1
|
Burlet E, Thomas N, Carwell S, Gershman BW, Morefield GL. Formulation Attributes Impact Immune Profile of an Oral and Thermostable COVID-19 Subunit Vaccine. Vaccines (Basel) 2024; 12:1087. [PMID: 39460254 PMCID: PMC11511547 DOI: 10.3390/vaccines12101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
While approved vaccines for COVID-19 provide protection against severe disease and death, they have limited efficacy in the prevention of infection and virus transmission. Mucosal immunity is preferred over systemic immunity to provide protection at the point of entry against pathogens such as SARS-CoV-2. VaxForm has developed an oral vaccine delivery platform that elicits mucosal and systemic immune responses by targeting immune cells in the gut through C-type lectin receptors. The technology consists of microencapsulating the vaccine with an enteric polymer, which also results in enhanced thermostability. This article describes the formulation development and in vivo testing of a novel protein-based oral COVID-19 vaccine using this technology. Results demonstrate successful induction of immune response in mice and showed that the particle size of the vaccines following administration can impact the ratio of mucosal to systemic response. Immunogenicity and thermostability of liquid suspension and dry powder versions of the vaccine were compared in mice. The liquid suspension vaccine showed excellent heat resistance by maintaining immunogenicity after 14 days of storage at 60 °C. While further investigation is needed to determine correlates of protection and duration of response for mucosal immunity, this study demonstrates the vaccine's potential as a COVID-19 booster to enhance mucosal protection in humans and improve global access by lowering the cost of production, removing cold-chain requirements, and allowing self-administration.
Collapse
|
2
|
Liu Y, Lam DMK, Luan M, Zheng W, Ai H. Recent development of oral vaccines (Review). Exp Ther Med 2024; 27:223. [PMID: 38590568 PMCID: PMC11000446 DOI: 10.3892/etm.2024.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Oral immunization can elicit an effective immune response and immune tolerance to specific antigens. When compared with the traditional injection route, delivering antigens via the gastrointestinal mucosa offers superior immune effects and compliance, as well as simplicity and convenience, making it a more optimal route for immunization. At present, various oral vaccine delivery systems exist. Certain modified bacteria, such as Salmonella, Escherichia coli and particularly Lactobacillus, are considered promising carriers for oral vaccines. These carriers can significantly enhance immunization efficiency by actively replicating in the intestinal tract following oral administration. The present review provided a discussion of the main mechanisms of oral immunity and the research progress made in the field of oral vaccines. Additionally, it introduced the advantages and disadvantages of the currently more commonly administered injectable COVID-19 vaccines, alongside the latest advancements in this area. Furthermore, recent developments in oral vaccines are summarized, and their potential benefits and side effects are discussed.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | - Mei Luan
- Department of Geriatric Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Wenfu Zheng
- Chinese Academy of Sciences Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
3
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
4
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
6
|
Dénes B, Fuller RN, Kelin W, Levin TR, Gil J, Harewood A, Lőrincz M, Wall NR, Firek AF, Langridge WHR. A CTB-SARS-CoV-2-ACE-2 RBD Mucosal Vaccine Protects Against Coronavirus Infection. Vaccines (Basel) 2023; 11:1865. [PMID: 38140268 PMCID: PMC10747655 DOI: 10.3390/vaccines11121865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Mucosal vaccines protect against respiratory virus infection by stimulating the production of IgA antibodies that protect against virus invasion of the mucosal epithelium. In this study, a novel protein subunit mucosal vaccine was constructed for protection against infection by the beta coronavirus SARS-CoV-2. The vaccine was assembled by linking a gene encoding the SARS-CoV-2 virus S1 angiotensin converting enzyme receptor binding domain (ACE-2-RBD) downstream from a DNA fragment encoding the cholera toxin B subunit (CTB), a mucosal adjuvant known to stimulate vaccine immunogenicity. A 42 kDa vaccine fusion protein was identified in homogenates of transformed E. coli BL-21 cells by acrylamide gel electrophoresis and by immunoblotting against anti-CTB and anti-ACE-2-RBD primary antibodies. The chimeric CTB-SARS-CoV-2-ACE-2-RBD vaccine fusion protein was partially purified from clarified bacterial homogenates by nickel affinity column chromatography. Further vaccine purification was accomplished by polyacrylamide gel electrophoresis and electro-elution of the 42 kDa chimeric vaccine protein. Vaccine protection against SARS-CoV-2 infection was assessed by oral, nasal, and parenteral immunization of BALB/c mice with the CTB-SARS-CoV-2-ACE-2-RBD protein. Vaccine-induced SARS-CoV-2 specific antibodies were quantified in immunized mouse serum by ELISA analysis. Serum from immunized mice contained IgG and IgA antibodies that neutralized SARS-CoV-2 infection in Vero E6 cell cultures. In contrast to unimmunized mice, cytological examination of cell necrosis in lung tissues excised from immunized mice revealed no detectable cellular abnormalities. Mouse behavior following vaccine immunization remained normal throughout the duration of the experiments. Together, our data show that a CTB-adjuvant-stimulated CTB-SARS-CoV-2-ACE-2-RBD chimeric mucosal vaccine protein synthesized in bacteria can produce durable and persistent IgA antibodies in mice that neutralize the SARS-CoV-2 subvariant Omicron BA.1.1.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ryan N. Fuller
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Wayne Kelin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Tessa R. Levin
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Jaipuneet Gil
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
| | - Aaren Harewood
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Department of Basic Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - Márta Lőrincz
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary;
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Anthony F. Firek
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Comparative Effectiveness and Clinical Outcomes Research Center (CECORC), Riverside University Health System Medical Center, Moreno Valley, CA 92555, USA
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall, Loma Linda, CA 92350, USA; (B.D.); (R.N.F.); (W.K.); (T.R.L.); (J.G.); (A.H.); (N.R.W.); (A.F.F.)
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Jones EM, Cain KD. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms 2023; 11:2917. [PMID: 38138061 PMCID: PMC10745647 DOI: 10.3390/microorganisms11122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines continue to play an enormous role in the progression of aquaculture industries worldwide. Though preventable diseases cause massive economic losses, injection-based vaccine delivery is cost-prohibitive or otherwise impractical for many producers. Most oral vaccines, which are much cheaper to administer, do not provide adequate protection relative to traditional injection or even immersion formulas. Research has focused on determining why there appears to be a lack of protection afforded by oral vaccines. Here, we review the basic immunological principles associated with oral vaccination before discussing the recent progress and current status of oral vaccine research. This knowledge is critical for the development and advancement of efficacious oral vaccines for the aquaculture industry.
Collapse
Affiliation(s)
| | - Kenneth D. Cain
- Department of Fisheries and Wildlife, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
8
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
Pérez-Sancristóbal I, de la Fuente E, Álvarez-Hernández MP, Guevara-Hoyer K, Morado C, Martínez-Prada C, Freites-Nuñez D, Villaverde V, Fernández-Arquero M, Fernández-Gutiérrez B, Sánchez-Ramón S, Candelas G. Long-Term Benefit of Perlingual Polybacterial Vaccines in Patients with Systemic Autoimmune Diseases and Active Immunosuppression. Biomedicines 2023; 11:1168. [PMID: 37189785 PMCID: PMC10136188 DOI: 10.3390/biomedicines11041168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION We have previously shown that trained-immunity-based vaccines, namely TIbV, significantly reduce the rate of recurrent infections, both of the respiratory tract (RRTI) and urinary tract infections (RUTI) in SAD patients on disease-modifying drugs (DMARDs). OBJECTIVE We evaluated the frequency of RRTI and RUTI from 2018 to 2021 in those SAD patients that received TIbV until 2018. Secondarily, we evaluated the incidence and clinical course of COVID-19 in this cohort. METHODS A retrospective observational study was conducted in a cohort of SAD patients under active immunosuppression immunized with TIbV (MV130 for RRTI and MV140 for RUTI, respectively). RESULTS Forty-one SAD patients on active immunosuppression that were given TIbV up to 2018 were studied for RRTI and RUTI during the 2018-2021 period. Approximately half of the patients had no infections during 2018-2021 (51.2% no RUTI and 43.5% no RRTI at all). When we compared the 3-year period with the 1-year pre-TIbV, RRTI (1.61 ± 2.26 vs. 2.76 ± 2.57; p = 0.002) and RUTI (1.56 ± 2.12 vs. 2.69 ± 3.07; p = 0.010) episodes were still significantly lower. Six SAD patients (four RA; one SLE; one MCTD) with RNA-based vaccines were infected with SARS-CoV-2, with mild disease. CONCLUSIONS Even though the beneficial protective effects against infections of TIbV progressively decreased, they remained low for up to 3 years, with significantly reduced infections compared to the year prior to vaccination, further supporting a long-term benefit of TIbV in this setting. Moreover, an absence of infections was observed in almost half of patients.
