospatial working memory and determined the contribution of each component to the outcome. The results suggest that sex moderates the association between the metal mixture and visuospatial learning for all outcomes measured. In girls, exposure was associated with slower visuospatial learning and driven by Mn and Cu. In boys, exposure was associated with faster visuospatial learning, and driven by Cr. These results suggest that (a) the effect of metal co-exposure on learning differs in magnitude, and in the direction between sexes, and (b) early adolescence may be a sensitive developmental period for metal exposure.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Demetrios M Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stefano Renzetti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Marco Peli
- Department of Civil, Environmental, Architectural Engineering and Mathematics, Università degli Studi di Brescia, Brescia, Italy
| | - Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Università degli Studi di Brescia, Brescia, Italy
- School of Public Health, Florida International University, Miami, FL, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Souza ACF, de Paiva Coimbra JL, Ervilha LOG, Bastos DSS, Cossolin JFS, Santos EC, de Oliveira LL, Machado-Neves M. Arsenic induces dose-dependent structural and ultrastructural pathological remodeling in the heart of Wistar rats. Life Sci 2020; 257:118132. [PMID: 32710949 DOI: 10.1016/j.lfs.2020.118132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/07/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
AIM Arsenic, an environmental contaminant, represents a public health problem worldwide. Studies have shown its association with molecular mechanisms related to cardiomyocytes redox balance. However, the microstructure and ultrastructure of cardiac tissue, as well as the activity of its antioxidant defenses front of disturbances in the mineral bioavailability induced by arsenic are still scarce. Thus, the aim of this study was to evaluate if arsenic exposure might induce structural and ultrastructural damages in cardiac tissue, including pathological remodeling of the parenchyma and stroma. Moreover, its impact on micromineral distribution and antioxidant enzymes activity in heart tissue was also evaluated. MAIN METHODS Adult male Wistar rats were divided into three groups that received 0, 1 and 10 mg/L sodium arsenite in drinking water for eight weeks. The hearts were collected and subjected to structural and ultrastructural analysis, mineral microanalysis and antioxidant enzymes quantification. Functional markers of cardiac damages were evaluated using serum samples. KEY FINDINGS Arsenic exposure induced dose-dependent structural and ultrastructural remodeling of cardiac tissue, with parenchyma loss, increase of stroma components, collagen deposition, and pathological damages such as inflammation, sarcomere disorganization, mitochondria degeneration and myofilament dissociation. Moreover, this metalloid was bioaccumulated in the tissue affecting its micromineral content, which resulted in antioxidant imbalance and increased levels of oxidative stress and cardiac markers. SIGNIFICANCE Taken together, our findings indicate that the heart is a potential target to arsenic toxicity, and long-term exposure to this metalloid must be avoided, once it might induce several cardiac tissue pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliziária Cardoso Santos
- Medicine School, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil; Postgraduate Program in Animal Biology, Federal University of Jequitinhonha and Mucuri Valleys, Minas Gerais, Brazil
| | | | | |
Collapse
|
21
|
Godfrey A, Hooser B, Abdelmoneim A, Sepúlveda MS. Sex-specific endocrine-disrupting effects of three halogenated chemicals in Japanese medaka. J Appl Toxicol 2019; 39:1215-1223. [PMID: 31066087 DOI: 10.1002/jat.3807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022]
Abstract
Several halogenated chemicals are found in an array of products that can cause endocrine disruption. Human studies have shown that endocrine responses are sex specific, with females more likely to develop hypothyroidism and males more likely to have reproductive impairment. The objective of this study was to assess sex differences on thyroid and estrogenic effects after exposure of Japanese medaka (Oryzias latipes, SK2MC) to halogenated compounds. This strain is an excellent model for these studies as sex can be determined non-destructively a few hours postfertilization. Medaka embryos were exposed to sublethal concentrations of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP, 0.019 mg/L), perfluorooctanoic acid (PFOA, 4.7 mg/L) and its next generation alternative, perfluorobutyric acid (PFBA, 137 mg/L). Methimazole (inhibits thyroid hormone synthesis) and the thyroid hormone triiodothyronine served as reference controls. Fish were exposed throughout embryo development until 10 days postfertilization. Females displayed significantly larger swim bladders (which are under thyroid hormone control) after exposure to all chemicals with the exception of triiodothyronine, which caused the opposite effect. Females exposed to TDCPP and PFOA had increased expression of vitellogenin and exposure to PFOA upregulated expression of multiple thyroid-related genes. Upregulation of estrogenic-regulated genes after exposure to TDCPP, PFOA and methimazole was only observed in males. Overall, our results suggest that females and males show an estrogenic response when exposed to these halogenated chemicals and that females appear more susceptible to thyroid-induced swim bladder dysfunction compared with males. These results further confirm the importance of considering sex effects when assessing the toxicity of endocrine-disrupting compounds.
Collapse
Affiliation(s)
- Amy Godfrey
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana
| | - Blair Hooser
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana
| | - Ahmed Abdelmoneim
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana.,Department of Veterinary Forensic Medicine & Toxicology, Assiut University, Assiut, Egypt
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana
| |
Collapse
|
22
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|
23
|
Fábelová L, Loffredo CA, Klánová J, Hilscherová K, Horvat M, Tihányi J, Richterová D, Palkovičová Murínová Ľ, Wimmerová S, Sisto R, Moleti A, Trnovec T. Environmental ototoxicants, a potential new class of chemical stressors. ENVIRONMENTAL RESEARCH 2019; 171:378-394. [PMID: 30716515 DOI: 10.1016/j.envres.2019.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
Hearing loss is an injury that can develop over time, and people may not even be aware of it until it becomes a severe disability. Ototoxicants are substances that may damage the inner ear by either affecting the structures in the ear itself or by affecting the nervous system. We have examined the possibility that ototoxicants may present a health hazard in association with environmental exposures, adding to existing knowledge of their proven hazards under medical therapeutic conditions or occupational activities. In addition to the already described human environmental ototoxicants, mainly organochlorines such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), hexachlorocyclohexane (HCH) and hexachlorobenzene (HCB), we have examined the ubiquitous chemical stressors phthalates, bisphenol A/S/F/, PFCs, flame retardants (FRs) and cadmium for potential ototoxic properties, both as single substances or as chemical mixtures. Our literature review confirmed that these chemicals may disturb thyroid hormones homeostasis, activate aryl hydrocarbon receptor (AhR), and induce oxidative stress, which in turn may initiate a chain of events resulting in impairment of cochlea and hearing loss. With regard to auditory plasticity, diagnostics of a mixture of effects of ototoxicants, potential interactions of chemical and physical agents with effects on hearing, parallel deterioration of hearing due to chemical exposures and ageing, metabolic diseases or obesity, even using specific methods as brainstem auditory evoked potentials (BAEP) or otoacoustic emissions (OAEs) registration, may be difficult, and establishment of concentration-response relationships problematic. This paper suggests the establishment of a class of environmental oxotoxicants next to the established classes of occupational and drug ototoxicants. This will help to properly manage risks associated with human exposure to chemical stressors with ototoxic properties and adequate regulatory measures.
