1
|
AnnaDurai KS, Chandrasekaran N, Velraja S, Hikku GS, Parvathi VD. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop 2024; 257:107290. [PMID: 38909722 DOI: 10.1016/j.actatropica.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.
Collapse
Affiliation(s)
- Kavitha Sri AnnaDurai
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India
| | | | - Supriya Velraja
- Department of Clinical Nutrition, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai 600116, Tamil Nadu, India
| | - Gnanadhas Sobhin Hikku
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamilnadu, India; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India.
| |
Collapse
|
2
|
Jamshaid U, Anton N, Elhassan M, Conzatti G, Vandamme TF. Novel Hydrogels Based on the Nano-Emulsion Formulation Process: Development, Rheological Characterization, and Study as a Drug Delivery System. Pharmaceutics 2024; 16:812. [PMID: 38931933 PMCID: PMC11207514 DOI: 10.3390/pharmaceutics16060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.
Collapse
Affiliation(s)
- Usama Jamshaid
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
- Faculty of Pharmacy, The University of Lahore, Lahore 54590, Pakistan
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| | - Mohamed Elhassan
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Guillaume Conzatti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| | - Thierry F. Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (U.J.); (M.E.); (G.C.)
| |
Collapse
|
3
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
4
|
Cheng Y, Pan Z, Tang L, Huang Y, Yang W. Fabrication of Eco-Friendly Hydrolyzed Ethylene-Maleic Anhydride Copolymer-Avermectin Nanoemulsion with High Stability, Adhesion Property, pH, and Temperature-Responsive Releasing Behaviors. Molecules 2024; 29:1148. [PMID: 38474660 DOI: 10.3390/molecules29051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zeyu Pan
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liming Tang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanbin Huang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wantai Yang
- Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Tanjung YP, Dewi MK, Gatera VA, Barliana MI, Joni IM, Chaerunisaa AY. Factors Affecting the Synthesis of Bovine Serum Albumin Nanoparticles Using the Desolvation Method. Nanotechnol Sci Appl 2024; 17:21-40. [PMID: 38314401 PMCID: PMC10838516 DOI: 10.2147/nsa.s441324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Currently, protein-based nanoparticles are in high demand as drug delivery systems due to their exceptional qualities, including nontoxicity, nonantigenicity, and biodegradability. Other qualities include high nutritional value, abundance of renewable resources, excellent drug binding capacity, greater stability during storage and in vivo, as well as ease of upgrading during manufacture. Examples of protein suitable for this purpose include ovalbumin (OVA) derived from egg white, human serum albumin (HSA), and bovine serum albumin (BSA). To create albumin nanoparticles, six different processes have been investigated in depth and are frequently used in drug delivery systems. These included desolvation, thermal gelation, emulsification, NAB technology, self-assembly, and nanospray drying. Several experimental conditions in the synthesis of albumin nanoparticles can affect the physicochemical characterization. Therefore, this study aimed to provide an overview of various experimental conditions capable of affecting the physicochemical characteristics of BSA nanoparticles formed using the desolvation method. By considering the variation in optimal experimental conditions, a delivery system of BSA nanoparticles with the best physicochemical characterization results could be developed.
Collapse
Affiliation(s)
- Yenni Puspita Tanjung
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Bumi Siliwangi Academy of Pharmacy, Bandung, West Java, Indonesia
| | - Mayang Kusuma Dewi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Vesara Ardhe Gatera
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy and Health Sciences, Universiti Kuala Lumpur - Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Melisa Intan Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Bandung, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
Guo Y, Zhang X, Wang X, Zhang L, Xu Z, Sun D. Nanoemulsions Stable against Ostwald Ripening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1364-1372. [PMID: 38175958 DOI: 10.1021/acs.langmuir.3c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Ostwald ripening, the dominant mechanism of droplet size growth for an O/W nanoemulsion at high surfactant concentrations, depends on micelles in the water phase and high aqueous solubility of oil, especially for spontaneously formed nanoemulsions. In our study, O/W nanoemulsions were formed spontaneously by mixing a water phase with an oil phase containing fatty alcohol polyoxypropylene polyoxyethylene ether (APE). By monitoring periodically the droplet size of the nanoemulsions via dynamic light scattering, we demonstrated that the formed O/W nanoemulsions are stable against Ostwald ripening, i.e., droplet growth. In contrast, the nanoemulsion droplets grew with the addition of micelles, demonstrating the pivotal role of the presence of micelles in the water phase in the occurrence of Ostwald ripening. The influence of the initial phase of APE, the oil or water phase in which APE is present, on the micelle formation is discussed by the partition coefficient and interfacial adsorption of APE between the oil and water phase using a surface and interfacial tensiometer. In addition, the spontaneously formed O/W nanoemulsion, which is stable against Ostwald ripening, can be used as a nanocarrier for the delivery of water-insoluble pesticides. These results provide a novel approach for the preparation of stable nanoemulsions and contribute to elucidating the mechanism of instability of nanoemulsions.
Collapse
Affiliation(s)
- Yanlin Guo
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xinpeng Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Xiaohan Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Li Zhang
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Zhenghe Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
7
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
8
|
Li M, Wakata Y, Zeng H, Sun C. On the thermal response of multiscale nanodomains formed in trans-anethol/ethanol/water surfactant-free microemulsion. J Colloid Interface Sci 2023; 652:1944-1953. [PMID: 37690302 DOI: 10.1016/j.jcis.2023.08.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS Surfactant-free microemulsion (SFME), an emerging phenomenology that occurs in the monophasic zone of a broad category of ternary mixtures 'hydrophobe/hydrotrope/water', has attracted extensive interests due to their unique physicochemical properties. The potential of this kind of ternary fluid for solubilization and drug delivery make them promising candidates in many industrial scenarios. EXPERIMENTS Here the thermodynamic behavior of these multiscale nanodomains formed in the ternary trans-anethol/ethanol/water system over a wide range of temperatures is explored. The macroscopic physical properties of the ternary solutions are characterized, with revealing the temperature dependence of refractive index and dynamic viscosity. FINDINGS With increasing temperature, the ternary system shows extended areas in the monophasic zone. We demonstrate that the phase behavior and the multiscale nanodomains formed in the monophasic zone can be precisely and reversibly tuned by altering the temperature. Increasing temperature can destroy the stability of the multiscale nanodomains in equilibrium, with an exponential decay in the scattering light intensity. Nevertheless, molecular-scale aggregates and mesoscopic droplets exhibit significantly different response behaviors to temperature stimuli. The temperature-sensitive nature of the ternary SFME system provides a crucial step forward exploring and industrializing its stability.
