1
|
Park BJ, Dhong KR, Park HJ. Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice. Int J Mol Sci 2024; 25:10642. [PMID: 39408971 PMCID: PMC11477187 DOI: 10.3390/ijms251910642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress.
Collapse
Affiliation(s)
- Byung-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Kyu-Ree Dhong
- Magicbullettherapeutics Inc., 150 Yeongdeungpo-ro, Yeongdeungpo-gu, Seoul 07292, Republic of Korea;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
2
|
Alcolea-Rodriguez V, Dumit V, Ledwith R, Portela R, Bañares MA, Haase A. Differentially Induced Autophagy by Engineered Nanomaterial Treatment Has an Impact on Cellular Homeostasis and Cytotoxicity. NANO LETTERS 2024; 24:11793-11799. [PMID: 39271139 PMCID: PMC11440646 DOI: 10.1021/acs.nanolett.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Considering the increasing production of engineered nanomaterials (ENMs), new approach methodologies (NAMs) are essential for safe-by-design approaches and risk assessment. Our aim was to enhance screening strategies with a focus on reactivity-triggered toxicities. We applied in vitro tests to 10 selected benchmark ENMs in two cell models, lung epithelial A549 and differentiated THP-1 macrophage-like cells. Previously, we categorized ENMs based on surface reactivity. Here we elucidated their reactivity-triggered cytotoxicity and mode of action using the WST-1 assay (metabolic activity), LDH assay (cell membrane integrity), autophagosome detection, and proteomics. Nonreactive SiO2 NM-200 showed no significant impact on cell viability. Conversely, highly reactive CuO and ZnO (NM-110 and NM-111) disrupted cell homeostasis. Interestingly, moderately reactive TiO2 (NM-101 and NM-105) and CeO2 (NM-211 and NM-212), apparently without an adverse effect, induced autophagosome formation, evidencing autophagy as a defensive mechanism. Our improved in vitro testing strategy, combined with state-of-the-art reactivity information, screens ENMs for potential reactivity-triggered toxicity.
Collapse
Affiliation(s)
- Victor Alcolea-Rodriguez
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Verónica
I. Dumit
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
| | - Rico Ledwith
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Freie
Universität Berlin, Institute of Pharmacy, Berlin 14195, German
| | - Raquel Portela
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Miguel A. Bañares
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Andrea Haase
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Freie
Universität Berlin, Institute of Pharmacy, Berlin 14195, German
| |
Collapse
|
3
|
Zhang Y, Sigaeva A, Fan S, Norouzi N, Zheng X, Heijink IH, Slebos DJ, Pouwels SD, Schirhagl R. Dynamics for High-Sensitivity Detection of Free Radicals in Primary Bronchial Epithelial Cells upon Stimulation with Cigarette Smoke Extract. NANO LETTERS 2024; 24:9650-9657. [PMID: 39012318 PMCID: PMC11311533 DOI: 10.1021/acs.nanolett.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is caused by chronic exposure to toxic particles and gases, such as cigarette smoke. Free radicals, which are produced during a stress response to toxic particles, play a crucial role in disease progression. Measuring these radicals is difficult since the complex mixture of chemicals within cigarette smoke interferes with radical detection. We used a new quantum sensing technique called relaxometry to measure free radicals with nanoscale resolution on cells from COPD patients and healthy controls exposed to cigarette smoke extract (CSE) or control medium. Epithelial cells from COPD patients display a higher free radical load than those from healthy donors and are more vulnerable to CSE. We show that epithelial cells of COPD patients are more susceptible to the damaging effects of cigarette smoke, leading to increased release of free radicals.
Collapse
Affiliation(s)
- Y. Zhang
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - A. Sigaeva
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - S. Fan
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - N. Norouzi
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - X. Zheng
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - I. H. Heijink
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - D. J. Slebos
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - S. D. Pouwels
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - R. Schirhagl
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
4
|
Simova Z, Sima M, Pelclova D, Klusackova P, Zdimal V, Schwarz J, Maskova L, Bradna P, Roubickova A, Krejcik Z, Klema J, Rossner P, Rossnerova A. Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites. Nanomedicine (Lond) 2024; 19:1511-1523. [PMID: 38953869 PMCID: PMC11321414 DOI: 10.1080/17435889.2024.2362611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.
Collapse
Affiliation(s)
- Zuzana Simova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
- Department of Genetics & Microbiology, Faculty of Science, Charles University, Vinicna 5, Prague 2128 44, Czech Republic
| | - Michal Sima
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Daniela Pelclova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Pavlina Klusackova
- First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Department of Occupational Medicine, Na Bojisti 1, Prague 2120 00, Czech Republic
| | - Vladimir Zdimal
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Ludmila Maskova
- Institute of Chemical Process Fundamentals CAS, Department of Aerosol Chemistry & Physics, Rozvojova 1, Prague 6165 02, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University & General University Hospital in Prague, Katerinska 32, Prague 2121 08, Czech Republic
| | - Zdenek Krejcik
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Karlovo Namesti 13, Prague 2121 35, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine CAS, Department of Toxicology & Molecular Epidemiology, Videnska 1083, Prague 4142 20, Czech Republic
| |
Collapse
|
5
|
Musonye HA, He YS, Bekele MB, Jiang LQ, Fan Cao, Xu YQ, Gao ZX, Ge M, He T, Zhang P, Zhao CN, Chen C, Wang P, Pan HF. Exploring the association between ambient air pollution and COVID-19 risk: A comprehensive meta-analysis with meta-regression modelling. Heliyon 2024; 10:e32385. [PMID: 39183866 PMCID: PMC11341291 DOI: 10.1016/j.heliyon.2024.e32385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Air pollution is speculated to increase the risk of Coronavirus disease-2019 (COVID-19). Nevertheless, the results remain inconsistent and inconclusive. This study aimed to explore the association between ambient air pollution (AAP) and COVID-19 risks using a meta-analysis with meta-regression modelling. Methods The inclusion criteria were: original studies quantifying the association using effect sizes and 95 % confidence intervals (CIs); time-series, cohort, ecological or case-crossover peer-reviewed studies in English. Exclusion criteria encompassed non-original studies, animal studies, and data with common errors. PubMed, Web of Science, Embase and Google Scholar electronic databases were systemically searched for eligible literature, up to 31, March 2023. The risk of bias (ROB) was assessed following the Agency for Healthcare Research and Quality parameters. A random-effects model was used to calculate pooled risk ratios (RRs) and their 95 % CIs. Results A total of 58 studies, between 2020 and 2023, met the inclusion criteria. The global representation was skewed, with major contributions from the USA (24.1 %) and China (22.4 %). The distribution included studies on short-term (43.1 %) and long-term (56.9 %) air pollution exposure. Ecological studies constituted 51.7 %, time-series-27.6 %, cohorts-17.2 %, and case crossover-3.4 %. ROB assessment showed low (86.2 %) and moderate (13.8 %) risk. The COVID-19 incidences increased with a 10 μg/m3 increase in PM2.5 [RR = 4.9045; 95 % CI (4.1548-5.7895)], PM10 [RR = 2.9427: (2.2290-3.8850)], NO2 [RR = 3.2750: (3.1420-3.4136)], SO2 [RR = 3.3400: (2.7931-3.9940)], CO [RR = 2.6244: (2.5208-2.7322)] and O3 [RR = 2.4008: (2.1859-2.6368)] concentrations. A 10 μg/m3 increase in concentrations of PM2.5 [RR = 3.0418: (2.7344-3.3838)], PM10 [RR = 2.6202: (2.1602-3.1781)], NO2 [RR = 3.2226: (2.1411-4.8504)], CO [RR = 1.8021 (0.8045-4.0370)] and O3 [RR = 2.3270 (1.5906-3.4045)] was significantly associated with COVID-19 mortality. Stratified analysis showed that study design, exposure period, and country influenced exposure-response associations. Meta-regression model indicated significant predictors for air pollution-COVID-19 incidence associations. Conclusion The study, while robust, lacks causality demonstration and focuses only on the USA and China, limiting its generalizability. Regardless, the study provides a strong evidence base for air pollution-COVID-19-risks associations, offering valuable insights for intervention measures for COVID-19.
Collapse
Affiliation(s)
- Harry Asena Musonye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Merga Bayou Bekele
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ling-Qiong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cong Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China
- Anhui Provincial Institute of Translational Medicine, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
6
|
Nanda SS, Kim D, Yang H, An SSA, Yi DK. Synergistic Effect of SiO 2 and Fe 3O 4 Nanoparticles in Autophagy Modulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1033. [PMID: 38921909 PMCID: PMC11207018 DOI: 10.3390/nano14121033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Rapid advancements in nanotechnology have expanded its applications and synergistic impact on modern nanosystems. The comprehensive assessment of nanomaterials' safety for human exposure has become crucial and heightened. In addition to the characterization of cell proliferation and apoptosis, probing the implication of autophagy is vital for understanding the ramification of nanomaterials. Hence, HEK-293 kidney cells were employed to understand the changes in induction and perturbation of autophagy in cells by iron oxide (Fe3O4) and silica (SiO2) nanoparticles. Interestingly, Fe3O4 worked as a potent modulator of the autophagy process through its catalytic performance, which can develop better than that of SiO2 nanoparticles mechanism, stressing their therapeutic implication in the understanding of cell behaviors. The quantification of reactive oxygen species (ROS) was measured along with the process of autophagy during cell growth. This modulated autophagy will help in cell fate determination in complementary therapy for disease treatment, provide a clinical strategy for future study.
