1
|
Yi Y, Zhang Y, Song Y, Lu Y. Treadmill Running Regulates Adult Neurogenesis, Spatial and Non-spatial Learning, Parvalbumin Neuron Activity by ErbB4 Signaling. Cell Mol Neurobiol 2024; 44:17. [PMID: 38285192 DOI: 10.1007/s10571-023-01439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Exercise can promote adult neurogenesis and improve symptoms associated with schizophrenia and other mental disorders via parvalbumin (PV)-positive GABAergic interneurons in the dentate gyrus ErbB4 is the receptor of neurotrophic factor neuregulin 1, expressed mostly in PV-positive interneurons. Whether ErbB4 in PV-positive neurons mediates the beneficial effect of exercise and adult neurogenesis on mental disorder needs to be further investigation. Here, we first conducted a four-week study on the effects of AG1478, an ErbB4 inhibitor, on memory and neurogenesis. AG1478 significantly impaired the performance in several memory tasks, including the T-maze, Morris water maze, and contextual fear conditioning, downregulated the expression of total ErbB4 (T-ErbB4) and the ratio of phosphate-ErbB4 (p-ErbB4) to T-ErbB4, and associated with neurogenesis impairment. Interestingly, AG1478 also appeared to decrease intracellular calcium levels in PV neurons, which could be reversed by exercise. These results suggest exercise may regulate adult neurogenesis and PV neuron activity through ErbB4 signaling. Overall, these findings provide further evidence of the importance of exercise for neurogenesis and suggest that targeting ErbB4 may be a promising strategy for improving memory and other cognitive functions in individuals with mental disorders.
Collapse
Affiliation(s)
- Yandong Yi
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanlong Song
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
D'Aloia A, Pastori V, Blasa S, Campioni G, Peri F, Sacco E, Ceriani M, Lecchi M, Costa B. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov 2024; 10:24. [PMID: 38216593 PMCID: PMC10786877 DOI: 10.1038/s41420-023-01790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
Modeling human neuronal properties in physiological and pathological conditions is essential to identify novel potential drugs and to explore pathological mechanisms of neurological diseases. For this purpose, we generated a three-dimensional (3D) neuronal culture, by employing the readily available human neuroblastoma SH-SY5Y cell line, and a new differentiation protocol. The entire differentiation process occurred in a matrix and lasted 47 days, with 7 days of pre-differentiation phase and 40 days of differentiation, and allowed the development of a 3D culture in conditions consistent with the physiological environment. Neurons in the culture were electrically active, were able to establish functional networks, and showed features of cholinergic neurons. Hence here we provide an easily accessible, reproducible, and suitable culture method that might empower studies on synaptic function, vesicle trafficking, and metabolism, which sustain neuronal activity and cerebral circuits. Moreover, this novel differentiation protocol could represent a promising cellular tool to study physiological cellular processes, such as migration, differentiation, maturation, and to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Alessia D'Aloia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Valentina Pastori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Stefania Blasa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Gloria Campioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- SYSBIO-ISBE-IT, Europe, 20126, Milano, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
- SYSBIO-ISBE-IT, Europe, 20126, Milano, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research, Pisa, Italy
| | - Michela Ceriani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| | - Marzia Lecchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research, Pisa, Italy
| | - Barbara Costa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milano, Italy
| |
Collapse
|
3
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Vincent B, Maitra S. BACE1-dependent metabolism of neuregulin 1: Bridging the gap in explaining the occurrence of schizophrenia-like symptoms in Alzheimer's disease with psychosis? Ageing Res Rev 2023; 89:101988. [PMID: 37331479 DOI: 10.1016/j.arr.2023.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease mainly characterized by cortico-neuronal atrophy, impaired memory and other cognitive declines. On the other hand, schizophrenia is a neuro-developmental disorder with an overtly active central nervous system pruning system resulting into abrupt connections with common symptoms including disorganised thoughts, hallucination and delusion. Nevertheless, the fronto-temporal anomaly presents itself as a common denominator for the two pathologies. There is even a strong presumption of increased risk of developing co-morbid dementia for schizophrenic individuals and psychosis for Alzheimer's disease patients, overall leading to a further deteriorated quality of life. However, convincing proofs of how these two disorders, although very distant from each other when considering their aetiology, develop coexisting symptoms is yet to be resolved. At the molecular level, the two primarily neuronal proteins β-amyloid precursor protein and neuregulin 1 have been considered in this relevant context, although the conclusions are for the moment only hypotheses. In order to propose a model for explaining the psychotic schizophrenia-like symptoms that sometimes accompany AD-associated dementia, this review projects out on the similar sensitivity shared by these two proteins regarding their metabolism by the β-site APP cleaving enzyme 1.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560 Valbonne, France.