Collapse
Affiliation(s)
- Lucia Fábelová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, USA
| | - Jana Klánová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Juraj Tihányi
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Ľubica Palkovičová Murínová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Renata Sisto
- INAIL, Research Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Arturo Moleti
- University of Roma, Tor Vergata, Department of Physics, Roma, Italy
| | - Tomáš Trnovec
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
24
|
Zhang Y, Yuan XM, Wang YF, Jiang MM, Bi YN, Liu Y, Pu WL, Song L, Huang JY, Sun LK, Zhou ZX, Zhou K. Isopsoralen induces different subchronic toxicities and metabolomic outcomes between male and female Wistar rats. Regul Toxicol Pharmacol 2019; 103:1-9. [PMID: 30634019 DOI: 10.1016/j.yrtph.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
Isopsoralen is a major active and quality-control component of Fructus Psoraleae, but lacks a full safety evaluation. We evaluated the oral toxicity of isopsoralen in Wistar rats treated for 3 months at doses of 0, 3.5, 7.0, and 14 mg/kg. Additionally, the plasma metabolomics of isopsoralen in male and female rats treated for 3 months at doses of 0 and 14 mg/kg were investigated by gas chromatography-mass spectrometry. Many abnormalities were observed in the isopsoralen-treated rats, including suppression of body weight gain, and changes in serum biochemical parameters and visceral coefficients. Histopathological changes in liver, pancreatic, and reproductive system tissues were also observed in the isopsoralen-treated rats. The metabolomic analyses showed alterations in many metabolites (19 in female rats; 28 in male rats) after isopsoralen administration. The significant changes in these metabolites revealed metabolomic alterations in the isopsoralen-treated rats, especially in amino acid metabolism regardless of sex, including phenylalanine, tyrosine, and tryptophan biosynthesis and glycine, serine, and threonine metabolism. Furthermore, fatty acid metabolism comprised the main affected pathways in female rats, while lipid metabolism and energy metabolism were the main affected pathways in male rats.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiao-Mei Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yue-Fei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Miao-Miao Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Ya-Nan Bi
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wei-Ling Pu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lei Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ju-Yang Huang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Li-Kang Sun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China
| | - Zhi-Xing Zhou
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 300193, China; Ministry of Education Key Laboratory of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
25
|
Hogervorst JGF, Madhloum N, Saenen ND, Janssen BG, Penders J, Vanpoucke C, De Vivo I, Vrijens K, Nawrot TS. Prenatal particulate air pollution exposure and cord blood homocysteine in newborns: Results from the ENVIRONAGE birth cohort. ENVIRONMENTAL RESEARCH 2019; 168:507-513. [PMID: 30477822 DOI: 10.1016/j.envres.2018.08.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Particulate air pollution is probably causally related to increased risk of cardiovascular disease. Plasma homocysteine is an established cardiovascular disease risk factor. Recent studies show that exposure to particulate air pollution is associated with plasma homocysteine levels in adults but no studies on the association between prenatal air pollution and neonatal homocysteine levels exist. METHODS In 609 newborns of the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort, we investigated the association between prenatal particulate matter exposure with a diameter ≤ 2.5 µm (PM2.5) and cord plasma homocysteine levels, and in a subset (n = 490) we studied the interaction with 11 single nucleotide polymorphism (SNPs) in oxidative stress-related genes (CAT, COMT, GSTP1, SOD2, NQO1 and HFE), through multiple linear regression. PM2.5 levels were obtained using a high resolution spatial temporal interpolation method. Homocysteine levels were measured by the homocysteine enzymatic assay on a Roche/Hitachi cobas c system. SNPs were assessed on the Biotrove OpenArray SNP genotyping platform. RESULTS In multivariable-adjusted models, cord plasma homocysteine levels were 8.1% higher (95% CI: 1.9 to 14.3%; p = 0.01) for each 5 µg/m³ increment in average PM2.5 exposure during the entire pregnancy. With regard to pregnancy trimesters, there was only an association in the 2nd trimester: 3.6% (95% CI: 0.9% to 6.4%; p = 0.01). The positive association between PM2.5 in and homocysteine was (borderline) statistically significantly modified by genetic variants in MnSOD (p interaction = 0.02), GSTP1 (p interaction = 0.07) and the sum score of the 3 studied SNPs in the CAT gene (p interaction=0.09), suggesting oxidative stress as an underlying mechanism of action. CONCLUSIONS Exposure to particulate air pollution in utero is associated with higher cord blood homocysteine levels, possibly through generating oxidative stress. Increased air pollution-induced homocysteine levels in early life might predispose for cardiovascular and other diseases later in life.
Collapse
Affiliation(s)
| | - Narjes Madhloum
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Joris Penders
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Laboratory of Clinical Biology, East-Limburg Hospital, Genk, Belgium
| | | | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States; Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, United States
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
26
|
Is human hair a proper 210Po and 210Pb monitor of their increased activity in the human body? J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Polanska K, Hanke W, Pawlas N, Wesolowska E, Jankowska A, Jagodic M, Mazej D, Dominowska J, Grzesiak M, Mirabella F, Chiarotti F, Calamandrei G. Sex-Dependent Impact of Low-Level Lead Exposure during Prenatal Period on Child Psychomotor Functions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102263. [PMID: 30332762 PMCID: PMC6210236 DOI: 10.3390/ijerph15102263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022]
Abstract
The impact of exposure to lead on child neurodevelopment has been well established. However, sex differences in vulnerability are still not fully explained. We aimed at evaluating the effect of a low-level lead exposure, as measured between 20 to 24 weeks of pregnancy and in cord blood, on developmental scores up to 24 months of age in 402 children from the Polish Mother and Child Cohort (REPRO_PL). Additionally, sex-dependent susceptibility to lead at this very early stage of psychomotor development was assessed. The blood lead levels were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). In order to estimate the children’s neurodevelopment, the Bayley Scales of Infant and Toddler Development was applied. The geometric mean (GM) for blood lead level during 20–24 weeks of pregnancy was 0.99 ± 0.15 µg/dL and, in the cord blood, it was 0.96 ± 0.16 µg/dL. There was no statistically significant impact of lead exposure during prenatal period on the girls’ psychomotor abilities. Among the boys, we observed lower scores for cognitive functions, along with increasing cord blood lead levels (β = −2.07; p = 0.04), whereas the results for the language and motor abilities were not statistically significant (p > 0.05). Our findings show that fetal exposure to very low lead levels might affect early cognitive domain, with boys being more susceptible than girls. Education on health, higher public awareness, as well as intervention programs, along with relevant regulations, are still needed to reduce risks for the vulnerable population subgroups.