Collapse
Affiliation(s)
- Inés Pérez-Sancristóbal
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo de la Fuente
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | | | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Concepción Morado
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Dalifer Freites-Nuñez
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | | | - Miguel Fernández-Arquero
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Benjamín Fernández-Gutiérrez
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Rheumatology Department, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, IML and IdISSC, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Gloria Candelas
- Rheumatology Department, Hospital Clínico San Carlos, 28040 Madrid, Spain
| |
Collapse
|
10
|
Radiom M, Keys T, Turgay Y, Ali A, Preet S, Chesnov S, Lutz-Bueno V, Slack E, Mezzenga R. Mechanical tuning of virus-like particles. J Colloid Interface Sci 2023; 634:963-971. [PMID: 36571858 DOI: 10.1016/j.jcis.2022.12.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Virus-like particles (VLPs) are promising scaffolds for developing mucosal vaccines. For their optimal performance, in addition to design parameters from an immunological perspective, biophysical properties may need to be considered. EXPERIMENTS We investigated the mechanical properties of VLPs scaffolded on the coat protein of Acinetobacter phage AP205 using atomic force microscopy and small angle X-ray scattering. FINDINGS Investigations showed that AP205 VLP is a tough nanoshell of stiffness 93 ± 23 pN/nm and elastic modulus 0.11 GPa. However, its mechanical properties are modulated by attaching muco-inert polyethylene glycol to 46 ± 10 pN/nm and 0.05 GPa. Addition of antigenic peptides derived from SARS-CoV2 spike protein by genetic fusion increased the stiffness to 146 ± 54 pN/nm although the elastic modulus remained unchanged. These results, which are interpreted in terms of shell thickness and coat protein net charge variations, demonstrate that surface conjugation can induce appreciable changes in the biophysical properties of VLP-scaffolded vaccines.
Collapse
Affiliation(s)
- Milad Radiom
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland; Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| | - Tim Keys
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Yagmur Turgay
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Ahmed Ali
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Swapan Preet
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Serge Chesnov
- University of Zürich/ETH Zürich, Functional Genomics Centre Zürich, Zürich, Switzerland
| | | | - Emma Slack
- Laboratory of Food Immunology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
11
|
Nano-Encapsulated Antioxidant: Retinoic Acid as a Natural Mucosal Adjuvant for Intranasal Immunization against Chronic Experimental Toxoplasmosis. Trop Med Infect Dis 2023; 8:tropicalmed8020106. [PMID: 36828522 PMCID: PMC9962073 DOI: 10.3390/tropicalmed8020106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The tight relationship between immunity and retinoid levels provides evidence on the critical role of retinoic acid (RA) in regulating immune activity, especially the mucosal one. Mucosal immune response is the key for determination of the outcome of infection, particularly against intracellular mucosal pathogens such as Toxoplasma gondii, where it plays a crucial role as a sentinel against parasite invasion. Herein, the immunomodulatory adjuvant role of RA was evaluated for prophylactic vaccination against chronic Toxoplasma infection. A quantity of 15 µg of RA pre-encapsulated with lipid-based nanoparticles (SLNs) was intranasally used in three doses, two weeks apart, as an adjuvant to the Toxoplasma lysate antigen (TLA). Afterward, mice were infected with 20 cysts of T. gondii (ME49 strain) and were sacrificed at the 4th week post-infection. Parasitological, immunological, biochemical, and histopathological studies were applied as vaccine efficacy measures. The protective role of the tested vaccine was noted using the statistically marked reduction in brain cyst count, accompanied by remarkable levels of protective IFN-γ and antibodies, with amelioration of infection-induced oxidative stress and brain pathology. Ultimately, this experiment outlined the prospective role of a novel, natural, nano-encapsulated and mucosal vaccine adjuvant RA-SLNs as a propitious candidate against chronic toxoplasmosis.
Collapse
|
12
|
Sun L, Zhao N, Li H, Wang B, Li H, Zhang X, Zhao X. Construction of a Lactobacillus plantarum-based claudin-3 targeting delivery system for the development of vaccines against Eimeria tenella. Vaccine 2023; 41:756-765. [PMID: 36526500 DOI: 10.1016/j.vaccine.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Avian coccidiosis causes huge economic losses to the poultry industry worldwide and currently lacks effective live vector vaccines. Achieving efficient antigen delivery to mucosa-associated lymphoid tissue (MALT) is critical for improving the effectiveness of vaccines. Here, chicken claudin-3 (CLDN3), a tight junction protein expressed in MALT, was identified as a target, and the C-terminal region of Clostridium perfringens enterotoxin (C-CPE) was proven to bind to chicken CLDN3. Then, a CLDN3-targeting Lactobacillus plantarum NC8-expressing C-CPE surface display system (NC8/GFP-C-CPE) was constructed to successfully express the heterologous protein on the surface of L. plantarum. The colonization level of NC8/GFP-C-CPE was significantly increased compared to the non-targeting strain and could persist in the intestine for at least 72 h. An oral vaccine strain expressing five EGF domains of Eimeria tenella microneme protein 8 (EtMIC8-EGF) (NC8/EtMIC8-EGF-C-CPE) was constructed to evaluate the protective efficacy against E. tenella infection. The results revealed that CLDN3-targeting L. plantarum induced stronger mucosal immunity in gut-associated lymphoid tissues (GALT) as well as humoral responses and conferred better protection in terms of parasite replication and pathology than the non-targeting strain. Overall, we successfully constructed a CLDN3-targeting L. plantarum NC8 surface display system characterized by MALT-targeting, which is an efficient antigen delivery system to confer enhanced protective efficacy in chickens against E. tenella infection.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Huihui Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Bingxiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China.
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City 271018, Shandong Province, China.