Collapse
Affiliation(s)
| | - Danyeong Kim
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Hyewon Yang
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Seong Soo A. An
- Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea; (D.K.); (H.Y.)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
7
|
Liu N, Tong L, Li K, Dong Q, Jing J. Copper-Nanoparticle-Induced Neurotoxic Effect and Oxidative Stress in the Early Developmental Stage of Zebrafish ( Danio rerio). Molecules 2024; 29:2414. [PMID: 38893289 PMCID: PMC11174002 DOI: 10.3390/molecules29112414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Copper nanoparticles (CuNPs) are extensively used in electronics, cosmetics, fungicides, and various other fields due to their distinctive qualities. However, this widespread usage can contribute to environmental contamination and heightened health risks for living organisms. Despite their prevalent use, the ecological impacts and biosafety of CuNPs remain inadequately understood. The present study aims to delve into the potential toxic effects of CuNPs on zebrafish (Danio rerio) embryos, focusing on multiple indexes such as embryonic development, neurotoxicity, oxidative stress, and inflammatory response. The results revealed a notable increase in the death rate and deformity rate, alongside varying degrees of decrease in hatching rate and heart rate following CuNPs exposure. Particularly, the frequency of spontaneous tail coiling significantly declined under exposure to CuNPs at concentrations of 500 µg/L. Furthermore, CuNPs exposure induced alterations in the transcriptional expression of GABA signaling pathway-related genes (gabra1, gad, abat, and gat1), indicating potential impacts on GABA synthesis, release, catabolism, recovery, and receptor binding. Additionally, CuNPs triggered oxidative stress, evidenced by disruption in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, along with elevated malondialdehyde (MDA) levels. This oxidative stress subsequently led to a proinflammatory cascade, as demonstrated by the increased transcriptional expression of inflammatory markers (il-1β, tnf-α, il-6, and il-8). Comparative analysis with copper ion (provided as CuCl2) exposure highlighted more significant changes in most indexes with CuCl2, indicating greater toxicity compared to CuNPs at equivalent concentrations. In conclusion, these findings provide valuable insights into the toxic effects of CuNPs on zebrafish embryo development and neurotransmitter conduction. Furthermore, they present technical methodologies for assessing environmental and health risks associated with CuNPs, contributing to a better understanding of their biosafety and ecological impact.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Shanxi Huaxin Tonghui Clean Energy Co., Ltd., Taiyuan 030032, China
| | - Luyao Tong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Kunjie Li
- Shanxi Huaxin Gas Energy Institute Co., Ltd., Taiyuan 030032, China
| | - Qiuxia Dong
- Shanxi Huaxin Tonghui Clean Energy Co., Ltd., Taiyuan 030032, China
| | - Jieying Jing
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China;
| |
Collapse
|
8
|
Ucar A, Arslan ME, Cilingir Yeltekin A, Ozgeris FB, Caglar Yıldırım O, Parlak V, Alak G, Turkez H, Atamanalp M. Neutralization of iron oxide magnetic nanoparticle aquatoxicity on Oncorhynchus mykiss via supplementation with ulexite. Drug Chem Toxicol 2024; 47:274-286. [PMID: 36606327 DOI: 10.1080/01480545.2022.2164298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nowadays, the unique features of nanoparticles (NPs) have encouraged new applications in different areas including biology, medicine, agriculture, and electronics. Their quick joining into daily life not only enhances the uses of NPs in a wide range of modern technologies but also their release into the aquatic environment causes inevitable environmental concerns. On the other hand boron exhibits key physiological effects on biological systems. This research was designed for evaluating the toxicity of magnetite nanoparticles (Fe3O4-MNPs) on aquatic organisms and obtaining data for the information gap in this area. In this study, Rainbow trout (Oncorhynchus mykiss) was considered as an aquatic indicator, and trials were designed as Ulexite (a boron mineral, UX) treatment against exposure to Fe3O4-MNPs. Synthesized and characterized Fe3O4-MNPs were exposed to rainbow trouts in wide spectrum concentrations (0.005-0.08 mL/L) to analyze its lethal dose (LC50) and cytoprotective properties by UX treatment were assessed against Fe3O4-MNPs applications for 96 h. For the initial toxicity analysis, hematological parameters (blood cell counts) were examined in experimental groups and micronucleus (MN) assay was performed to monitor nuclear abnormalities after exposure to NPs. Biochemical analyzes in both blood and liver samples were utilized to assess antioxidant/oxidative stress and inflammatory parameters. Also, 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay was used to investigate oxidative DNA lesions and Caspase-3 analysis was performed on both blood and liver tissues to monitor apoptotic cell death occurrence. When antioxidant enzymes in blood and liver tissue were examined, time-dependent decreases in activity were determined in SOD, CAT, GPx, and GSH enzymes, while increased levels of MDA and MPO parameters were observed in respect to Fe3O4-MNPs exposure. It was found that TNF-α, Il-6 levels were enhanced against Fe3O4-MNPs treatment, but Nrf-2 levels were decreased at the 46th and 96th h. In the 96th application results, all parameters were statistically significant (p < 0.05) in blood and liver tissue, except for the IL-6 results. It was determined that the frequency of MN, the level of 8-OHdG and caspase-3 activity increased in respect to Fe3O4-MNPs exposure over time. Treatment with UX alleviated Fe3O4-MNPs-induced hematotoxic and hepatotoxic alterations as well as oxidative and genetic damages. Our findings offer strong evidence for the use of UX as promising, safe and natural protective agents against environmental toxicity of magnetite nanoparticles.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | | | - Fatma Betül Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Ozge Caglar Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
9
|
Mmereke KM, Venkataraman S, Moiketsi BN, Khan MR, Hassan SH, Rantong G, Masisi K, Kwape TE, Gaobotse G, Zulfiqar F, Kumar Sharma S, Malik S, Makhzoum A. Nanoparticle elicitation: A promising strategy to modulate the production of bioactive compounds in hairy roots. Food Res Int 2024; 178:113910. [PMID: 38309862 DOI: 10.1016/j.foodres.2023.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Hairy root culture is one of the promising biotechnological tools to obtain the stable and sustainable production of specialized metabolites from plants under controlled environment conditions. Various strategies have been adopted to enhance the accumulation of bioactive compounds in hairy roots yet their utilization at the commercial scale is restricted to only a few products. Recently, nanotechnology has been emerged as an active technique that has revolutionized the many sectors in an advantageous way. Elicitation using nanoparticles has been recognized as an effective strategy for enhancing the bioactive compounds of interest in plants. Nanoparticles elicit the activity of defense-related compounds through activation of the specific transcription factors involved in specialized metabolites production. This review discusses the recent progress in using nanoparticles to enhance specialized metabolite biosynthesis using hairy root culture system and the significant achievements in this area of research. Biotic and abiotic elicitors to improve the production of bioactive compounds in hairy roots, different types of nanoparticles as eliciting agents, their properties as dependent on shape, most widely used nanoparticles in plant hairy root systems are described in detail. Further challenges involved in application of nanoparticles, their toxicity in plant cells and risks associated to human health are also envisaged. No doubt, nanoparticle elicitation is a remarkable approach to obtain phytochemicals from hairy roots to be utilized in various sectors including food, medicines, cosmetics or agriculture but it is quite essential to understand the inter-relationships between the nanoparticles and the plant systems in terms of specifics such as type, dosage and time of exposure as well as other important parameters.
Collapse
Affiliation(s)
- Kamogelo M Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Bertha Nametso Moiketsi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Muhammad Rehan Khan
- Department of Agricultural Science, University of Naples Federico II, Via Università 133, 80055 Portici, Italy; URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 3 Rue des Rouges-Terres, 51110 Pomacle, France
| | - Sayyeda Hira Hassan
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Gaolathe Rantong
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Tebogo E Kwape
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Sonia Malik
- Physiology, Ecology and Environment (P2E) Laboratory, University of Orleans, INRAE, USC1328, 45067 Orleans, France.
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana.
| |
Collapse
|
10
|
Almeida AS, Neves BM, Duarte RMBO. Contribution of water-soluble extracts to the oxidative and inflammatory effects of atmospheric aerosols: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123121. [PMID: 38086505 DOI: 10.1016/j.envpol.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Exposure to atmospheric particulate matter (PM) has been associated with heightened risks of lung cancer, cardiovascular and respiratory diseases. PM exposure also affects the immune system, leading to an increased susceptibility to infections, exacerbating pre-existent inflammatory and allergic lung diseases. Atmospheric PM can primarily impact human health through the generation of reactive oxygen species (ROS) that subsequently induce or exacerbate inflammation. These cytotoxic effects have been related with PM concentration, and its chemical constituents, including metals, solvent extractable organics (e.g., polycyclic aromatic hydrocarbons), and water-soluble ions. Although not receiving much attention, the fine aerosol water-soluble organic matter (WSOM) can account for a substantial portion of the overall fine PM mass and has been shown to present strong oxidative and immunomodulatory effects. Thus, the objective of this review is to provide a comprehensive analysis of the role of the water-soluble fraction of PM, with a specific focus on the contribution of the WSOM component to the cytotoxic properties of atmospheric PM. The chemical properties of the water-soluble PM fraction are briefly discussed, while emphasis is put on how PM size, composition, and temporal variations (e.g., seasonality) can impact the pro-oxidative activity, the modulation of inflammatory response, and the cytotoxicity of the water-soluble PM extracts.