Collapse
Affiliation(s)
- Kinga Polanska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Natalia Pawlas
- Chair and Department of Pharmacology, Medical University of Silesia, School of Medicine with Division of Dentistry in Zabrze, 41 808 Zabrze, Poland.
| | - Ewelina Wesolowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Agnieszka Jankowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland.
| | - Marta Jagodic
- Department of Environmental Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia.
| | - Jolanta Dominowska
- Department of Teaching Midwifery, Medical University of Lodz, 90-419 Lodz, Poland.
| | - Mariusz Grzesiak
- Obstetrics, Perinatology and Gynecology Department, Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Fiorino Mirabella
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| | - Flavia Chiarotti
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| | - Gemma Calamandrei
- Center for Behavioral Sciences and Mental Health, National Institute of Health, I-00161 Rome, Italy.
| |
Collapse
|
28
|
Tatsuta N, Nakai K, Sakamoto M, Murata K, Satoh H. Methylmercury Exposure and Developmental Outcomes in Tohoku Study of Child Development at 18 Months of Age. TOXICS 2018; 6:toxics6030049. [PMID: 30134554 PMCID: PMC6161177 DOI: 10.3390/toxics6030049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022]
Abstract
Seafood is an important component in a healthy diet and may contain methylmercury or other contaminants. It is important to recognize the risks and benefits of consuming seafood. A longitudinal prospective birth cohort study has been conducted to clarify the effects of neurotoxicants on child development—the Tohoku Study of Child Development (TSCD) in Japan. TSCD comprises two cohorts; a polychlorinated biphenyls (PCB) cohort (urban area) and a methylmercury cohort (coastal area). Our previous results from the coastal area showed prenatal methylmercury exposure affected psychomotor development in 18-month-olds, and boys appear to be more vulnerable to the exposure than girls. In this report, we have added the urban area cohort and we reanalyzed the impact of prenatal exposure to methylmercury, which gave the same results as before. These findings suggest prenatal exposure to low levels methylmercury may have adverse effects on child development, especially in boys.
Collapse
Affiliation(s)
- Nozomi Tatsuta
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Kunihiko Nakai
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Mineshi Sakamoto
- Development and Environmental Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
- Environmental Health Section, Department of Environmental Science and Epidemiology, National Institute for Minamata Disease, Kumamoto 867-0008, Japan.
| | - Katsuyuki Murata
- Department of Environmental Health Sciences, Akita University Graduate School of Medicine, Akita 010-8502, Japan.
| | - Hiroshi Satoh
- Environmental Health Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
29
|
Rooney JPK, Woods NF, Martin MD, Woods JS. Genetic polymorphisms of GRIN2A and GRIN2B modify the neurobehavioral effects of low-level lead exposure in children. ENVIRONMENTAL RESEARCH 2018; 165:1-10. [PMID: 29655037 PMCID: PMC5999567 DOI: 10.1016/j.envres.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 05/10/2023]
Abstract
Lead (Pb) is neurotoxic and children are highly susceptible to this effect, particularly within the context of continuous low-level Pb exposure. A current major challenge is identification of children who may be uniquely susceptible to Pb toxicity because of genetic predisposition. Learning and memory are among the neurobehavioral processes that are most notably affected by Pb exposure, and modification of N-methyl-D-aspartate receptors (NMDAR) that regulate these processes during development are postulated to underlie these adverse effects of Pb. We examined the hypothesis that polymorphic variants of genes encoding glutamate receptor, ionotropic, NMDAR subunits 2A and 2B, GRIN2A and GRIN2B, exacerbate the adverse effects of Pb exposure on these processes in children. Participants were subjects who participated as children in the Casa Pia Dental Amalgam Clinical Trial and for whom baseline blood Pb concentrations and annual neurobehavioral test results over the 7 year course of the clinical trial were available. Genotyping assays were performed for variants of GRIN2A (rs727605 and rs1070503) and GRIN2B (rs7301328 and rs1806201) on biological samples acquired from 330 of the original 507 trial participants. Regression modeling strategies were employed to evaluate the association between genotype status, Pb exposure, and neurobehavioral test outcomes. Numerous significant adverse interaction effects between variants of both GRIN2A and GRIN2B, individually and in combination, and Pb exposure were observed particularly among boys, preferentially within the domains of Learning & Memory and Executive Function. In contrast, very few interaction effects were observed among similarly genotyped girls with comparable Pb exposure. These findings support observations of an essential role of GRIN2A and GRIN2B on developmental processes underlying learning and memory as well as other neurological functions in children and demonstrate, further, modification of Pb effects on these processes by specific variants of both GRIN2A and GRIN2B genes. These observations highlight the importance of genetic factors in defining susceptibility to Pb neurotoxicity and may have important public health implications for future strategies aimed at protecting children and adolescents from potential health risks associated with low-level Pb exposure.
