1
|
Adeel M, Cirillo C, Sarno M, Rizzo L. Urban wastewater disinfection by FeCl 3-activated biochar/peroxymonosulfate system: Escherichia coli inactivation and microplastics interference. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124607. [PMID: 39053802 DOI: 10.1016/j.envpol.2024.124607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Biochar coupled with peroxymonosulfate (PMS) to produce sulfate radicals and its application to urban wastewater disinfection has been rarely investigated and no information is available about microplastics (MPs) interference on the disinfection process. In this study, FeCl3-activated biochar (Fe-BC) was coupled to PMS to evaluate the inactivation of Escherichia coli (E. coli) in real secondary treated urban wastewater. Surface morphology of Fe-BC sample, characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), showed a rough texture with uniform distribution of iron particles over the entire surface area. E. coli inactivation improved (∼3.8 log units, detection limit = 1 CFU/100 mL) as Fe-BC concentration was decreased (from 1.0 g/L to 0.5 g/L), at a constant PMS dose (300 mg/L). Besides, removal efficiency of E. coli was negatively affected by the presence of small (30-50 μm) polyethylene MPs (PE MPs) (200 mg/L), which could be attributed to the adsorption of MPs on Fe-BC surface, according to SEM images of post-treated Fe-BC. The low disinfection efficiency of Fe-BC/PMS system in presence MPs could be due to blocking of Fe-BC sites for PMS activation and/or radicals scavenging during treatment. These results allowed to unveil the mechanisms of MPs interference on E. coli inactivation by Fe-BC/PMS, as well as the potential of this process to make the effluent in compliance with the stringent limit for agricultural reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Claudia Cirillo
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Maria Sarno
- Department of Physics "E.R. Caianiello" and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
2
|
Liu Z, Feng L, Li B, Lü C, Sun J, Giannakis S. Crouching bacteria, hidden tetA genes in natural waters: Intracellular damage via double persulfate activation (UVA/Fe 2+/PDS) effectively alleviates the spread of antibiotic resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135854. [PMID: 39316921 DOI: 10.1016/j.jhazmat.2024.135854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
In this study, we elucidated the chemical and biological inactivation mechanisms of peroxydisulfate (PDS) activated by UVA and Fe2+ (UVA/Fe2+/PDS) in wild-type antibiotic-resistant bacteria (ARB) isolated from a river in Inner Mongolia. Among the screened wild-type ARB, the relative abundance of unidentified Enterobacteriaceae, Stenotrophomonas, and Ralstonia was high. A ratio of 1:1 for Fe2+ and PDS under 18 W·m-2 UVA radiation (sunny days) completely inactivated the environmental ARB isolates. In the macro view of the inactivation process, Fe2+ first activates PDS rapidly, and later the UVA energy accumulated starts to activate PDS; HO• then becomes the main active species at a rate-limiting step. From a micro perspective, damage to the cell wall, intracellular proteins, inactivation of antioxidant enzymes, and genetic material degradation are the inactivation series of events by UVA/Fe2+/PDS, contributing to the 97.8 % inactivation of ARB at the initial stage. No regrowth of sublethal ARBs was observed. The transfer of tetracycline resistance genes from ARB to lab E. coli was evaluated by horizontal gene transfer (HGT), in which no HGT occurred when ARB was eliminated by UVA/Fe2+/PDS. Moreover, the sulfate and iron residuals in the effluents of treated water were lower than the drinking water standards. In summary, PDS, UVA, and Fe2+ activation effectively inactivated wild ARB with a low concentration of reagents, while inhibiting their regrowth and spread of resistance due to the contribution of intracellular inactivation pathways.
Collapse
Affiliation(s)
- Zhuochu Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Ling Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China.
| | - BoWei Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Jiquan Sun
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, University W. Road, 010021 Hohhot, Inner Mongolia, PR China
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
| |
Collapse
|
3
|
Das S, Paramanik S, Nair RG, Chowdhury A. Rational Design of Mesoporous ZnFe 2O 4@g-C 3N 4 Heterojunctions for Environmental Remediation and Hydrogen Evolution. Chemistry 2024:e202402512. [PMID: 39146044 DOI: 10.1002/chem.202402512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Mesoporous catalysts with a high specific surface area, accessible pore structures, and appropriate band edges are desirable for optimal charge transfer across the interfaces, suppress electron-hole recombination, and promote redox reactions at the active sites. The present study demonstrates the rational design of mesoporous ZnFe2O4@g-C3N4 magnetic nanocomposites (MNCs) with different pore sizes and pore volumes following a combination of facile thermal itching and thermal impregnation methods. The MNCs preserve the structural, morphological, and physical attributes of their counterparts while ensuring their effectiveness and superior catalytic capabilities. The morphological analysis confirms the successful grafting and confinement of ZnFe2O4 nanoparticles with the polymeric g-C3N4 nanosheets to form heterojunctions with numerous interfaces. The MNCs possess uniformly distributed small mesopores (pore size <4 nm), ample active sites, and a high specific surface area of 62.50 m2/g. The mesoporous ZnFe2O4@g-C3N4 notably improve hydrogen evolution rate and methylene blue dye degradation. The optimal loading weight of ZnFe2O4 is 20 %, in which the MNCs display the highest hydrogen evolution rate of 1752 μmol g-1 h-1 and photo-Fenton dye degradation rate constants of 0.147 min-1, upon solar-light illumination. Furthermore, the photocatalysts demonstrate recyclability over five consecutive cycles, confirming their stability, while easy separation using a simple magnet underscores practical utility.
Collapse
Affiliation(s)
- Suma Das
- Solar Energy Materials Research and Testing Laboratory (SMaRT Lab), Department of Physics, National Institute of Technology Silchar, Assam, 788010, India
| | - Swapnamoy Paramanik
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India
| | - Ranjith G Nair
- Solar Energy Materials Research and Testing Laboratory (SMaRT Lab), Department of Physics, National Institute of Technology Silchar, Assam, 788010, India
| | - Avijit Chowdhury
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India
| |
Collapse
|
4
|
Suyamud B, Lohwacharin J, Ngamratanapaiboon S. Effect of dissolved organic matter on bacterial regrowth and response after ultraviolet disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171864. [PMID: 38521274 DOI: 10.1016/j.scitotenv.2024.171864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The effect of dissolved organic matter (DOM) on bacterial regrowth in water after disinfection using ultraviolet (UV) light emitting diodes (UVLEDs) is still unclear. Herein, the regrowth and responses of Vibrio parahaemolyticus and Bacillus cereus were investigated after being exposed to UVLEDs at combined wavelengths (265 and 280 nm) in a phosphate-buffered saline consisting of Suwannee River natural organic matter (SRNOM) and Suwannee River fulvic acid (SRFA). Low-molecular-weight (MW) organic compounds, which may form into intermediary photoproducts, and indicate bacterial repair metabolism, were characterized through non-target screening using orbitrap mass spectrometry. This study demonstrates the ability of the UVLEDs-inactivated cells to regrow. After UV exposure, a considerable upregulation of RecA was observed in two strains. With increasing the incubation time, the expression levels of RecA in V. parahaemolyticus increased, which may be attributed to the dark repair mechanism. Coexisting anionic DOM affects both the disinfection and bacterial regrowth processes. The time required for bacterial regrowth after UV exposure reflects the time needed for the individual cells to reactivate, and it differs in the presence or absence of DOM. In the presence of DOM, the cells were less damaged and required less time to grow. The UVLEDs exposure results in the occurrence of low-MW organic compounds, including carnitine or acryl-carnitine with N-acetylmuramic acid, which are associated with bacterial repair metabolism. Overall, the results of this study expand the understanding of the effects of water matrices on bacterial health risks. This can aid in the development of more effective strategies for water disinfection.
Collapse
Affiliation(s)
- Bongkotrat Suyamud
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
5
|
Adeel M, Granata V, Carapella G, Rizzo L. Effect of microplastics on urban wastewater disinfection and impact on effluent reuse: Sunlight/H 2O 2 vs solar photo-Fenton at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133102. [PMID: 38070270 DOI: 10.1016/j.jhazmat.2023.133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
The interference of three types of microplastics (MPs) on the inactivation of Escherichia coli (E. coli) by advanced oxidation processes (AOPs) (namely, sunlight/H2O2 and solar photo-Fenton (SPF) with Ethylenediamine-N,N'-disuccinic acid (EDDS)), in real secondary treated urban wastewater was investigated for the first time. Inactivation by sunlight/H2O2 treatment decreased as MPs concentration and H2O2 dose were increased. Noteworthy, an opposite behaviour was observed for SPF process where inactivation increased as MPs concentration was increased. Biofilm formation and microbial attachment on surfaces of post-treated MPs were observed on polyethylene (PE) and polyvinyl chloride (PVC) MPs by field emission scanning electron microscopy. In presence of PE MPs, a complete inactivation of E. Coli was achieved by SPF with EDDS (Fe:EDDS = 1:2) after 90 min treatment unlike of sunlight/H2O2 treatment (∼4.0 log reduction, 40 mg/L H2O2 dose, 90 min treatment). The lower efficiency of sunlight/H2O2 process could be attributed to the blocking/scattering effect of MPs on sunlight, which finally reduced the intracellular photo Fenton effect. A reduced E. coli regrowth was observed in presence of MPs. SPF (Fe:EDDS = 1:1) with PE MPs was less effective in controlling bacterial regrowth (∼120 CFU/100 mL) than sunlight/H2O2 (∼10 CFU/100 mL) after 48 h of post-treatment. These results provide useful information about possible interference of MPs on urban wastewater disinfection by solar driven AOPs and possible implications for effluent reuse.