| |
Collapse
|
13
|
Said DE, Amer EI, Sheta E, Makled S, Diab HE, Arafa FM. Nano-Encapsulated Melatonin: A Promising Mucosal Adjuvant in Intranasal Immunization against Chronic Experimental T. gondii Infection. Trop Med Infect Dis 2022; 7:tropicalmed7120401. [PMID: 36548656 PMCID: PMC9785012 DOI: 10.3390/tropicalmed7120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melatonin (MLT) is now emerging as one of the universally accepted immunostimulators with broad applications in medicine. It is a biological manipulator of the immune system, including mucosal ones. MLT was encapsulated in solid lipid nanoparticles (SLNs), then 100 mg/kg/dose of MLT-SLNs was used as an adjuvant of Toxoplasma lysate antigen (TLA). Experimental mice were intra-nasally inoculated with three doses of different regimens every two weeks, then challenged with 20 cysts of T. gondii Me49 strain, where they were sacrificed four weeks post-infection. Protective vaccine efficacy was evident via the significant brain cyst count reduction of 58.6%, together with remarkably high levels of humoral systemic and mucosal anti-Toxoplasma antibodies (Ig G, Ig A), supported by a reduced tachyzoites invasion of Vero cells in vitro upon incubation with sera obtained from these vaccinated mice. A cellular immune response was evident through the induction of significant levels of interferon-gamma (IFN γ), associated with morphological deteriorations of cysts harvested from the brains of vaccinated mice. Furthermore, the amelioration of infection-induced oxidative stress (OS) and histopathological changes were evident in mice immunized with TLA/MLT-SLNs. In conclusion, the present study highlighted the promising role of intranasal MLT-SLNs as a novel mucosal adjuvant candidate against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Doaa E. Said
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hala E. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
- Correspondence:
| | - Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| |
Collapse
|
14
|
Docando F, Arense P, Martín-Martín A, Wang T, Tafalla C, Díaz-Rosales P. Search for effective oral adjuvants for rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 128:419-424. [PMID: 35917890 DOI: 10.1016/j.fsi.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Disease prevention by vaccination is, on economic, environmental and ethical grounds the most appropriate method for pathogen control currently available to the aquaculture sector. However, vaccine administration in aquatic animals faces obvious technical problems not encountered in other land animals. Thus, oral vaccines are highly demanded by the aquaculture sector that requests alternatives to the labor-intensive injectable vaccines that require individual handling of fish, provoking stress-related immunosuppression and handling mortalities. Despite this, most previous attempts to obtain effective oral vaccines have failed both in fish and mammals. This could be a consequence of very restricted tolerance mechanisms in the intestine given the fact that this mucosa is at the frontline upon antigen encounter and has to balance the delicate equilibrium between tolerance and immunity in a microbe rich aquatic environment. In this context, the search for an optimal combination of antigen and adjuvant that can trigger an adequate immune response able to circumvent intestinal tolerance is needed for each pathogen. To this aim, we have explored potential of molecules such as β-glucans, flagellin, CpG and bacterial lipopolysacharide (LPS) as oral adjuvants. For this, we have determined the effects of these adjuvants ex vivo in rainbow trout intestine tissue sections, and in vitro in leucocytes isolated from rainbow trout spleen and intestine. The effects were evaluated by analyzing the levels of transcription of different genes related to the innate and adaptive immune response, as well as evaluating the number of IgM-secreting cells. LPS seems to be the molecule with stronger immunostimulatory potential, and could safely be used as a mucosal adjuvant in rainbow trout. Moreover, the designed strategy provides a fast methodology to screen adjuvants that are suitable for oral vaccination, providing us with valuable information about how the intestinal mucosa is regulated in fish.
Collapse
Affiliation(s)
- Felix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain; Autonomous University of Madrid, Madrid, Spain
| | - Paula Arense
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - Alba Martín-Martín
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
15
|
Anggraeni R, Ana ID, Agustina D, Martien R. Induction of protein specific antibody by carbonated hydroxy apatite as a candidate for mucosal vaccine adjuvant. Dent Mater J 2022; 41:710-723. [PMID: 35858789 DOI: 10.4012/dmj.2021-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Buccal mucosae are considered as a site for vaccine delivery since they are relatively abundant with antigen-presenting dendritic cells, mainly Langerhans cells. In this study, we formulated carbonated hydroxy apatite (CHA) with ovalbumin (OVA) (denoted as CHA-OVA), incorporated it into bilayer buccal membrane to form hydrogel films containing CHA-OVA complex for vaccination via buccal mucosae. Ethylcellulose blend with polyethylene glycol 400 were used as impermeable backing layer. Physical properties of all tested buccal membranes were found suitable for mucosal application. In vitro and ex vivo release study showed there was no burst release of OVA found from all tested formula. From the in vivo examination, rabbit buccal mucosae vaccinated by mucoadhesive membranes containing CHA-OVA complex demonstrated mucosal specific antibody induction, represented the potential of CHA as a candidate of needle-free vaccine adjuvant. Future research is awaiting to investigate proper CHA crystallinity in complex with protein against targeted diseases.
Collapse
Affiliation(s)
- Rahmi Anggraeni
- Graduate Program of Dental Science, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada
| | - Dewi Agustina
- Department of Oral Medicine, Faculty of Dentistry, Universitas Gadjah Mada
| | - Ronny Martien
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada
| |
Collapse
|
16
|
Docando F, Nuñez-Ortiz N, Gonçalves G, Serra CR, Gomez-Casado E, Martín D, Abós B, Oliva-Teles A, Tafalla C, Díaz-Rosales P. Bacillus subtilis Expressing the Infectious Pancreatic Necrosis Virus VP2 Protein Retains Its Immunostimulatory Properties and Induces a Specific Antibody Response. Front Immunol 2022; 13:888311. [PMID: 35720351 PMCID: PMC9198257 DOI: 10.3389/fimmu.2022.888311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis has been documented in the past years as an effective probiotic for different aquacultured species, with recognized beneficial effects on water quality, fish growth and immune status. Furthermore, its potential as a vaccine adjuvant has also been explored in different species. In the current work, we have used B. subtilis spores as delivery vehicles for the presentation of the VP2 protein from infectious pancreatic necrosis virus (IPNV). For this, the VP2 gene was amplified and translationally fused to the crust protein CotY. The successful expression of VP2 on the spores was confirmed by Western blot. We then compared the immunostimulatory potential of this VP2-expressing strain (CRS208) to that of the original B. subtilis strain (168) on rainbow trout (Oncorhynchus mykiss) leukocytes obtained from spleen, head kidney and the peritoneal cavity. Our results demonstrated that both strains significantly increased the percentage of IgM+ B cells and the number of IgM-secreting cells in all leukocyte cultures. Both strains also induced the transcription of a wide range of immune genes in these cultures, with small differences between them. Importantly, specific anti-IPNV antibodies were detected in fish intraperitoneally or orally vaccinated with the CRS208 strain. Altogether, our results demonstrate B. subtilis spores expressing foreign viral proteins retain their immunomodulatory potential while inducing a significant antibody response, thus constituting a promising vaccination strategy.
Collapse
Affiliation(s)
- Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain.,Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Gabriela Gonçalves
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Cláudia R Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Eduardo Gomez-Casado
- Department of Biotechnology, National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Diana Martín
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Beatriz Abós
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Agricultural and Food Research and Technology Institute (INIA), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Xu Y, Jiang X, Zhou Z, Ferguson T, Obliosca J, Luo CC, Chan KW, Kong XP, Tison CK. Mucosal Delivery of HIV-1 Glycoprotein Vaccine Candidate Enabled by Short Carbon Nanotubes. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2200011. [PMID: 36186663 PMCID: PMC9523582 DOI: 10.1002/ppsc.202200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The HIV-1 envelope glycoprotein spike is the target of antibodies, and therefore represents the main viral antigen for antibody-based vaccine design. One of the challenges in HIV-1 vaccine development is finding efficient ways for the immune system to recognize and respond to HIV-1 without establishing an infection. Since HIV-1 enters the body at mucosal surfaces, induction of immune response at these sites is a preferred preventive approach. Nasal administration is a very effective route for mucosal immunization since it can stimulate mucosal immune responses both locally and distantly. In this paper, Luna develops a safe, short carbon nanotube (CNT)-based, needle-free delivery platform known as "CNTVac". The size of short CNT was controlled to possess HIV-1 particle-like morphology (100-200 nm) capable of efficiently delivering a broad range of antigens intranasally. PEG-Lipid served as the antigen conformation protector and mucosal barrier penetration enhancer (Schematic Figure) was localized between V1V2 antigens, which caused highly enhanced local IgA and systemic antibody IgG responses in mice and rabbits. The short CNT incorporated with PEG-Lipid could not only serve as efficient delivery system but also reduce the amount of lipid usage in order to balance the vaccine dosage in order to eliminate the potential adverse effect. These data suggest a promising platform technology for vaccine delivery.
Collapse
Affiliation(s)
- Yang Xu
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Ziyou Zhou
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Tammy Ferguson
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Judy Obliosca
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, US, New York, New York, USA
| | - Christopher K Tison
- Biotech Group, Luna Labs, Luna Innovations Incorporated, Charlottesville, VA, USA
| |
Collapse
|
18
|
Candela F, Quarta E, Buttini F, Ancona A, Bettini R, Sonvico F. Recent Patents on Nasal Vaccines Containing Nanoadjuvants. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:103-121. [PMID: 35450539 PMCID: PMC10184237 DOI: 10.2174/2667387816666220420124648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 05/17/2023]
Abstract
Vaccines are one of the greatest medical achievements of modern medicine. The nasal mucosa represents an effective route of vaccination for both mucosal immunity and peripheral, being at the same time an inductive and effector site of immunity. In this paper, the innovative and patented compositions and manufacturing procedures of nanomaterials have been studied using the peerreviewed research literature. Nanomaterials have several properties that make them unique as adjuvant for vaccines. Nanoadjuvants through the influence of antigen availability over time affect the immune response. Namely, the amount of antigen reaching the immune system or its release over prolonged periods of time can be effectively increased by nanoadjuvants. Mucosal vaccines are an interesting alternative for immunization of diseases in which pathogens access the body through these epithelia. Nanometric adjuvants are not only a viable approach to improve the efficacy of nasal vaccines but in most of the cases they represent the core of the intellectual property related to the innovative vaccine.