Collapse
Affiliation(s)
- James P K Rooney
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| | - Nancy F Woods
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, USA
| | - Michael D Martin
- Departments of Oral Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | - James S Woods
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Bolte G, David M, Dębiak M, Fiedel L, Hornberg C, Kolossa-Gehring M, Kraus U, Lätzsch R, Paeck T, Palm K, Schneider A. [Integration of sex/gender into environmental health research. Results of the interdisciplinary research network Sex/Gender-Environment-Health (GeUmGe-NET)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:737-746. [PMID: 29789893 DOI: 10.1007/s00103-018-2745-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The comprehensive consideration of sex/gender in health research is essential to increase relevance and validity of research results. Contrary to other areas of health research, there is no systematic summary of the current state of research on the significance of sex/gender in environmental health. Within the interdisciplinary research network Sex/Gender-Environment-Health (GeUmGe-NET) the current state of integration of sex/gender aspects or, respectively, gender theoretical concepts into research was systematically assessed within selected topics of the research areas environmental toxicology, environmental medicine, environmental epidemiology and public health research on environment and health. Knowledge gaps and research needs were identified in all research areas. Furthermore, the potential for methodological advancements by using gender theoretical concepts was depicted. A dialogue between biomedical research, public health research, and gender studies was started with the research network GeUmGe-NET. This dialogue has to be continued particularly regarding a common testing of methodological innovations in data collection and data analysis. Insights of this interdisciplinary research are relevant for practice areas such as environmental health protection, health promotion, environmental justice, and environmental health monitoring.
Collapse
Affiliation(s)
- Gabriele Bolte
- Institut für Public Health und Pflegeforschung, Abteilung Sozialepidemiologie, Universität Bremen, Grazer Str. 4, 28359, Bremen, Deutschland.
| | - Madlen David
- FG II 1.2 Toxikologie, Gesundheitsbezogene Umweltbeobachtung, Umweltbundesamt, Dessau-Roßlau, Deutschland
| | - Małgorzata Dębiak
- FG II 1.2 Toxikologie, Gesundheitsbezogene Umweltbeobachtung, Umweltbundesamt, Dessau-Roßlau, Deutschland
| | - Lotta Fiedel
- Institut für Geschichtswissenschaften, Lehrstuhl Gender and Science/Naturwissenschafts- und Geschlechterforschung, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Claudia Hornberg
- Fakultät für Gesundheitswissenschaften, AG 7 - Umwelt und Gesundheit, Universität Bielefeld, Bielefeld, Deutschland
| | - Marike Kolossa-Gehring
- FG II 1.2 Toxikologie, Gesundheitsbezogene Umweltbeobachtung, Umweltbundesamt, Dessau-Roßlau, Deutschland
| | - Ute Kraus
- Institut für Epidemiologie, Arbeitsgruppe Environmental Risks, Helmholtz Zentrum München, Neuherberg, Deutschland
| | - Rebecca Lätzsch
- Fakultät für Gesundheitswissenschaften, AG 7 - Umwelt und Gesundheit, Universität Bielefeld, Bielefeld, Deutschland
| | - Tatjana Paeck
- Institut für Public Health und Pflegeforschung, Abteilung Sozialepidemiologie, Universität Bremen, Grazer Str. 4, 28359, Bremen, Deutschland
| | - Kerstin Palm
- Institut für Geschichtswissenschaften, Lehrstuhl Gender and Science/Naturwissenschafts- und Geschlechterforschung, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Alexandra Schneider
- Institut für Epidemiologie, Arbeitsgruppe Environmental Risks, Helmholtz Zentrum München, Neuherberg, Deutschland
| |
Collapse
|
31
|
Betansedi CO, Vaca Vasquez P, Counil E. A comprehensive approach of the gender bias in occupational cancer epidemiology: A systematic review of lung cancer studies (2003-2014). Am J Ind Med 2018; 61:372-382. [PMID: 29508431 DOI: 10.1002/ajim.22823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND In occupational epidemiology, a male-centered perspective often predominates. We aimed to describe current research practices in terms of gender consideration at different stages of epidemiological studies. METHODS A systematic review of occupational lung cancer publications indexed in PubMed was conducted over the period 2003-2014. Articles were described according to the sex composition of their study sample. RESULTS In 243 studies, 7 (3%) were women-only, 101 (41%) were mixed, with a disproportionate men-to-women ratio (P50 = 3.5; P75 = 12.4). A shift was observed from mixed and unspecified source populations to men-only final samples. Our results also suggest implicit generalization of results from men-only studies, a lack of tests of interaction and often unjustified sex-adjustment for mixed studies. CONCLUSIONS The lower proportion of women in studies cannot be fully explained by their under-representation in the target populations, since there were large numbers of women among both potentially exposed workers and patients diagnosed with lung cancer.
Collapse
Affiliation(s)
- Charles-Olivier Betansedi
- Paris-Saclay University; Paris-Sud University; UVSQ; Villejuif France
- Giscop93; Paris 13 University; Bobigny France
| | | | - Emilie Counil
- Giscop93; Paris 13 University; Bobigny France
- EHESP School of Public Health; Rennes; France
- IRIS UMR8156-U997; Paris 13 University; Bobigny France
- INSERM, U1085, IRSET, ESTER Team; University of Angers; Angers France
| |
Collapse
|
32
|
Comfort N, Re DB. Sex-Specific Neurotoxic Effects of Organophosphate Pesticides Across the Life Course. Curr Environ Health Rep 2018; 4:392-404. [PMID: 29063415 DOI: 10.1007/s40572-017-0171-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW This review discusses the sex-specific effects of exposure to various organophosphate (OP) pesticides throughout the life course and potential reasons for the differential vulnerabilities observed across sexes. RECENT FINDINGS Sex is a crucial factor in the response to toxicants, yet the sex-specific effects of OP exposure, particularly in juveniles and adults, remain unresolved. This is largely due to study design and inconsistencies in exposure and outcome assessments. Exposure to OPs results in multiple adverse outcomes influenced by many factors including sex. Reported sex-specific effects suggest that males are more susceptible to OPs, which reflects the sex-dependent prevalence of various neurodevelopmental and neurodegenerative disorders such as autism and amyotrophic lateral sclerosis (ALS), in which males are at greater risk. Thus, this review proposes that the biological sex-specific effects elicited by OP exposure may in part underlie the dimorphic susceptibilities observed in neurological disorders. Understanding the immediate and long-term effects of OP exposure across sexes will be critical in advancing our understanding of OP-induced neurotoxicity and disease.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street, 11th floor, New York, NY, 10032, USA.