Collapse
Affiliation(s)
- Mister Adeel
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Veronica Granata
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Carapella
- Department of Physics "E.R. Caianiello", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
6
|
Yin Q, Ji Y, Guo Y, Manoli K, Chen W, Zhang L, Yu X, Feng M. Environmental fate and risk evolution of calcium channel blockers from chlorine-based disinfection to sunlit surface waters. WATER RESEARCH 2024; 249:120968. [PMID: 38070349 DOI: 10.1016/j.watres.2023.120968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Organic micropollutants present in disinfected wastewater and discharged to sunlit surface waters may be transformed by multiple processes, such as chlorination due to the presence of chlorine residuals, solar irradiation as well as solar-irradiated chlorine residues. This study reports, for the first time, the multi-scenario degradation kinetics, transformation products, and risk evolution of calcium channel blockers (CCBs), a class of emerging pharmaceutical contaminants with worldwide prevalence in natural waters and wastewater. It was found that the chlorination of the studied CCBs (amlodipine (AML) and verapamil (VER)) was dominated by the reaction of HOCl with their neutral species, with second-order rate constants of 6.15×104 M-1 s-1 (AML) and 7.93×103 M-1 s-1 (VER) at pH 5.0-11.0. Bromination is much faster than chlorination, with the measured kapp,HOBr values of 2.94×105 M-1 s-1 and 6.58×103 M-1 s-1 for AML and VER, respectively, at pH 7.0. Furthermore, both CCBs would undergo photolytic attenuations with hydroxyl and carbonate radicals as the dominant reactive species in water. Notably, free chlorine mainly contributed to their abatement during the solar/chlorine treatment. Additionally, the halogen addition on the aromatic ring was observed during chlorination and bromination of the two CCBs. Cyclization was observed under solar irradiation only, while the aromatic ring was opened in the solar/chlorine system. Some products generated by the three transformation processes exhibited non-negligible risks of high biodegradation recalcitrance and toxicity, potentially threatening the aquatic environment and public health. Overall, this study elucidated the environmental fate of typical CCBs under different transformation processes to better understand the resulting ecological risks in these environmental scenarios.
Collapse
Affiliation(s)
- Qian Yin
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yating Guo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China; Core Facility of Biomedical, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
La Manna P, De Carluccio M, Oliva G, Vigliotta G, Rizzo L. Urban wastewater disinfection by iron chelates mediated solar photo-Fenton: Effects on seven pathogens and antibiotic resistance transfer potential. WATER RESEARCH 2024; 249:120966. [PMID: 38070340 DOI: 10.1016/j.watres.2023.120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
The effects of solar photo-Fenton (SPF) process mediated by the iron chelate Fe3+ imminodisuccinic acid (Fe:IDS) on both the inactivation of seven relevant pathogens and the potential for antibiotic resistance transfer (degradation of antibiotic resistance genes (ARGs) and after treatment regrowth), in real secondary treated urban wastewater, were investigated for the first time. A comparison with results obtained by sunlight/H2O2 process and Fe3+ ethylenediaminedisuccinic acid (Fe:EDDS) SPF was also carried out. ARGs were quantified by polymerase chain reaction (PCR) in samples before and after (3 h) the treatment. The persistence of the selected pathogens and ARGs was also evaluated in regrowth tests (72 h) under environmentally mimicking conditions. Fe:IDS SPF resulted to be more effective (from 1.4 log removal for Staphylococcus spp. to 4.3 log removal for Escherichia coli) than Fe:EDDS SPF (from 0.8 log removal for Pseudomonas aeruginosa to 2.0 log removal for Total coliphages) and sunlight/H2O2 (from 1.2 log removal for Clostridium perfringens to 3.3 log removal for E. coli) processes for the seven pathogens investigated. Potential pathogens regrowth was also severely affected, as no substantial regrowth was observed, both in presence and absence of catalase. A similar trend was observed for ARGs removal too (until 0.001 fold change expression for qnrS after 3 h). However, a poor effect and a slight increase in fold change was observed after treatment especially for gyrA, mefA and intl1. Overall, the effect of the investigated processes on ARGs was found to be ARG dependent. Noteworthy, coliphages can regrow after sunlight/H2O2 treatment unlike SPF processes, increasing the risk of antibiotic resistance transfer by transduction mechanism. In conclusion, Fe:IDS SPF is an attractive solution for tertiary treatment of urban wastewater in small wastewater treatment plants as it can provide effective disinfection and a higher protection against antibiotic resistance transfer than the other investigated processes.
Collapse
Affiliation(s)
- Pellegrino La Manna
- Water Science and Technology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Technology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Gianmaria Oliva
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Vigliotta
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Luigi Rizzo
- Water Science and Technology group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
8
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
9
|
Melnikova A, Faggiano A, Visconti M, Cucciniello R, Iannece P, Kostryukova N, Proto A, Fiorentino A, Rizzo L. Photo driven homogeneous advanced oxidation coupled to adsorption process for an effective arsenic removal from drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119568. [PMID: 37976644 DOI: 10.1016/j.jenvman.2023.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The presence of arsenic (As) in drinking water is a major concern for human health. As(III) is the most toxic water-soluble form and it is hard to remove by separation methods, including adsorption, while As(V) is less toxic and easily removable by adsorption. In this work homogenous photo driven advanced oxidation processes (HP-AOPs), namely UVC/H2O2 and UVC/NaOCl, have been investigated in the oxidation of As(III) (initial concentration of 0.1 mg/L) to As(V) and commercial available adsorbents (γ-Al2O3, Bayoxide E33, MgAl-LDHs and ZnAl-LDHs) were tested for subsequent As(V) removal. UVC/H2O2 (99% of As removal, 19 mg/L of H2O2, 2 min of treatment time) and UVC/NaOCl (99% of As removal, 5.1 mg/L of NaOCl, 2 min of treatment time) were found to be more effective than H2O2 (2% of As removal in the same condition of UVC/H2O2) and NaOCl (6% of As removal in the same condition of UVC/NaOCl), respectively and the optimum operation conditions were identified by response surface methodology (RSM) in distilled water and subsequently confirmed in real drinking water (with differences of less than 1%). UVC/NaOCl was the most suitable process being a good compromise among oxidation efficiency, oxidant dose and treatment time. The best results in terms of subsequent removal of As(V) by adsorption were obtained using ZnAl-LDH (88% in both distilled and drinking water). Accordingly, UVC/NaOCl advanced oxidation coupled to ZnAl-LDH adsorption is the best combination for an effective removal of arsenic from drinking water.
Collapse
Affiliation(s)
- Anna Melnikova
- Department of Environmental Health & Safety, Ufa University of Science and Technology, Zaki Validi 32, 450076, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonio Faggiano
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco Visconti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Patrizia Iannece
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Natalia Kostryukova
- Department of Environmental Health & Safety, Ufa University of Science and Technology, Zaki Validi 32, 450076, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonio Proto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
10
|
Gimenes Vernasqui L, de Oliveira Santiago Santos G, Isidro J, Oliveira Silva T, de Vasconcelos Lanza MR, Saez C, Gomes Ferreira N, Rodrigo Rodrigo MA. New diamond coatings for a safer electrolytic disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117871-117880. [PMID: 37875760 DOI: 10.1007/s11356-023-30407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.