| | - Subhamita Maitra
- Department of Molecular Biology, Umeå University, Umeå 90736, Sweden
| |
Collapse
|
5
|
Chen Z, Fang Y, Jiang W. Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers (Basel) 2023; 15:1360. [PMID: 36900158 PMCID: PMC10000249 DOI: 10.3390/cancers15051360] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Perineural invasion (PNI) as the fourth way for solid tumors metastasis and invasion has attracted a lot of attention, recent research reported a new point that PNI starts to include axon growth and possible nerve "invasion" to tumors as the component. More and more tumor-nerve crosstalk has been explored to explain the internal mechanism for tumor microenvironment (TME) of some types of tumors tends to observe nerve infiltration. As is well known, the interaction of tumor cells, peripheral blood vessels, extracellular matrix, other non-malignant cells, and signal molecules in TME plays a key role in the occurrence, development, and metastasis of cancer, as to the occurrence and development of PNI. We aim to summarize the current theories on the molecular mediators and pathogenesis of PNI, add the latest scientific research progress, and explore the use of single-cell spatial transcriptomics in this invasion way. A better understanding of PNI may help to understand tumor metastasis and recurrence and will be beneficial for improving staging strategies, new treatment methods, and even paradigm shifts in our treatment of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Fang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihong Jiang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Anatomy Laboratory of Division of Nose and Cranial Base, Clinical Anatomy Center of Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Chen X, Shen J, Zhou Q, Jin X, Liu H, Gao R. Astragaloside VI Ameliorates Post-Stroke Depression via Upregulating the NRG-1-Mediated MEK/ERK Pathway. Pharmaceuticals (Basel) 2022; 15:ph15121551. [PMID: 36559001 PMCID: PMC9784132 DOI: 10.3390/ph15121551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) has been identified as one of the most commonly occurring complications attributed to stroke. Astragaloside VI (AsVI), which is an active Radix Astragali (AR)-derived compound, has been reported to be a potential drug for post-stroke therapy, but its effects on PSD and the underlying mechanisms remain uncovered. METHODS In this study, healthy male SD rats underwent a middle cerebral artery occlusion (MCAO) stroke model. To create a PSD model, these rats were then kept in isolated houses and subjected to chronic unpredictable mild stress. The rats were examined every five days for a series of behavioral tests of depression. The antidepressant properties of AsVI were also investigated in vitro in a corticosterone (CORT)-induced major depression model using a CCK-8 assay. The release of neurotransmitters dopamine (DA)/5-hydroxytryptamine (5-HT) was measured using HPLC. The expression of the neurotrophic factor Neuregulin 1 (NRG-1) in rat brain tissues was detected by immunostaining. The protein expression of NRG-1, p-MEK1, and p-ERK1/2 was analyzed utilizing western blotting. RESULTS AsVI treatment significantly reduced depression-like behaviors in PSD rats and attenuated the CORT-induced apoptotic cell death in neuronal PC-12 cells. Besides, AsVI treatment remarkably prevented the decrease of the levels of DA and 5-HT in the PSD rat brains and in CORT-induced PC-12 cells. Furthermore, AsVI treatment upregulated the NRG-1-mediated MEK/ERK pathway, which is associated with the improvement of PSD. CONCLUSIONS These findings suggest that AsVI could improve PSD at least partially by upregulating NRG-1-mediated MEK/ERK pathway. AsVI could be a novel therapeutic option for treating PSD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
- Correspondence: ; Tel.: +86-139-0247-5452; Fax: +86-2778-8311
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR 999077, China
| | - Qing Zhou
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Xinchun Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Haosheng Liu
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Ran Gao
- Department of Core Facility, The People’s Hospital of Bao-an, Shenzhen 518000, China
- The Second Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
7
|
Morfill C, Pankratova S, Machado P, Fernando NK, Regoutz A, Talamona F, Pinna A, Klosowski M, Wilkinson RJ, Fleck RA, Xie F, Porter AE, Kiryushko D. Nanostars Carrying Multifunctional Neurotrophic Dendrimers Protect Neurons in Preclinical In Vitro Models of Neurodegenerative Disorders. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47445-47460. [PMID: 36218307 PMCID: PMC9614720 DOI: 10.1021/acsami.2c14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 05/06/2023]