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA. .,NIEHS Center for Environmental Health Sciences in Northern Manhattan, Columbia University, New York, NY, 10032, USA. .,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA. .,, 722 W 168th Street Suite 1107B, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Joo H, Choi JH, Burm E, Park H, Hong YC, Kim Y, Ha EH, Kim Y, Kim BN, Ha M. Gender difference in the effects of lead exposure at different time windows on neurobehavioral development in 5-year-old children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1086-1092. [PMID: 29751412 DOI: 10.1016/j.scitotenv.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although the association between lead exposure and children's neurodevelopment has been studied, gender differences remain to be investigated. We examined the effects of lead exposure on the neurobehavioral development of 5-year-old children to identify the vulnerable time window of exposure and potential gender difference. METHOD A total of 1751 pregnant women and children participated in the prospective birth cohort study, Mothers and Children's Environmental Health study, since 2006. Lead levels were measured in the maternal blood in early and late pregnancies, in cord blood at birth, and in 2-, 3-, and 5-year-old children's blood. The behavior of 575 children aged 5years were assessed using the Korean Child Behavior Checklist. The association between the blood lead level at each time window and behavior was examined using a generalized linear model adjusted for potential confounders and covariates. RESULTS Lead levels at late pregnancy were significantly associated with increased risk of behavioral problems in males. Lead levels in 2- and 5-year-old children's blood significantly increased behavioral risks in females: for a 1-μg/dL increase in blood lead levels, the score for total behavioral problems increased by 3.00 (95% confidence interval [CI]: 0.56-5.45) during the late pregnancy in males, whereas it increased by 3.82 (95% CI: 1.25-6.39) at 2years and by 5.72 (95% CI: 0.44-10.99) at 5years in females with a stronger effect in attention and sleep problems. CONCLUSION Effects of lead toxicity on children's neurobehavioral development showed gender differences. Males were more susceptible to prenatal exposure, while females were more susceptible to postnatal exposure with stronger effects in attention and sleep problems.
Collapse
Affiliation(s)
- Hyunjoo Joo
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jong Hyuk Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Eunae Burm
- Department of Nursing, Moonkyung College, Moonkyung, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Eun-Hee Ha
- Department of Occupational and Environmental Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
34
|
de Oliveira AR, Campos Neto ADA, Bezerra de Medeiros PC, de Andrade MJO, Dos Santos NA. Chronic Organic Solvent Exposure Changes Visual Tracking in Men and Women. Front Neurosci 2017; 11:666. [PMID: 29249933 PMCID: PMC5714886 DOI: 10.3389/fnins.2017.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/16/2017] [Indexed: 02/04/2023] Open
Abstract
Organic solvents can change CNS sensory and motor function. Eye-movement analyses can be important tools when investigating the neurotoxic changes that result from chronic organic solvent exposure. The current research measured the eye-movement patterns of men and women with and without histories of chronic organic solvent exposure. A total of 44 volunteers between 18 and 41 years old participated in this study; 22 were men (11 exposed and 11 controls), and 22 were women (11 exposed and 11 controls). Eye movement was evaluated using a 250-Hz High-Speed Video Eye Tracker Toolbox (Cambridge Research Systems) via an image of a maze. Specific body indices of exposed and non-exposed men and women were measured with an Inbody 720 to determine whether the differences in eye-movement patterns were associated with body composition. The data were analyzed using IBM SPSS Statistics version 20.0.0. The results indicated that exposed adults showed significantly more fixations (t = 3.82; p = 0.001; r = 0.51) and longer fixations (t = 4.27; p = 0.001, r = 0.54) than their non-exposed counterparts. Comparisons within men (e.g., exposed and non-exposed) showed significant differences in the number of fixations (t = 2.21; p = 0.04; r = 0.20) and duration of fixations (t = 3.29; p = 0.001; r = 0.35). The same was true for exposed vs. non-exposed women, who showed significant differences in the number of fixations (t = 3.10; p = 0.001; r = 0.32) and fixation durations (t = 2.76; p = 0.01; r = 0.28). However, the results did not show significant differences between exposed women and men in the number and duration of fixations. No correlations were found between eye-movement pattern and body composition measures (p > 0.05). These results suggest that chronic organic solvent exposure affects eye movements, regardless of sex and body composition, and that eye tracking contributes to the investigation of the visual information processing disorders acquired by workers exposed to organic solvents.
Collapse
Affiliation(s)
- Ana R de Oliveira
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | | |
Collapse
|
35
|
Gianazza E, Miller I, Guerrini U, Palazzolo L, Parravicini C, Eberini I. Gender proteomics I. Which proteins in non-sexual organs. J Proteomics 2017; 178:7-17. [PMID: 28988882 DOI: 10.1016/j.jprot.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Differences related to gender have long been neglected but recent investigations show that they are widespread and may be recognized with all types of omics approaches, both in tissues and in biological fluids. Our review compiles evidence collected with proteomics techniques in our species, mainly focusing on baseline parameters in non-sexual organs in healthy men and women. Data from human specimens had to be replaced with information from other mammals every time invasive procedures of sample procurement were involved. SIGNIFICANCE As our knowledge, and the methods to build it, get refined, gender differences need to receive more and more attention, as they influence the outcome of all aspects in lifestyle, including diet, exercise and environmental factors. In turn this background modulates a differential susceptibility to some disease, or a different pathogenetic mechanism, depending on gender, and a different response to pharmacological therapy. Preparing this review we meant to raise awareness about the gender issue. We anticipate that more and more often, in the future, separate evaluations will be carried out on male and female subjects as an alternative - and an upgrade - to the current approach of reference and test groups being 'matched for age and sex'.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy.
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
36
|
Fernández-Cruz T, Martínez-Carballo E, Simal-Gándara J. Perspective on pre- and post-natal agro-food exposure to persistent organic pollutants and their effects on quality of life. ENVIRONMENT INTERNATIONAL 2017; 100:79-101. [PMID: 28089279 DOI: 10.1016/j.envint.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/26/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Adipose tissue constitutes a continual source of internal exposure to organic pollutants (OPs). When fats mobilize during pregnancy and breastfeeding, OPs could affect foetal and neonatal development, respectively. SCOPE AND APPROACH The main aim of this review is to deal with pre- and post-natal external exposure to organic pollutants and their effects on health, proposing prevention measures to reduce their risk. The goal is the development of a biomonitoring framework program to estimate their impact on human health, and prevent exposure by recommending some changes in personal lifestyle habits. KEY FINDINGS AND CONCLUSIONS It has been shown that new studies should be developed taking into account their cumulative effect and the factors affecting their body burden. In conclusion, several programs should continuously be developed by different health agencies to have a better understanding of the effect of these substances and to develop a unified public policy.