Collapse
Affiliation(s)
- Laís Gimenes Vernasqui
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Gessica de Oliveira Santiago Santos
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Julia Isidro
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Taynara Oliveira Silva
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos Roberto de Vasconcelos Lanza
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Cristina Saez
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Neidenei Gomes Ferreira
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
| | - Manuel Andres Rodrigo Rodrigo
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain.
| |
Collapse
|
11
|
Faggiano A, De Carluccio M, Cerrato F, Garcia Junior CA, Proto A, Fiorentino A, Rizzo L. Improving organic matter and nutrients removal and minimizing sludge production in landfill leachate pre-treatment by Fenton process through a comprehensive response surface methodology approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117950. [PMID: 37094386 DOI: 10.1016/j.jenvman.2023.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Francesco Cerrato
- ODS6 Clean Water and Sanitation, Av. dos Holandeses Ed. Century, Sala 2 - Térreo CEP, 65071-380, São Luís, MA, Brazil
| | | | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
12
|
Venâncio JPF, Ribeirinho-Soares S, Lopes LC, Madeira LM, Nunes OC, Rodrigues CSD. Disinfection of treated urban effluents for reuse by combination of coagulation/flocculation and Fenton processes. ENVIRONMENTAL RESEARCH 2023; 218:115028. [PMID: 36495956 DOI: 10.1016/j.envres.2022.115028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
In this study, a combination of coagulation/flocculation and Fenton processes was studied as tertiary treatment in order to generate treated water susceptible to reuse. The combination of both processes has never been applied in disinfection of real urban wastewater. The best removals of turbidity and enterobacteria were achieved when applying a coagulant (FeCl3) dosage of 120 mg/L and the natural pH of the effluent (7.14). The following Fenton reaction presented the maximal enterobacteria inactivation after 120 min at 25 °C, when using hydrogen peroxide and added iron concentrations of 100 mg/L and 7 mg/L, respectively. The abundance of antibiotic resistant (amoxicillin and sulfamethoxazole) enterobacteria and total enterobacteria, enterococci, and heterotrophs, and antibiotic resistance genes - ARG - (sul1, blaTEM and qnrS) was evaluated before and after each step of the treatment. Values below 10 CFU/100 mL were achieved for total and resistant cultivable enterobacteria immediately after treatment and after storage for 72 h, therefore meeting the strictest limit imposed for E. coli. Physico-chemical parameters also met the established limits for water reuse. Despite harbouring a rich and diverse bacterial community, the final stored disinfected wastewater contained high relative abundance of potentially hazardous bacteria. Such results point out the need of a deep microbiological characterization of treated wastewater to evaluate the risk of its reuse in irrigation.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luísa C Lopes
- SIMDOURO - Saneamento do Grande Porto, S.A., Rua Alto das Chaquedas, s/n, 4400-356, Vila Nova de Gaia, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
13
|
Karaolia P, Michael C, Schwartz T, Fatta-Kassinos D. Membrane bioreactor followed by solar photo-Fenton oxidation: Bacterial community structure changes and bacterial reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157594. [PMID: 35905961 DOI: 10.1016/j.scitotenv.2022.157594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) and taxon-specific markers, the bacterial community structure changes and the permanent inactivation of total bacteria including their antibiotic-resistant counterparts (ARB) in actual wastewater during a Membrane BioReactor (MBR) application followed by solar photo-Fenton oxidation at bench- and then pilot-scale under solar irradiation, were investigated. The presence of enterococci- and pseudomonad-specific taxon markers and of sul1 and ampC ARGs in the MBR effluent was confirmed, indicating the challenge of such processes, for the removal of biological molecules. On the other hand, >99 % reduction of all types of cultivable bacteria examined was observed after MBR treatment, with a 5-log reduction of E. coli and 6-log reduction of P. aeruginosa and Klebsiella spp. There was a shift in the bacterial community structure in the MBR effluent after the bench- and pilot-scale solar photo-Fenton oxidation. Notably, thermotolerant bacterial genera like Ignavibacterium and Thermomonas were prevalent during the pilot-scale process operated at a high ambient temperature, while the most prevalent genera were Mycobacterium, Nocardioides and Mesorhizobium, which are primarily not pathogenic and plant-related. In agreement, a different bacterial community structure according to the G-C content after DGGE analysis was noted between the MBR and solar photo-Fenton oxidation-treated effluents, but interestingly also between the bench- and pilot-scale oxidation-treated effluents. There was complete absence of ARGs after the bench-scale solar photo-Fenton oxidation application but not after the pilot-scale treatment (1.56 and 1.53 log10 CE 100 ng-1 DNA, of sul and ermB, respectively). Taxon-specific markers were found in both oxidation setups. Inactivation of cultivable Escherichia coli, Pseudomonas aeruginosa and Klebsiella spp. (including ARB) was achieved during both oxidation setups, with no further re-activation observed.
Collapse
Affiliation(s)
- Popi Karaolia
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Thomas Schwartz
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Despo Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
14
|
Faggiano A, De Carluccio M, Fiorentino A, Ricciardi M, Cucciniello R, Proto A, Rizzo L. Photo-Fenton like process as polishing step of biologically treated olive mill wastewater for phenols removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ahmed Y, Zhong J, Wang Z, Wang L, Yuan Z, Guo J. Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS 2@GO-Based Heterogeneous Photo-Fenton Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15156-15166. [PMID: 35759741 DOI: 10.1021/acs.est.2c03334] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS2) on graphene oxide (FeS2@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS2@GO catalyst (0.25 mg/L) and H2O2 (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO•), superoxide radicals (O2• -), singlet oxygen (1O2). These findings highlight that the synthesized FeS2@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants.
Collapse
Affiliation(s)
- Yunus Ahmed
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
- Department of Chemistry, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - Jiexi Zhong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Reddy S, Kaur K, Barathe P, Shriram V, Govarthanan M, Kumar V. Antimicrobial resistance in urban river ecosystems. Microbiol Res 2022; 263:127135. [DOI: 10.1016/j.micres.2022.127135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 12/07/2022]
|
17
|
Li W, Zhang G. Detection and various environmental factors of antibiotic resistance gene horizontal transfer. ENVIRONMENTAL RESEARCH 2022; 212:113267. [PMID: 35413299 DOI: 10.1016/j.envres.2022.113267] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 05/25/2023]
Abstract
Bacterial antibiotic resistance in water environments is becoming increasingly severe, and new antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have also attracted the attention of researchers. The horizontal transfer of ARGs in water environments is considered one of the main sources of bacterial resistance in the natural environment. Horizontal gene transfer (HGT) mainly includes conjugation, natural transformation, and transduction, and conjugation has been investigated most. Several studies have shown that there are a large number of environmental factors that might affect the horizontal transfer of ARGs in water environments, such as nanomaterials, various oxidants, and light; however, there is still a lack of systematic and comprehensive reviews on the detection and the effects of the influence factors of on ARG horizontal transfer. Therefore, this study introduced three HGT modes, analysed the advantages and disadvantages of current methods for monitoring HGT, and then summarized the influence and mechanism of various factors on ARG horizontal transfer, and the possible reasons for the different effects caused by similar factors were mainly critically discussed. Finally, existing research deficiencies and future research directions of ARG horizontal transfer in water environments were discussed.
Collapse
Affiliation(s)
- Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
18
|
Gupta V, Shekhawat SS, Kulshreshtha NM, Gupta AB. A systematic review on chlorine tolerance among bacteria and standardization of their assessment protocol in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:261-291. [PMID: 35906907 DOI: 10.2166/wst.2022.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though chlorine is a cost-effective disinfectant for water and wastewaters, the bacteria surviving after chlorination pose serious public health and environmental problems. This review critically assesses the mechanism of chlorine disinfection as described by various researchers; factors affecting chlorination efficacy; and the re-growth potential of microbial contaminations in treated wastewater post chlorination to arrive at meaningful doses for ensuring health safety. Literature analysis shows procedural inconsistencies in the assessment of chlorine tolerant bacteria, making it extremely difficult to compare the tolerance characteristics of different reported tolerant bacteria. A comparison of logarithmic reduction after chlorination and the concentration-time values for prominent pathogens led to the generation of a standard protocol for the assessment of chlorine tolerance. The factors that need to be critically monitored include applied chlorine doses, contact time, determination of chlorine demands of the medium, and the consideration of bacterial counts immediately after chlorination and in post chlorinated samples (regrowth). The protocol devised here appropriately assesses the chlorine-tolerant bacteria and urges the scientific community to report the regrowth characteristics as well. This would increase the confidence in data interpretation that can provide a better understanding of chlorine tolerance in bacteria and aid in formulating strategies for effective chlorination.