Collapse
Affiliation(s)
- Mingbo Li
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuki Wakata
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Zeng
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Chao Sun
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Schmidt S, Nguyen AT, Vu HQ, Tran NN, Sareela M, Fisk I, Hessel V. Microfluidic Spontaneous Emulsification for Generation of O/W Nanoemulsions-Opportunity for In-Space Manufacturing. Adv Healthc Mater 2023; 12:e2203363. [PMID: 37039561 PMCID: PMC11468665 DOI: 10.1002/adhm.202203363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/31/2023] [Indexed: 04/12/2023]
Abstract
The use of microfluidics for oil-in-water (O/W) nanoemulsification via spontaneous self-assembly is demonstrated. As this is known to be a longish process, both single- and multicontact microfluidic reactors are tested, the latter providing a longsome, constant microfluidic treatment to maintain advanced phase and interfacial mass transfer. Microfluidic devices provide strong advantages above conventional systems for spontaneous emulsification, with droplet sizes of 62 nm at desired surfactant-to-oil ratios (SOR) and a decrease of 90% in process time. Multicontact microfluidics have better performance than their single-contact counterparts, while critical aspects, e.g., process robustness, are also discussed. Ternary phase diagram analysis of the three components (oil, water, surfactant) allow to decide for the right mixing ratio and sequence of mixing steps for the nanoemulsions. Microfluidic spontaneous emulsification meets objective functions of the intended application to provide fortified beverages to astronauts in space exploration. In that viewpoint, an advantage is to achieve stable nanoemulsions at a level of concentrations much higher as compared to application (human intake), allowing a dilution factor to the final product of up to 100. This decreases notably the process time and allows for process flexibility, e.g., to dilute or tailor Earth-prepared nanoemulsion concentrate payloads in space.
Collapse
Affiliation(s)
- Svenja Schmidt
- School of Chemical EngineeringThe University of AdelaideAdelaide5005Australia
- Andy Thomas Centre for Space ResourcesAdelaide5005Australia
- International Flavour Research CentreDivision of FoodNutrition and DieteticsUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
| | - Anh The Nguyen
- School of Chemical EngineeringThe University of AdelaideAdelaide5005Australia
| | - Huy Quang Vu
- School of Chemical EngineeringThe University of AdelaideAdelaide5005Australia
| | - Nam Nghiep Tran
- School of Chemical EngineeringThe University of AdelaideAdelaide5005Australia
- Andy Thomas Centre for Space ResourcesAdelaide5005Australia
| | - Maria Sareela
- South Australian Research and Development InstituteSARDIAdelaide5064Australia
| | - Ian Fisk
- International Flavour Research CentreDivision of FoodNutrition and DieteticsUniversity of NottinghamSutton Bonington CampusLoughboroughLE12 5RDUK
- International Flavour Research Centre (Adelaide)School of AgricultureFood and Wine and Waite Research InstituteThe University of AdelaidePMB 1Glen OsmondSouth Australia5064Australia
| | - Volker Hessel
- School of Chemical EngineeringThe University of AdelaideAdelaide5005Australia
- Andy Thomas Centre for Space ResourcesAdelaide5005Australia
| |
Collapse
|
10
|
Wen C, Cao L, Yu Z, Liu G, Zhang J, Xu X. Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges. Crit Rev Food Sci Nutr 2023; 64:10835-10854. [PMID: 37410019 DOI: 10.1080/10408398.2023.2229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Curcumin (Cur) is a natural pigment containing a diketone structure, which has attracted extensive attention due to its strong functional activities. However, the low solubility and poor stability of Cur limit its low bioavailability and multi-function. It is essential to develop effective measures to improve the unfavorable nature of Cur and maximize its potential benefits in nutritional intervention. SCOPE AND APPROACH The focus of this review is to emphasize the construction of lipo-solubility delivery vehicles for Cur, including emulsion, nanoliposome and solid liposome. In addition, the potential benefits of vehicles-encapsulated Cur in the field of precise nutrition were summarized, including high targeting properties and multiple disease interventions. Further, the deficiencies and prospects of Cur encapsulated in vehicles for precise nutrition were discussed. KEY FINDINGS AND CONCLUSIONS The well-designed lipo-solubility delivery vehicles for Cur can improve its stability in food processing and the digestion in vivo. To meet the nutritional requirements of special people for Cur-based products, the improvement of the bioavailability by using delivery vehicles will provide a theoretical basis for the precise nutrition of Cur in functional food.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Zhenyue Yu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| |
Collapse
|
11
|
Pires PC, Fernandes M, Nina F, Gama F, Gomes MF, Rodrigues LE, Meirinho S, Silvestre S, Alves G, Santos AO. Innovative Aqueous Nanoemulsion Prepared by Phase Inversion Emulsification with Exceptional Homogeneity. Pharmaceutics 2023; 15:1878. [PMID: 37514064 PMCID: PMC10384498 DOI: 10.3390/pharmaceutics15071878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Formulating low-solubility or low-permeability drugs is a challenge, particularly with the low administration volumes required in intranasal drug delivery. Nanoemulsions (NE) can solve both issues, but their production and physical stability can be challenging, particularly when a high proportion of lipids is necessary. Hence, the aim of the present work was to develop a NE with good solubilization capacity for lipophilic drugs like simvastatin and able to promote the absorption of drugs with low permeability like fosphenytoin. Compositions with high proportion of two lipids were screened and characterized. Surprisingly, one of the compositions did not require high energy methods for high droplet size homogeneity. To better understand formulation factors important for this feature, several related compositions were evaluated, and their relative cytotoxicity was screened. Optimized compositions contained a high proportion of propylene glycol monocaprylate NF, formed very homogenous NE using a low-energy phase inversion method, solubilized simvastatin at high drug strength, and promoted a faster intranasal absorption of the hydrophilic prodrug fosphenytoin. Hence, a new highly homogeneous NE obtained by a simple low-energy method was successfully developed, which is a potential alternative for industrial application for the solubilization and protection of lipophilic actives, as well as (co-)administration of hydrophilic molecules.
Collapse
Affiliation(s)
- Patrícia C Pires
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Fernandes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisca Nina
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Francisco Gama
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria F Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Lina E Rodrigues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sara Meirinho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Samuel Silvestre
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Islam F, Saeed F, Afzaal M, Hussain M, Ikram A, Khalid MA. Food grade nanoemulsions: promising delivery systems for functional ingredients. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1461-1471. [PMID: 37033316 PMCID: PMC10076486 DOI: 10.1007/s13197-022-05387-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023]
Abstract
Nano-emulsions are receiving great attention in various industries, especially in the food sector. Peculiar properties of nano-sized droplets and high surface area are most suited for the development and delivery of functional ingredients. Nano-emulsions systems are suitable for encapsulation, protection, improving bioavailability, and target release of sensitive functional compounds. Nano-emulsions have promising potential for the delivery of nutraceuticals, probiotics, flavors, and colors. Nano-emulsions with active ingredients (antimicrobials) have a key part in ensuring food safety, nutrition, and quality of food. Nanoemulsions can also be used for biodegradable coating, packaging, antimicrobial coating, and quality and shelf life enhancement of different foods. The current review includes an overview of nanotechnology nano-emulsions, materials, techniques for formulation & production of nano-emulsions for food and nutrition. Furthermore, the analytical approaches used for the characterization of nano-emulsions and finally, the applications and limitations of nano-emulsions in the food industry are discussed in detail. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05387-3.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Ikram
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
13
|
Science of, and insights into, thermodynamic principles for dermal formulations. Drug Discov Today 2023; 28:103521. [PMID: 36754143 DOI: 10.1016/j.drudis.2023.103521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Studies have demonstrated the significant role of the thermodynamic activity of drugs in skin drug delivery. This thermodynamic activity works as a driving force for increasing/improving the absorption of drugs by the skin. It can be changed according to the physicochemical parameters (e.g., solubility, partition coefficient, and water activity) of the drug in the vehicle. Thermodynamic principles have been used for the development of novel topical and transdermal delivery systems, demonstrating the importance of thermodynamic activity in enhancing drug permeation through the skin. In this review, we provide insights into thermodynamic principles and their roles in optimizing topical and transdermal drug delivery systems.