Collapse
Affiliation(s)
- Tania Fernández-Cruz
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Elena Martínez-Carballo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
37
|
Orct T, Jurasović J, Micek V, Karaica D, Sabolić I. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo. J Trace Elem Med Biol 2017; 40:104-111. [PMID: 28159217 DOI: 10.1016/j.jtemb.2016.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/31/2016] [Indexed: 12/01/2022]
Abstract
Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency.
Collapse
Affiliation(s)
- Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia
| | - Vedran Micek
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10001 Zagreb, Croatia.
| |
Collapse
|
38
|
Abstract
Sex, the states of being female or male, potentially interacts with all xenobiotic exposures, both inadvertent and deliberate, and influences their toxicokinetics (TK), toxicodynamics, and outcomes. Sex differences occur in behavior, exposure, anatomy, physiology, biochemistry, and genetics, accounting for female-male differences in responses to environmental chemicals, diet, and pharmaceuticals, including adverse drug reactions (ADRs). Often viewed as an annoying confounder, researchers have studied only one sex, adjusted for sex, or ignored it. Occupational epidemiology, the basis for understanding many toxic effects in humans, usually excluded women. Likewise, Food and Drug Administration rules excluded women of childbearing age from drug studies for many years. Aside from sex-specific organs, sex differences and sex × age interactions occur for a wide range of disease states as well as hormone-influenced conditions and drug distribution. Women have more ADRs than men; the classic sex hormone paradigm (gonadectomy and replacement) reveals significant interaction of sex and TK including absorption, distribution, metabolisms, and elimination. Studies should be designed to detect sex differences, describe the mechanisms, and interpret these in a broad social, clinical, and evolutionary context with phenomena that do not differ. Sex matters, but how much of a difference is needed to matter remains challenging.
Collapse
Affiliation(s)
- Michael Gochfeld
- Environmental and Occupational Health Sciences Institute and Consortium for Risk Evaluation with Stakeholder Participation at Rutgers—Robert Wood Johnson Medical School. Piscataway, New Jersey
| |
Collapse
|
39
|
Zhou T, Li Z, Zhang F, Jiang X, Shi W, Wu L, Christie P. Concentrations of arsenic, cadmium and lead in human hair and typical foods in eleven Chinese cities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:150-156. [PMID: 27776254 DOI: 10.1016/j.etap.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
Concentrations of arsenic (As), cadmium (Cd) and lead (Pb) were determined in 384 human hair samples and 445 purchased food samples from 11 cities in China. The mean concentrations of hair As, Cd and Pb were 0.23, 0.062 and 2.45mgkg-1, respectively. The As, Cd and Pb concentrations in different foods were lower than the national maximum allowable contaminant levels. By comparison, males had higher hair As concentrations but lower Cd concentrations than females. When the interaction effects of gender and age were considered, males had the higher hair As, Cd and Pb concentrations in the 51-65 year-old age group. Residents of rural areas had higher hair As, Cd and Pb concentrations than people living in urban areas. Further analysis indicates that hair As, Cd and Pb concentrations and their changes with biological and environmental factors cannot be satisfactorily explained by the estimated intakes from purchased food.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fan Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaosan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiming Shi
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
40
|
Walker DI, Uppal K, Zhang L, Vermeulen R, Smith M, Hu W, Purdue MP, Tang X, Reiss B, Kim S, Li L, Huang H, Pennell KD, Jones DP, Rothman N, Lan Q. High-resolution metabolomics of occupational exposure to trichloroethylene. Int J Epidemiol 2016; 45:1517-1527. [PMID: 27707868 PMCID: PMC5100622 DOI: 10.1093/ije/dyw218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/28/2022] Open
Abstract
Background: Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin’s lymphoma and kidney and liver cancer; however, TCE’s mode of action for development of these diseases in humans is not well understood. Methods: Non-targeted metabolomics analysis of plasma obtained from 80 TCE-exposed workers [full shift exposure range of 0.4 to 230 parts-per-million of air (ppma)] and 95 matched controls were completed by ultra-high resolution mass spectrometry. Biological response to TCE exposure was determined using a metabolome-wide association study (MWAS) framework, with metabolic changes and plasma TCE metabolites evaluated by dose-response and pathway enrichment. Biological perturbations were then linked to immunological, renal and exposure molecular markers measured in the same population. Results: Metabolic features associated with TCE exposure included known TCE metabolites, unidentifiable chlorinated compounds and endogenous metabolites. Exposure resulted in a systemic response in endogenous metabolism, including disruption in purine catabolism and decreases in sulphur amino acid and bile acid biosynthesis pathways. Metabolite associations with TCE exposure included uric acid (β = 0.13, P-value = 3.6 × 10−5), glutamine (β = 0.08, P-value = 0.0013), cystine (β = 0.75, P-value = 0.0022), methylthioadenosine (β = −1.6, P-value = 0.0043), taurine (β = −2.4, P-value = 0.0011) and chenodeoxycholic acid (β = −1.3, P-value = 0.0039), which are consistent with known toxic effects of TCE, including immunosuppression, hepatotoxicity and nephrotoxicity. Correlation with additional exposure markers and physiological endpoints supported known disease associations. Conclusions: High-resolution metabolomics correlates measured occupational exposure to internal dose and metabolic response, providing insight into molecular mechanisms of exposure-related disease aetiology.
Collapse
Affiliation(s)
- Douglas I Walker
- Pulmonary, Allergy and Critical Medicine, Emory University, Atlanta, GA, USA, .,Deptartment of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Karan Uppal
- Pulmonary, Allergy and Critical Medicine, Emory University, Atlanta, GA, USA
| | - Luoping Zhang
- Environmental Health Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, The Netherlands
| | - Martyn Smith
- Environmental Health Sciences, University of California at Berkeley, Berkeley, CA, USA
| | - Wei Hu
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Purdue
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Xiaojiang Tang
- Guangdong Medical Laboratory Animal Center, Guangdong, China
| | - Boris Reiss
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA and
| | - Sungkyoon Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Laiyu Li
- Guangdong Medical Laboratory Animal Center, Guangdong, China
| | - Hanlin Huang
- Guangdong Medical Laboratory Animal Center, Guangdong, China
| | - Kurt D Pennell
- Deptartment of Civil and Environmental Engineering, Tufts University, Medford, MA, USA.,Pulmonary, Allergy and Critical Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Pulmonary, Allergy and Critical Medicine, Emory University, Atlanta, GA, USA
| | - Nathaniel Rothman
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
41
|
Abstract
A comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43 %. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males not only ingest Hg at a higher rate than females but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher vertebrates including humans. Our synthesis findings will be useful in (1) developing sex-specific bioenergetics models for fish, (2) developing sex-specific risk assessment models for exposure of humans and wildlife to contaminants, and (3) refining Hg mass balance models for fish and higher vertebrates.