Collapse
Affiliation(s)
- Vinayak Gupta
- Alumnus, Department of Civil and Environmental Engineering, National University of Singapore, Singapore; School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan
| | - Sandeep Singh Shekhawat
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail: ; School of Life and Basic Sciences, SIILAS Campus, Jaipur National University Jaipur, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, Jaipur, India E-mail:
| |
Collapse
|
19
|
Manoharan RK, Ishaque F, Ahn YH. Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review. CHEMOSPHERE 2022; 298:134671. [PMID: 35460672 DOI: 10.1016/j.chemosphere.2022.134671] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have emerged in aquatic environments through the discharge of large amounts of antibiotics into wastewater. Well-designed wastewater treatment plants (WWTPs) with effective treatment processes are essential to prevent the release of ARGs directly into the environment. Although some systematic sequential treatment methods are used to remove ARGs, considerable gaps in removal mechanisms will be discussed. Therefore, deep analysis and discussion of various treatment methods are required to understand the ARGs removal mechanisms. In this manuscript, the role of antibiotics and the resistance mechanism of ARB are discussed in depth. In addition, the fate of ARGs in an aquatic environment and detection methods are compared comprehensively and discussed. In particular, the advantages and disadvantages of various methods are summarized and reviewed critically. Finally, combined technologies, such as advanced oxidation process (AOP) with biochemical systems, membrane separation with electrochemical AOP, ultrafiltration (UF) membrane coupled with photocatalytic treatment, and UF membrane separation coupled with sonication, are introduced. Overall, low-energy anaerobic treatment reactors with any of the above combined treatments might reduce the discharge of large quantities of ARGs into the environment. Finally, this review provides valuable insights for better ARG removal technologies by introducing combined effective treatment strategies used in real WWTPs.
Collapse
Affiliation(s)
| | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
20
|
Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Wang M, Ateia M, Hatano Y, Yoshimura C. Regrowth of Escherichia coli in environmental waters after chlorine disinfection: shifts in viability and culturability. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2022; 8:1521-1534. [PMID: 37534127 PMCID: PMC10394862 DOI: 10.1039/d1ew00945a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bacterial regrowth after water/wastewater disinfection poses severe risks to public health. However, regrowth studies under realistic water conditions that might critically affect bacterial regrowth are scarce. This study aimed to assess for the first time the regrowth of Escherichia coli (E. coli) in terms of its viability and culturability in environmental waters after chlorine disinfection, which is the most widely used disinfection method. Post-chlorination regrowth tests were conducted in 1) standard 0.85% NaCl solution, 2) river water receiving domestic wastewater effluents, and 3) river water that is fully recharged by domestic wastewater effluents. The multiplex detection of plate count and fluorescence-based viability test was adopted to quantify the culturable and viable E. coli to monitor the regrowth process. The results confirmed that chlorine treatment (0.2, 0.5 and 1.0 mg L-1 initial free chlorine) induced more than 99.95% of E. coli to enter a viable but non-culturable (VBNC) state and the reactivation of VBNC E. coli is presumably the major process of the regrowth. A second-order regrowth model well described the temporal shift of the survival ratio of culturable E. coli after the chlorination (R2: 0.73-1.00). The model application also revealed that the increase in initial chlorine concentration and chlorine dose limited the maximum regrowth rate and the maximum survival ratio, and the regrowth rate and percentage also changed with the water type. This study gives a better understanding of the potential regrowth after chlorine disinfection and highlights the need for investigating the detailed relation of the regrowth to environmental conditions such as major components of water matrices.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, USA
| | - Yuta Hatano
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| |
Collapse
|
22
|
Shi J, Wang B, Li X, Su Y, Wu D, Xie B. Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128432. [PMID: 35158247 DOI: 10.1016/j.jhazmat.2022.128432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of antibiotic resistance, as well as microplastics (MPs) as vectors for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has attracting growing attention. However, the fate of ARB/ARGs on MPs treated by chlorination and Fenton oxidation were poorly understood. Herein, the removal and regrowth of ARGs/ARB on MPs and in MPs-surrounding landfill leachate (an important reservoir of MPs and ARGs) after chlorination and Fenton oxidation were comparatively analyzed. Target ARGs on MPs were reduced obviously less than that in leachate, with the largest percentages reduction of 34.0-46.3% vs. 54.3-77.6% after chlorination and 92.1-97.3% vs. > 99.9% after Fenton oxidation, and similar removal patterns were observed for ARB. Moreover, a considerable regrowth of ARGs/ARB in leachate were found after 48 h of storage at the end of chlorination (5, 10, 20 and 50 mg/L), and a greater regrowth of ARGs and ARB occurred on MPs with up to 17 and 139 fold, respectively. In contrast, Fenton oxidation achieved a reduced regrowth of target ARGs/ARB. These findings indicated that the removal of ARGs/ARB on MPs were more difficult than that in leachate, and ARGs/ARB in leachate and especially on MPs exhibited a considerable potential for rapid regrowth after chlorination.
Collapse
Affiliation(s)
- Jianhong Shi
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xunan Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
23
|
Berruti I, Nahim-Granados S, Abeledo-Lameiro MJ, Oller I, Polo-López MI. Recent advances in solar photochemical processes for water and wastewater disinfection. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Gmurek M, Borowska E, Schwartz T, Horn H. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153001. [PMID: 35031375 DOI: 10.1016/j.scitotenv.2022.153001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H2O2, sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.
Collapse
Affiliation(s)
- M Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany.
| | - E Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - H Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
25
|
Venâncio JPF, Rodrigues CSD, Nunes OC, Madeira LM. Application of iron-activated persulfate for municipal wastewater disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127989. [PMID: 34920225 DOI: 10.1016/j.jhazmat.2021.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
To address the increasing contamination of aquatic environments and incidence of waterborne diseases, advanced oxidation processes with activated persulfate have emerged as tools to inactivate wastewater microorganisms and contaminants. In this work, the disinfection of a secondary effluent from a wastewater treatment plant by iron-based persulfate activation was studied. Experiments in a batch stirred tank reactor were carried out to evaluate the performance along reaction time and the effect of operational parameters in the oxidative process efficiency (oxidant and iron concentration, pH and temperature). After 60 min of reaction, persulfate and iron concentrations of 3 mM and 0.75 mM, respectively, combined with a neutral initial pH (7.5) and a temperature of 40 °C, allowed to reach values below the detection limit (<10 CFU/100 mL) of enterococci and enterobacteria with and without ciprofloxacin resistance, as well as a 91% inactivation of total heterotrophic organisms and a 70% removal of total organic carbon. Regrowth of microorganisms was evaluated 72 h after treatment and it was only noticed a slight increase in total heterotrophs. Evaluation of physico-chemical characteristics of the treated water showed that it meets the requirements imposed by European and Portuguese legislation for its reuse in irrigation and most urban utilities.
Collapse
Affiliation(s)
- João P F Venâncio
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
26
|
Fiorentino A, Lofrano G, Cucciniello R, Carotenuto M, Motta O, Proto A, Rizzo L. Disinfection of roof harvested rainwater inoculated with E. coli and Enterococcus and post-treatment bacterial regrowth: Conventional vs solar driven advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149763. [PMID: 34438135 DOI: 10.1016/j.scitotenv.2021.149763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Solar driven advanced oxidation processes (AOPs) (an alternative solar photo Fenton like process (SPF), sunlight/H2O2 (SHP) and sunlight/chlorine (SCL)) and respective dark conditions, were compared for the first time to conventional (chlorination and UV-C radiation) disinfection processes, in the inactivation of E. coli and Entero strains inoculated in real roof-harvested rainwater (RHRW), to evaluate their possible safe use for crop irrigation. In this regard, bacterial regrowth was also evaluated 6, 12, 24 and 48 h after disinfection treatment. The SPF, using iminodisuccinic acid (IDS)-Cu complex as catalyst, was optimized (H2O2/IDS-Cu 55/1 best molar ratio) under mild conditions (spontaneous pH) and sunlight. The faster inactivation kinetics were observed for the SCL process (k = 1.473 min-1, t1/2 = 0.47 min for E. coli and k = 1.193 min-1, t1/2 = 0.57 min for Entero), while the most effective processes in controlling bacterial regrowth were SPF and SCL. Although UV-C radiation (0-1.3 × 104 μW s cm-2 dose range) was the second faster disinfection process (k = 1.242 min-1, t1/2 = 0.55 min for E. coli and k = 1.150 min-1, t1/2 = 0.60 min for Entero), it was the less effective process in controlling bacterial regrowth (>10 CFU 100 mL-1 already after 6 h post-treatment incubation). According to the bacterial inactivation and regrowth tests carried out in this work, SPF and SCL are interesting options for RHRW disinfection, in case of effluent use for crop irrigation.
Collapse
Affiliation(s)
- A Fiorentino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - G Lofrano
- Centro Servizi Metereologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy.
| | - R Cucciniello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - M Carotenuto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - O Motta
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| | - A Proto
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - L Rizzo
- Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
27
|
Vilela PB, Mendonça Neto RP, Starling MCVM, da S Martins A, Pires GFF, Souza FAR, Amorim CC. Metagenomic analysis of MWWTP effluent treated via solar photo-Fenton at neutral pH: Effects upon microbial community, priority pathogens, and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149599. [PMID: 34467925 PMCID: PMC8573595 DOI: 10.1016/j.scitotenv.2021.149599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 04/13/2023]
Abstract
The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L-1 of Fe2+ intermittent additions and 50 mg L-1 of H2O2) reached 76-86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H2O2 was present as an oxidant (Fenton, H2O2 only, solar/H2O2). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to β-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries.