Collapse
Affiliation(s)
- Francesco Candela
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Eride Quarta
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Adolfo Ancona
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ruggero Bettini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
- University Centre for Innovation in Health Products (Biopharmanet-TEC), University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
19
|
Anggraeni R, Ana ID, Wihadmadyatami H. Development of mucosal vaccine delivery: an overview on the mucosal vaccines and their adjuvants. Clin Exp Vaccine Res 2022; 11:235-248. [DOI: 10.7774/cevr.2022.11.3.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rahmi Anggraeni
- PT Swayasa Prakarsa, Universitas Gadjah Mada Science Techno Campus, Division of Drugs, Medical Devices, and Functional Food, Yogyakarta, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
20
|
Soleymani S, Tavassoli A, Housaindokht MR. An overview of progress from empirical to rational design in modern vaccine development, with an emphasis on computational tools and immunoinformatics approaches. Comput Biol Med 2022; 140:105057. [PMID: 34839187 DOI: 10.1016/j.compbiomed.2021.105057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Vaccination remains the most effective strategy for preventing and controlling infectious diseases. Numerous conventional vaccines, especially live attenuated, inactivated (killed) microorganisms and subunit vaccines, lead to an effective induction of protective immune responses, mainly antibody-mediated responses against pathogens. However, it has become known that a wide range of highly dangerous pathogens are uncontrollable via conventional vaccination strategies. Recent advances in molecular biology, immunology, genetics, biochemistry, and bioinformatics have provided new prospects for vaccine development. As a result of these advances, several new strategies for vaccine design, development, and production have appeared. These strategies show advantages over conventional vaccines. In this review, we discuss some of the major novel approaches, including recombinant protein vaccines, live recombinant viral and bacterial vectors, DNA and RNA vaccines, reverse vaccinology and reverse genetics approaches. Moreover, we have described the recent progresses on computational tools and immunoinformatics approaches for identifying, designing, and developing new candidate vaccines.
Collapse
Affiliation(s)
- Safoura Soleymani
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Housaindokht
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
21
|
Iwamoto A, Inoue Y, Tachibana H, Kawahara H. Immunomodulatory effect of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in allergic conditions in vitro and in vivo. Cytotechnology 2021; 73:333-342. [PMID: 34149169 PMCID: PMC8166990 DOI: 10.1007/s10616-020-00438-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
We found that strawberry extract suppressed immunoglobulin (Ig) E production in vitro and in vivo, and identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as one of the IgE suppressor in the extract. We report here the effect of GAPDH on various Ig productions in vitro and in vivo. GAPDH suppressed IgE and enhanced IgA, IgG and IgM productions in ovalbumin (OVA)-stimulated human peripheral blood mononuclear cells. Oral administration of GAPDH at 10 mg/kg/day to OVA-induced allergy model mice tended to decrease total IgE level and increase total IgA and IgG levels in sera, and also decreased OVA-specific IgE and IgG levels. It is known that the increase of total IgA as well as the decrease of total and specific IgE is important for alleviating allergic symptoms. In addition, GAPDH accelerated IgA production and increased some cytokine secretions such as IL-4, TGF-β1 and IFN-γ in the OVA-immunized mice spleen lymphocytes. These cytokines involved in the class-switching, IgA enhancement, and IgE suppression, respectively, supporting above results. Our study suggests a possibility that oral administration of GAPDH may induce the immunomodulation in allergic responses.
Collapse
Affiliation(s)
- Akira Iwamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Yuichi Inoue
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biochemistry, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 Japan
| | - Hiroharu Kawahara
- Department of Creative Engineering, National Institute of Technology, Kitakyushu College, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka, 802-0985 Japan
| |
Collapse
|
22
|
Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front Immunol 2021; 11:622377. [PMID: 33664735 PMCID: PMC7921309 DOI: 10.3389/fimmu.2020.622377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of mucosal vaccines against pathogens is currently a highly explored area of research in both humans and animals. This is due to the fact that mucosal vaccines have the potential to best elicit protective responses at these mucosal surfaces, which represent the frontline of host defense, thus blocking the pathogen at its initial replication sites. However, in order to provide an efficient long-lasting protection, these mucosal vaccines have to be capable of eliciting an adequate systemic immune response in addition to local responses. In aquaculture, the need for mucosal vaccines has further practical implications, as these vaccines would avoid the individual manipulation of fish out of the water, being beneficial from both an economic and animal welfare point of view. However, how B and T cells are organized in teleost fish within these mucosal sites and how they respond to mucosally delivered antigens varies greatly when compared to mammals. For this reason, it is important to establish which mucosally delivered antigens have the capacity to induce strong and long-lasting B and T cell responses. Hence, in this review, we have summarized what is currently known regarding the adaptive immune mechanisms that are induced both locally and systemically in fish after mucosal immunization through different routes of administration including oral and nasal vaccination, anal intubation and immersion vaccination. Finally, based on the data presented, we discuss how mucosal vaccination strategies could be improved to reach significant protection levels in these species.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
23
|
The Role of Mucosal Immunity and Recombinant Probiotics in SARS-CoV2 Vaccine Development. Probiotics Antimicrob Proteins 2021; 13:1239-1253. [PMID: 33770348 PMCID: PMC7996120 DOI: 10.1007/s12602-021-09773-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), causing the 2019 novel coronavirus disease (COVID-19), was introduced by WHO (World Health Organization) as "pandemic" in March 2020. According to WHO, thus far (23 November 2020) 58,425,681 infected cases including 1,385,218 deaths have been reported worldwide. In order to reduce transmission and spread of this lethal virus, attempts are globally being made to develop an appropriate vaccine. Intending to neutralize pathogens at their initial entrance site, protective mucosal immunity is inevitably required. In SARS-CoV2 infection and transmission, respiratory mucosa plays a key role; hence, apparently mucosal vaccination could be a superior approach to elicit mucosal and systemic immune responses simultaneously. In this review, the advantages of mucosal vaccination to control COVID-19 infection, limitations, and outcomes of mucosal vaccines have been highlighted. Considering the gut microbiota dysregulation in COVID-19, we further provide evidences on utilization of recombinant probiotics, particularly lactic acid bacteria (LAB) as vaccine carrier. Their intrinsic immunomodulatory features, natural adjuvanticity, and feasible expression of relevant antigen in the mucosal surface make them more appealing as live cell factory. Among all available platforms, bioengineered probiotics are considered as the most affordable, most practical, and safest vaccination approach to halt this emerging virus.
Collapse
|
24
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
25
|
Martín-Martín A, Simón R, Abós B, Díaz-Rosales P, Tafalla C. Rainbow trout mount a robust specific immune response upon anal administration of thymus-independent antigens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103715. [PMID: 32325069 PMCID: PMC7242905 DOI: 10.1016/j.dci.2020.103715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 05/14/2023]
Abstract
Despite the strong demand for orally-delivered fish vaccines and the deficient response of those currently available in the market, little is known about how teleost B cells differentiate to antibody secreting cells (ASCs) in response to antigens delivered to the intestinal mucosa. To fill this gap, in the current study, we have studied the dynamics of B cell differentiation in spleen and kidney of rainbow trout (Oncorhynchus mykiss) anally immunized with antigens catalogued in mammals as thymus dependent (TD) or thymus-independent (TI). Our results show that, in the absence of additional adjuvants, rainbow trout preferentially responded to a model TI antigen such as TNP-LPS (2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide). The anal administration of TNP-LPS elicited TNP-specific serum antibodies, and a significant increase in the number of total and TNP-specific ASCs in both spleen and kidney, being the kidney the site where most ASCs are found at later time points. In the spleen, a proliferative response of both IgM+ B and T cells was also clearly visible, while the proliferative response was weaker in the kidney. Finally, TNP-LPS also provoked a transcriptional regulation of some immune genes in the spleen and the intestine, including a decreased transcription of foxp3a and foxp3b in intestine that suggests a breach in tolerogenic responses in response to TI stimulation. These results contribute to a better understanding of how intestinal immunity is regulated in teleost and will aid in the future design of effective oral strategies for aquaculture.