Abstract
A challenge in neurology is the lack of efficient brain-penetrable neuroprotectants targeting multiple disease mechanisms. Plasmonic gold nanostars are promising candidates to deliver standard-of-care drugs inside the brain but have not been trialed as carriers for neuroprotectants. Here, we conjugated custom-made peptide dendrimers (termed H3/H6), encompassing motifs of the neurotrophic S100A4-protein, onto star-shaped and spherical gold nanostructures (H3/H6-AuNS/AuNP) and evaluated their potential as neuroprotectants and interaction with neurons. The H3/H6 nanostructures crossed a model blood-brain barrier, bound to plasma membranes, and induced neuritogenesis with the AuNS, showing higher potency/efficacy than the AuNP. The H3-AuNS/NP protected neurons against oxidative stress, the H3-AuNS being more potent, and against Parkinson's or Alzheimer's disease (PD/AD)-related cytotoxicity. Unconjugated S100A4 motifs also decreased amyloid beta-induced neurodegeneration, introducing S100A4 as a player in AD. Using custom-made dendrimers coupled to star-shaped nanoparticles is a promising route to activate multiple neuroprotective pathways and increase drug potency to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Corinne Morfill
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Stanislava Pankratova
- Department
of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
- Comparative
Paediatrics and Nutrition, Department of Veterinary and Animal Sciences,
Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen2200N, Denmark
| | - Pedro Machado
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Nathalie K. Fernando
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Anna Regoutz
- Department
of Chemistry, University College London, 20 Gordon Street, LondonWC1H 0AJ, UK
| | - Federica Talamona
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alessandra Pinna
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- The Francis
Crick Institute, LondonNW11 AT, UK
| | - Michal Klosowski
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Robert J. Wilkinson
- The Francis
Crick Institute, LondonNW11 AT, UK
- Imperial
College, Exhibition Road, LondonSW7 2AZ, UK
| | - Roland A. Fleck
- Centre
for Ultrastructural Imaging, Kings College
London, LondonSE1 1UL, UK
| | - Fang Xie
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Alexandra E. Porter
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
| | - Darya Kiryushko
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition Road, LondonSW7 2AZ, UK
- Centre
for Neuroinflammation and Neurodegeneration, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, 160 Du
Cane Road, LondonW12 0NN, UK
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, LondonSW72AZ, UK
| |
Collapse
|
8
|
Zhai QY, Ren YQ, Ni QS, Song ZH, Ge KL, Guo YL. Transplantation of Human Umbilical Cord Mesenchymal Stem Cells-Derived Neural Stem Cells Pretreated with Neuregulin1β Ameliorate Cerebral Ischemic Reperfusion Injury in Rats. Biomolecules 2022; 12:428. [PMID: 35327620 PMCID: PMC8945978 DOI: 10.3390/biom12030428] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a common cerebrovascular disease and recovering blood flow as early as possible is essential to reduce ischemic damage and maintain neuronal viability, but the reperfusion process usually causes additional damage to the brain tissue in the ischemic area, namely ischemia reperfusion injury. The accumulated studies have revealed that transplantation of exogenous neural stem cells (NSCs) is an ideal choice for the treatment of ischemia reperfusion injury. At present, the source and efficacy of exogenous NSCs after transplantation is still one of the key issues that need to be resolved. In this study, human umbilical cord mesenchymal stem cells (hUC-MSCs) were obtained and induced into NSCs byadding growth factor and neuregulin1β (NRG1β) was introduced during the differentiation process of NSCs. Then, the rat middle cerebral artery occlusion/reperfusion (MCAO/R) models were established, and the therapeutic effects were evaluated among groups treated by NRG1β, NSCs and NSCs pretreated with 10 nM NRG1β (NSCs-10 nM NRG1β) achieved through intra-arterial injection. Our data show that the NSCs-10 nM NRG1β group significantly improves neurobehavioral function and infarct volume after MCAO/R, as well as cerebral cortical neuron injury, ferroptosis-related indexes and mitochondrial injury. Additionally, NSCs-10 nM NRG1β intervention may function through regulating the p53/GPX4/SLC7A11 pathway, and reducing the level of ferroptosis in cells, further enhance the neuroprotective effect on injured cells.