Collapse
Affiliation(s)
- Pâmela B Vilela
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Rondon P Mendonça Neto
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Pampulha, Belo Horizonte, MG, Brazil
| | - Maria Clara V M Starling
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Alessandra da S Martins
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Giovanna F F Pires
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Felipe A R Souza
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Camila C Amorim
- Universidade Federal de Minas Gerais, Escola de Engenharia, Departamento de Engenharia Sanitária e Ambiental, Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Pironti C, Dell'Annunziata F, Giugliano R, Folliero V, Galdiero M, Ricciardi M, Motta O, Proto A, Franci G. Comparative analysis of peracetic acid (PAA) and permaleic acid (PMA) in disinfection processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149206. [PMID: 34311370 DOI: 10.1016/j.scitotenv.2021.149206] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The growing demand to reduce chlorine usage and control disinfection byproducts increased the development of new strategies in wastewater treatments. Organic peracids are increasingly attracting interest in disinfection activities as a promising alternative to chlorine and chlorine-based agents. In this study, we assessed the antimicrobial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of a new organic peracid, permaleic acid (PMA) compared with the reference peracetic acid (PAA). Disinfectant properties were evaluated by i) disk diffusion agar, ii) broth microdilution, iii) antibiofilm properties. PMA demonstrated a 10- and 5-fold decrease in the microbial inhibitory concentration (MIC) value against E. coli and S. aureus respectively, compared to PAA. Results showed greater efficacy of PMA regarding wastewater (WW) and treated wastewater (TWW) disinfection at low concentrations. Furthermore, the biofilm degradation ability was only observed following PMA treatment, for both strains. Bacterial regrowth from biofilm matrix after PAA and PMA disinfection, in the absence and presence of organic matter, was evaluated. PMA was more efficient than PAA to prevent the regrowth of planktonic cells of S. aureus and E. coli. After PAA and PMA treatment, in the presence of organic matter, the bacterial regrowth inhibition was maintained up to 10 and 5 g/L, respectively. Based on these results, PMA could be used as a valid alternative to the currently used disinfection methods.
Collapse
Affiliation(s)
- Concetta Pironti
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli, 16 80138 Naples, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli, 16 80138 Naples, Italy
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli, 16 80138 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via S. Maria di Costantinopoli, 16 80138 Naples, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| |
Collapse
|
29
|
Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs? WATER 2021. [DOI: 10.3390/w13233335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements conferring resistance to antimicrobials. Using a combination of molecular tools, we investigated four urban WWTPs (i.e., two performing only mechanical treatments and two performing a subsequent conventional secondary treatment by activated sludge) as continuous sources of microbial pollution for marine coastal waters. Sewage that underwent only primary treatments was characterized by a higher content of traditional and alternative fecal indicator bacteria, as well as potentially pathogenic bacteria (especially Acinetobacter, Coxiella, Prevotella, Streptococcus, Pseudomonas, Vibrio, Empedobacter, Paracoccus, and Leptotrichia), than those subjected to secondary treatment. However, seawater samples collected next to the discharging points of all the WWTPs investigated here revealed a marked fecal signature, despite significantly lower values in the presence of secondary treatment of the sewage. WWTPs in this study represented continuous sources of antibiotic resistance genes (ARGs) ermB, qnrS, sul2, tetA, and blaTEM (the latter only for three WWTPs out of four). Still, no clear effects of the two depuration strategies investigated here were detected. Some marine samples were identified as positive to the colistin-resistance gene mcr-1, an ARG that threatens colistin antibiotics’ clinical utility in treating infections with multidrug-resistant bacteria. This study provides evidence that the use of sole primary treatments in urban wastewater management results in pronounced inputs of microbial pollution into marine coastal waters. At the same time, the use of conventional treatments does not fully eliminate ARGs in treated wastewater. The complementary use of molecular techniques could successfully improve the evaluation of the depuration efficiency and help develop novel solutions for the treatment of urban wastewater.
Collapse
|
30
|
Miralles-Cuevas S, Soriano-Molina P, de la Obra I, Gualda-Alonso E, Pérez JAS. Simultaneous bacterial inactivation and microcontaminant removal by solar photo-Fenton mediated by Fe 3+-NTA in WWTP secondary effluents. WATER RESEARCH 2021; 205:117686. [PMID: 34600227 DOI: 10.1016/j.watres.2021.117686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous microorganism inactivation and organic microcontaminant removal in municipal wastewater treatment plant (WWTP) secondary effluents by the solar photo-Fenton process mediated by Fe3+-NTA is studied in depth. To achieve this objective, different key aspects were addressed: (i) the effect of initial Fe3+-NTA concentration at 1:1 molar ratio (0.10-0.30 mM) and H2O2 concentration (1.47-5.88 mM), (ii) the effect of initial microorganism load (103 and 106 CFU/mL) and (iii) the impact of the disinfection target on treatment cost. The first stage of this work was carried out in simulated WWTP effluent spiked with 100 µg/L of imidacloprid (IMD) as model microcontaminant and inoculated with Escherichia coli (E. coli) K-12 as reference strain, in a pilot scale raceway pond reactor with 5-cm of liquid-depth. Secondly, the most cost-effective conditions were validated in actual WWTP effluent. The kinetic analysis revealed that increasing Fe3+-NTA concentration over 0.20 mM does not significantly reduce treatment time due to the limited effect caused on the volumetric rate photon absorption. Treatment cost is determined by the disinfection process, since IMD removal was always faster than E. coli inactivation. The most cost-effective strategy to achieve 10 CFU/100 mL of E. coli (Regulation EU 2020/741) was 0.20/4.41 mM Fe3+-NTA/H2O2, with a cost of 0.32 €/m3. A less restrictive disinfection target, 100 CFU/100 mL, allowed reducing reactant concentration and cost, 0.10/1.47 mM Fe3+-NTA/H2O2 and 0.15 €/m3, respectively. In both cases, no regrowth at 24 h and more than 90% of IMD removal were observed.
Collapse
Affiliation(s)
- S Miralles-Cuevas
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Av. Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - P Soriano-Molina
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - I de la Obra
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - E Gualda-Alonso
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Ctra. de Sacramento s/n, Almería, ES04120, Spain; Chemical Engineering Department, University of Almería, Ctra. de Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
31
|
Insights into Solar Disinfection Enhancements for Drinking Water Treatment Applications. SUSTAINABILITY 2021. [DOI: 10.3390/su131910570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poor access to drinking water, sanitation, and hygiene has always been a major concern and a main challenge facing humanity even in the current century. A third of the global population lacks access to microbiologically safe drinking water, especially in rural and poor areas that lack proper treatment facilities. Solar water disinfection (SODIS) is widely proven by the World Health Organization as an accepted method for inactivating waterborne pathogens. A significant number of studies have recently been conducted regarding its effectiveness and how to overcome its limitations, by using water pretreatment steps either by physical, chemical, and biological factors or the integration of photocatalysis in SODIS processes. This review covers the role of solar disinfection in water treatment applications, going through different water treatment approaches including physical, chemical, and biological, and discusses the inactivation mechanisms of water pathogens including bacteria, viruses, and even protozoa and fungi. The review also addresses the latest advances in different pre-treatment modifications to enhance the treatment performance of the SODIS process in addition to the main limitations and challenges.
Collapse
|
32
|
Maniakova G, Salmerón I, Nahim-Granados S, Malato S, Oller I, Rizzo L, Polo-López MI. Sunlight advanced oxidation processes vs ozonation for wastewater disinfection and safe reclamation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147531. [PMID: 33991917 DOI: 10.1016/j.scitotenv.2021.147531] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Solar processes (sunlight/H2O2, solar photo-Fenton with EDDS at neutral pH) were compared to a consolidated technology (ozonation) in the inactivation of target bacteria (E. coli, Salmonella spp. and Enterococcus spp.) under realistic conditions (real secondary treated urban wastewater (WW), pilot scale reactors, natural sunlight) to evaluate their possible industrial application. The highest bacteria inactivation rate (all the target pathogens were inactivated below the detection limit (DL) (100 CFU/100 mL) within 45 min treatment) was observed for ozonation (83 mgO3/L h). Similar inactivation behavior for all bacteria was observed for sunlight/H2O2 (50 mg/L) and solar photo-Fenton (SPF) with EDDS (1:1 molar ratio, 0.1 mM of Fe and 50 mg/L of H2O2). Although the DL was not reached, faster inactivation kinetics (0.007, 0.013 and 0.002 1/min for E. coli, Salmonella spp. and Enterococcus spp., respectively) and lower bacterial concentration after a 180 min treatment were observed for sunlight/H2O2 process compared to SPF (0.005, 0.01 1/min and no inactivation, respectively), Enterococcus spp. being the higher resistance microorganism. The negative effect of carbonates on disinfection performance was also evaluated. Quantitative microbial risk assessment for the ingestion of lettuce irrigated with untreated and treated WW was estimated. Disinfection by ozonation and sunlight/H2O2 processes were found to drastically decrease the associated microbiological risk (the mean risk of illness decreased from 0.10 (untreated) to 1.35 × 10-4 (treated) for E. coli and from 0.03 to 2.21 × 10-6 for Salmonella).