Collapse
Affiliation(s)
- Alba Martín-Martín
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Rocío Simón
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain.
| | - Carolina Tafalla
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
26
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
27
|
Current state-of-the-art in the use of plants for the production of recombinant vaccines against infectious bursal disease virus. Appl Microbiol Biotechnol 2020; 104:2287-2296. [PMID: 31980920 DOI: 10.1007/s00253-020-10397-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/11/2022]
Abstract
Infectious bursal disease is a widely spread threatening contagious viral infection of chickens that induces major damages to the Bursa of Fabricius and leads to severe immunosuppression in young birds causing significant economic losses for poultry farming. The etiological agent is the infectious bursal disease virus (IBDV), a non-enveloped virus belonging the family of Birnaviridae. At present, the treatment against the spread of this virus is represented by vaccination schedules mainly based on inactivated or live-attenuated viruses. However, these conventional vaccines present several drawbacks such as insufficient protection against very virulent strains and the impossibility to differentiate vaccinated animals from infected ones. To overcome these limitations, in the last years, several studies have explored the potentiality of recombinant subunit vaccines to provide an effective protection against IBDV infection. In this review, we will give an overview of these novel types of vaccines with special emphasis on current state-of-the-art in the use of plants as "biofactories" (plant molecular farming). In fact, plants have been thoroughly and successfully characterized as heterologous expression systems for the production of recombinant proteins for different applications showing several advantages compared with traditional expression systems (Escherichia coli, yeasts and insect cells) such as absence of animal pathogens in the production process, improved product quality and safety, reduction of manufacturing costs, and simplified scale-up.
Collapse
|
28
|
Woodhams DC, Rollins-Smith LA, Reinert LK, Lam BA, Harris RN, Briggs CJ, Vredenburg VT, Patel BT, Caprioli RM, Chaurand P, Hunziker P, Bigler L. Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria. MICROBIAL ECOLOGY 2020; 79:192-202. [PMID: 31093727 DOI: 10.1007/s00248-019-01385-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Biological Science, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Laura K Reinert
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Briana A Lam
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-9610, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, 94132-1722, USA
| | - Bhumi T Patel
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Peter Hunziker
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
29
|
Sánchez Ramón S, Manzanares M, Candelas G. MUCOSAL anti-infections vaccines: Beyond conventional vaccines. REUMATOLOGIA CLINICA 2020; 16:49-55. [PMID: 30527360 DOI: 10.1016/j.reuma.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
An urgent search is currently underway for alternatives to antibiotics to prevent infections, due to the accelerated evolution and increase in antibiotic resistance. This problem is more serious for patients with recurrent infections, since they have to use many cycles of antibiotics per year, so the risk for antibiotic resistance is higher and can be life-threatening. In recent years, the use of prophylactic vaccines via the mucosal route for these patients with recurrent infections has been demonstrated as a potentially beneficial and safe alternative to prevent infections. The new knowledge about mucosal immunity and trained immunity, a form of innate immunity memory that can enhance the response to different infectious threads, has made it easier to extend its use. The application of the new concepts of trained immunity may explain the simultaneous pro-tolerogenic and boosting effect or effects of these drugs on diverse immune cells for different infections. In this review, we describe the immunomodulatory mechanisms of mucosal polybacterial vaccines and their connection with trained immunity and its utility in the prevention of recurrent infections in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Mario Manzanares
- Servicio de Inmunología, Hospital Clínico San Carlos, Madrid, España
| | - Gloria Candelas
- Servicio de Reumatología, Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
30
|
Li M, Wang Y, Sun Y, Cui H, Zhu SJ, Qiu HJ. Mucosal vaccines: Strategies and challenges. Immunol Lett 2019; 217:116-125. [PMID: 31669546 DOI: 10.1016/j.imlet.2019.10.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Mucosal immunization has potential benefits over conventional parenteral immunization, eliciting immune defense in both mucosal and systemic tissue for protecting from pathogen invasion at mucosal surfaces. To provide a first line of protection at these entry ports, mucosal vaccines have been developed and hold a significant promise for reducing the burden of infectious diseases. However, until very recently, only limited mucosal vaccines are available. This review summarizes recent advances in selected aspects regarding mucosal vaccination, including appropriate administration routes, reasonable formulations, antigen-sampling and immune responses of mucosal immunity, and the strategies used to improve mucosal vaccine efficacy. Finally, the challenges of developing successful mucosal vaccines and the potential solutions are discussed.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shu J Zhu
- College of Animal Science, Zhejiang University, Hangzhou, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
31
|
Nagasawa Y, Kiku Y, Sugawara K, Hirose A, Kai C, Kitano N, Takahashi T, Nochi T, Aso H, Sawada SI, Akiyoshi K, Hayashi T. Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder. BMC Vet Res 2019; 15:286. [PMID: 31399125 PMCID: PMC6688226 DOI: 10.1186/s12917-019-2025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder. Results Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = − 0.811, P < 0.01). Conclusion In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis. Electronic supplementary material The online version of this article (10.1186/s12917-019-2025-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuya Nagasawa
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Kazue Sugawara
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Aya Hirose
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Chiaki Kai
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan
| | - Nana Kitano
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Toshihiko Takahashi
- Graduate school of Dairy Science, Rakuno Gakuen University, 582, Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomonori Nochi
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Hisashi Aso
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-0845, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohito Hayashi
- Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.
| |
Collapse
|
32
|
Sanchez-Guzman D, Le Guen P, Villeret B, Sola N, Le Borgne R, Guyard A, Kemmel A, Crestani B, Sallenave JM, Garcia-Verdugo I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 2019; 217:119308. [PMID: 31279103 DOI: 10.1016/j.biomaterials.2019.119308] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
Most of current influenza virus vaccines fail to develop a strong immunity at lung mucosae (site of viral entry) due to sub-optimal vaccination protocols (e.g. inactivated virus administered by parenteral injections). Mucosal immunity could be improved by using locally-delivered vaccines containing appropriate adjuvants. Here we show, in a mouse model, that inclusion of silver nanoparticles (AgNPs) in virus-inactivated flu vaccine resulted in reduction of viral loads and prevention of excessive lung inflammation following influenza infection. Concomitantly, AgNPs enhanced specific IgA secreting plasma cells and antibodies titers, a hallmark of successful mucosal immunity. Moreover, vaccination in the presence of AgNPs but not with gold nanoparticles, protected mice from lethal flu. Compared with other commercial adjuvants (squalene/oil-based emulsion) or silver salts, AgNPs stimulated stronger antigen specific IgA production with lower toxicity by promoting bronchus-associated lymphoid tissue (BALT) neogenesis, and acted as a bona fide mucosal adjuvant.
Collapse
Affiliation(s)
- Daniel Sanchez-Guzman
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Pierre Le Guen
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Nuria Sola
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Remi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205, Cedex 13, Paris, France
| | - Alice Guyard
- Department of Pathology, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Alix Kemmel
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Bruno Crestani
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France; Department of Pneumology A, AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Paris, 75018, Paris, France
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodeling), Université Paris Diderot, Sorbonne Paris Cité, 75018, Paris, France.
| |
Collapse
|
33
|
Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Appl Microbiol Biotechnol 2019; 103:5947-5955. [PMID: 31175431 DOI: 10.1007/s00253-019-09912-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
Abstract
Over the past two decades, lactic acid bacteria (LAB) have been intensively studied as potential bacterial carriers for therapeutic materials, such as vaccine antigens, to the mucosal tissues. LAB have several attractive advantages as carriers of mucosal vaccines, and the effectiveness of LAB vaccines has been demonstrated in numerous studies. Research on LAB vaccines to date has focused on whether antigen-specific immunity, particularly antibody responses, can be induced. However, with recent developments in immunology, microbiology, and vaccinology, more detailed analyses of the underlying mechanisms, especially, of the induction of cell-mediated immunity and memory cells, have been required for vaccine development and licensure. In this mini-review, we will discuss the issues, including (i) immune responses other than antibody production, (ii) persistence of LAB vaccine immunity, (iii) comparative evaluation of LAB vaccines with any existing or reference vaccines, (iv) strategies for increasing the effectiveness of LAB vaccines, and (iv) effects of microbiota on the efficacy of LAB vaccines. Although these issues have been rarely studied or discussed to date in relation to LAB vaccine research, further understanding of them is critical for the practical application of LAB vaccine systems.