Collapse
|
42
|
Nie X, Wang N, Chen Y, Chen C, Han B, Zhu C, Chen Y, Xia F, Cang Z, Lu M, Meng Y, Jiang B, D Jensen M, Lu Y. Blood cadmium in Chinese adults and its relationships with diabetes and obesity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18714-23. [PMID: 27312901 DOI: 10.1007/s11356-016-7078-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/13/2016] [Indexed: 05/18/2023]
Abstract
The aim of this study is to evaluate blood cadmium levels (BCLs) in Chinese adults and explore whether blood cadmium is associated with diabetes or obesity. This study included 5544 adults from a cross-sectional SPECT-China study. BCL and blood lead level (BLL) was measured by atomic absorption spectrometry. Fasting plasma glucose (FPG) was used to define prediabetes and diabetes. Overweight and obesity were defined by body mass index (BMI). The associations of BCL with prediabetes, diabetes, overweight, and obesity were analyzed by multinomial logistic regression analyses. Medians (interquartile range) of BCL were 1.97 μg/L (0.60-3.82) in men and 1.59 μg/L (0.54-3.51) in women. Subjects in low-economic-status areas and urban areas had significantly higher BCL. BCL in current smokers was significantly higher than in current non-smokers. In the adjusted model, a mild positive relationship between BCL and FPG was found. Meanwhile, the prevalence of prediabetes was increased according to the increase in BCL tertiles. Surprisingly, BCL had a negative relationship with prevalence of overweight. In conclusion, BCL in Chinese adults was much higher than in other developed countries and was influenced by gender, smoking, and residential area. BCL was positively related to prediabetes while negatively related to overweight.
Collapse
Affiliation(s)
- Xiaomin Nie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Han
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chunfang Zhu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingchao Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Cang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ying Meng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Boren Jiang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, 5-194 Joseph, Rochester, MN55905, USA.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
43
|
Lygre GB, Haug K, Skjaerven R, Björkman L. Prenatal exposure to dental amalgam and pregnancy outcome. Community Dent Oral Epidemiol 2016; 44:442-9. [PMID: 27146796 DOI: 10.1111/cdoe.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 03/23/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Questions have been raised about potential risks of prenatal exposure to mercury from amalgam fillings during pregnancy. The aim of this study was to assess possible associations between exposure to amalgam fillings in pregnant women participating in a large cohort study and adverse pregnancy outcome. METHODS In the Norwegian Mother and Child Cohort Study (MoBa), a valid information about the number of teeth with amalgam fillings and dental treatment, including new amalgam fillings placed or removed during pregnancy, was available from 69 474 pregnancies. The information was obtained from two questionnaires sent to the women at 17 and 30 weeks of pregnancy, and the data were linked to the Medical Birth Registry of Norway. Logistic regression was used to estimate the odds ratio (OR) and 95% confidence intervals (95% CI) as a measure of association between pregnancy outcome and prenatal exposure to amalgam fillings. RESULTS Logistic regression models, including mothers' age, education, BMI, parity, smoking during pregnancy, and alcohol consumption during pregnancy revealed no significant associations between the number of teeth with amalgam fillings and early preterm delivery, late preterm delivery, low birthweight, malformation or stillbirth. CONCLUSIONS We found no evidence for serious perinatal consequences of maternal exposure to amalgam fillings during pregnancy.
Collapse
Affiliation(s)
| | - Kjell Haug
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rolv Skjaerven
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Medical Birth Registry of Norway, Norwegian Institute of Public Health, Bergen, Norway
| | - Lars Björkman
- Dental Biomaterials Adverse Reaction Unit, Uni Research Health, Bergen, Norway.,Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| |
Collapse
|
44
|
Khazaee M, Hamidian AH, Alizadeh Shabani A, Ashrafi S, Mirjalili SAA, Esmaeilzadeh E. Accumulation of heavy metals and As in liver, hair, femur, and lung of Persian jird (Meriones persicus) in Darreh Zereshk copper mine, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3860-3870. [PMID: 26498968 DOI: 10.1007/s11356-015-5455-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Rodents frequently serve as bioindicator to monitor the quality of the environment. Concentrations of 11 elements (Cd, Co, Ti, Fe, Mn, Cu, Sb, As, Sr, Ni, and Cr) were investigated and compared in liver, hair, femur, and lung of the Persian jird (Meriones persicus) from Darreh Zereshk copper mine, Iran. Metals were determined in different tissues of 39 individuals of Persian jird, collected by snap trap in 2014 from five areas of Darreh Zereshk copper mine. Samples were prepared by wet digestion method, and the contents of elements were analyzed with ICP-OES (VARIAN, 725-ES) instrument. Cadmium, Sb, and Co were below the limit of detection, and Mn and As were found only in hair and liver tissues. We detected the highest concentration of Cu, As, Ti, Fe, Mn, Cr, and Ni in hair in comparison with other tissues. Significant higher levels of Ti in femur and hair; Fe in liver and hair; Mn in liver; As in hair; Sr in lung; Cr in lung, hair, femur, and liver; Cu in femur; and Ni in liver and lung tissues were observed in females. Nearly all element concentrations in the tissues of Persian jird from flotation site, Darreh Zereshk and Hasan Abad villages and leaching site (mining areas) were higher than those from tailing dump site (reference site). We found the highest concentrations of As in liver and hair; Ni and Cr in liver, hair, and lung; and Sr in lung and hair tissues of Persian jird in leaching site. We tried to specify the status of elements before fully exploitation of Darreh Zereshk copper mine by using bioindicator species. Based on our achievements, initial activities did not strongly pollute the surrounded environment of the mine. The high abundance of Persian jird as well as their several proper features makes them a suitable species for biomonitoring programs especially for further studies will be performed after full exploitation of Darreh Zereshk copper mine.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Environment, Faculty of Natural Resources, University of Tehran, P.O. Box 31585-4314, Karaj, Iran
| | - Amir Hossein Hamidian
- Department of Environment, Faculty of Natural Resources, University of Tehran, P.O. Box 31585-4314, Karaj, Iran.