Collapse
Affiliation(s)
- Antoine S Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruno M Neves
- Department of Medical Sciences and Institute of Biomedicine - IBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
11
|
Gavito-Covarrubias D, Ramírez-Díaz I, Guzmán-Linares J, Limón ID, Manuel-Sánchez DM, Molina-Herrera A, Coral-García MÁ, Anastasio E, Anaya-Hernández A, López-Salazar P, Juárez-Díaz G, Martínez-Juárez J, Torres-Jácome J, Albarado-Ibáñez A, Martínez-Laguna Y, Morán C, Rubio K. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Front Genet 2024; 14:1306600. [PMID: 38299096 PMCID: PMC10829887 DOI: 10.3389/fgene.2023.1306600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024] Open
Abstract
Environmental pollution nowadays has not only a direct correlation with human health changes but a direct social impact. Epidemiological studies have evidenced the increased damage to human health on a daily basis because of damage to the ecological niche. Rapid urban growth and industrialized societies importantly compromise air quality, which can be assessed by a notable accumulation of air pollutants in both the gas and the particle phases. Of them, particulate matter (PM) represents a highly complex mixture of organic and inorganic compounds of the most variable size, composition, and origin. PM being one of the most complex environmental pollutants, its accumulation also varies in a temporal and spatial manner, which challenges current analytical techniques used to investigate PM interactions. Nevertheless, the characterization of the chemical composition of PM is a reliable indicator of the composition of the atmosphere, the quality of breathed air in urbanized societies, industrial zones and consequently gives support for pertinent measures to avoid serious health damage. Epigenomic damage is one of the most promising biological mechanisms of air pollution-derived carcinogenesis. Therefore, this review aims to highlight the implication of PM exposure in diverse molecular mechanisms driving human diseases by altered epigenetic regulation. The presented findings in the context of pan-organic cancer, fibrosis, neurodegeneration and metabolic diseases may provide valuable insights into the toxicity effects of PM components at the epigenomic level and may serve as biomarkers of early detection for novel targeted therapies.
Collapse
Affiliation(s)
- Dulcemaría Gavito-Covarrubias
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ivonne Ramírez-Díaz
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
- Universidad Popular Autónoma del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Josué Guzmán-Linares
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Dulce María Manuel-Sánchez
- Laboratory of Neuropharmacology, Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Miguel Ángel Coral-García
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Estela Anastasio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Primavera López-Salazar
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gabriel Juárez-Díaz
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Javier Martínez-Juárez
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julián Torres-Jácome
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alondra Albarado-Ibáñez
- Laboratorio de Fisiopatología Cardiovascular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Carolina Morán
- Centro de Investigación en Fisicoquímica de Materiales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, Mexico
| |
Collapse
|
12
|
Zhao J, Ma X, Li S, Liu C, Liu Y, Tan J, Yu L, Li X, Li W. Berberine hydrochloride ameliorates PM2.5-induced pulmonary fibrosis in mice through inhibiting oxidative stress and inflammatory. Chem Biol Interact 2023; 386:110731. [PMID: 37839514 DOI: 10.1016/j.cbi.2023.110731] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Elevated levels of respirable particulate matter (PM) have been strongly linked to disease incidence and mortality in population-based epidemiological studies. Berberine hydrochloride (BBR), an isoquinoline alkaloid found in Coptis chinensis, exhibits antipyretic, anti-inflammatory, and antioxidant properties. However, the protective effects and underlying mechanism of BBR against pulmonary fibrosis remain unclear. This study aimed to investigate the protective effect of BBR on lung tissue damage using a mouse model of PM2.5-induced pulmonary fibrosis. SPF grade C57BL/6 mice were randomly assigned to four groups, each consisting of 10 mice. The mice were pretreated with BBR (50 mg/kg) by gavage for 45 consecutive days. A tracheal drip of PM2.5 suspension (8 mg/kg) was administered once every three days for a total of 15 times to induce lung fibrosis. Moreover, the results demonstrated that PM2.5 was found to inhibit the PPARγ signaling pathway, increase ROS expression, upregulate protein levels of IL-6, IL-1β, TNF-α, as well as regulation of gene expression of STAT3 and SOCS3. Importantly, PM2.5 induced lung fibrosis by promoting collagen deposition, upregulating gene expression of fibrosis markers (TGF-β1, FN, α-SMA, COL-1, and COL-3), and downregulating E-cadherin expression. Remarkably, our findings suggest that these injuries could be reversed by BBR pretreatment. BBR acts as a PPARγ agonist in PM2.5-induced pulmonary fibrosis, activating the PPARγ signaling pathway to mitigate oxidative and inflammatory factor-mediated lung injury. This study provides valuable insights for the future prevention and treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiali Zhao
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Xuan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Siqi Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Chen Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China
| | - Yumei Liu
- School of Public Health, Weifang Medical University, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China
| | - Jinfeng Tan
- Weifang Environmental Monitoring Station, Weifang, 261044, China
| | - Li Yu
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Xiaohong Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| | - Wanwei Li
- School of Public Health, Weifang Medical University, Weifang, 261053, China; "Healthy Shandong" Major Social Risk Prediction and Management Collaborative Innovation Center, Weifang, 261053, China; Weifang Key Laboratory of Health Inspection and Quarantine, Weifang, 261053, China.
| |
Collapse
|
13
|
Silva TD, Alves C, Oliveira H, Duarte IF. Biological Impact of Organic Extracts from Urban-Air Particulate Matter: An In Vitro Study of Cytotoxic and Metabolic Effects in Lung Cells. Int J Mol Sci 2023; 24:16896. [PMID: 38069233 PMCID: PMC10706705 DOI: 10.3390/ijms242316896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Atmospheric particulate matter (PM) with diameters below 10 µm (PM10) may enter the lungs through inhalation and are linked to various negative health consequences. Emergent evidence emphasizes the significance of cell metabolism as a sensitive target of PM exposure. However, the current understanding of the relationship between PM composition, conventional toxicity measures, and the rewiring of intracellular metabolic processes remains limited. In this work, PM10 sampled at a residential area (urban background, UB) and a traffic-impacted location (roadside, RS) of a Portuguese city was comprehensively characterized in terms of polycyclic aromatic hydrocarbons and plasticizers. Epithelial lung cells (A549) were then exposed for 72 h to PM10 organic extracts and different biological outcomes were assessed. UB and RS PM10 extracts dose-dependently decreased cell viability, induced reactive oxygen species (ROS), decreased mitochondrial membrane potential, caused cell cycle arrest at the G0/G1 phase, and modulated the intracellular metabolic profile. Interestingly, the RS sample, richer in particularly toxic PAHs and plasticizers, had a greater metabolic impact than the UB extract. Changes comprised significant increases in glutathione, reflecting activation of antioxidant defences to counterbalance ROS production, together with increases in lactate, NAD+, and ATP, which suggest stimulation of glycolytic energy production, possibly to compensate for reduced mitochondrial activity. Furthermore, a number of other metabolic variations hinted at changes in membrane turnover and TCA cycle dynamics, which represent novel clues on potential PM10 biological effects.
Collapse
Affiliation(s)
- Tatiana D. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Célia Alves
- Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
14
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
16
|
Jeon S, Jeon JH, Jeong J, Kim G, Lee S, Kim S, Maruthupandy M, Lee K, Yang SI, Cho WS. Size- and oxidative potential-dependent toxicity of environmentally relevant expanded polystyrene styrofoam microplastics to macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132295. [PMID: 37597397 DOI: 10.1016/j.jhazmat.2023.132295] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Expanded polystyrene (EPS), also known as Styrofoam, is a widespread global pollutant, and its lightweight floating property increases its chances of weathering by abrasion and ultraviolet (UV) irradiation, resulting in microplastics. Herein, we investigated the effects of particle size ((1 µm versus 10 µm), UV irradiation (pristine versus UV oxidation), and origin (secondary versus primary) on the toxicity of Styrofoam microplastics. The target cells used in this study were selected based on human exposure-relevant cell lines: differentiated THP-1 cells for macrophages, Caco-2 for enterocytes, HepG2 for hepatocytes, and A549 for alveolar epithelial cells. In the differentiated THP-1 cells, the levels of cytotoxicity and inflammatory cytokines showed size- (1 µm > 10 µm), UV oxidation- (UV > pristine), and origin- (secondary > primary) dependency. Furthermore, the intrinsic oxidative potential of the test particles was positively correlated with cellular oxidative levels and toxicity endpoints, suggesting that the toxicity of Styrofoam microplastics also follows the oxidative stress paradigm. Additionally, all microplastics induced the activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome and the release of interleukin-1β (IL-1β). These results imply that weathering process can aggravate the toxicity of Styrofoam microplastics due to the increased oxidative potential and decreased particle size.