Collapse
Affiliation(s)
- Qiu-Yue Zhai
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Yu-Qian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Qin-Shuai Ni
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| | - Zhen-Hua Song
- Institute of Pharmacology, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Ke-Li Ge
- Institute of Integrative Medicine, Qingdao Medical College, Qingdao University, Qingdao 266021, China;
| | - Yun-Liang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao 266003, China; (Q.-Y.Z.); (Y.-Q.R.); (Q.-S.N.)
| |
Collapse
|
9
|
Vega-Torres JD, Ontiveros-Angel P, Terrones E, Stuffle EC, Solak S, Tyner E, Oropeza M, dela Peña I, Obenaus A, Ford BD, Figueroa JD. Short-term exposure to an obesogenic diet during adolescence elicits anxiety-related behavior and neuroinflammation: modulatory effects of exogenous neuregulin-1. Transl Psychiatry 2022; 12:83. [PMID: 35220393 PMCID: PMC8882169 DOI: 10.1038/s41398-022-01788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Childhood obesity leads to hippocampal atrophy and altered cognition. However, the molecular mechanisms underlying these impairments are poorly understood. The neurotrophic factor neuregulin-1 (NRG1) and its cognate ErbB4 receptor play critical roles in hippocampal maturation and function. This study aimed to determine whether exogenous NRG1 administration reduces hippocampal abnormalities and neuroinflammation in rats exposed to an obesogenic Western-like diet (WD). Lewis rats were randomly divided into four groups (12 rats/group): (1) control diet+vehicle (CDV); (2) CD + NRG1 (CDN) (daily intraperitoneal injections: 5 μg/kg/day; between postnatal day, PND 21-PND 41); (3) WD + VEH (WDV); (4) WD + NRG1 (WDN). Neurobehavioral assessments were performed at PND 43-49. Brains were harvested for MRI and molecular analyses at PND 49. We found that NRG1 administration reduced hippocampal volume (7%) and attenuated hippocampal-dependent cued fear conditioning in CD rats (56%). NRG1 administration reduced PSD-95 protein expression (30%) and selectively reduced hippocampal cytokine levels (IL-33, GM-CSF, CCL-2, IFN-γ) while significantly impacting microglia morphology (increased span ratio and reduced circularity). WD rats exhibited reduced right hippocampal volume (7%), altered microglia morphology (reduced density and increased lacunarity), and increased levels of cytokines implicated in neuroinflammation (IL-1α, TNF-α, IL-6). Notably, NRG1 synergized with the WD to increase hippocampal ErbB4 phosphorylation and the tumor necrosis alpha converting enzyme (TACE/ADAM17) protein levels. Although the results did not provide sufficient evidence to conclude that exogenous NRG1 administration is beneficial to alleviate obesity-related outcomes in adolescent rats, we identified a potential novel interaction between obesogenic diet exposure and TACE/ADAM17-NRG1-ErbB4 signaling during hippocampal maturation. Our results indicate that supraoptimal ErbB4 activities may contribute to the abnormal hippocampal structure and cognitive vulnerabilities observed in obese individuals.
Collapse
Affiliation(s)
- Julio David Vega-Torres
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Perla Ontiveros-Angel
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Esmeralda Terrones
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Erwin C. Stuffle
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| | - Sara Solak
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Emma Tyner
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Marie Oropeza
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Ike dela Peña
- grid.43582.380000 0000 9852 649XDepartment of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA USA
| | - Andre Obenaus
- grid.266093.80000 0001 0668 7243Department of Pediatrics, University of California-Irvine, Irvine, CA USA
| | - Byron D. Ford
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA USA
| | - Johnny D. Figueroa
- grid.43582.380000 0000 9852 649XCenter for Health Disparities and Molecular Medicine and Department of Basic Sciences, Physiology Division, Department of Basic Sciences, Loma Linda University Health School of Medicine, Loma Linda, CA USA