Collapse
Affiliation(s)
- Gulnara Maniakova
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Irene Salmerón
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Samira Nahim-Granados
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Sixto Malato
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Isabel Oller
- Plataforma Solar de Almería-CIEMAT, Ctra. Senés km 4, 04200 Tabernas, Almería, Spain
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | | |
Collapse
|
33
|
V M Starling MC, Mendonça Neto RPD, Pires GFF, Vilela PB, Amorim CC. Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes: Achievements and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147448. [PMID: 33965817 DOI: 10.1016/j.scitotenv.2021.147448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
This review aims to gather main achievements and limitations associated to the application of solar photocatalytic processes with regard to the removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from municipal wastewater treatment plant effluent (MWWTPE). Solar photocatalytic processes were chosen considering the context of developing tropical countries. Among these processes, solar photo-Fenton has been proved effective for the elimination of ARB from MWWTPE at neutral pH in bench and pilot scale and also under continuous flow. Yet, ARG removal varies as according to the gene. Irradiation intensity and matrix composition play a key role on treatment efficiency for this purpose. The use of sulfate radical in modified solar photo-Fenton is still incipient for ARB and ARG removal. Also, investigations related to ARB resistance profile and horizontal gene transfer rates after solar photo-Fenton treatment must be further analyzed. Regarding solar heterogeneous photocatalysis, TiO2 and TiO2-composites applied in suspension are the most commonly investigated for the removal of ARB and ARGs. Irradiation intensity, temperature and catalyst dosage affect treatment efficiency. However, most studies were performed in synthetic solutions using reduced sample volumes. Extended exposition times and addition of H2O2 to the system (solar/TiO2/H2O2) are required to prevent bacteria regrowth and ensure ARG abatement. In addition, enhancement of TiO2 with graphene or (semi)metals improved ARB elimination. Differences concerning irradiation intensity, matrix composition, catalyst dosage, and model ARB and ARGs used in studies analyzed in this review hinder the comparison of photocatalysts synthesized by various research groups. Finally, future research should aim at evaluating the efficiency of solar photocatalytic processes in real matrices originated from sewage treatment systems applied in developing countries; determining indicators of antimicrobial resistance in MWWTPE; and investigating ARB mutation rate as well as the removal of cell-free ARGs present in suspension in MWWTPE.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Rondon P de Mendonça Neto
- Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Pampulha, Belo Horizonte, MG, Brazil
| | - Giovanna F F Pires
- Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Pâmela Beccalli Vilela
- Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil
| | - Camila C Amorim
- Universidade Federal de Minas Gerais, Research Group on Environmental Applications of Advanced Oxidation Processes, Av. Antônio Carlos 6627, 31270-901, Pampulha, Belo Horizonte, Brazil.
| |
Collapse
|
34
|
Augsburger N, Zaouri N, Cheng H, Hong PY. The use of UV/H 2O 2 to facilitate removal of emerging contaminants in anaerobic membrane bioreactor effluents. ENVIRONMENTAL RESEARCH 2021; 198:110479. [PMID: 33212130 DOI: 10.1016/j.envres.2020.110479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Effluent from anaerobic membrane bioreactor (AnMBR) contains ammonia and would require post-polishing treatment before it can be disinfected by chlorine. However, additional post-treatment steps to remove nutrients offset the energetic benefits derived from anaerobic fermentation. The use of chlorine or ozone also promotes concerns associated with disinfection byproducts. This study evaluates UV/H2O2 as a potential strategy suited for the removal of pharmaceutical compounds as well as antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from AnMBR effluent. Our findings indicate that 10 mg/L H2O2 and 61.5 mJ/cm2 of UV fluence are able to achieve a 4-log removal of both Escherichia coli PI7 and Klebsiella pneumoniae L7. However, a higher fluence of 311 mJ/cm2 with the same amount of H2O2 would be required to achieve >90% removal of atenolol, carbamazepine and estrone. The removal of the pharmaceutical compounds was driven by the hydroxyl radicals generated from H2O2, while UV exposure governed the inactivation of ARB and ARGs. UV/H2O2 increased overall mutagenicity of the treated wastewater matrix but did not result in any changes to the natural transformation rates. Instead, UV significantly reduced natural transformation rates by means of DNA damage. Overall, UV/H2O2 could be the ideal final disinfection strategy for AnMBR effluent without requiring additional post-treatment prior disinfection.
Collapse
Affiliation(s)
- Nicolas Augsburger
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Noor Zaouri
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Hong Cheng
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Pei-Ying Hong
- Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia; Center of Excellence for NEOM Research, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
35
|
Zhu NJ, Ghosh S, Edwards MA, Pruden A. Interplay of Biologically Active Carbon Filtration and Chlorine-Based Disinfection in Mitigating the Dissemination of Antibiotic Resistance Genes in Water Reuse Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8329-8340. [PMID: 34080846 DOI: 10.1021/acs.est.1c01199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Appropriate management approaches are needed to minimize the proliferation of antibiotic resistance genes (ARGs) in reclaimed water distribution systems (RWDSs). Six laboratory-scale RWDSs were operated over 3 years receiving influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. Shotgun metagenomic sequencing was applied toward comprehensive characterization of resistomes, focusing on total ARGs, ARG mobility, and specific ARGs of clinical concern. ARGs such as aadA, bacA, blaOXA, mphE, msrE, sul1, and sul2 were found to be particularly sensitive to varying RWDS conditions. BAC filtration with chlorination most effectively achieved and maintained the lowest levels of nearly all metagenomically derived antibiotic resistance indicators. However, BAC filtration or addition of residual disinfectants alone tended to increase these indicators. Biofilm and sediment compartments harbored ARGs in disinfected systems, presenting a concern for their release to bulk water. Relative and absolute abundances of most ARGs tended to decrease with water age (up to 5 days), with notable exceptions in BAC-filtered chloraminated and no residual systems. Superchlorination of unfiltered water especially raised concerns in terms of elevation of clinically relevant and mobile ARGs. This study revealed that BAC filtration and disinfection must be carefully coordinated in order to effectively mitigate ARG dissemination via RWDSs.
Collapse
Affiliation(s)
- Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
36
|
Giacometti F, Shirzad-Aski H, Ferreira S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics (Basel) 2021; 10:671. [PMID: 34199740 PMCID: PMC8230312 DOI: 10.3390/antibiotics10060671] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global problem and there has been growing concern associated with its widespread along the animal-human-environment interface. The farm-to-fork continuum was highlighted as a possible reservoir of AMR, and a hotspot for the emergence and spread of AMR. However, the extent of the role of non-antibiotic antimicrobials and other food-related stresses as selective factors is still in need of clarification. This review addresses the use of non-antibiotic stressors, such as antimicrobials, food-processing treatments, or even novel approaches to ensure food safety, as potential drivers for resistance to clinically relevant antibiotics. The co-selection and cross-adaptation events are covered, which may induce a decreased susceptibility of foodborne bacteria to antibiotics. Although the available studies address the complexity involved in these phenomena, further studies are needed to help better understand the real risk of using food-chain-related stressors, and possibly to allow the establishment of early warnings of potential resistance mechanisms.
Collapse
Affiliation(s)
- Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064 Bologna, Italy;
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan 49178-67439, Iran;
| | - Susana Ferreira
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
37
|
Ahmed Y, Zhong J, Yuan Z, Guo J. Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. WATER RESEARCH 2021; 197:117075. [PMID: 33819660 DOI: 10.1016/j.watres.2021.117075] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H2O2) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards.
Collapse
Affiliation(s)
- Yunus Ahmed
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jiexi Zhong
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
38
|
Zarrella I, Falivene L, Galiakberov V, Fiorentino A, Cucciniello R, Motta O, Rizzo L, Krasnogorskaya N, Proto A. Effect of the aqueous matrix on the inactivation of E. coli by permaleic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144395. [PMID: 33434835 DOI: 10.1016/j.scitotenv.2020.144395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
In this work permaleic acid (PMA) was investigated as possible disinfecting agent and compared to peracetic acid (PAA) in real tap water and wastewater. Preliminary tests in lysogeny broth (LB) were also performed. PMA was synthesized from maleic anhydride and hydrogen peroxide and, for the first time, its antimicrobial activity was evaluated with respect to the growth inhibition of E. coli. The effect of the pH and bivalent ions, typically occurring in real water matrices (namely, Mg2+ and Ca2+), was also investigated. pKa values for PMA were calculated for the first time by DFT calculations. The concentration of bivalent ions strongly affected disinfection efficiency with PMA (Ca2+=0.33 mgL-1 and Mg2+=0.35 mgL-1: 100% E. coli reduction > log 5; Ca2+=13.3 mg L-1 and Mg2+=25.6 mg L-1: E. coli reduction < log 1, after 60 min), and such results were supported by DFT modelling outcomes (pKa2 of PMA 7.3) and disinfection tests in presence of EDTA chelating agent. More alkaline pH conditions drastically decreased PMA disinfection (pH = 5: > log 5 E.coli reduction; pH = 9: < log 1 E.coli reduction, after 60 min). PMA disinfection efficiency is strongly affected by the target water quality, the concentration of metal bivalent ions and the initial pH.