Collapse
Affiliation(s)
- Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Jun Hui Jeon
- Department of Applied Chemistry, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Sung Ik Yang
- Department of Applied Chemistry, Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea.
| |
Collapse
|
17
|
Somayajulu M, McClellan SA, Muhammed F, Wright R, Hazlett LD. PM 10 and Pseudomonas aeruginosa: effects on corneal epithelium. Front Cell Infect Microbiol 2023; 13:1240903. [PMID: 37868351 PMCID: PMC10585254 DOI: 10.3389/fcimb.2023.1240903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose In vivo data indicate that mouse corneas exposed to PM10 showed early perforation and thinning after infection with Pseudomonas aeruginosa. To understand the mechanisms underlying this finding, we tested the effects of PM10 and the mitochondria targeted anti-oxidant SKQ1 in immortalized human corneal epithelial cells (HCET) that were challenged with Pseudomonas aeruginosa strain 19660. Methods Mouse corneas were infected with strain 19660 after a 2 week whole-body exposure to PM10 or control air and assessed by clinical scores, slit lamp photography and western blot. HCET were exposed to 100μg/ml PM10 for 24h before challenge with strain 19660 (MOI 20). A subset of cells were pre-treated with 50nM SKQ1 for 1h before PM10 exposure. Phase contrast microscopy was used to study cell morphology, cell viability was measured by an MTT assay, and ROS by DCFH-DA. Levels of pro-inflammatory markers and anti-oxidant enzymes were evaluated by RT-PCR, western blot and ELISA. Reduced glutathione (GSH) and malondialdehyde (MDA) levels were evaluated by assay kits. Results In vivo, whole body exposure to PM10 vs. control air exposed mouse corneas showed early perforation and/or corneal thinning at 3 days post infection, accompanied by increased TNF-α and decreased SOD2 protein levels. In vitro, PM10 induced a dose dependent reduction in cell viability of HCET and significantly increased mRNA levels of pro-inflammatory molecules compared to control. Exposure to PM10 before bacterial challenge further amplified the reduction in cell viability and GSH levels. Furthermore, PM10 exposure also exacerbated the increase in MDA and ROS levels and phase contrast microscopy revealed more rounded cells after strain 19660 challenge. PM10 exposure also further increased the mRNA and protein levels of pro-inflammatory molecules, while anti-inflammatory IL-10 was decreased. SKQ1 reversed the rounded cell morphology observed by phase contrast microscopy, increased levels of MDA, ROS and pro-inflammatory molecules, and restored IL-10. Conclusions PM10 induces decreased cell viability, oxidative stress and inflammation in HCET and has an additive effect upon bacterial challenge. SKQ1 protects against oxidative stress and inflammation induced by PM10 after bacterial challenge by reversing these effects. The findings provide insight into mechanisms underlying early perforation and thinning observed in infected corneas of PM10 exposed mice.
Collapse
Affiliation(s)
| | | | | | | | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
18
|
Firouzamandi M, Hejazy M, Mohammadi A, Shahbazfar AA, Norouzi R. In Vivo Toxicity of Oral Administrated Nano-SiO 2: Can Food Additives Increase Apoptosis? Biol Trace Elem Res 2023; 201:4769-4778. [PMID: 36626031 DOI: 10.1007/s12011-022-03542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
Nano-silicon dioxide (nano-SiO2) has a great deal of application in food packaging, as antibacterial food additives, and in drug delivery systems but this nanoparticle, despite its wide range of utilizations, can generate destructive effects on organs such as the liver, kidney, and lungs. This study is aimed at investigating the toxicological effects of nano-SiO2 through apoptotic factors. For this purpose, 40 female rats in 4 groups (n = 10) received 300, 600, and 900 mg/kg/day of nano-SiO2 at 20-30 nm size orally for 20 days. Relative expression of Caspase3, Bcl-2, and BAX genes in kidney and liver was evaluated in real time-PCR. The results indicated the overexpression of BAX and Caspase3 genes in the liver and kidney in groups receiving 300 and 900 mg/kg/day of nano-SiO2. Bcl-2 gene was up-regulated in the liver and kidney at 600 mg/kg/day compared to the control group. Overexpression of the Bcl-2 gene in the kidney in 300 and 900 mg/kg/day recipient groups was observed (P ≤ 0.05). Histopathological examination demonstrated 600 mg/kg/day hyperemia in the kidney and lungs. In addition, at 900 mg/kg/day were distinguished scattered necrosis and hyperemia in the liver. The rate of epithelialization in the lungs increased. The nano-SiO2 at 300 and 900 mg/kg/day can induce more cytotoxicity in the liver and lung after oral exposure. However, cytotoxicity of nano-SiO2 at 600 mg/kg/day in the kidney and lung was noticed. Hence, the using of nano-SiO2 as an additive and food packaging should be more considered due to their deleterious effects.
Collapse
Affiliation(s)
- Masoumeh Firouzamandi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzie Hejazy
- Toxicopharmacology Division, Basic Science Department, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Alaleh Mohammadi
- DVM, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
19
|
Gupta AD, Gupta T. A review on potential approach for in silico toxicity analysis of respirable fraction of ambient particulate matter. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1216. [PMID: 37715017 DOI: 10.1007/s10661-023-11859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Epidemiological and toxicological studies have shown the adverse effect of ambient particulate matter (PM) on respiratory and cardiovascular systems inside the human body. Various cellular and acellular assays in literature use indicators like ROS generation, cell inflammation, mutagenicity, etc., to assess PM toxicity and associated health effects. The presence of toxic compounds in respirable PM needs detailed studies for proper understanding of absorption, distribution, metabolism, and excretion mechanisms inside the body as it is difficult to accurately imitate or simulate these mechanisms in lab or animal models. The leaching kinetics of the lung fluid, PM composition, retention time, body temperature, etc., are hard to mimic in an artificial experimental setup. Moreover, the PM size fraction also plays an important role. For example, the ultrafine particles may directly enter systemic circulations while coarser PM10 may be trapped and deposited in the tracheo-bronchial region. Hence, interpretation of these results in toxicity models should be done judiciously. Computational models predicting PM toxicity are rare in the literature. The variable composition of PM and lack of proper understanding for their synergistic role inside the body are prime reasons behind it. This review explores different possibilities of in silico modeling and suggests possible approaches for the risk assessment of PM particles. The toxicity testing approach for engineered nanomaterials, drugs, food industries, etc., have also been investigated for application in computing PM toxicity.
Collapse
Affiliation(s)
- Aman Deep Gupta
- Atmospheric Particle Technology Lab at Centre for Environmental Science and Engineering and Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Pin-208016, India
| | - Tarun Gupta
- Atmospheric Particle Technology Lab at Centre for Environmental Science and Engineering and Department of Civil Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, Pin-208016, India.
| |
Collapse
|
20
|
Amiri A, Guess L, Gilder R, Showalter D, Hart L, Sattler B. Using Fume Hood to Reduce Nurses' Exposure to Particulate Matters Dispersed Into the Air During Pill Crushing. Workplace Health Saf 2023; 71:412-418. [PMID: 37515535 DOI: 10.1177/21650799231184756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
BACKGROUND Pill crushing is a common practice in patient care settings. Crushing pills can disperse particulate matter (PM) into indoor air. The PM is a widespread air pollutant composed of microscopic particles and droplets of various sizes and may carry active and/or inactive ingredients nurses can inhale. This study aimed to quantify PM sizes and concentration in indoor air when pills are crushed and examine the role of a fume hood in reducing particulate pollution. METHODS Two scenarios (with and without a fume hood) representing nurses' pill-crushing behaviors were set up in a positive-pressure cleanroom. Two acetaminophen tablets (325 mg/tablet) were crushed into powder and mixed with unsweetened applesauce. The PM sizes and concentrations were measured before and during crushing. RESULTS Different sizes of PM, including inhalable, respirable, and thoracic particles, were emitted during medication crushing. The total count of all particle sizes and mass concentrations of particles were significantly lower during crushing when a fume hood was used (p = .00). CONCLUSION Pill crushing increases PM and should be considered a workplace safety health hazard for nurses. Healthcare professionals should work under a fume hood when crushing pills and wear proper protective equipment. The findings of significant particulate pollution related to pill crushing suggest that further research is warranted.
Collapse
Affiliation(s)
- Azita Amiri
- College of Nursing, The University of Alabama in Huntsville
| | | | | | | | | | - Barbara Sattler
- School of Nursing and Health Professions, University of San Fransisco
| |
Collapse
|
21
|
Motairek I, Makhlouf MHE, Rajagopalan S, Al-Kindi S. The Exposome and Cardiovascular Health. Can J Cardiol 2023; 39:1191-1203. [PMID: 37290538 PMCID: PMC10526979 DOI: 10.1016/j.cjca.2023.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The study of the interplay between social factors, environmental hazards, and health has garnered much attention in recent years. The term "exposome" was coined to describe the total impact of environmental exposures on an individual's health and well-being, serving as a complementary concept to the genome. Studies have shown a strong correlation between the exposome and cardiovascular health, with various components of the exposome having been implicated in the development and progression of cardiovascular disease. These components include the natural and built environment, air pollution, diet, physical activity, and psychosocial stress, among others. This review provides an overview of the relationship between the exposome and cardiovascular health, highlighting the epidemiologic and mechanistic evidence of environmental exposures on cardiovascular disease. The interplay between various environmental components is discussed, and potential avenues for mitigation are identified.
Collapse
Affiliation(s)
- Issam Motairek
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mohamed H E Makhlouf
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
22
|
Liu B, Zhang S, Li M, Wang Y, Mei D. Metal-Organic Framework/Polyvinyl Alcohol Composite Films for Multiple Applications Prepared by Different Methods. MEMBRANES 2023; 13:755. [PMID: 37755178 PMCID: PMC10537366 DOI: 10.3390/membranes13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.