| |
Collapse
|
10
|
Roysommuti S, Wyss JM. Brain-Derived Neurotrophic Factor Potentiates Entorhinal-Dentate but not Hippocampus CA1 Pathway in Adult Male Rats: A Mechanism of Taurine-Modulated BDNF on Learning and Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:369-379. [PMID: 35882811 PMCID: PMC9467516 DOI: 10.1007/978-3-030-93337-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taurine plays an important role in neural growth and function from early to adult life, particularly in learning and memory via BDNF action. This study tested the hypothesis that BDNF differentially potentiates entorhinal-hippocampal synaptic transmission in vivo in adult rats. In anesthetized male Sprague-Dawley rats, a stainless steel recording electrode with an attached microinjector was placed into CA1 and the dentate gyrus to record fEPSP, and a paired stainless steel electrode was inserted into entorhinal cortex for continuous paired-pulse stimulation of that brain region. In the dentate gyrus, microinjection of BDNF resulted in a gradual increase in the peak slope of the fEPSP. Following the infusion, the peak fEPSP began to rise in about 8 min, reached a maximum of 120 ± 2% (from baseline) by about 20 min, and remained near peak elevation (~115%) for more than 30 min. In contrast, the same dose of BDNF when injected into CA1 had no consistent effect on fEPSP slopes in the CA1. Further, an equimolar cytochrome C (horse heart) infusion had no significant effect on fEPSP slopes in either the dentate gyrus or CA1. The potentiation effect of BDNF in the dentate gyrus is consistent with a significant increase in power spectral density of dentate gyrus field potentials at 70-200 Hz, but not at frequencies below 70 Hz. In addition, the CA1 power spectral density was not affected by BDNF (compared to cytochrome C). These data indicate that in vivo BDNF potentiates entorhinal-hippocampal synaptic transmission in dentate gyrus, but not in CA1.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - James Michael Wyss
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Extreme Glycemic Fluctuations Debilitate NRG1, ErbB Receptors and Olig1 Function: Association with Regeneration, Cognition and Mood Alterations During Diabetes. Mol Neurobiol 2021; 58:4727-4744. [PMID: 34165684 DOI: 10.1007/s12035-021-02455-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022]
Abstract
Neuronal regeneration is crucial for maintaining intact neural interactions for perpetuation of cognitive and emotional functioning. The NRG1-ErbB receptor signaling is a key pathway for regeneration in adult brain and also associated with learning and mood stabilization by modulating synaptic transmission. Extreme glycemic stress is known to affect NRG1-ErbB-mediated regeneration in brain; yet, it remains unclear how the ErbB receptor subtypes are differentially affected due to such metabolic variations. Here, we assessed the alterations in NRG1, ErbB receptor subtypes to study the regenerative potential, both in rodents as well as in neuronal and glial cell models of hyperglycemia and hypoglycemic insults during hyperglycemia. The pro-oxidant and anti-oxidant status leading to degenerative changes in brain regions were determined. The spatial memory and anxiogenic behaviour of experimental rodents were tested using 'T' maze and Elevated Plus Maze. Our data revealed that the extreme glycemic discrepancies during diabetes and recurrent hypoglycemia lead to altered expression of NRG1, ErbB receptor subtypes, Syntaxin1 and Olig1 that shows association with impaired regeneration, synaptic dysfunction, demyelination, cognitive deficits and anxiety.
Collapse
|
12
|
Onesto MM, Short CA, Rempel SK, Catlett TS, Gomez TM. Growth Factors as Axon Guidance Molecules: Lessons From in vitro Studies. Front Neurosci 2021; 15:678454. [PMID: 34093120 PMCID: PMC8175860 DOI: 10.3389/fnins.2021.678454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones in vitro. This review summarizes in vitro experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.