Collapse
Affiliation(s)
- Keita Takahashi
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| | - Nozomi Orito
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Nagisa Tokunoh
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan
| | - Naoki Inoue
- Department of Microbiology and Immunology, Gifu Pharmaceutical University, 1-25-4 Daigaku Nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
34
|
Yang W, Xiao Y, Huang X, Chen F, Sun M, Bilotta AJ, Xu L, Lu Y, Yao S, Zhao Q, Liu Z, Cong Y. Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43. THE JOURNAL OF IMMUNOLOGY 2019; 203:282-292. [PMID: 31076530 DOI: 10.4049/jimmunol.1801068] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
The gut microbiota has been shown critical for mucosal adjuvant activity of cholera toxin (CT), a potent mucosal adjuvant. However, the mechanisms involved remain largely unknown. In this study, we report that depletion of gut bacteria significantly decreased mucosal and systemic Ab responses in mice orally immunized with OVA and CT. Feeding mice short-chain fatty acids (SCFAs) promoted Ab responses elicited by CT, and, more importantly, rescued Ab responses in antibiotic-treated mice. In addition, mice deficient in GPR43, a receptor for SCFAs, showed impaired adjuvant activity of CT. Administering CT did not promote SCFA production in the intestines; thus, SCFAs facilitated but did not directly mediate the adjuvant activity of CT. SCFAs promoted B cell Ab production by promoting dendritic cell production of BAFF and ALDH1a2, which induced B cell expression of IFN regulatory factor 4, Blimp1, and XBP1, the plasma B cell differentiation-related genes. Furthermore, when infected with Citrobacter rodentium, GPR43-/- mice exhibited decreased Ab responses and were more susceptible to infection, whereas the administration of SCFAs promoted intestinal Ab responses in wild-type mice. Our study thereby demonstrated a critical role of gut microbiota and their metabolite SCFAs in promoting mucosal adjuvant activity of CT through GPR43.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yi Xiao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, Sichuan 611130, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Mingming Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Leiqi Xu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, China; and
| | - Yao Lu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
35
|
Puth S, Hong SH, Na HS, Lee HH, Lee YS, Kim SY, Tan W, Hwang HS, Sivasamy S, Jeong K, Kook JK, Ahn SJ, Kang IC, Ryu JH, Koh JT, Rhee JH, Lee SE. A built-in adjuvant-engineered mucosal vaccine against dysbiotic periodontal diseases. Mucosal Immunol 2019; 12:565-579. [PMID: 30487648 DOI: 10.1038/s41385-018-0104-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023]
Abstract
Periodontitis is associated with a dysbiotic shift in the oral microbiome. Vaccine approaches to prevent microbial shifts from healthy to diseased state in oral biofilms would provide a fundamental therapeutic strategy against periodontitis. Since dental plaque formation is a polymicrobial and multilayered process, vaccines targeting single bacterial species would have limited efficacy in clinical applications. In this study, we developed a divalent mucosal vaccine consisting of a mixture of FlaB-tFomA and Hgp44-FlaB fusion proteins targeting virulence factors of inflammophilic bacteria Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. Introduction of peptide linkers between FlaB and antigen improved the stability and immunogenicity of engineered vaccine antigens. The intranasal immunization of divalent vaccine induced protective immune responses inhibiting alveolar bone loss elicited by F. nucleatum and P. gingivalis infection. The built-in flagellin adjuvant fused to protective antigens enhanced antigen-specific antibody responses and class switch recombination. The divalent vaccine antisera recognized natural forms of surface antigens and reacted with diverse clinical isolates of Fusobacterium subspecies and P. gingivalis. The antisera inhibited F. nucleatum-mediated biofilm formation, co-aggregation of P. gingivalis and Treponema denticola, and P. gingivalis-host cell interactions. Taken together, the built-in adjuvant-engineered mucosal vaccine provides a technological platform for multivalent periodontitis vaccines targeting dysbiotic microbiome.
Collapse
Affiliation(s)
- Sao Puth
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Seol Hee Hong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Hye Hwa Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Youn Suhk Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Wenzhi Tan
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hye Suk Hwang
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Sethupathy Sivasamy
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Kwangjoon Jeong
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sug-Joon Ahn
- Dental Research Institute and Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - In-Chol Kang
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jeong Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea. .,Department of Microbiology, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
| | - Shee Eun Lee
- Clinical Vaccine R&D Center, Chonnam National University, Hwasun-gun, Jeonnam, 58128, Republic of Korea. .,Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
36
|
Ebensen T, Delandre S, Prochnow B, Guzmán CA, Schulze K. The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Front Cell Infect Microbiol 2019; 9:31. [PMID: 30838180 DOI: 10.3389/fcimb.2019.00031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
The development of new effective vaccines strongly depends on adjuvants and formulations able to stimulate not only strong humoral responses against a certain pathogen but also effector as well as memory CD4+ and CD8+ T cells (Dubensky et al., 2013). However, the majority of vaccines licensed for human use or currently under clinical investigation fail to stimulate efficient cellular responses. For example, vaccines against hepatitis B virus (HBV), human papillomavirus (HPV), diphtheria, tetanus and influenza are usually administered by intramuscular (i.m.) injection and contain aluminum salts (alum) as adjuvant. Alum has been shown to stimulate Th2 immune cells resulting in increased production of antigen-specific antibodies but to be incapable of stimulating robust Th1 or cytotoxic responses. To overcome such limitations recent research has focused on the development of adjuvant combinations (e.g., MF59, AS03 or AS04) to not only further strengthen antigen-specific immune responses but to also allow their modulation. We have shown previously that bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) constitutes a promising adjuvant candidate stimulating both effective Th1/Th2 and cytotoxic immune responses when included in mucosal or parenteral vaccine formulations. In the present work we demonstrate that c-di-AMP can be also combined with other adjuvants like alum resulting in increases in not only humoral responses but more striking also in cellular immune responses. This leads to improved vaccine efficacy against intracellular pathogens.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Simon Delandre
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Blair Prochnow
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
Platt JL, West LJ, Chinnock RE, Cascalho M. Toward a solution for cardiac failure in the newborn. Xenotransplantation 2018; 25:e12479. [PMID: 30537350 DOI: 10.1111/xen.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023]
Abstract
The newborn infant with severe cardiac failure owed to congenital structural heart disease or cardiomyopathy poses a daunting therapeutic challenge. The ideal solution for both might be cardiac transplantation if availability of hearts was not limiting and if tolerance could be induced, obviating toxicity of immunosuppressive therapy. If one could safely and effectively exploit neonatal tolerance for successful xenotransplantation of the heart, the challenge of severe cardiac failure in the newborn infant might be met. We discuss the need, the potential for applying neonatal tolerance in the setting of xenotransplantation and the possibility that other approaches to this problem might emerge.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Lori J West
- Department of Pediatrics, Department of Surgery, Department of Immunology, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Richard E Chinnock
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
38
|
Islam MA, Firdous J, Badruddoza AZM, Reesor E, Azad M, Hasan A, Lim M, Cao W, Guillemette S, Cho CS. M cell targeting engineered biomaterials for effective vaccination. Biomaterials 2018; 192:75-94. [PMID: 30439573 DOI: 10.1016/j.biomaterials.2018.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/09/2018] [Accepted: 10/28/2018] [Indexed: 02/08/2023]
Abstract
Vaccines are one of the greatest medical interventions of all time and have been successful in controlling and eliminating a myriad of diseases over the past two centuries. Among several vaccination strategies, mucosal vaccines have wide clinical applications and attract considerable interest in research, showing potential as innovative and novel therapeutics. In mucosal vaccination, targeting (microfold) M cells is a frontline prerequisite for inducing effective antigen-specific immunostimulatory effects. In this review, we primarily focus on materials engineered for use as vaccine delivery platforms to target M cells. We also describe potential M cell targeting areas, methods to overcome current challenges and limitations of the field. Furthermore, we present the potential of biomaterials engineering as well as various natural and synthetic delivery technologies to overcome the challenges of M cell targeting, all of which are absent in current literature. Finally, we briefly discuss manufacturing and regulatory processes to bring a robust perspective on the feasibility and potential of this next-generation vaccine technology.