Collapse
Affiliation(s)
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| | | | | | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| |
Collapse
|
23
|
Song HJ, Shin DU, Eom JE, Lim KM, Lim EY, Kim YI, Kim HJ, Song JH, Shim M, Choe H, Kim GD, Lee SY, Shin HS. Artemisia gmelinii Extract Attenuates Particulate Matter-Induced Neutrophilic Inflammation in a Mouse Model of Lung Injury. Antioxidants (Basel) 2023; 12:1591. [PMID: 37627586 PMCID: PMC10451698 DOI: 10.3390/antiox12081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.
Collapse
Affiliation(s)
- Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Uk Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Eun Eom
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Young In Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Ha-Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - MyeongKuk Shim
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - HyeonJeong Choe
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Khan MS, Buzdar SA, Hussain R, Alouffi A, Aleem MT, Farhab M, Javid MA, Akhtar RW, Khan I, Almutairi MM. Cobalt Iron Oxide (CoFe 2O 4) Nanoparticles Induced Toxicity in Rabbits. Vet Sci 2023; 10:514. [PMID: 37624302 PMCID: PMC10459303 DOI: 10.3390/vetsci10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/β cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.
Collapse
Affiliation(s)
- Muhammad Shahid Khan
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Farhab
- Key Laboratory of Animal Genetic Engineering, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Arshad Javid
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan;
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Roy M, Roy A, Rustagi S, Pandey N. An Overview of Nanomaterial Applications in Pharmacology. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4838043. [PMID: 37388336 PMCID: PMC10307208 DOI: 10.1155/2023/4838043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Nanotechnology has become one of the most extensive fields of research. Nanoparticles (NPs) form the base for nanotechnology. Recently, nanomaterials (NMs) are widely used due to flexible chemical, biological, and physical characteristics with improved efficacy in comparison to bulk counterparts. The significance of each class of NMs is enhanced by identifying their properties. Day by day, there is an emergence of various applications of NMs, but the toxic effects associated with them cannot be avoided. NMs demonstrate therapeutic abilities by enhancing the drug delivery system, diagnosis, and therapeutic effects of numerous agents, but determining the benefits of NMs over other clinical applications (disease-specific) or substances is an ongoing investigation. This review is aimed at defining NMs and NPs and their types, synthesis, and pharmaceutical, biomedical, and clinical applications.
Collapse
Affiliation(s)
- Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Sarvesh Rustagi
- School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Neha Pandey
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| |
Collapse
|
26
|
Zakharova OV, Belova VV, Baranchikov PA, Kostyakova AA, Muratov DS, Grigoriev GV, Chebotaryova SP, Kuznetsov DV, Gusev AA. The Conditions Matter: The Toxicity of Titanium Trisulfide Nanoribbons to Bacteria E. coli Changes Dramatically Depending on the Chemical Environment and the Storage Time. Int J Mol Sci 2023; 24:ijms24098299. [PMID: 37176006 PMCID: PMC10179056 DOI: 10.3390/ijms24098299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
In this work, we present an analysis of the antibacterial activity of TiS3 nanostructures in water and 0.9% NaCl solution suspensions. TiS3 nanoribbons 1-10 µm long, 100-300 nm wide, and less than 100 nm thick were produced by the direct reaction of pure titanium powder with elemental sulphur in a quartz tube sealed under vacuum. For the toxicity test of a bioluminescent strain of E. coli we used concentrations from 1 to 0.0001 g L-1 and also studied fresh suspensions and suspensions left for 24 h. The strongest toxic effect was observed in freshly prepared water solutions where the luminescence of bacteria decreased by more than 75%. When saline solution was substituted for water or when the solutions were stored for 24 h it resulted in a considerable decrease in the TiS3 antibacterial effect. The toxicity of TiS3 in water exceeded the toxicity of the reference TiO2 nanoparticles, though when saline solution was used instead of water the opposite results were observed. In addition, we did not find a relationship between the antibacterial activity of water suspensions of nanoribbons and the stability of their colloidal systems, which indicates an insignificant contribution to the toxicity of aggregation processes. In 0.9% NaCl solution suspensions, toxicity increased in proportion to the increase in the zeta potential. We suppose that the noted specificity of toxicity is associated with the emission of hydrogen sulphide molecules from the surface of nanoribbons, which, depending on the concentration, can either decrease or increase oxidative stress, which is considered the key mechanism of nanomaterial cytotoxicity. However, the exact underlying mechanisms need further investigation. Thus, we have shown an important role of the dispersion medium and the period of storage in the antibacterial activity of TiS3 nanoribbons. Our results could be used in nanotoxicological studies of other two-dimensional nanomaterials, and for the development of novel antibacterial substances and other biomedical applications of this two-dimensional material.
Collapse
Affiliation(s)
- Olga V Zakharova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Valeria V Belova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Peter A Baranchikov
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Anna A Kostyakova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Dmitry S Muratov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Scientific School "Chemistry and Technology of Polymer Materials", Plekhanov Russian University of Economics, Stremyanny Lane 36, 117997 Moscow, Russia
| | - Gregory V Grigoriev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Svetlana P Chebotaryova
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Denis V Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
| | - Alexander A Gusev
- Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology «MISIS», 119991 Moscow, Russia
- Engineering Center, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| |
Collapse
|
27
|
Madronich S, Sulzberger B, Longstreth JD, Schikowski T, Andersen MPS, Solomon KR, Wilson SR. Changes in tropospheric air quality related to the protection of stratospheric ozone in a changing climate. Photochem Photobiol Sci 2023; 22:1129-1176. [PMID: 37310641 PMCID: PMC10262938 DOI: 10.1007/s43630-023-00369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.
Collapse
Affiliation(s)
- S Madronich
- National Center for Atmospheric Research, Boulder, USA.
- USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, USA.
| | - B Sulzberger
- Academic Guest after retirement from Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Duebendorf, Switzerland
| | - J D Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany
| | - M P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
| | - K R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
28
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
29
|
Ming X, He Z, Li Y, Hu Y, Yang Y, Chen H, Chen Q, Yang H, Zhou W. The short-term effects of air pollution exposure on preterm births in Chongqing, China: 2015-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51679-51691. [PMID: 36810823 PMCID: PMC10119072 DOI: 10.1007/s11356-023-25624-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggested that the risk of preterm births (PTBs) following prenatal exposure to air pollution was inconclusive. The aim of this study is to investigate the relationship between air pollution exposure in the days before delivery and PTB and assess the threshold effect of short-term prenatal exposure to air pollution on PTB. This study collected data including meteorological factors, air pollutants, and information in Birth Certificate System from 9 districts during 2015-2020 in Chongqing, China. Generalized additive models (GAMs) with the distributed lag non-linear models were conducted to assess the acute impact of air pollutants on the daily counts of PTB, after controlling for potential confounding factors. We observed that PM2.5 was related to increased occurrence of PTB on lag 0-3 and lag 10-21 days, with the strongest on the first day (RR = 1.017, 95%CI: 1.000-1.034) and then decreasing. The thresholds of PM2.5 for lag 1-7 and 1-30 days were 100 μg/m3 and 50 μg/m3, respectively. The lag effect of PM10 on PTB was very similar to that of PM2.5. In addition, the lagged and cumulative exposure of SO2 and NO2 was also associated with the increased risk of PTB. The lag relative risk and cumulative relative risk of CO exposure were the strongest, with a maximum RR at lag 0 (RR = 1.044, 95%CI: 1.018, 1.069). Importantly, the exposure-response curve of CO showed that RR increased rapidly when the concentration exceeded 1000 μg/m3. This study indicated significant associations between air pollution and PTB. The relative risk decreases with day lag, while the cumulative effect increases. Thus, pregnant women should understand the risk of air pollution and try to avoid high concentration exposure.
Collapse
Affiliation(s)
- Xin Ming
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Ziyi He
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yannan Li
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yaqiong Hu
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yunping Yang
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Hongyan Chen
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Qin Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenzheng Zhou
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China.