Collapse
Affiliation(s)
| | | | | | | | - Timothy M. Gomez
- Neuroscience Training Program and Cell and Molecular Biology Program, Department of Neuroscience, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
Carriba P, Davies AM. Signalling Pathways Mediating the Effects of CD40-Activated CD40L Reverse Signalling on Inhibitory Medium Spiny Neuron Neurite Growth. Cells 2021; 10:829. [PMID: 33917019 PMCID: PMC8067729 DOI: 10.3390/cells10040829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 01/16/2023] Open
Abstract
CD40-activated CD40L-mediated reverse signalling is a major physiological regulator of neurite growth from excitatory and inhibitory neurons in the developing central nervous system (CNS). Whereas in excitatory pyramidal neurons, CD40L reverse signalling promotes the growth and elaboration of dendrites and axons, in inhibitory GABAergic striatal medium spiny neurons (MSNs), it restricts neurite growth and branching. In pyramidal neurons, we previously reported that CD40L reverse signalling activates an interconnected and interdependent signalling network involving protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase (JNK) signalling pathways that regulates dendrite and axon growth. Here, we have studied whether these signalling pathways also influence neurite growth from striatal inhibitory MSNs. To unequivocally activate CD40L reverse signalling, we treated MSN cultures from CD40-deficient mice with CD40-Fc. Here, we report that activation of CD40L reverse signalling in these cultures also increased the phosphorylation of PKC, ERK1/2, and JNK. Using pharmacological activators and inhibitors of these signalling pathways singularly and in combination, we have shown that, as in pyramidal neurons, these signalling pathways work in an interconnected and interdependent network to regulate the neurite growth, but their functions, relationships, and interdependencies are different from those observed in pyramidal neurons. Furthermore, immunoprecipitation studies showed that stimulation of CD40L reverse signalling recruits the catalytic fragment of Syk tyrosine kinase, but in contrast to pyramidal neurons, PKC does not participate in this recruitment. Our findings show that distinctive networks of three signalling pathways mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Alun M Davies
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
14
|
Ou GY, Lin WW, Zhao WJ. Neuregulins in Neurodegenerative Diseases. Front Aging Neurosci 2021; 13:662474. [PMID: 33897409 PMCID: PMC8064692 DOI: 10.3389/fnagi.2021.662474] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are typically characterized by progressive neuronal loss and neurological dysfunctions in the nervous system, affecting both memory and motor functions. Neuregulins (NRGs) belong to the epidermal growth factor (EGF)-like family of extracellular ligands and they play an important role in the development, maintenance, and repair of both the central nervous system (CNS) and peripheral nervous system (PNS) through the ErbB signaling pathway. They also regulate multiple intercellular signal transduction and participate in a wide range of biological processes, such as differentiation, migration, and myelination. In this review article, we summarized research on the changes and roles of NRGs in neurodegenerative diseases, especially in AD. We elaborated on the structural features of each NRG subtype and roles of NRG/ErbB signaling networks in neurodegenerative diseases. We also discussed the therapeutic potential of NRGs in the symptom remission of neurodegenerative diseases, which may offer hope for advancing related treatment.
Collapse
Affiliation(s)
- Guan-yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wen-wen Lin
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Wei-jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- *Correspondence: Wei-jiang Zhao
| |
Collapse
|
15
|
Soluble SORLA Enhances Neurite Outgrowth and Regeneration through Activation of the EGF Receptor/ERK Signaling Axis. J Neurosci 2020; 40:5908-5921. [PMID: 32601248 DOI: 10.1523/jneurosci.0723-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
SORLA is a transmembrane trafficking protein associated with Alzheimer's disease risk. Although SORLA is abundantly expressed in neurons, physiological roles for SORLA remain unclear. Here, we show that cultured transgenic neurons overexpressing SORLA feature longer neurites, and accelerated neurite regeneration with wounding. Enhanced release of a soluble form of SORLA (sSORLA) is observed in transgenic mouse neurons overexpressing human SORLA, while purified sSORLA promotes neurite extension and regeneration. Phosphoproteomic analyses demonstrate enrichment of phosphoproteins related to the epidermal growth factor (EGFR)/ERK pathway in SORLA transgenic mouse hippocampus from both genders. sSORLA coprecipitates with EGFR in vitro, and sSORLA treatment increases EGFR Y1173 phosphorylation, which is involved in ERK activation in cultured neurons. Furthermore, sSORLA triggers ERK activation, whereas pharmacological EGFR or ERK inhibition reverses sSORLA-dependent enhancement of neurite outgrowth. In search for downstream ERK effectors activated by sSORLA, we identified upregulation of Fos expression in hippocampus from male mice overexpressing SORLA by RNAseq analysis. We also found that Fos is upregulated and translocates to the nucleus in an ERK-dependent manner in neurons treated with sSORLA. Together, these results demonstrate that sSORLA is an EGFR-interacting protein that activates EGFR/ERK/Fos signaling to enhance neurite outgrowth and regeneration.SIGNIFICANCE STATEMENT SORLA is a transmembrane trafficking protein previously known to reduce the levels of amyloid-β, which is critical in the pathogenesis of Alzheimer's disease. In addition, SORLA mutations are a risk factor for Alzheimer's disease. Interestingly, the SORLA ectodomain is cleaved into a soluble form, sSORLA, which has been shown to regulate cytoskeletal signaling pathways and cell motility in cells outside the nervous system. We show here that sSORLA binds and activates the EGF receptor to induce downstream signaling through the ERK serine/threonine kinase and the Fos transcription factor, thereby enhancing neurite outgrowth. These findings reveal a novel role for sSORLA in promoting neurite regeneration through the EGF receptor/ERK/Fos pathway, thereby demonstrating a potential neuroprotective mechanism involving SORLA.