Collapse
|
14
|
Lipolytic behavior and bioaccessibility of curcumin nanoemulsions stabilized by rice bran protein hydrolysate. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Donthi MR, Munnangi SR, Krishna KV, Saha RN, Singhvi G, Dubey SK. Nanoemulgel: A Novel Nano Carrier as a Tool for Topical Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15010164. [PMID: 36678794 PMCID: PMC9863395 DOI: 10.3390/pharmaceutics15010164] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Nano-emulgel is an emerging drug delivery system intended to enhance the therapeutic profile of lipophilic drugs. Lipophilic formulations have a variety of limitations, which includes poor solubility, unpredictable absorption, and low oral bioavailability. Nano-emulgel, an amalgamated preparation of different systems aims to deal with these limitations. The novel system prepared by the incorporation of nano-emulsion into gel improves stability and enables drug delivery for both immediate and controlled release. The focus on nano-emulgel has also increased due to its ability to achieve targeted delivery, ease of application, absence of gastrointestinal degradation or the first pass metabolism, and safety profile. This review focuses on the formulation components of nano-emulgel for topical drug delivery, pharmacokinetics and safety profiles.
Collapse
Affiliation(s)
- Mahipal Reddy Donthi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Siva Ram Munnangi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA
| | - Ranendra Narayan Saha
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani 333031, India
- R&D Healthcare Division Emami Ltd., 13, BT Road, Kolkata 700056, India
- Correspondence: ; Tel.: +91-8239703734
| |
Collapse
|
16
|
Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life. Int J Food Microbiol 2023; 384:109979. [DOI: 10.1016/j.ijfoodmicro.2022.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
|
17
|
Wang X, Anton H, Vandamme T, Anton N. Updated insight into the characterization of nano-emulsions. Expert Opin Drug Deliv 2023; 20:93-114. [PMID: 36453201 DOI: 10.1080/17425247.2023.2154075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION In most of the studies, nano-emulsion characterization is limited to their size distribution and zeta potential. In this review, we present an updated insight of the characterization methods of nano-emulsions, including new or unconventional experimental approaches to explore in depth the nano-emulsion properties. AREA COVERED We propose an overview of all the main techniques used to characterize nano-emulsions, including the most classical ones, up to in vitro, ex vivo and in vivo evaluation. Innovative approaches are then presented in the second part of the review that presents innovative, experimental techniques less known in the field of nano-emulsion such as the nanoparticle tracking analysis, small-angle X-ray scattering, Raman spectroscopy, and nuclear magnetic resonance. Finally, in the last part we discuss the use of lipophilic fluorescent probes and imaging techniques as an emerging tool to understand the nano-emulsion droplet stability, surface decoration, release mechanisms, and in vivo fate. EXPERT OPINION This review is mostly intended for a broad readership and provides key tools regarding the choice of the approach to characterize nano-emulsions. Innovative and uncommon methods will be precious to disclose the information potentially reachable behind a formulation of nano-emulsions, not always known in first intention and with conventional methods.
Collapse
Affiliation(s)
- Xinyue Wang
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France
| | - Halina Anton
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| |
Collapse
|
18
|
Novel Bionanocomposites Based on Cinnamon Nanoemulsion and TiO2-NPs for Preserving Fresh Chicken Breast Fillets. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractIn this study, bionanocomposite coating solutions were created using polyvinyl alcohol (PVA) and chitosan (Cs), with different concentrations of cinnamon essential oil in nanoemulsion (n-CEO; 0%, 5%, 10%, and 20%) and TiO2 nanoparticles (TiO2-NPs). The bionanocomposite was characterized using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy with EDX, and mechanical and barrier property assessment. Additionally, antimicrobial and antioxidant properties and total phenols were evaluated. Generally, mechanical and barrier properties were enhanced with increasing n-CEO concentrations with a favorable distribution in film matrix. Moreover, total phenols, antioxidant, and antimicrobial activities were also enhanced a broader inhibition pattern against A. flavus, gram-positive, and gram-negative bacteria. The influence of n-CEO and TiO2-NPs blended into bionanocomposite on preservation of fresh chicken breast fillets during 21 days of refrigeration was evaluated. Added n-CEO concentration, especially 20%, and TiO2-NPs enhanced antimicrobial properties and extended preservation time up to 14 days compared to uncoated samples. Furthermore, weight loss was decreased during storage of coated samples. Thus, PVA/Cs/TiO2–NPs with n-CEO bionanocomposites may be useful as a coating for chicken breast fillets to control microbial growth and reduce weight loss during cold storage.