Collapse
Affiliation(s)
- Ilaria Zarrella
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende 1, 84081 Baronissi, SA, Italy
| | - Laura Falivene
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vasil Galiakberov
- Department Production Safety and Industrial Ecology, Ufa State Aviation Technical University, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonino Fiorentino
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, via S. Allende 1, 84081 Baronissi, SA, Italy.
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Nataliya Krasnogorskaya
- Department Production Safety and Industrial Ecology, Ufa State Aviation Technical University, Ufa, Republic of Bashkortostan, Russian Federation
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
39
|
Azuma T, Hayashi T. Effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142568. [PMID: 33066962 DOI: 10.1016/j.scitotenv.2020.142568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) were investigated in three types of water: sewage treatment plant (STP) influent, STP secondary effluent, and river water in an urban area of Japan. The AMRB were grouped into six classes: carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E), multi-drug-resistant Acinetobacter (MDRA), multi-drug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). The amount of each group of bacteria present was estimated using specific chromogenic agar formulations. AMRB were detected in all water samples, with 13-2,407 colony-forming units (CFU)/mL in the STP influent, N.D. to 202 CFU/mL in the secondary STP effluent, and N.D. to 207 CFU/mL in the river water. The distribution profiles of the AMSB in water samples were similar to those of AMRB. The degree to which AMRB and AMSB present in the river water were inactivated by natural sunlight was tested as the main aim of this study. Irradiation by natural sunlight was found to inactivate almost 100% of all the target AMRB after 5 h of exposure, with no significant differences (P < 0.05) observed in the effects that sunlight had on AMSB and AMRB. Analysis of the bacterial community structure based on 16S rRNA gene sequencing showed that the structure of the bacterial community was apparently not affected by the exposure to sunlight. In addition, the taxonomic diversity in the STP secondary effluent did not change as a result of additional disinfection with chlorine. The results of this study suggest that it is possible that exposure to sunlight could be used as an alternative to disinfection via chlorine. To our knowledge, this is the first report to demonstrate the mitigation of AMSB and AMRB pollution in a river environment via the exposure to natural sunlight.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
40
|
Wang M, Ateia M, Awfa D, Yoshimura C. Regrowth of bacteria after light-based disinfection - What we know and where we go from here. CHEMOSPHERE 2021; 268:128850. [PMID: 33187648 DOI: 10.1016/j.chemosphere.2020.128850] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Regrowth of bacteria after water/wastewater disinfection is a serious risk to public health, particularly when such pathogens carry antibiotic resistance genes. Despite increasing interest in light-based disinfection using ultraviolet or solar radiation, the mechanism of bacterial regrowth and their concentration upon light exposure (i.e., during storage, or after discharge into rivers or lakes) remain poorly understood. Therefore, we present a focused critical review to 1) elucidate regrowth mechanisms, 2) summarize the pros and cons of available experimental designs and detection techniques for regrowth evaluation, and 3) provide an outlook of key research directions for further investigations of post-disinfection bacterial regrowth. Bacterial regrowth can occur through reactivation from a viable but non-culturable state, repair of photo-induced DNA damage, and reproduction of bacteria surviving disinfection. Many studies have underestimated the degree of actual regrowth because of the use of simple experimental designs and plate count methods, which cannot quantify actual abundance of viable bacteria. Further research should investigate the effects of various factors on bacterial regrowth in realistic conditions in regrowth tests and adopt multiplex detection methods that combine culture-based and culture-independent approaches. An accurate understanding of the mechanisms involved in bacterial regrowth following disinfection is critical for safeguarding public health and aquatic environments.
Collapse
Affiliation(s)
- Manna Wang
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| | - Dion Awfa
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
41
|
Majumder A, Gupta AK, Ghosal PS, Varma M. A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms, and SARS-CoV-2. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104812. [PMID: 33251108 PMCID: PMC7680650 DOI: 10.1016/j.jece.2020.104812] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 05/05/2023]
Abstract
The hospital wastewater imposes a potent threat to the security of human health concerning its high vulnerability towards the outbreak of several diseases. Furthermore, the outbreak of COVID-19 pandemic demanded a global attention towards monitoring viruses and other infectious pathogens in hospital wastewater and their removal. Apart from that, the presence of various recalcitrant organics, pharmaceutically active compounds (PhACs), etc. imparts a complex pollution load to water resources and ecosystem. In this review, an insight into the occurrence, persistence and removal of drug-resistant microorganisms and infectious viruses as well as other micro-pollutants have been documented. The performance of various pilot/full-scale studies have been evaluated in terms of removal of biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), PhACs, pathogens, etc. It was found that many biological processes, such as membrane bioreactor, activated sludge process, constructed wetlands, etc. provided more than 80% removal of BOD, COD, TSS, etc. However, the removal of several recalcitrant organic pollutants are less responsive to those processes and demands the application of tertiary treatments, such as adsorption, ozone treatment, UV treatment, etc. Antibiotic-resistant microorganisms, viruses were found to be persistent even after the treatment of hospital wastewater, and high dose of chlorination or UV treatment was required to inactivate them. This article circumscribes the various emerging technologies, which have been used to treat PhACs and pathogens. The present review also emphasized the global concern of the presence of SARS-CoV-2 RNA in hospital wastewater and its removal by the existing treatment facilities.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahesh Varma
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
42
|
Wang M, Chen H, Liu S, Xiao L. Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143014. [PMID: 33190880 DOI: 10.1016/j.scitotenv.2020.143014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
In wastewater treatment plants, most of the pathogens and antibiotic resistant genes (ARGs) transferred into and concentrated in waste activated sludge (WAS), which would cause severe public health risks. In this study, the capabilities of several WAS pre-treatment approaches to inactivate coliforms/E. coli and ARGs, as well as the subsequent regrowth of coliforms/E. coli and ARGs/intI1 in treated sludge were investigated. The results showed that electro-Fenton (EF), with continuous hydroxyl radical generation, could efficiently inactivate coliforms/E. coli in 60 min (about 4 log units), followed by methanol (MT), anode oxidization (AO), and acidification (AT). Kinetic analysis showed that the inactivation mainly occurred in the first 10 min. However, the efficiencies of all studied pre-treatment approaches on inactivating ARGs/intI1 (<2 log units) were lower than coliforms/E. coli, whilst EF still had the highest efficiency of ARGs/intI1 reduction. Mechanical ultrasound treatment (ULS) could not inactivate coliforms/E. coli in WAS, but it could efficiently reduce ARGs/intI1. High regrowth rates of coliforms/E. coli were observed in the treated WAS in 10 days, but the abundances of ARGs/intI1 continuously reduced during the after-treatment incubation. Our study showed that EF could efficiently disinfect potential pathogens, however, the reduction of ARGs/intI1 in WAS need further investigation.
Collapse
Affiliation(s)
- Min Wang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiping Chen
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shulei Liu
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Xiao
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
43
|
Boni W, Parrish K, Patil S, Fahrenfeld NL. Total coliform and Escherichia coli in microplastic biofilms grown in wastewater and inactivation by peracetic acid. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:334-342. [PMID: 32779310 DOI: 10.1002/wer.1434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MP) have been proposed as a vector for pathogenic microorganisms in the freshwater environment. The objectives of this study were (a) to compare the fecal indicator growth in biofilms on MP and material control microparticles incubated in different wastewater fractions and (b) to compare MP biofilm, natural microparticle biofilm, and planktonic cell susceptibility to disinfection by peracetic acid (PAA). Biofilms were grown on high-density polyethylene, low-density polyethylene, polypropylene MP, or wood chips (as a material control) and incubated in either wastewater influent or pre-disinfection secondary effluent. Reactors were disinfected with PAA, biofilms were dislodged, and total coliform and Escherichia coli were cultivated. Fecal indicators were quantifiable in both MP and wood biofilms incubated in the wastewater influent but only on the wood biofilms incubated in secondary wastewater effluent. More total coliform grew in the wood biofilms than MP biofilms, and the biofilms grown on MP and woodchips were more resistant to disinfection than planktonic bacteria. Thus, it may be possible to refer to the disinfection literature for fecal indicators in biofilm on other particles to predict behavior on MP. Treatments that remove particles in general would help reduce the potential for fecal indicator bypass of disinfection. PRACTITIONER POINTS: MP biofilm had lower concentrations of fecal indicators than wood biofilm Biofilm on MP was not more resistant to disinfection than wood biofilm Biofilms, regardless of substrate, were more resistant to disinfection than planktonic organisms.