| |
Collapse
|
30
|
Yang M, Zeng HX, Wang XF, Hakkarainen H, Leskinen A, Komppula M, Roponen M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH, Jalava P. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161092. [PMID: 36586693 DOI: 10.1016/j.scitotenv.2022.161092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
31
|
Shi X, Tian Y, Zhai S, Liu Y, Chu S, Xiong Z. The progress of research on the application of redox nanomaterials in disease therapy. Front Chem 2023; 11:1115440. [PMID: 36814542 PMCID: PMC9939781 DOI: 10.3389/fchem.2023.1115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Redox imbalance can trigger cell dysfunction and damage and plays a vital role in the origin and progression of many diseases. Maintaining the balance between oxidants and antioxidants in vivo is a complicated and arduous task, leading to ongoing research into the construction of redox nanomaterials. Nanodrug platforms with redox characteristics can not only reduce the adverse effects of oxidative stress on tissues by removing excess oxidants from the body but also have multienzyme-like activity, which can play a cytotoxic role in tumor tissues through the catalytic oxidation of their substrates to produce harmful reactive oxygen species such as hydroxyl radicals. In this review, various redox nanomaterials currently used in disease therapy are discussed, emphasizing the treatment methods and their applications in tumors and other human tissues. Finally, the limitations of the current clinical application of redox nanomaterials are considered.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| | - Zhengrong Xiong
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry, University of Science and Technology of China, Hefei, China,*Correspondence: Shunli Chu, ; Zhengrong Xiong,
| |
Collapse
|
32
|
In 't Veld M, Pandolfi M, Amato F, Pérez N, Reche C, Dominutti P, Jaffrezo J, Alastuey A, Querol X, Uzu G. Discovering oxidative potential (OP) drivers of atmospheric PM 10, PM 2.5, and PM 1 simultaneously in North-Eastern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159386. [PMID: 36240941 DOI: 10.1016/j.scitotenv.2022.159386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Ambient particulate matter (PM) is a major contributor to air pollution, leading to adverse health effects on the human population. It has been suggested that the oxidative potential (OP, as a tracer of oxidative stress) of PM is a possible determinant of its health impact. In this study, samples of PM10, PM2.5, and PM1 were collected roughly every four days from January 2018 until March 2019 at a Barcelona urban background site and Montseny rural background site in northeastern Spain. We determined the chemical composition of samples, allowing us to perform source apportionment using positive matrix factorization. The OP of PM was determined by measuring reactive oxygen species using dithiothreitol and ascorbic acid assays. Finally, to link the sources with the measured OP, both a Pearson's correlation and a multiple linear regression model were applied to the dataset. The results showed that in Barcelona, the OP of PM10 was much higher than those of PM2.5 and PM1, whereas in Montseny results for all PM sizes were in the same range, but significantly lower than in Barcelona. In Barcelona, several anthropogenic sources were the main drivers of OP in PM10 (Combustion + Road Dust + Heavy Oil + OC-rich) and PM2.5 (Road Dust + Combustion). In contrast, PM1 -associated OP was driven by Industry, with a much lower contribution to PM10 and PM2.5 mass. Meanwhile, Montseny exhibited no clear drivers for OP evolution, likely explaining the lack of a significant difference in OP between PM10, PM2.5, and PM1. Overall, this study indicates that size fraction matters for OP, as a function of the environment typology. In an urban context, OP is driven by the PM10 and PM1 size fractions, whereas only the PM1 fraction is involved in rural environments.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - M Pandolfi
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - F Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - N Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - C Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - P Dominutti
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | - J Jaffrezo
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| | - A Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - G Uzu
- University Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), 38000 Grenoble, France
| |
Collapse
|
33
|
Park SB, Kim EA, Kim KY, Koh B. Induction of toxicity in human colon cells and organoids by size- and composition-dependent road dust. RSC Adv 2023; 13:2833-2840. [PMID: 36756445 PMCID: PMC9845984 DOI: 10.1039/d2ra07500h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Environmental pollution, including the annual resurgence of particulate matter derived from road dust, is a serious issue worldwide. Typically, the size of road dust is less than 10 μm; thus, road dust can penetrate into human organs, including the brain, through inhalation and intake by mouth. Therefore, the toxicity of road dust has been intensively studied in vitro and in vivo. However, in vitro systems, including 2D cell cultures, cannot mimic complex human organs, and there are several discrepancies between in vivo and human systems. Here, we used human colon cells and organoids to evaluate the cytotoxicity of particulate matter derived from road dust. The toxicity of road dust collected in industrialized and high traffic areas and NIST urban particulate matter reference samples were evaluated in 2D and 3D human colon cells as well as colon organoids and their characteristics were carefully examined. Data suggest that the size and elemental compositions of road dust can correlate with colon organoid toxicity, and thus, a more careful assessment of the size and elemental compositions of road dust should be conducted to predict its effect on human health.
Collapse
Affiliation(s)
- Sung Bum Park
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Eun-Ah Kim
- National Assembly Futures InstituteMembers Office Bldg, 1 Uisadang-daero, Yeongdeungpo-guSeoul07233Republic of Korea
| | - Ki Young Kim
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Byumseok Koh
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| |
Collapse
|
34
|
Liu F, Xu T, Ng NL, Lu H. Linking Cell Health and Reactive Oxygen Species from Secondary Organic Aerosols Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1039-1048. [PMID: 36580374 DOI: 10.1021/acs.est.2c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.
Collapse
Affiliation(s)
- Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, Guangdong511443, China
| | - Tianchang Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
35
|
León B. Understanding the development of Th2 cell-driven allergic airway disease in early life. FRONTIERS IN ALLERGY 2023; 3:1080153. [PMID: 36704753 PMCID: PMC9872036 DOI: 10.3389/falgy.2022.1080153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food allergy, are caused by abnormal responses to relatively harmless foreign proteins called allergens found in pollen, fungal spores, house dust mites (HDM), animal dander, or certain foods. In particular, the activation of allergen-specific helper T cells towards a type 2 (Th2) phenotype during the first encounters with the allergen, also known as the sensitization phase, is the leading cause of the subsequent development of allergic disease. Infants and children are especially prone to developing Th2 cell responses after initial contact with allergens. But in addition, the rates of allergic sensitization and the development of allergic diseases among children are increasing in the industrialized world and have been associated with living in urban settings. Particularly for respiratory allergies, greater susceptibility to developing allergic Th2 cell responses has been shown in children living in urban environments containing low levels of microbial contaminants, principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative aeroallergens. This review highlights the current understanding of the factors that balance Th2 cell immunity to environmental allergens, with a particular focus on the determinants that program conventional dendritic cells (cDCs) toward or away from a Th2 stimulatory function. In this context, it discusses transcription factor-guided functional specialization of type-2 cDCs (cDC2s) and how the integration of signals derived from the environment drives this process. In addition, it analyzes observational and mechanistic studies supporting an essential role for innate sensing of microbial-derived products contained in aeroallergens in modulating allergic Th2 cell immune responses. Finally, this review examines whether hyporesponsiveness to microbial stimulation, particularly to LPS, is a risk factor for the induction of Th2 cell responses and allergic sensitization during infancy and early childhood and the potential factors that may affect early-age response to LPS and other environmental microbial components.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
36
|
Kim WI, Lim JO, Pak SW, Lee SJ, Shin IS, Moon C, Heo JD, Kim JC. Exposure to China dust exacerbates testicular toxicity induced by cyclophosphamide in mice. Toxicol Res 2023; 39:115-125. [PMID: 36726831 PMCID: PMC9839921 DOI: 10.1007/s43188-022-00149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the potential effects of China dust (CD) exposure on cyclophosphamide (CP)-induced testicular toxicity in mice, focusing on spermatogenesis and oxidative damage. CP treatment reduced testicular and epididymal weight and sperm motility and enhanced sperm abnormality. Histopathological examination presented various morphological alterations in the testis, including increased exfoliation of spermatogenic cells, degeneration of early spermatogenic cells, vacuolation of Sertoli cells, a decreased number of spermatogonia/spermatocytes/spermatids, along with a high number of apoptotic cells. In addition, the testis exhibited reduced glutathione (GSH) levels and glutathione reductase (GR) activity and enhanced malondialdehyde (MDA) concentration. Meanwhile, CD exposure exacerbated testicular histopathological alterations induced by CP. CD exposure also aggravated oxidative damage by increasing the lipid peroxidative product MDA and decreasing GSH levels and antioxidant enzyme activities in the testis. These results suggest that CD exposure exacerbates CP-induced testicular toxicity in mice, which might be attributed to the induction of lipid peroxidation and reduced antioxidant activity.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Je-Oh Lim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Jeong-Doo Heo
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, 52834 Jinju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| |
Collapse
|
37
|
Van Der Stukken C, Nawrot TS, Wang C, Lefebvre W, Vanpoucke C, Plusquin M, Roels HA, Janssen BG, Martens DS. The association between ambient particulate matter exposure and the telomere-mitochondrial axis of aging in newborns. ENVIRONMENT INTERNATIONAL 2023; 171:107695. [PMID: 36574746 DOI: 10.1016/j.envint.2022.107695] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Particulate matter (PM) is associated with aging markers at birth, including telomeres and mitochondria. It is unclear whether markers of the core-axis of aging, i.e. tumor suppressor p53 (p53) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), are associated with prenatal air pollution and whether there are underlying mechanisms. METHODS 556 mother-newborn pairs from the ENVIRONAGE birth cohort were recruited at the East Limburg Hospital in Genk (Belgium). In placenta and cord blood, telomere length (TL) and mitochondrial DNA content (mtDNAc) were measured using quantitative real-time polymerase chain reaction (qPCR). In cord plasma, p53 and PGC-1α protein levels were measured using ELISA. Daily ambient PM2.5 concentrations during gestation were calculated using a spatial temporal interpolation model. Distributed lag models (DLMs) were applied to assess the association between prenatal PM2.5 exposure and each molecular marker. Mediation analysis was performed to test for underlying mechanisms. RESULTS A 5 µg/m3 increment in PM2.5 exposure was associated with -11.23 % (95 % CI: -17.36 % to -4.65 %, p = 0.0012) and -7.34 % (95 % CI: -11.56 % to -2.92 %, p = 0.0014) lower placental TL during the entire pregnancy and second trimester respectively, and with -12.96 % (95 % CI: -18.84 % to -6.64 %, p < 0.001) lower placental mtDNAc during the third trimester. Furthermore, PM2.5 exposure was associated with a 12.42 % (95 % CI: -1.07 % to 27.74 %, p = 0.059) higher cord plasma p53 protein level and a -3.69 % (95 % CI: -6.97 % to -0.31 %, p = 0.033) lower cord plasma PGC-1α protein level during the third trimester. Placental TL mediated 65 % of the negative and 17 % of the positive association between PM2.5 and placental mtDNAc and cord plasma p53 protein levels, respectively. CONCLUSION Ambient PM2.5 exposure during pregnancy is associated with markers of the core-axis of aging, with TL as a mediating factor. This study strengthens the hypothesis of the air pollution induced core-axis of aging, and may unravel a possible underlying mediating mechanism in an early-life epidemiological context.