Collapse
|
19
|
Patil MU, Rajput AP, Belgamwar VS, Chalikwar SS. Development and characterization of amphotericin B nanoemulsion-loaded mucoadhesive gel for treatment of vulvovaginal candidiasis. Heliyon 2022; 8:e11489. [PMID: 36411885 PMCID: PMC9674507 DOI: 10.1016/j.heliyon.2022.e11489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Despite being recognized as the "gold standard" for treating azole-resistant vulvovaginal candidiasis, amphotericin B (AmB), an amphoteric molecule, has not been widely used due to serious issues with solubility and permeability. In light of the aforementioned, the objective of the present study was to increase AmB's therapeutic efficacy by formulating it into an o/w nanoemulsion (AmB-NE) system. Furthermore, to facilitate AmB-NE's retention within the vaginal cavity, it was loaded into a mixture of Carbopol® 974P and Aloe vera-based gel (CA gel). Briefly, in the present study, a kinetically stable batch of formulated AmB-NE having a globule size of 76.52 ± 3.11 nm, PDI of 0.342 ± 0.032, and zeta potential of -22.32 ± 0.88 mV was incorporated into the CA gel base. This AmB-NE loaded gel (AmB-NE gel) exhibited a non-Fickian/anomalous diffusion from the hydrophilic matrix. The texture analysis of AmB-NE gel revealed that the prepared gel was a non-drip, soft, easy to spread, and sufficiently cohesive gel that could reside in the vaginal cavity, which was confirmed by our ex-vivo retention test, which revealed that AmB-NE loaded gel could stay in the vaginal cavity for approximately 11 h. Ex-vivo skin permeation studies revealed that AmB-NE is 4.26 times more permeable than AmB-coarse gel, implying that AmB-NE facilitates AmB entry into the vaginal epithelial layers. Furthermore, in-vivo vaginal lavage studies revealed that AmB-NE gel permeated 7.03-fold more than AmB-coarse gel. Prepared AmB-NE gel was stable in refrigerated condition and showed no histopathological toxicity. Thus, the present study suggests that AmB-NE gel could eliminate the existing problem of AmB and that it could serve as an alternative option to treat vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Mrunal U. Patil
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra State, India
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix-Marseille-Université (luminy), 163, Avenue luminy, 13288 Marseille, France
| | - Amarjitsing P. Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Veena S. Belgamwar
- University Department of Pharmaceutical Sciences Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur 440033, Maharashtra, India
| | - Shailesh S. Chalikwar
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra State, India
| |
Collapse
|
20
|
Singh IR, Pulikkal AK. Preparation, stability and biological activity of essential oil-based nano emulsions: A comprehensive review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Khaligh SF, Asoodeh A. Green synthesis and biological characterization of cerium oxide nanoemulsion against human HT-29 colon cancer cell line. MATERIALS TECHNOLOGY 2022; 37:2318-2338. [DOI: 10.1080/10667857.2022.2031492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/12/2022] [Indexed: 09/22/2023]
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Cellular and Molecular Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
22
|
Matsuura H, Kawakami R, Isoe M, Hoshihara M, Minami Y, Yatsuzuka K, Tsuda T, Murakami M, Suzuki Y, Kawamata J, Imamura T, Hadano S, Watanabe S, Niko Y. NIR-II-Excitable Dye-Loaded Nanoemulsions for Two-Photon Microscopy Imaging of Capillary Blood Vessels in the Entire Hippocampal CA1 Region of Living Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40481-40490. [PMID: 36063083 DOI: 10.1021/acsami.2c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For in vivo two-photon fluorescence microscopy (2PM) imaging, the development of techniques that can improve the observable depth and temporal resolution is an important challenge to address biological and biomedical concerns such as vascular dynamics in the deep brain (typically the hippocampal region) of living animals. Improvements have been achieved through two approaches: an optical approach using a highly tissue-penetrating excitation laser oscillating in the second near-infrared wavelength region (NIR-II, 1100-1350 nm) and a chemical approach employing fluorescent probes with high two-photon brightness (characterized by the product of the two-photon absorption cross section, σ2, and the fluorescence quantum yield, Φ). To integrate these two approaches, we developed a fluorescent dye exhibiting a sufficiently high σ2Φ value of 68 Goeppert-Mayer units at 1100 nm. When a nanoemulsion encapsulating >1000 dye molecules per particle and a 1100 nm laser were employed for 2PM imaging, capillary blood vessels in almost the entire hippocampal CA1 region of the mouse brain (approximately 1.1-1.5 mm below the surface) were clearly visualized at a frame rate of 30 frames s-1 (averaged over eight frames, practically 3.75 frames s-1). This observable depth and frame rate are much higher than those in previous reports on 2PM imaging. Furthermore, this nanoemulsion allowed for the visualization of blood vessels at a depth of 1.8 mm, corresponding to the hippocampal dentate gyrus. These results highlight the advantage of combining bright probes with NIR-II lasers. Our probe is a promising tool for studying the vascular dynamics of living animals and related diseases.
Collapse
Affiliation(s)
- Hitomi Matsuura
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
- TOSA Innovative Human Development Programs, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Ryosuke Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Maki Isoe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Masaharu Hoshihara
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Yuya Minami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Kazuki Yatsuzuka
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Teruko Tsuda
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masamoto Murakami
- Department of Dermatology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi-shi, Yamaguchi 753-8512, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shingo Hadano
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Shigeru Watanabe
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| |
Collapse
|
23
|
Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections. Antibiotics (Basel) 2022; 11:antibiotics11081040. [PMID: 36009909 PMCID: PMC9404999 DOI: 10.3390/antibiotics11081040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol® and Transcutol® P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin.
Collapse
|
24
|
Study of the spontaneous nano-emulsification process with different octadecyl succinic anhydride derivatives. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Li M, Yi L, Sun C. Spontaneously formed multiscale nano-domains in monophasic region of ternary solution. J Colloid Interface Sci 2022; 628:223-235. [DOI: 10.1016/j.jcis.2022.07.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
26
|
|
27
|
Zafar A, Yasir M, Alruwaili NK, Imam SS, Alsaidan OA, Alshehri S, Ghoneim MM, Alquraini A, Rawaf A, Ansari MJ, Sara UVS. Formulation of Self-Nanoemulsifying Drug Delivery System of Cephalexin: Physiochemical Characterization and Antibacterial Evaluation. Polymers (Basel) 2022; 14:polym14051055. [PMID: 35267877 PMCID: PMC8915057 DOI: 10.3390/polym14051055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
A cephalexin (CEP) self-nanoemulsifying drug delivery system (SNEDDS) was developed in this study to improve the drug’s oral administration. The CEP-SNEDDS was made utilizing an aqueous titration method employing Lauroglycol 90, Poloxamer 188, and Transcutol-HP. Box-Behnken design (BBD) with three factors at three levels was used for optimization, and their impacts on globule size (nm), transmittance (percent), and emulsification time (s) were assessed. The optimized formulation (Opt-F3) was further tested for zeta potential, refractive index, percent transmittance, thermodynamic stability, in-vitro release, ex vivo permeability, antibacterial activity, and bioavailability. The chosen formulation (Opt-F3) had a globule size of 87.25 ± 3.16 nm, PDI of 0.25, zeta potential of −24.37 mV, self-emulsification duration of 52 ± 1.7 s, and percentage transmittance of 99.13 ± 1.5%, viscosity of 96.26 ± 2.72 cp, and refractive index of 1.29 ± 0.1. It showed a sustained release profile (94.28 ± 5.92 percent in 24 h). The Opt-F3 formulation had 3.95 times the permeability of CEP-dispersion. In comparison to CEP-dispersion, it also demonstrated greater antibacterial efficacy against tested Gram-positive and Gram-negative pathogens. The oral bioavailability of Opt-F3 is 3.48 times higher than that of CEP-dispersion, according to an in-vivo investigation. It has been determined that the prepared CEP-SNEDDS may be an advantageous carrier for CEP delivery.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
- Correspondence: (A.Z.); (S.S.I.)
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella 396, Ethiopia;
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (A.Z.); (S.S.I.)
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia; (N.K.A.); (O.A.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Ali Alquraini
- Department of Pharmaceutical Chemistry, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65731, Saudi Arabia;
| | - Alenazy Rawaf
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Udai Vir Singh Sara
- Hygia Institute of Pharmaceutical Education & Research, Lucknow 226020, Uttar Pradesh, India;
| |
Collapse
|
28
|
Chakrabarti C, Pillai SA, Kuperkar K, Ray D, Aswal VK, Bahadur P. Phase behaviour and characterization of micelles of graft copolymer Soluplus® and non-ionic surfactant Solutol® HS15: A detailed comparison in the presence of additives. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Sanders AB, Zangaro JT, Webber NK, Calhoun RP, Richards EA, Ricci SL, Work HM, Yang DD, Casey KR, Iovine JC, Baker G, Douglas TV, Dutko SB, Fasano TJ, Lofland SA, Rajan AA, Vasile MA, Carone BR, Nucci NV. Optimization of Biocompatibility for a Hydrophilic Biological Molecule Encapsulation System. Molecules 2022; 27:1572. [PMID: 35268673 PMCID: PMC8911823 DOI: 10.3390/molecules27051572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems.