Collapse
Affiliation(s)
- William Boni
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Kathleen Parrish
- Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shreya Patil
- Bioenvironmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Nicole L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
44
|
Zhong C, Zhou Y, Zhao J, Fu J, Jiang T, Liu B, Chen F, Cao G. High throughput sequencing reveals the abundance and diversity of antibiotic-resistant bacteria in aquaculture wastewaters, Shandong, China. 3 Biotech 2021; 11:104. [PMID: 33552832 PMCID: PMC7847479 DOI: 10.1007/s13205-021-02656-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
An innovative investigation was undertaken into the abundance and diversity of high antibiotic-resistant bacteria in aquaculture waters in Shandong Province, China, through cumulation incubation, PCR amplification of 16S rDNA, and high-throughput sequencing. The results showed that Vibrio, Bacillus, Vagococcus, Acinetobacter, Shewanella, Psychrobacter, Lactococcus, Enterococcus, Marinimonus and Myroids were abundant in the aquaculture waters, whereas other phylum including Actinobacteria, Deinococcus-Thermus, Omnitrophica and Nitrospirae had relatively lower abundance. Our studies revealed the presence of different bacteria in different locations in the aquaculture waters, most of which were resistant to multiple antibiotics. That is, the same microbial species from the same aquaculture wastewater can resist different antibiotics. Altogether, a considerable portion of the microbial community were found to be multi-drug resistant. It is essential that the spread of the antibiotic-resistant bacteria is controlled so that the distribution of antibiotic resistance genes to other environments is avoided. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02656-4.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jiafang Fu
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Bing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Feiyong Chen
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
45
|
Arslan-Alaton I, Karatas A, Pehlivan Ö, Koba Ucun O, Ölmez-Hancı T. Effect of UV-A-assisted iron-based and UV-C-driven oxidation processes on organic matter and antibiotic resistance removal in tertiary treated urban wastewater. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Bairán G, Rebollar-Pérez G, Chávez-Bravo E, Torres E. Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to Tackle the Problem of Antibiotic Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8866. [PMID: 33260585 PMCID: PMC7730199 DOI: 10.3390/ijerph17238866] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Advances generated in medicine, science, and technology have contributed to a better quality of life in recent years; however, antimicrobial resistance has also benefited from these advances, creating various environmental and health problems. Several determinants may explain the problem of antimicrobial resistance, such as wastewater treatment plants that represent a powerful agent for the promotion of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG), and are an important factor in mitigating the problem. This article focuses on reviewing current technologies for ARB and ARG removal treatments, which include disinfection, constructed wetlands, advanced oxidation processes (AOP), anaerobic, aerobic, or combined treatments, and nanomaterial-based treatments. Some of these technologies are highly intensive, such as AOP; however, other technologies require long treatment times or high doses of oxidizing agents. From this review, it can be concluded that treatment technologies must be significantly enhanced before the environmental and heath problems associated with antimicrobial resistance can be effectively solved. In either case, it is necessary to achieve total removal of bacteria and genes to avoid the possibility of regrowth given by the favorable environmental conditions at treatment plant facilities.
Collapse
Affiliation(s)
- Gabriela Bairán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Georgette Rebollar-Pérez
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Edith Chávez-Bravo
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Eduardo Torres
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| |
Collapse
|
47
|
Glucocorticoids in Freshwaters: Degradation by Solar Light and Environmental Toxicity of the Photoproducts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238717. [PMID: 33255235 PMCID: PMC7727706 DOI: 10.3390/ijerph17238717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
The photodegradation process of seven glucocorticoids (GCs), cortisone (CORT), hydrocortisone (HCORT), betamethasone (BETA), dexamethasone (DEXA), prednisone (PRED), prednisolone (PREDLO) and triamcinolone (TRIAM) was studied in tap and river water at a concentration close to the environmental ones. All drugs underwent sunlight degradation according to a pseudo-first-order decay. The kinetic constants ranged from 0.00082 min−1 for CORT to 0.024 min−1 for PRED and PREDLO. The photo-generated products were identified by high-pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The main steps of the degradation pathways were the oxidative cleavage of the chain 17 for CORT, HCORT and the rearrangement of the cyclohexadiene moiety for the other GCs. The acute and chronic toxicity of GCs and of their photoproducts was assessed by the V. fischeri and P.subcapitata inhibition assays. The bioassays revealed no significant differences in toxicity between the parent compounds and their photoproducts, but the two organisms showed different responses. All samples produced a moderate acute toxic effect on V. fisheri and no one in the chronic tests. On the contrary, evident hormesis or eutrophic effect was produced on the algae, especially for long-term contact.
Collapse
|
48
|
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010-2019). Microorganisms 2020; 8:E1567. [PMID: 33053645 PMCID: PMC7600224 DOI: 10.3390/microorganisms8101567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific studies show that urban wastewater treatment plants (UWWTP) are among the main sources of release of antibiotics, antibiotic resistance genes (ARG) and antibiotic-resistant bacteria (ARB) into the environment, representing a risk to human health. This review summarizes selected publications from 1 January 2010 to 31 December 2019, with particular attention to the presence and treatment of ARG and ARB in UWWTPs in Italy. Following a brief introduction, the review is divided into three sections: (i) phenotypic assessment (ARB) and (ii) genotypic assessment (ARG) of resistant microorganisms, and (iii) wastewater treatment processes. Each article was read entirely to extract the year of publication, the geographical area of the UWWTP, the ARB and ARG found, and the type of disinfection treatment used. Among the ARB, we focused on the antibiotic resistance of Escherichia coli, Klebsiella pneumoniae, and Enterococci in UWWTP. The results show that the information presented in the literature to date is not exhaustive; therefore, future scientific studies at the national level are needed to better understand the spread of ARB and ARG, and also to develop new treatment methods to reduce this spread.
Collapse
Affiliation(s)
| | | | | | | | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (C.C.); (G.D.); (M.T.M.); (G.C.)
| | | |
Collapse
|
49
|
Di Cesare A, De Carluccio M, Eckert EM, Fontaneto D, Fiorentino A, Corno G, Prete P, Cucciniello R, Proto A, Rizzo L. Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H 2O 2 vs UVC/H 2O 2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. WATER RESEARCH 2020; 184:116194. [PMID: 32711221 DOI: 10.1016/j.watres.2020.116194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of a new Advanced Oxidation Process (AOP), namely the photo Fenton like process UV-C/H2O2/IDS-Cu, in removing determinants of antibiotic resistance and pathogenic bacteria was compared to a consolidated AOP (namely UV-C/H2O2) in a secondary treated municipal WasteWater (WW). A reductionist experimental laboratory-based approach was applied on real WW and the parameters were collected by an alternative integrated approach using (i) flow cytometry to enumerate bacteria and test for the fitness of the bacterial communities and (ii) molecular analyses to define the community composition (16S rRNA amplicon sequencing) and the abundances of Antibiotic Resistance Genes (ARGs) and of the class 1 integron (intI1 gene) (by quantitative PCR). The same approach was applied also to post-treatment regrowth tests (24 h) to define the potential persistence of the tested parameters. These experiments were performed in both, human pathogens favorable conditions (HPC, in rich medium and 37°C) and in environmental mimicking conditions (EMC, original WW and 20°C). UV-C/H2O2/IDS-Cu process resulted to be more effective than the UV-C/H2O2in inactivating bacterial cells in the EMC post-treatment regrowth experiments. Both AOPs were efficiently abating potential human pathogenic bacteria and ARGs in the HPC regrowth experiments, although this trend could not be detected in the measurements taken immediately after the disinfection. In comparison with the UV-C/H2O2, the UV-C/H2O2/IDS-Cu process did not apparently offer significant improvements in the abatement of the tested parameters in the WW effluent but, by evaluating the results of the regrowth experiments it was possible to extrapolate more complex trends, suggesting contrasting efficiencies visible only after a few hours. This study offers a detailed view on the abatement efficiency of microbiological/genetic parameters for the UV-C/H2O2/IDS-Cu process, calling for technical adjustments for this very promising technology. At the same time, our results clearly demonstrated the inadequacy of currently applied methodologies in the evaluation of specific parameters (e.g. determinants of antibiotic resistance and pathogenic bacteria) in WW.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco De Carluccio
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Ester M Eckert
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Prisco Prete
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy.
| |
Collapse
|
50
|
|