Collapse
Affiliation(s)
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
38
|
Chitosan Nanoparticles Alleviated the Adverse Effects of Sildenafil on the Oxidative Stress Markers and Antioxidant Enzyme Activities in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9944985. [PMID: 36891377 PMCID: PMC9988388 DOI: 10.1155/2023/9944985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Sildenafil (SF) is widely used for erectile dysfunction and other conditions, though with limitations regarding oral absorption and adverse effects. Despite nanotechnological improvements, the effect of nanocarriers on SF hepatotoxicity has not been documented to date. This study aimed at assessing the impact of chitosan nanoparticles either uncoated (CS NPs) or Tween 80-coated (T-CS NPs) on the effects of SF on oxidative stress markers and antioxidant enzyme activities in rats. Test SF-CS NPs prepared by ionic gelation were uniform positively charged nanospheres (diameter 178-215 nm). SF was administered intraperitoneally to male rats (1.5 mg/kg body weight) in free or nanoencapsulated forms as SF-CS NPs and T-SF-CS NPs for 3 weeks. Free SF significantly suppressed the activity of the antioxidant enzymes glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD), as well as the levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) as in an indirect measure of free radicals. Interestingly, SF-CS NPs and T-SF-CS-NPs treatments significantly attenuated the inhibitory effects of SF on the activity of these enzymes whereas, GST activity was inhibited. Moreover, the protein expression of GST was downregulated upon treatment of rats with free SF, SF-CS-NPs, and T-SF CS-NPs. In contrast, the activity and protein expression of GPx was induced by SF-CS NPs and T-SF-CS-NPs treatments. The histopathological study showed that SF induced multiple adverse effects on the rat liver architecture which were markedly suppressed particularly by T-SF-CS NPs. In conclusion, chitosan nanoencapsulation of SF counteracted the adverse effects of SF on the activity of antioxidant enzymes and liver architecture. Findings might have significant implications in improving the safety and efficacy of SF treatment of the widely expanding disease conditions.
Collapse
|
39
|
Dharshini RS, Poonkothai M, Srinivasan P, Mythili R, Syed A, Elgorban AM, Selvankumar T, Kim W. Nano-decolorization of methylene blue by Phyllanthus reticulatus iron nanoparticles: an eco-friendly synthesis and its antimicrobial, phytotoxicity study. APPLIED NANOSCIENCE 2023; 13:2527-2537. [PMID: 34367863 PMCID: PMC8325042 DOI: 10.1007/s13204-021-02002-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
The present study was investigated to synthesis the iron nanoparticles (FeNPs) using the leaf extract of Phyllanthus reticulatus. The phytosynthesized FeNPs exhibited UV-visible absorption peaks at 229 nm and its crystalline nature was confirmed through XRD. FT-IR analysis revealed the presence of various functional groups which are responsible for the bioreduction of FeNPs. The SEM results showed that FeNPs were aggregated, irregular sphere shaped with rough surfaces and EDX spectrum recorded densely occupied iron nanoparticles region. The particle size range of the synthesized iron nanoparticles was 185.6 nm. The FeNPs showed potential methylene blue decolourisation activity which was visually observed by gradual colour change in the dye solution from deep blue to colorless. The control exhibited no change in coloration during exposure to sunlight and the iron nanoparticles completely disintegrated the methylene blue within 10 s in 10 mg/L methylene blue (98%), whereas the color change was decreased when the concentration of the dye increased. In addition, the phyto-synthesized FeNPs exhibited extensive antibacterial and antifungal activity against the selected pathogens. Phytotoxicity assay confirms the potential of biosynthesized iron nanoparticles as a fertilizer for the growth of green gram seeds. Thus the present study leads to development of cost-effective green synthesis, reduction of toxic chemicals and its extensive applications in the biological sciences.
Collapse
Affiliation(s)
- Rajathirajan Siva Dharshini
- grid.427659.b0000 0001 0310 1980Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore, India ,Department of Genetic Engineering, Molecular Genetics Laboratory, School of Bioengineering, SRM Institute of Engineering and Technology, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - Mani Poonkothai
- grid.427659.b0000 0001 0310 1980Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore, India
| | - Palanisamy Srinivasan
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Tamil Nadu, Kalippatti, Namakkal, 637501 India
| | - Raja Mythili
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Tamil Nadu, Kalippatti, Namakkal, 637501 India
| | - Asad Syed
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, 2455, Riyadh, 11451 Saudi Arabia
| | - Abdallah M. Elgorban
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, 2455, Riyadh, 11451 Saudi Arabia
| | - Thangasamy Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Tamil Nadu, Kalippatti, Namakkal, 637501 India
| | - Woong Kim
- grid.258803.40000 0001 0661 1556Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
40
|
Rhazouani A, Gamrani H, Ed-Day S, Lafhal K, Boulbaroud S, Gebrati L, Fdil N, AZIZ F. Sub-acute toxicity of graphene oxide (GO) nanoparticles in male mice after intraperitoneal injection: Behavioral study and histopathological evaluation. Food Chem Toxicol 2023; 171:113553. [DOI: 10.1016/j.fct.2022.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
|
41
|
AboElmaaty SA, Shati AA, Alfaifi MY, Elbehairi SEI, Sheraba NS, Hassan MG, Badawy MSEM, Ghareeb A, Hamed AA, Gabr EZ. Biofilm Inhibitory Activity of Actinomycete-Synthesized AgNPs with Low Cytotoxic Effect: Experimental and In Silico Study. Microorganisms 2022; 11:microorganisms11010102. [PMID: 36677395 PMCID: PMC9866079 DOI: 10.3390/microorganisms11010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of resistance by biofilm-forming bacteria has reached alarming and dangerous levels that threaten human civilization. The current study sought to investigate the antibiofilm potential of green-synthesized silver nanoparticles, mediated by a new Streptomyces strain. Zeta potential, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to analyze the biosynthesized AgNPs. Results revealed that silver nanoparticles had a size of (5.55 and 45.00 nm) nm and a spherical shape, with surface plasmon resonance (SPR) absorption at 400-460 nm in the UV-vis spectra establishing the formation of Streptomyces-Ag-NPs. The biosynthesized AgNPs showed a pronounced antibacterial efficacy against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. Moreover, the obtained Streptomyces-AgNPs exerted biofilm inhibition activity against nosocomial hospital-resistant bacteria, including Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The mechanism of biogenic AgNPs antibacterial action was visualized using TEM, which indicated the AgNPs accumulation and disruption of bacterial cell membrane function. Additionally, a molecular docking study was conducted to evaluate the binding mode of AgNPs with an Escherichia coli outer membrane. Furthermore, the cytotoxic profile of the AgNPs was evaluated toward three cell lines (MCF-7, HepG2 & HCT 116), and the low cytotoxic effects of the obtained nanoparticles indicated their possible medical application with low risks to human health.
Collapse
Affiliation(s)
- Sabah A. AboElmaaty
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), Giza 12511, Egypt
| | - Norhan S. Sheraba
- VACSERA, The Holding Company for Biological Products and Vaccines, Giza 12511, Egypt
| | - Mervat G. Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Mona Shaban E. M. Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed A. Hamed
- Microbial Chemistry Department, National Research Center, 33 El-Buhouth Street, Giza 12622, Egypt
- Correspondence:
| | - Ebtsam Z. Gabr
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt
| |
Collapse
|
42
|
Yang Y, Luo D, Inam M, Hu J, Zhou Y, Xu C, Chen W. A scientometrics study of the nanomedicines assisted in respiratory diseases. Front Bioeng Biotechnol 2022; 10:1053653. [PMID: 36532565 PMCID: PMC9757136 DOI: 10.3389/fbioe.2022.1053653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/22/2022] [Indexed: 06/30/2024] Open
Abstract
Nanomedicine has been extensively studied for its versatility and broad-spectrum applications of theranostics in the research of respiratory disease. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on nanomedicine applied in the research of respiratory disease has not been reported so far, which would be of major importance to relevant researchers. To explore and exhibit the research status and developing trend of nanomedicines deployed in basic or clinical research in respiratory disease, the research ecosystem and exciting subareas were profiled based on the massive data mining and visualization from the relevant works reported from 2006 to 2021. Data were collected from the Web of Science database. Data statistics software and bibliometric analysis software were employed to visualize the research trend and the relationship between respiratory diseases and nanomedicines in each representative direction. The cluster analysis and burst detections indicated that the improvement of drug delivery and vaccine developments are the up-to-date key directions in nanomedicines for respiratory disease research and treatments. Furthermore, we emphatically studied four branch areas in this field including COVID-19, nanotube, respiratory syncytial virus, and mRNA vaccine those are selected for in-depth mining and bibliometric coupling analysis. Research trends signify the future focuses will center on preventing respiratory diseases with mRNA vaccines using nanoparticle-based approaches. We anticipate our study will enable researchers to have the panorama and deep insights in this area, thus inspiriting further exploitations especially the nanobiomaterial-based systems for theranostic applications in respiratory disease treatment.