Collapse
Affiliation(s)
- Alyssa B. Sanders
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Jacob T. Zangaro
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nakoa K. Webber
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Ryan P. Calhoun
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Elizabeth A. Richards
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Samuel L. Ricci
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Hannah M. Work
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Daniel D. Yang
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Kaitlyn R. Casey
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Joseph C. Iovine
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Gabriela Baker
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Taylor V. Douglas
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Sierra B. Dutko
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Thomas J. Fasano
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Sarah A. Lofland
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| | - Ashley A. Rajan
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Mihaela A. Vasile
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Benjamin R. Carone
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
| | - Nathaniel V. Nucci
- Department of Molecular and Cellular Biosciences, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (A.B.S.); (J.T.Z.); (N.K.W.); (R.P.C.); (E.A.R.); (D.D.Y.); (K.R.C.); (G.B.); (T.J.F.); (A.A.R.); (M.A.V.); (B.R.C.)
- Department of Physics & Astronomy, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA; (S.L.R.); (H.M.W.); (J.C.I.); (T.V.D.); (S.B.D.); (S.A.L.)
| |
Collapse
|
30
|
Iacob-Tudose ET, Mamaliga I, Iosub AV. TES Nanoemulsions: A Review of Thermophysical Properties and Their Impact on System Design. NANOMATERIALS 2021; 11:nano11123415. [PMID: 34947766 PMCID: PMC8703648 DOI: 10.3390/nano11123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Thermal energy storage materials (TES) are considered promising for a large number of applications, including solar energy storage, waste heat recovery, and enhanced building thermal performance. Among these, nanoemulsions have received a huge amount of attention. Despite the many reviews published on nanoemulsions, an insufficient number concentrate on the particularities and requirements of the energy field. Therefore, we aim to provide a review of the measurement, theoretical computation and impact of the physical properties of nanoemulsions, with an integrated perspective on the design of thermal energy storage equipment. Properties such as density, which is integral to the calculation of the volume required for storage; viscosity, which is a decisive factor in pressure loss and for transport equipment power requirements; and thermal conductivity, which determines the heating/cooling rate of the system or the specific heat directly influencing the storage capacity, are thoroughly discussed. A comparative, critical approach to all these interconnected properties in pertinent characteristic groups, in close association with the practical use of TES systems, is included. This work aims to highlight unresolved issues from previous investigations as well as to provide a summary of the numerical simulation and/or application of advanced algorithms for the modeling, optimization, and streamlining of TES systems.
Collapse
|
31
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
32
|
Sheikh BA, Bhat BA, Alshehri B, Mir RA, Mir WR, Parry ZA, Mir MA. Nano-Drug Delivery Systems: Possible End to the Rising Threats of Tuberculosis. J Biomed Nanotechnol 2021; 17:2298-2318. [PMID: 34974855 DOI: 10.1166/jbn.2021.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Basharat A Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University KSA, Almajmaah, 11952, Saudi Arabia
| | - Rakeeb A Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri 185234, J&K, India
| | - Wajahat R Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| | - Zahoor A Parry
- Clinical Microbiology PK/PD/Laboratory, Indian Institute of Integrated Medicine (IIIM)-Srinagar 190005, J&K, India
| | - Manzoor A Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar 190006, J&K, India
| |
Collapse
|
33
|
Buya AB, Witika BA, Bapolisi AM, Mwila C, Mukubwa GK, Memvanga PB, Makoni PA, Nkanga CI. Application of Lipid-Based Nanocarriers for Antitubercular Drug Delivery: A Review. Pharmaceutics 2021; 13:2041. [PMID: 34959323 PMCID: PMC8708335 DOI: 10.3390/pharmaceutics13122041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial drugs currently used for the management of tuberculosis (TB) exhibit poor bioavailability that necessitates prolonged treatment regimens and high dosing frequency to achieve optimal therapeutic outcomes. In addition, these agents cause severe adverse effects, as well as having detrimental interactions with other drugs used in the treatment of comorbid conditions such as HIV/AIDS. The challenges associated with the current TB regimens contribute to low levels of patient adherence and, consequently, the development of multidrug-resistant TB strains. This has led to the urgent need to develop newer drug delivery systems to improve the treatment of TB. Targeted drug delivery systems provide higher drug concentrations at the infection site, thus leading to reduced incidences of adverse effects. Lipid-based nanocarriers have proven to be effective in improving the solubility and bioavailability of antimicrobials whilst decreasing the incidence of adverse effects through targeted delivery. The potential application of lipid-based carriers such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carriers, nano and microemulsions, and self-emulsifying drug delivery systems for the treatment of TB is reviewed herein. The composition of the investigated lipid-based carriers, their characteristics, and their influence on bioavailability, toxicity, and sustained drug delivery are also discussed. Overall, lipid-based systems have shown great promise in anti-TB drug delivery applications. The summary of the reviewed data encourages future efforts to boost the translational development of lipid-based nanocarriers to improve TB therapy.
Collapse
Affiliation(s)
- Aristote B. Buya
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Bwalya A. Witika
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa;
| | - Alain M. Bapolisi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Chiluba Mwila
- School of Health Sciences, Department of Pharmacy, University of Zambia, Lusaka 10101, Zambia;
| | - Grady K. Mukubwa
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| | - Patrick B. Memvanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu 570, Democratic Republic of the Congo;
| | - Pedzisai A. Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Christian I. Nkanga
- Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (A.B.B.); (G.K.M.); (P.B.M.)
| |
Collapse
|
34
|
Diallyl Trisulfide, the Antifungal Component of Garlic Essential Oil and the Bioactivity of Its Nanoemulsions Formed by Spontaneous Emulsification. Molecules 2021; 26:molecules26237186. [PMID: 34885768 PMCID: PMC8658937 DOI: 10.3390/molecules26237186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the chemical compounds of garlic essential oil (EO), and determine the antifungal efficacy of garlic EO and its major components, diallyl trisulfide and its nanoemulsions against wood-rotting fungi, Trametes hirsuta and Laetiporus sulphureus. GC-MS analysis revealed that the major constituents of garlic EO were diallyl trisulfide (39.79%), diallyl disulfide (32.91%), and diallyl sulfide (7.02%). In antifungal activity, the IC50 value of garlic EO against T. hirsuta and L. sulphureus were 137.3 and 44.6 μg/mL, respectively. Results from the antifungal tests demonstrated that the three major constituents were shown to have good antifungal activity, in which, diallyl trisulfide was the most effective against T. hirsuta and L. sulphureus, with the IC50 values of 56.1 and 31.6 μg/mL, respectively. The diallyl trisulfide nanoemulsions showed high antifungal efficacy against the examined wood-rotting fungi, and as the amount of diallyl trisulfide in the lipid phase increases, the antifungal efficacy of the nanoemulsions increases. These results showed that the nanoemulsions and normal emulsion of diallyl trisulfide have potential to develop into a natural wood preservative.