Collapse
Affiliation(s)
- Mohammad Ariful Islam
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jannatul Firdous
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abu Zayed Md Badruddoza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emma Reesor
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Mohammad Azad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Michael Lim
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Wuji Cao
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Simon Guillemette
- Department of Nanotechnology Engineering, University of Waterloo, Waterloo, Canada
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
39
|
Bykov AS, Karaulov AV, Tsomartova DA, Kartashkina NL, Goriachkina VL, Kuznetsov SL, Stonogina DA, Chereshneva YV. M CELLS ARE THE IMPORTANT POST IN THE INITIATION OF IMMUNE RESPONSE IN INTESTINE. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018. [DOI: 10.15789/2220-7619-2018-3-263-272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microfold cells (M cells) are specialized intestinal epithelial cells that initiate mucosal immune responses. These unique phagocytic epithelial cells are specialized for the transfer of a broad range of particulate antigens and microorganisms across the follicle-associated epithelium (FAE) into the gut-associated lymphoid tissue (GALT) by a process termed transcytosis. The molecular basis of antigen uptake by M cells has been gradually identified in the last decade. Active sampling of intestinal antigen initiates regulated immune responses that ensure intestinal homeostasis. The delivery of luminal substances across the intestinal epithelium to the immune system is a critical event in immune surveillance resulting in tolerance to dietary antigens and immunity to pathogens (e.g., bacteria, viruses, and parasites) and their toxins. Several specialized mechanisms transport luminal antigen across the gut epithelium. Discovery of M cell-specific receptors are of great interest, which could act as molecular tags for targeted delivery oral vaccine to M cells. Recent studies demonstrated that M cells utilize several receptors to recognize and transport specific luminal antigens. Vaccination through the mucosal immune system can induce effective systemic immune responses simultaneously with mucosal immunity. How this process is regulated is largely unknown. This review aims to show a new understanding of the factors that influence the development and function of M cells; to show the molecules expressed on M cells which appear to be used as immunosurveillance receptors to sample pathogenic microorganisms in the gut; to note how certain pathogens appear to exploit M cells to inject the host; and, finally, how this knowledge is used to specifically "target" antigens to M cells to attempt to improve the efficacy of mucosal vaccines. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells.
Collapse
|
40
|
M cell-targeting strategy enhances systemic and mucosal immune responses induced by oral administration of nuclease-producing L. lactis. Appl Microbiol Biotechnol 2018; 102:10703-10711. [PMID: 30310964 DOI: 10.1007/s00253-018-9427-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
Abstract
Efficient delivery of antigens to the gut-associated lymphoid tissue (GALT) is the most critical step for the induction of mucosal immunity by oral vaccines. As M cells are the main portal for luminal antigens into the GALT, the M cell-targeting of antigens affords a promising strategy toward the development of effective oral vaccines. Lactococcus lactis is a fascinating recombinant host for oral vaccines, as they survive and produce antigens in the gut and have a particularly safe profile for human use. In this study, we developed and evaluated an M cell-targeting oral immunization system using recombinant L. lactis strains. For the purpose, we generated an L. lactis strain that secretes a model antigen fused with the OmpH β1α1 domain of Yersinia enterocolitica, which has been shown to bind to a complement C5a receptor on the M cell surface. As the model antigen, Staphylococcus aureus nuclease was used for fusion, resulting in L. lactis-expressing Nuc-OmpH (LL/Nuc-OmpH). Ex vivo intestinal loop assays showed that the amount of Nuc-OmpH taken up into Peyer's patches was more than that of the unfused nuclease (Nuc). In addition, oral administration of the recombinant L. lactis strains to mice demonstrated that LL/Nuc-OmpH-induced nuclease-specific fecal IgA and serum IgG titers were significantly higher than those induced by LL/Nuc. These results indicate that OmpH works as an M cell-targeting molecule when fused with antigens secreted from L. lactis and that the M cell-targeting strategy affords a promising platform for L. lactis-based mucosal immunization.
Collapse
|
41
|
Hoh RA, Boyd SD. Gut Mucosal Antibody Responses and Implications for Food Allergy. Front Immunol 2018; 9:2221. [PMID: 30319658 PMCID: PMC6170638 DOI: 10.3389/fimmu.2018.02221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal mucosa is a critical environmental interface where plasma cells and B cells are exposed to orally-ingested antigens such as food allergen proteins. It is unclear how the development of B cells and plasma cells in the gastrointestinal mucosa differs between healthy humans and those with food allergy, and how B cells contribute to, or are affected by, the breakdown of oral tolerance. In particular, the antibody gene repertoires associated with symptomatic allergy have only begun to be characterized in full molecular detail. Here, we review literature concerning B cells and plasma cells in the gastrointestinal system in the context of food allergy, with a focus on human studies.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
42
|
Kim KA, Son YO, Kim SS, Jang YS, Baek YH, Kim CC, Lee JH, Lee JC. Glycoproteins isolated from Atractylodes macrocephala Koidz improve protective immune response induction in a mouse model. Food Sci Biotechnol 2018; 27:1823-1831. [PMID: 30483447 DOI: 10.1007/s10068-018-0430-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 07/01/2018] [Indexed: 01/26/2023] Open
Abstract
This study examined the efficacy of Atractylodes macrocephala Koidz (AMK) protein and polysaccharide extracts as adjuvant or adjuvant booster when given together with porcine pleuropneumonia vaccine. Experimental mice (n = 5/group) were subcutaneously immunized with 25 μg ApxIIA #3 antigen, a target protein against A. pleuropneumoniae, together with alum and/or various concentrations (0-500 μg) of the AMK extracts, while the control group received PBS only. Immunization with ApxIIA #3 antigen increased the antigen-specific IgG titer and this increase was enhanced in the immunization together with AMK protein, but not polysaccharide extract. Supplementation of AMK protein extract exhibited dose-dependent increases in the antigen-induced protective immunity against A. pleuropneumoniae challenge and in the lymphocyte proliferation specific to the antigen. Glycoproteins present in the AMK extract were the active components responsible for immune response induction. Collectively, the present findings suggest that AMK glycoproteins are useful as immune stimulating adjuvant or adjuvant booster.
Collapse
Affiliation(s)
- Kyoung-A Kim
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Young-Ok Son
- 2Cell Dynamics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 South Korea
| | - So-Soon Kim
- 3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| | - Yong-Suk Jang
- 3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| | - Young-Hyun Baek
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Chun-Chu Kim
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Jeong-Hoon Lee
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea
| | - Jeong-Chae Lee
- 1Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, 54896 South Korea.,3Department of Bioactive Material Sciences, Research Center of Bioactive Materials and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 54896 South Korea
| |
Collapse
|
43
|
Abstract
Our ability to generate bacterial strains with unique and increasingly complex functions has rapidly expanded in recent times. The capacity for DNA synthesis is increasing and costing less; new tools are being developed for fast, large-scale genetic manipulation; and more tested genetic parts are available for use, as is the knowledge of how to use them effectively. These advances promise to unlock an exciting array of 'smart' bacteria for clinical use but will also challenge scientists to better optimize preclinical testing regimes for early identification and validation of promising strains and strategies. Here, we review recent advances in the development and testing of engineered bacterial diagnostics and therapeutics. We highlight new technologies that will assist the development of more complex, robust and reliable engineered bacteria for future clinical applications, and we discuss approaches to more efficiently evaluate engineered strains throughout their preclinical development.