| | - Afshin Alizadeh Shabani
- Department of Environment, Faculty of Natural Resources, University of Tehran, P.O. Box 31585-4314, Karaj, Iran
| | - Sohrab Ashrafi
- Department of Environment, Faculty of Natural Resources, University of Tehran, P.O. Box 31585-4314, Karaj, Iran
| | | | - Esmat Esmaeilzadeh
- Sarcheshmeh copper complex, Research and Development Affairs, Sarcheshmeh, Iran
| |
Collapse
|
45
|
Iavicoli I, Leso V, Schulte PA. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol Appl Pharmacol 2015; 299:112-24. [PMID: 26724381 DOI: 10.1016/j.taap.2015.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/07/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022]
Abstract
Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Division of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Veruscka Leso
- Institute of Public Health, Section of Occupational Medicine, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 4676 Columbia Parkway, MS C-14, Cincinnati, OH 45226, USA.
| |
Collapse
|
46
|
Caporossi L, Papaleo B. Exposure to Bisphenol a and Gender Differences: From Rodents to Humans Evidences and Hypothesis about the Health Effects. J Xenobiot 2015; 5:5264. [PMID: 30701039 PMCID: PMC6324472 DOI: 10.4081/xeno.2015.5264] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 11/23/2022] Open
Abstract
Bisphenol A (BPA) interacts with the endocrine system and seems to produce different effects in relation to gender. The objective of the study was to clarify the possible health effects of exposure to BPA in relation to gender. A literature search was performed using three different search engines: Medline, PubMed and Scopus. Data on both animals and humans showed that BPA acts as a xenoestrogen and interacts with the androgens' metabolism, producing different outcomes: uterotropic effects, decreasing sperm production, stimulation of prolactin release. Gender difference plays a key role in understanding the real toxic effects, the BPA serum concentrations were, all the time, higher in male subjects, possibly due to the difference in androgen-related enzyme activity levels, compared with the healthly female subjects, to equal levels of exposure; while higher BPA levels in women have been associated with a variety of conditions including obesity, endometrial hyperplasia, recurrent miscarriages, and polycystic ovarian syndrome. The data collected are sufficiently robust to raise concerns about the potentially deleterious impact of BPA on humans, even with some methodological limitations; the different impact of BPA in men and in women is documented and of a certain interest. In toxicology it is necessary to assess effects in relation to gender differences, in order to set up prevention plans in the work environment targeting the specific risk.
Collapse
Affiliation(s)
- Lidia Caporossi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian National Institute for Insurance against Occupational Accidents (INAIL), Monteporzio Catone (RM), Italy
| | - Bruno Papaleo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian National Institute for Insurance against Occupational Accidents (INAIL), Monteporzio Catone (RM), Italy
| |
Collapse
|
47
|
Sex differences in liver toxicity-do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS One 2015; 10:e0122786. [PMID: 25849576 PMCID: PMC4388670 DOI: 10.1371/journal.pone.0122786] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/18/2015] [Indexed: 01/10/2023] Open
Abstract
There is increasing amount of evidence for sex variation in drug efficiency and toxicity profiles. Women are more susceptible than men to acute liver injury from xenobiotics. In general, this is attributed to sex differences at a physiological level as well as differences in pharmacokinetics and pharmacodynamics, but neither of these can give a sufficient explanation for the diverse responses to xenobiotics. Existing data are mainly based on animal models and limited data exist on in vitro sex differences relevant to humans. To date, male and female human hepatocytes have not yet been compared in terms of their responses to hepatotoxic drugs. We investigated whether sex-specific differences in acute hepatotoxicity can be observed in vitro by comparing hepatotoxic drug effects in male and female primary human hepatocytes. Significant sex-related differences were found for certain parameters and individual drugs, showing an overall higher sensitivity of female primary hepatocytes to hepatotoxicants. Moreover, our work demonstrated that high content screening is feasible with pooled primary human hepatocytes in suspension.
Collapse
|
48
|
Franconi F, Rosano G, Campesi I. Need for gender-specific pre-analytical testing: the dark side of the moon in laboratory testing. Int J Cardiol 2014; 179:514-35. [PMID: 25465806 DOI: 10.1016/j.ijcard.2014.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Many international organisations encourage studies in a sex-gender perspective. However, research with a gender perspective presents a high degree of complexity, and the inclusion of sex-gender variable in experiments presents many methodological questions, the majority of which are still neglected. Overcoming these issues is fundamental to avoid erroneous results. Here, pre-analytical aspects of the research, such as study design, choice of utilised specimens, sample collection and processing, animal models of diseases, and the observer's role, are discussed. Artefacts in this stage of research could affect the predictive value of all analyses. Furthermore, the standardisation of research subjects according to their lifestyles and, if female, to their life phase and menses or oestrous cycle, is urgent to harmonise research worldwide. A sex-gender-specific attention to pre-analytical aspects could produce a decrease in the time for translation from the bench to bedside. Furthermore, sex-gender-specific pre-clinical pharmacological testing will enable adequate assessment of pharmacokinetic and pharmacodynamic actions of drugs and will enable, where appropriate, an adequate gender-specific clinical development plan. Therefore, sex-gender-specific pre-clinical research will increase the gender equity of care and will produce more evidence-based medicine.
Collapse
Affiliation(s)
- Flavia Franconi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy; Vicepresident of Basilicata Region.
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St George's University of London, United Kingdom
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, National Laboratory of Gender Medicine of the National Institute of Biostructures and Biosystems, Osilo, Sassari, Italy
| |
Collapse
|
49
|
Kirkim G, Olgun Y, Aktas S, Kiray M, Kolatan E, Altun Z, Erçetin P, Bagriyanik A, Yilmaz O, Ellidokuz H. Is there a gender-related susceptibility for cisplatin ototoxicity? Eur Arch Otorhinolaryngol 2014; 272:2755-63. [DOI: 10.1007/s00405-014-3283-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/04/2014] [Indexed: 11/28/2022]
|
50
|
Zhu H, Jia Y, Cao H, Meng F, Liu X. Biochemical and histopathological effects of subchronic oral exposure of rats to a mixture of five toxic elements. Food Chem Toxicol 2014; 71:166-75. [DOI: 10.1016/j.fct.2014.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022]
|