Collapse
|
35
|
Abd-Rabou AA, Edris AE. Cytotoxic, apoptotic, and genetic evaluations of Nigella sativa essential oil nanoemulsion against human hepatocellular carcinoma cell lines. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00101-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phytochemicals and plant extracts are showing promising anticancer potentials. In the current study, the volatile faction (essential oil) of Nigella sativa seeds was evaluated against some hepatocellular carcinoma (HCC). The essential oil was extracted and characterized by chromatographic techniques to reveal its chemical composition, especially thymoquinone. Then, the oil was fabricated in two nanoemulsion formulations (F1 and F2), which differ in their composition of surfactants. The cytotoxicity and apoptotic activities of the essential oil and its nanoemulsions were evaluated in vitro against HepG2 and Huh-7 cell lines. Normal WI-38 cell line was also included in that evaluation to study the selectivity and safety of the different formulations on normal cells.
Results
Gas chromatographic analysis indicated that the essential oil is composed mainly of p-cymene (40.0%), thymoquinone (31.2%) and trans-α-thujene (12.8%). Particle size of the nanoemulsions ranged between 9.4 and 119.7 nm depending on the type of surfactant used in the formulation process. The pure essential oil and its two nanoemulsions (F1 and F2) showed dose-dependent antiproliferative activity against both HCC cells. This activity reached its highest cell inhibition in the case of nanoemulsion (F2) where the proliferation percentage was only 21.9% and 9.2% against HepG2 and Huh-7 cells, respectively. The same nanoemulsion (F2) also showed the lowest IC50 values (55.7 and 35.5 µg/ml) against both HepG2 and Huh-7 cells, respectively, compared to 100 µg/ml for the reference drug Doxorubicin. Flow cytometric analysis also confirmed that nanoemulsion (F2) has the highest apoptotic activity compared to nanoemulsion (F1) and the pure unformulated essential oil. Genetic expressions of pro-apoptotic (Bax) and the anti-apoptotic (Bcl-2) gene markers evaluation revealed that nanoemulsion (F2) has better activity in upregulating (Bax) and down-regulate (Bcl-2) with the highest Bax/Bcl-2 ratio (69) was found against Huh-7 cells. All N. sativa nanoemulsions showed minimal cytotoxicity on the normal WI-38 cell, indicating wide safety margins due to selective properties.
Conclusion
Overall, the study revealed the potentials of N. sativa essential oil, after formulation in specially tailored nanoemulsion for application as potential adjuvant liver anticancer agent.
Graphical Abstract
Collapse
|
36
|
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Development and optimization of drug-loaded nanoemulsion system by phase inversion temperature (PIT) method using Box-Behnken design. Drug Dev Ind Pharm 2021; 47:977-989. [PMID: 34278910 DOI: 10.1080/03639045.2021.1957920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The objective of the present investigation was to develop a stable and optimized drug-loaded nanoemulsion system using the phase inversion temperature (PIT) method. SIGNIFICANCE The PIT method has been widely used for the development of food-grade nanoemulsion systems. For the first time, a simple and cost-effective, PIT method was used for the development of a stable drug-loaded nanoemulsion system. METHODS Box-Behnken experimental design was used for the development of an optimized drug-loaded nanoemulsion system by the PIT method. The independent variables were optimized for responses by using the desirability function. The hydrophobic drug, benidipine was used as a modal drug. Optimized oil phase (blend of long-chain triglycerides oil, medium-chain triglycerides oil and essential oil) was used for the development of oil in water (O/W) nanoemulsion system. RESULTS Optimum nanoemulsion formulation was stable, transparent and contained 50% of oil to surfactant percentage with a droplet size of 96.57 ± 1.61 nm. The optimum formulation also showed higher in-vitro drug diffusion from dialysis membrane as compared to the marketed formulation. Nanoemulsion droplets were observed as spherical in the transmission electron microscopy (TEM) images. Box-Behnken statistical analysis revealed that all the independent variables had a significant impact on characteristics of nanoemulsion and the predicated value of independent variables was found to be valid. CONCLUSION It was concluded that the PIT method produces a stable and efficient drug-loaded nanoemulsion system. Further, the optimized oil phase can be used as an alternative to costly, commercial medium-chain triglycerides (MCT) oils, for the development of a stable nanoemulsion system.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ram Singh Bishnoi
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | - Ajay Kumar Shukla
- Department of Pharmacy, Mohanlal Sukhadia University, Udaipur, India
| | | |
Collapse
|
37
|
Anwer MK, Iqbal M, Aldawsari MF, Alalaiwe A, Ahmed MM, Muharram MM, Ezzeldin E, Mahmoud MA, Imam F, Ali R. Improved antimicrobial activity and oral bioavailability of delafloxacin by self-nanoemulsifying drug delivery system (SNEDDS). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Rolley N, Bonnin M, Lefebvre G, Verron S, Bargiel S, Robert L, Riou J, Simonsson C, Bizien T, Gimel JC, Benoit JP, Brotons G, Calvignac B. Galenic Lab-on-a-Chip concept for lipid nanocapsules production. NANOSCALE 2021; 13:11899-11912. [PMID: 34190298 DOI: 10.1039/d1nr00879j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The continuous production of drug delivery systems assisted by microfluidics has drawn a growing interest because of the high reproducibility, low batch-to-batch variations, narrow and controlled particle size distributions and scale-up ease induced by this kind of processes. Besides, microfluidics offers opportunities for high throughput screening of process parameters and the implementation of process characterization techniques as close to the product as possible. In this context, we propose to spotlight the GALECHIP concept through the development of an instrumented microfluidic pilot considered as a Galenic Lab-on-a-Chip to formulate nanomedicines, such as lipid nanocapsules (LNCs), under controlled process conditions. In this paper we suggest an optimal rational development in terms of chip costs and designs. First, by using two common additive manufacturing techniques, namely fused deposition modelling and multi-jet modelling to prototype customized 3D microfluidic devices (chips and connectors). Secondly, by manufacturing transparent Silicon (Si)/Glass chips with similar channel geometries but obtained by a new approach of deep reactive ion etching (DRIE) technology suitable with in situ small angle X-ray scattering characterizations. LNCs were successfully produced by a phase inversion composition (PIC) process with highly monodispersed sizes from 25 nm to 100 nm and formulated using chips manufactured by 3D printing and DRIE technologies. The transparent Si/Glass chip was also used for the small angle X-ray scattering (SAXS) analysis of the LNC formulation with the PIC process. The 3D printing and DRIE technologies and their respective advantages are discussed in terms of cost, easiness to deploy and process developments in a GALECHIP point of view.