Collapse
|
44
|
Immunization Strategies Against Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:197-225. [PMID: 29383671 DOI: 10.1007/978-3-319-72799-8_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C. difficile infection (CDI) is an important healthcare- but also community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients and prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to restore immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens, either toxins or colonization factors.
Collapse
|
45
|
Ebensen T, Debarry J, Pedersen GK, Blazejewska P, Weissmann S, Schulze K, McCullough KC, Cox RJ, Guzmán CA. Mucosal Administration of Cycle-Di-Nucleotide-Adjuvanted Virosomes Efficiently Induces Protection against Influenza H5N1 in Mice. Front Immunol 2017; 8:1223. [PMID: 29033942 PMCID: PMC5624999 DOI: 10.3389/fimmu.2017.01223] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
The need for more effective influenza vaccines is highlighted by the emergence of novel influenza strains, which can lead to new pandemics. There is a growing population of susceptible subjects at risk for severe complications of influenza, such as the elderly who are only in part protected by current licensed seasonal vaccines. One strategy for improving seasonal and pandemic vaccines takes advantage of adjuvants to boost and modulate evoked immune responses. In this study, we examined the capacity of the recently described adjuvant cyclic di-adenosine monophosphate (c-di-AMP) to serve as an adjuvant for improved mucosal influenza vaccines, and induce effective protection against influenza H5N1. In detail, c-di-AMP promoted (i) effective local and systemic humoral immune responses, including protective hemagglutination inhibition titers, (ii) effective cellular responses, including multifunctional T cell activity, (iii) induction of long-lasting immunity, and (iv) protection against viral challenge. Furthermore, we demonstrated the dose-sparing capacity of the adjuvant as well as the ability to evoke cross-clade protective immune responses. Overall, our results suggest that c-di-AMP contributes to the generation of a protective cell-mediated immune response required for efficacious vaccination against influenza, which supports the further development of c-di-AMP as an adjuvant for seasonal and pandemic influenza mucosal vaccines.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jennifer Debarry
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gabriel K Pedersen
- The Influenza Centre, University of Bergen, Bergen, Norway.,Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Paulina Blazejewska
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Weissmann
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Rebecca J Cox
- The Influenza Centre, University of Bergen, Bergen, Norway.,Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
46
|
Puth S, Hong SH, Park MJ, Lee HH, Lee YS, Jeong K, Kang IC, Koh JT, Moon B, Park SC, Rhee JH, Lee SE. Mucosal immunization with a flagellin-adjuvanted Hgp44 vaccine enhances protective immune responses in a murine Porphyromonas gingivalis infection model. Hum Vaccin Immunother 2017; 13:2794-2803. [PMID: 28604268 PMCID: PMC5718812 DOI: 10.1080/21645515.2017.1327109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic periodontitis is caused by interactions between the oral polymicrobial community and host factors. Periodontal diseases are associated with dysbiotic shift in oral microbiota. Vaccination against periodontopathic bacteria could be a fundamental therapeutic to modulate polymicrobial biofilms. Because oral cavity is the site of periodontopathic bacterial colonization, mucosal vaccines should provide better protection than vaccines administered systemically. We previously reported that bacterial flagellin is an excellent mucosal adjuvant. In this study, we investigated whether mucosal immunization with a flagellin-adjuvanted polypeptide vaccine induces protective immune responses using a Porphyromonas gingivalis infection model. We used the Hgp44 domain polypeptide of Arg-gingipain A (RgpA) as a mucosal antigen. Intranasal (IN) immunization induced a significantly higher Hgp44-specific IgG titer in the serum of mice than sublingual (SL) administration. The co-administration of flagellin potentiated serum IgG responses for both the IN and SL vaccinations. On the other hand, the anti-Hgp44-specific IgA titer in the saliva was comparable between IN and SL vaccinations, suggesting SL administration as more compliant vaccination route for periodontal vaccines. The co-administration of flagellin significantly potentiated the secretory IgA response in saliva also. Furthermore, mice administered a mixture of Hgp44 and flagellin via the IN and SL routes exhibited significant reductions in alveolar bone loss induced by live P. gingivalis infections. An intranasally administered Hgp44-flagellin fusion protein induced a comparable level of Hgp44-specific antibody responses to the mixture of Hgp44 and flagellin. Overall, a flagellin-adjuvanted Hgp44 antigen would serve an important component for a multivalent mucosal vaccine against polymicrobial periodontitis.
Collapse
Affiliation(s)
- Sao Puth
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Seol Hee Hong
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Mi Jin Park
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Hye Hwa Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Youn Suhk Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Kwangjoon Jeong
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - In-Chol Kang
- d Department of Oral Microbiology, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea
| | - Jeong Tae Koh
- c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Byounggon Moon
- e Well Aging Research Center, Samsung Adv. Inst. of Technology (SAIT) , Samsung Electronics Co., Ltd. Suwon-si , Gyeonggi-do , Republic of Korea
| | - Sang Chul Park
- e Well Aging Research Center, Samsung Adv. Inst. of Technology (SAIT) , Samsung Electronics Co., Ltd. Suwon-si , Gyeonggi-do , Republic of Korea
| | - Joon Haeng Rhee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,b Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| | - Shee Eun Lee
- a Clinical Vaccine R&D Center , Chonnam National University , Hwasun-gun , Jeonnam , Republic of Korea.,c Department of Pharmacology and Dental Therapeutics, School of Dentistry , Chonnam National University , Gwangju , Republic of Korea ; Department of Microbiology , Chonnam National University Medical School , Hwasun-gun , Jeonnam , Republic of Korea
| |
Collapse
|
47
|
Khan IU, Huang J, Liu R, Wang J, Xie J, Zhu N. Phage Display-Derived Ligand for Mucosal Transcytotic Receptor GP-2 Promotes Antigen Delivery to M Cells and Induces Antigen-Specific Immune Response. SLAS DISCOVERY 2017; 22:879-886. [PMID: 28346102 DOI: 10.1177/2472555217690483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Successful oral immunization depends on efficient delivery of antigens (Ags) to the mucosal immune induction site. Glycoprotein-2 (GP-2) is an integral membrane protein that is expressed specifically on M cells within follicle-associated epithelium (FAE) and serves as transcytotic receptor for luminal Ags. In this study, we selected peptide ligands against recombinant human GP-2 by screening a phage display library and evaluated their interaction with GP-2 in vitro and ex vivo. Selected peptides were conjugated to the C-terminal of enhanced green fluorescence protein (EGFP) and evaluated for their ability to induce an immune response in mice. One of our selected peptides, Gb-1, showed high binding affinity to GP-2 and, when fused to EGFP, significantly increased the uptake of EGFP by M cells compared to EGFP alone. After oral administration, the Gb1-EGFP fusion induced efficient mucosal and systemic immune responses in mice measured at the level of antigen-specific serum and fecal antibodies, cytokine secretion, and lymphocyte proliferation. Furthermore, the IgG subclasses and cytokine secretion showed that ligand Gb-1 induced a Th2-type immune response. Collectively, our findings suggest that the ligand we selected through phage library screening is capable of targeting Ags to GP-2 on M cells and can be used as an oral vaccine adjuvant.
Collapse
Affiliation(s)
- Inam Ullah Khan
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jiansheng Huang
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Rui Liu
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jingbo Wang
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Jun Xie
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Naishuo Zhu
- 1 Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| |
Collapse
|
48
|
Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res 2017; 6:15-21. [PMID: 28168169 PMCID: PMC5292352 DOI: 10.7774/cevr.2017.6.1.15] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/22/2023] Open
Abstract
Vaccination is the most successful immunological practice that improves the quality of human life and health. Vaccine materials include antigens of pathogens and adjuvants potentiating the effectiveness of vaccination. Vaccines are categorized using various criteria, including the vaccination material used and the method of administration. Traditionally, vaccines have been injected via needles. However, given that most pathogens first infect mucosal surfaces, there is increasing interest in the establishment of protective mucosal immunity, achieved by vaccination via mucosal routes. This review summarizes recent developments in mucosal vaccines and their associated adjuvants.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
49
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Zatechka S. Reservoir-Targeted Vaccines as a One Health Path to Prevent Zoonotic Disease. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/ijvv.2016.02.00049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|