Collapse
|
16
|
Dunn AL, Michie PT, Hodgson DM, Harms L. Adolescent cannabinoid exposure interacts with other risk factors in schizophrenia: A review of the evidence from animal models. Neurosci Biobehav Rev 2020; 116:202-220. [PMID: 32610181 DOI: 10.1016/j.neubiorev.2020.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Many factors and their interaction are linked to the aetiology of schizophrenia, leading to the development of animal models of multiple risk factors and adverse exposures. Differentiating between separate and combined effects for each factor could better elucidate schizophrenia pathology, and drive development of preventative strategies for high-load risk factors. An epidemiologically valid risk factor commonly associated with schizophrenia is adolescent cannabis use. The aim of this review is to evaluate how early-life adversity from various origins, in combination with adolescent cannabinoid exposure interact, and whether these interactions confer main, synergistic or protective effects in animal models of schizophrenia-like behavioural, cognitive and morphological alterations. Patterns emerge regarding which models show consistent synergistic or protective effects, particularly those models incorporating early-life exposure to maternal deprivation and maternal immune activation, and sex-specific effects are observed. It is evident that more research needs to be conducted to better understand the risks and alterations of interacting factors, with particular interest in sex differences, to better understand the translatability of these preclinical models to humans.
Collapse
Affiliation(s)
- Ariel L Dunn
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Patricia T Michie
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| | - Lauren Harms
- Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
17
|
Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons. Mol Neurobiol 2020; 57:3568-3588. [PMID: 32542595 DOI: 10.1007/s12035-020-01966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
The neuregulins (Nrgs 1-4) are a family of signaling molecules that play diverse roles in the nervous system. Nrg1 has been implicated in the formation of synapses and in synaptic plasticity. Previous studies have shown Nrg1 can affect neurite outgrowth in several neuronal populations, while the role of Nrg2 and Nrg3 in this process has remained understudied. The Nrgs can bind and activate the ErbB4 receptor tyrosine kinase which is preferentially expressed in GABAergic interneurons in the rodent hippocampus and cerebral cortex. In the present study, we evaluated the effects of Nrgs 1, 2, and 3 on neurite outgrowth of dissociated rat cortical ErbB4-positive (+)/GABA+ interneurons in vitro. All three Nrgs were able to promote neurite outgrowth during the first 2 days in vitro, with increases detected for both the axon (116-120%) and other neurites (100-120%). Increases in the average number of primary and secondary neurites were also observed. Treatment with the Nrgs for an additional 3 days promoted an increase in axonal length (86-96%), with only minimal effects on the remaining neurites (8-13%). ErbB4 expression persisted throughout the dendritic arbor and cell soma at all stages examined, while its expression in the axon was transient and declined with cell maturation. ErbB4 overexpression in GABAergic neurons promoted neurite outgrowth, an effect that was potentiated by Nrg treatment. These results show that Nrgs 1, 2, and 3 are each capable of influencing dendritic and axonal growth at early developmental stages in GABAergic neurons grown in vitro.
Collapse
|
18
|
Aldaregia J, Errarte P, Olazagoitia-Garmendia A, Gimeno M, Uriz JJ, Gershon TR, Garcia I, Matheu A. Erbb4 Is Required for Cerebellar Developmentand Malignant Phenotype of Medulloblastoma. Cancers (Basel) 2020; 12:cancers12040997. [PMID: 32316671 PMCID: PMC7226104 DOI: 10.3390/cancers12040997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma is the most common and malignant pediatric brain tumor in childhood. It originates from dysregulation of cerebellar development, due to an excessive proliferation of cerebellar granule neuron precursor cells (CGNPs). The underlying molecular mechanisms, except for the role of SHH and WNT pathways, remain largely unknown. ERBB4 is a tyrosine kinase receptor whose activity in cancer is tissue dependent. In this study, we characterized the role of ERBB4 during cerebellum development and medulloblastoma progression paying particular interests to its role in CGNPs and medulloblastoma stem cells (MBSCs). Our results show that ERBB4 is expressed in the CGNPs during cerebellum development where it plays a critical role in migration, apoptosis and differentiation. Similarly, it is enriched in the population of MBSCs, where also controls those critical processes, as well as self-renewal and tumor initiation for medulloblastoma progression. These results are translated to clinical samples where high levels of ERBB4 correlate with poor outcome in Group 4 and all medulloblastomas groups. Transcriptomic analysis identified critical processes and pathways altered in cells with knock-down of ERBB4. These results highlight the impact and underlying mechanisms of ERBB4 in critical processes during cerebellum development and medulloblastoma.