Collapse
Affiliation(s)
- Nicolas Rolley
- MINT Lab, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lehri D, Kumari N, Singh RP. Ultrasound-assisted production and characterization of rice bran lecithin-based nanoemulsions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1764368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Deepali Lehri
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Rajinder Pal Singh
- M/s Rohil Khand Laboratory and Research Centre, Bareilly, Uttar Pradesh, India
| |
Collapse
|
40
|
Akram S, Anton N, Omran Z, Vandamme T. Water-in-Oil Nano-Emulsions Prepared by Spontaneous Emulsification: New Insights on the Formulation Process. Pharmaceutics 2021; 13:1030. [PMID: 34371723 PMCID: PMC8309089 DOI: 10.3390/pharmaceutics13071030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Nano-emulsions consist of stable suspensions of nano-scaled droplets that have huge loading capacities and are formulated with safe compounds. For these reasons, a large number of studies have described the potential uses of nano-emulsions, focusing on various aspects such as formulation processes, loading capabilities, and surface modifications. These studies typically concern direct nano-emulsions (i.e., oil-in-water), whereas studies on reverse nano-emulsions (i.e., water-in-oil) remain anecdotal. However, reverse nano-emulsion technology is very promising (e.g., as an alternative to liposome technology) for the development of drug delivery systems that encapsulate hydrophilic compounds within double droplets. The spontaneous emulsification process has the added advantages of optimization of the energetic yield, potential for industrial scale-up, improved loading capabilities, and preservation of fragile compounds targeted for encapsulation. In this study, we propose a detailed investigation of the processes and formulation parameters involved in the spontaneous nano-emulsification that produces water-in-oil nano-emulsions. The following details were addressed: (i) the order of mixing of the different compounds (method A and method B), (ii) mixing rates, (iii) amount of surfactants, (iv) type and mixture of surfactants, (v) amount of dispersed phase, and (vi) influence of the nature of the oil. The results emphasized the effects of the formulation parameters (e.g., the volume fraction of the dispersed phase, nature or concentration of surfactant, or nature of the oil) on the nature and properties of the nano-emulsions formed.
Collapse
Affiliation(s)
- Salman Akram
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
| | - Nicolas Anton
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Ziad Omran
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Thierry Vandamme
- Faculty of Pharmacy, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France; (S.A.); (N.A.)
- INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
41
|
Cineole-containing nanoemulsion: Development, stability, and antibacterial activity. Chem Phys Lipids 2021; 239:105113. [PMID: 34216586 DOI: 10.1016/j.chemphyslip.2021.105113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/21/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
1,8-cineole is a monoterpene commonly used by the food, cosmetic, and pharmaceutical industries owing to its flavor and fragrances properties. In addition, this bioactive monoterpene has demonstrated bactericidal and fungicidal activities. However, such activities are limited due to its low aqueous solubility and stability. This study aimed to develop nanoemulsion containing cineole and assess its stability and antibacterial activity in this context. The spontaneous emulsification method was used to prepare nanoemulsion (NE) formulations (F1, F2, F3, F4, and F5). Following the development of NE formulations, we chose the F1 formulation that presented an average droplet size (in diameter) of about 100 nm with narrow size distribution (PdI <0.2) and negative zeta potential (∼ - 35 mV). According to the analytical centrifugation method with photometric detection, F1 and F5 formulations were considered the most stable NE with lower droplet migration velocities. In addition, F1 formulation showed high incorporation efficiency (> 80 %) and TEM analyses demonstrated nanosized oil droplets with irregular spherical shapes and without any aggregation tendency. Antibacterial activity assessment showed that F1 NE was able to enhance the cineole action against Staphylococcus aureus, Enterococcus faecalis, and Streptococcus pyogenes. Therefore, using a simple and reproducible method of low energy emulsification we designed a stable nanoemulsion containing 1,8-cineole with improved antibacterial activity against Gram-positive strains.
Collapse
|
42
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
43
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Tran Q, Le Thi T, Nguyen T, Tran T, Le Q, Luu T, Dinh V. Facile synthesis of novel nanocurcuminoids–sacha inchi oil using the phase inversion temperature method: Characterization and antioxidant activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Quang‐Hieu Tran
- Chemistry Division Basic Sciences Department Saigon Technology University Ho Chi Minh City Vietnam
| | | | - Tien‐Cong Nguyen
- Department of Chemistry Ho Chi Minh City University of Education Ho Chi Minh City Vietnam
| | - Trong‐Vu Tran
- Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| | - Quang‐Tri Le
- Faculty of Agriculture and Food Technology Tien Giang University My Tho Vietnam
| | - Thi‐Thuy Luu
- Future Materials & Devices Laboratory Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City Vietnam
- Faculty of Natural Sciences Duy Tan University Da Nang Vietnam
| | - Van‐Phuc Dinh
- Future Materials & Devices Laboratory Institute of Fundamental and Applied Sciences Duy Tan University Ho Chi Minh City Vietnam
- Faculty of Natural Sciences Duy Tan University Da Nang Vietnam
| |
Collapse
|
45
|
Wang X, Bou S, Klymchenko AS, Anton N, Collot M. Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. NANOMATERIALS 2021; 11:nano11030826. [PMID: 33807096 PMCID: PMC8005018 DOI: 10.3390/nano11030826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Nanoemulsions (NEs) are water-dispersed oil droplets that constitute stealth biocompatible nanomaterials. NEs can reach an impressive degree of fluorescent brightness owing to their oily core that can encapsulate a large number of fluorophores on the condition the latter are sufficiently hydrophobic and oil-soluble. BODIPYs are among the brightest green emitting fluorophores and as neutral molecules possess high lipophilicity. Herein, we synthesized three different natural lipid-BODIPY conjugates by esterification of an acidic BODIPY by natural lipids, namely: α-tocopherol (vitamin E), cholesterol, and stearyl alcohol. The new BODIPY conjugates were characterized in solvents and oils before being encapsulated in NEs at various concentrations. The physical (size, stability over time, leakage) and photophysical properties (absorption and emission wavelength, brightness, photostability) are reported and showed that the nature of the lipid anchor and the nature of the oil used for emulsification greatly influence the properties of the bright NEs.
Collapse
Affiliation(s)
- Xinyue Wang
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
| | - Sophie Bou
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Andrey S. Klymchenko
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Nicolas Anton
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
- Correspondence: (N.A.); (M.C.)
| | - Mayeul Collot
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
- Correspondence: (N.A.); (M.C.)
| |
Collapse
|
46
|
Belcastro E, Rehman AU, Remila L, Park SH, Gong DS, Anton N, Auger C, Lefebvre O, Goetz JG, Collot M, Klymchenko AS, Vandamme TF, Schini-Kerth VB. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102379. [PMID: 33713860 DOI: 10.1016/j.nano.2021.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-β-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.