Collapse
Affiliation(s)
- Yi Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dexu Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Muhammad Inam
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jialin Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - You Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuanshan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenjie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China
- Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia
| |
Collapse
|
43
|
Chang CY, You R, Armstrong D, Bandi A, Cheng YT, Burkhardt PM, Becerra-Dominguez L, Madison MC, Tung HY, Zeng Z, Wu Y, Song L, Phillips PE, Porter P, Knight JM, Putluri N, Yuan X, Marcano DC, McHugh EA, Tour JM, Catic A, Maneix L, Burt BM, Lee HS, Corry DB, Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. SCIENCE ADVANCES 2022; 8:eabq0615. [PMID: 36383649 PMCID: PMC9668323 DOI: 10.1126/sciadv.abq0615] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.
Collapse
Affiliation(s)
- Cheng-Yen Chang
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran You
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominique Armstrong
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashwini Bandi
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi-Ting Cheng
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip M. Burkhardt
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luis Becerra-Dominguez
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C. Madison
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhimin Zeng
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yifan Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia E. Phillips
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - Paul Porter
- Cytometry and Cell Sorting Core, Baylor College of Medicine, Houston TX 77030, USA
| | - John M. Knight
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Daniela C. Marcano
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Emily A. McHugh
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - James M. Tour
- Department of Chemistry and Smalley-Curl Institute, NanoCarbon Center, The Welch Institute for Advanced Materials, and Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005 USA
| | - Andre Catic
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laure Maneix
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyun-Sung Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Thoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B. Corry
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
44
|
Diesel particulate matter aggravates cyclophosphamide-induced testicular toxicity in mice via elevating oxidative damage. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Ghasemi P, Shafiee G, Ziamajidi N, Abbasalipourkabir R. Copper Nanoparticles Induce Apoptosis and Oxidative Stress in SW480 Human Colon Cancer Cell Line. Biol Trace Elem Res 2022:10.1007/s12011-022-03458-2. [PMID: 36274109 DOI: 10.1007/s12011-022-03458-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022]
Abstract
Cu nanoparticles (CuNPs) have various applications in biomedicine, owing to their unique properties. As the effect of CuNPs on the induction of oxidative stress and apoptosis in the human colorectal cancer cell line SW480 has not yet been studied, we investigated the toxicity and mechanism of action of these NPs in SW480 cells. MTT assay was performed to assess the effect of the particles on the viability of SW480 cells. The levels of oxidative stress were assessed after 24 h of treatment with CuNPs by evaluating the Reactive Oxygen Specious (ROS) production. The antioxidant enzyme activity was assessed using a colorimetric method. To investigate the effect of NPs on cellular apoptosis, Hoechst33258 staining was performed, and the expression of Bax, Bcl-2, and p53 was evaluated by qRT-PCR. The MTT assay results showed that CuNPs inhibited the viability of SW480 cells. Moreover, the increase in ROS production at all three concentrations (31, 68, and 100 μg/ml) was significant. It has been observed that CuNPs lead to increased expression of Bax and p53, and decreased expression of Bcl-2. Hoechst staining was performed to confirm apoptosis. In conclusion, the induction of apoptosis demonstrated the anticancer potential of the CuNPs.
Collapse
Affiliation(s)
- Parvin Ghasemi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Gholamreza Shafiee
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517619657, Iran.
| |
Collapse
|
46
|
Hassan MA, Mehmood T, Lodhi E, Bilal M, Dar AA, Liu J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13540. [PMID: 36294120 PMCID: PMC9603700 DOI: 10.3390/ijerph192013540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Air is a diverse mixture of gaseous and suspended solid particles. Several new substances are being added to the air daily, polluting it and causing human health effects. Particulate matter (PM) is the primary health concern among these air toxins. The World Health Organization (WHO) addressed the fact that particulate pollution affects human health more severely than other air pollutants. The spread of air pollution and viruses, two of our millennium's most serious concerns, have been linked closely. Coronavirus disease 2019 (COVID-19) can spread through the air, and PM could act as a host to spread the virus beyond those in close contact. Studies on COVID-19 cover diverse environmental segments and become complicated with time. As PM pollution is related to everyday life, an essential awareness regarding PM-impacted COVID-19 among the masses is required, which can help researchers understand the various features of ambient particulate pollution, particularly in the era of COVID-19. Given this, the present work provides an overview of the recent developments in COVID-19 research linked to ambient particulate studies. This review summarizes the effect of the lockdown on the characteristics of ambient particulate matter pollution, the transmission mechanism of COVID-19, and the combined health repercussions of PM pollution. In addition to a comprehensive evaluation of the implementation of the lockdown, its rationales-based on topographic and socioeconomic dynamics-are also discussed in detail. The current review is expected to encourage and motivate academics to concentrate on improving air quality management and COVID-19 control.
Collapse
Affiliation(s)
- Muhammad Azher Hassan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou 570228, China
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany
| | - Ehtisham Lodhi
- The SKL for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Edwards KC, Klodt AL, Galeazzo T, Schervish M, Wei J, Fang T, Donahue NM, Aumont B, Nizkorodov SA, Shiraiwa M. Effects of Nitrogen Oxides on the Production of Reactive Oxygen Species and Environmentally Persistent Free Radicals from α-Pinene and Naphthalene Secondary Organic Aerosols. J Phys Chem A 2022; 126:7361-7372. [PMID: 36194388 PMCID: PMC9574922 DOI: 10.1021/acs.jpca.2c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) and environmentally persistent free radicals (EPFR) play an important role in chemical transformation of atmospheric aerosols and adverse aerosol health effects. This study investigated the effects of nitrogen oxides (NOx) during photooxidation of α-pinene and naphthalene on the EPFR content and ROS formation from secondary organic aerosols (SOA). Electron paramagnetic resonance (EPR) spectroscopy was applied to quantify EPFR content and ROS formation. While no EPFR were detected in α-pinene SOA, we found that naphthalene SOA contained about 0.7 pmol μg-1 of EPFR, and NOx has little influence on EPFR concentrations and oxidative potential. α-Pinene and naphthalene SOA generated under low NOx conditions form OH radicals and superoxide in the aqueous phase, which was lowered substantially by 50-80% for SOA generated under high NOx conditions. High-resolution mass spectrometry analysis showed the substantial formation of nitroaromatics and organic nitrates in a high NOx environment. The modeling results using the GECKO-A model that simulates explicit gas-phase chemistry and the radical 2D-VBS model that treats autoxidation predicted reduced formation of hydroperoxides and enhanced formation of organic nitrates under high NOx due to the reactions of peroxy radicals with NOx instead of their reactions with HO2. Consistently, the presence of NOx resulted in the decrease of peroxide contents and oxidative potential of α-pinene SOA.
Collapse
Affiliation(s)
- Kasey C Edwards
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Alexandra L Klodt
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Tommaso Galeazzo
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Jinlai Wei
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Ting Fang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Neil M Donahue
- Departments of Chemistry, Chemical Engineering, Engineering and Public Policy, Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Bernard Aumont
- CNRS, LISA, Univ of Paris Est Creteil and University Paris Cité, F-94010 Créteil, France
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
48
|
Vanka KS, Shukla S, Gomez HM, James C, Palanisami T, Williams K, Chambers DC, Britton WJ, Ilic D, Hansbro PM, Horvat JC. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev 2022; 31:31/165/210250. [PMID: 35831008 DOI: 10.1183/16000617.0250-2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.
Collapse
Affiliation(s)
- Kanth Swaroop Vanka
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakti Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Carole James
- School of Health Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CERSE), The University of Newcastle, Newcastle, NSW, Australia
| | - Kenneth Williams
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| | - Jay Christopher Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia .,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| |
Collapse
|
49
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
50
|
Martin S, de Haan L, Miro Estruch I, Eder KM, Marzi A, Schnekenburger J, Blosi M, Costa A, Antonello G, Bergamaschi E, Riganti C, Beal D, Carrière M, Taché O, Hutchison G, Malone E, Young L, Campagnolo L, La Civita F, Pietroiusti A, Devineau S, Baeza A, Boland S, Zong C, Ichihara G, Fadeel B, Bouwmeester H. Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:974429. [PMID: 36171865 PMCID: PMC9511406 DOI: 10.3389/ftox.2022.974429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA (“biomaterial risk management”) an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 “benchmark” nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.
Collapse
Affiliation(s)
- Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura de Haan
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Kai Moritz Eder
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | - Anne Marzi
- Biomedical Technology Center, Westfälische Wilhelms-University, Münster, Germany
| | | | - Magda Blosi
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | - Anna Costa
- Institute of Science and Technology for Ceramics (ISTEC), CNR, Faenza, Italy
| | | | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Chemistry, University of Torino, Torino, Italy
| | - David Beal
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Marie Carrière
- Université Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette, France
| | - Gary Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Eva Malone
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Lesley Young
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Luisa Campagnolo
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fabio La Civita
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Antonio Pietroiusti
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Armelle Baeza
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Sonja Boland
- Université Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Tokyo, Japan
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Hans Bouwmeester,
| |
Collapse
|