Collapse
Affiliation(s)
- Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Asad Ur Rehman
- University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Lamia Remila
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Dal Seong Gong
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | | | | | - Mayeul Collot
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Thierry F Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy.
| |
Collapse
|
47
|
Rehman AU, Anton N, Bou S, Schild J, Messaddeq N, Vandamme T, Akram S, Klymchenko A, Collot M. Tunable functionalization of nano-emulsions using amphiphilic polymers. SOFT MATTER 2021; 17:1788-1795. [PMID: 33398307 DOI: 10.1039/d0sm01952f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano-emulsions are defined as stable oil droplets sizing below 300 nm. Their singular particularity lies in the loading capabilities of their oily core, much higher than other kinds of carrier. On the other hand, functionalizing the dynamic oil/water interface, to date, has remained a challenge. To ensure the best anchoring of the reactive functions onto the surface of the droplets, we have designed specific amphiphilic polymers (APs) based on poly(maleic anhydride-alt-1-octadecene), stabilizing the nano-emulsions instead of surfactants. Aliphatic C18 chains of the APs are anchored in the droplet core, while the hydrophilic parts of the APs are poly(ethylene glycol) (PEG) chains. In addition, PEG chains are terminated with reactive (i) azide functions in order to prove the concept of the droplet decoration with clickable rhodamine (Rh-DBCO, specifically synthesized for this study), or (ii) biotin functions to verify the potential droplet functionalization with fluorescent streptavidin (streptavidin-AF-488). This study describes AP synthesis, physico-chemical characterization of the functional droplets (electron microscopy), and finally fluorescence labeling and droplet decoration. To conclude, these APs constitute an interesting solution for the stable functionalization of nano-emulsion droplets, paving a new way for the applications of nano-emulsions in targeting drug delivery.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Sophie Bou
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Jérémy Schild
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg, IGBMC, Inserm U1258, CNRS UMR7104, F-67000 Strasbourg, France.
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Salman Akram
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Mayeul Collot
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| |
Collapse
|
48
|
Tripathi AD, Sharma R, Agarwal A, Haleem DR. Nanoemulsions based edible coatings with potential food applications. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1875615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Ruchi Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Kundli, Sonepat, Haryana, India
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, New Delhi, India
| | - Dr Rizwana Haleem
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, Dwarka, New Delhi, India
| |
Collapse
|
49
|
Kawakami MYM, Zamora LO, Araújo RS, Fernandes CP, Ricotta TQN, de Oliveira LG, Queiroz-Junior CM, Fernandes AP, da Conceição EC, Ferreira LAM, Barros ALB, Aguiar MG, Oliveira AEMFM. Efficacy of nanoemulsion with Pterodon emarginatus Vogel oleoresin for topical treatment of cutaneous leishmaniasis. Biomed Pharmacother 2021; 134:111109. [PMID: 33341050 DOI: 10.1016/j.biopha.2020.111109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical skin disease caused by the protozoan genus Leishmania. The treatment is restricted to a handful number of drugs that exhibit toxic effects, limited efficacy, and drug resistance. Additionally, developing an effective topical treatment is still an enormous unmet medical challenge. Natural oils, e.g. the oleoresin from P. emarginatus fruits (SO), contain various bioactive molecules, especially terpenoid compounds such as diterpenes and sesquiterpenes. However, its use in topical formulations can be impaired due to the natural barrier of the skin for low water solubility compounds. Nanoemulsions (NE) are drug delivery systems able to increase penetration of lipophilic compounds throughout the skin, improving their topical effect. In this context, we propose the use of SO-containing NE (SO-NE) for CL treatment. The SO-NE was produced by a low energy method and presented suitable physicochemical characteristic: average diameter and polydispersity index lower than 180 nm and 0.2, respectively. Leishmania (Leishmania) amazonensis-infected BALB/c mice were given topical doses of SO or SO-NE. The topical use of a combination of SO-NE and intraperitoneal meglumine antimoniate reduced lesion size by 41 % and tissue regeneration was proven by histopathological analyses. In addition, a reduction in the parasitic load and decreased in the level of IFN-γ in the lesion may be associated, as well as a lower level of the cytokine IL-10 may be associated with a less intense inflammatory process. The present study suggests that SO-NE in combination meglumine antimoniate represents a promising alternative for the topical treatment of CL caused by L. (L.) amazonensis.
Collapse
Affiliation(s)
- Monique Y M Kawakami
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Lisset Ortiz Zamora
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Raquel S Araújo
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Caio P Fernandes
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil
| | - Tiago Q N Ricotta
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro G de Oliveira
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edemilson C da Conceição
- Laboratory of Research, Development and Innovation of Bioproducts, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lucas A M Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - André L B Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marta G Aguiar
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna E M F M Oliveira
- Department of Biological Sciences and Health, Amapá Federal University, Macapá, Amapá, Brazil.
| |
Collapse
|
50
|
Ding S, Cheng W, Zhang L, Du G, Hao X, Nie G, Xu B, Zhang M, Su Q, Serra CA. Organic molecule confinement reaction for preparation of the Sn nanoparticles@graphene anode materials in Lithium-ion battery. J Colloid Interface Sci 2021; 589:308-317. [PMID: 33472150 DOI: 10.1016/j.jcis.2020.12.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022]
Abstract
Sn@Graphene composites as anode materials in Lithium-ion batteries have attracted intensive interest due to the inherent high capacity. On the other side, the high atomic ratio (Li4.4Sn) induces the pulverization of the electrode with cycling. Thus, suppressing pulverization by designing the structure of the materials is an essential key for improving cyclability. Applying the nanotechnologies such as electrospinning, soft/hard nano template strategy, surface modification, multi-step chemical vapor deposition (CVD), and so on has demonstrated the huge advantage on this aspect. These strategies are generally used for homogeneous dispersing Sn nanomaterials in graphene matrix or constructing the voids in the inner of the materials to obtain the mechanical buffer effect. Unfortunately, these processes induce huge energy consumption and complicated operation. To solve the issue, new nanotechnology for the composites by the bottom-up strategy (Organic Molecule Confinement Reaction (OMCR)) was shown in this report. A 3D organic nanoframes was synthesized as a graphene precursor by low energy nano emulsification and photopolymerization. SnO2 nanoparticles@3D organic nanoframes as the composites precursor were in-situ formed in the hydrothermal reaction. After the redox process by the calcination, the Sn nanoparticles with nanovoids (~100 nm, uniform size) were homogeneously dispersed in a Two-Dimensional Laminar Matrix of graphene nanosheets (2DLMG) by the in-situ patterning and confinement effect from the 3D organic nanoframes. The pulverization and crack of the composites were effectively suppressed, which was proved by the electrochemical testing. The Sn nanoparticles@2DLMG not delivered just the high cyclability during 200 cycles, but also firstly achieved a high specific capacity (539 mAh g-1) at the low loading Sn (19.58 wt%).
Collapse
Affiliation(s)
- Shukai Ding
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China; Université de Strasbourg, CNRS, ICS UPR 22, F-67000 Strasbourg, France
| | - Wei Cheng
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Longming Zhang
- Xi'an ZheJiang XiRe LiHua Intelligent Sensor Technology Co. Ltd., Xi'an 710032, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China.
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | - Guanjian Nie
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, ShaanXi University of Science and Technology, Xi'an 710021, China
| | | |
Collapse
|