Collapse
Affiliation(s)
- Juncal Aldaregia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Peio Errarte
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Ane Olazagoitia-Garmendia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | - Marian Gimeno
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
| | | | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27516, USA;
| | - Idoia Garcia
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: (I.G.); (A.M.); Tel.: +34-943006073 (I.G. & A.M.)
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, Dr. Beguiristain s/n, 20014 San Sebastian, Spain; (J.A.); (P.E.); (A.O.-G.); (M.G.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- CIBERfes, Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (I.G.); (A.M.); Tel.: +34-943006073 (I.G. & A.M.)
| |
Collapse
|
19
|
Kizner V, Naujock M, Fischer S, Jäger S, Reich S, Schlotthauer I, Zuckschwerdt K, Geiger T, Hildebrandt T, Lawless N, Macartney T, Dorner-Ciossek C, Gillardon F. CRISPR/Cas9-mediated Knockout of the Neuropsychiatric Risk Gene KCTD13 Causes Developmental Deficits in Human Cortical Neurons Derived from Induced Pluripotent Stem Cells. Mol Neurobiol 2019; 57:616-634. [PMID: 31402430 DOI: 10.1007/s12035-019-01727-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 02/08/2023]
Abstract
The human KCTD13 gene is located within the 16p11.2 locus and copy number variants of this locus are associated with a high risk for neuropsychiatric diseases including autism spectrum disorder and schizophrenia. Studies in zebrafish point to a role of KCTD13 in proliferation of neural precursor cells which may contribute to macrocephaly in 16p11.2 deletion carriers. KCTD13 is highly expressed in the fetal human brain and in mouse cortical neurons, but its contribution to the development and function of mammalian neurons is not completely understood. In the present study, we deleted the KCTD13 gene in human-induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 nickase. Following neural differentiation of KCTD13 deficient and isogenic control iPSC lines, we detected a moderate but significant inhibition of DNA synthesis and proliferation in KCTD13 deficient human neural precursor cells. KCTD13 deficient cortical neurons derived from iPSCs showed decreased neurite formation and reduced spontaneous network activity. RNA-sequencing and pathway analysis pointed to a role for ERBB signaling in these phenotypic changes. Consistently, activating and inhibiting ERBB kinases rescued and aggravated, respectively, impaired neurite formation. In contrast to findings in non-neuronal human HeLa cells, we did not detect an accumulation of the putative KCTD13/Cullin-3 substrate RhoA, and treatment with inhibitors of RhoA signaling did not rescue decreased neurite formation in human KCTD13 knockout neurons. Taken together, our data provide insight into the role of KCTD13 in neurodevelopmental disorders, and point to ERBB signaling as a potential target for neuropsychiatric disorders associated with KCTD13 deficiency.
Collapse
Affiliation(s)
- Valeria Kizner
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Maximilian Naujock
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Sandra Fischer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Stefan Jäger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Selina Reich
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Ines Schlotthauer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Kai Zuckschwerdt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Geiger
- Cardio-metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Tobias Hildebrandt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Nathan Lawless
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee, DD1 5EH, UK
| | - Cornelia Dorner-Ciossek
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany
| | - Frank Gillardon
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
20
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
21
|
Joshi M, Krishnakumar A. Hypoglycemia causes dysregulation of Neuregulin 1, ErbB receptors, Ki67 in cerebellum and brainstem during diabetes: Implications in motor function. Behav Brain Res 2019; 372:112029. [PMID: 31195035 DOI: 10.1016/j.bbr.2019.112029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 12/09/2022]
Abstract
Hypoglycemia induced brain injury poses a major setback to optimal blood glucose regulation during diabetes. It causes irreversible injury in several brain regions culminating in improper function. Neuregulin 1 and ErbB receptors are involved in regeneration during adulthood as well as in glucose homeostasis. We intended to understand the influence of extreme discrepancies in glycemic levels on Neuregulin 1, ErbB receptor subtypes and Ki67 expression in relation to motor deficits as a consequence of cellular dysfunction/degeneration in the cerebellum and brainstem during diabetes. Elevated oxidative stress and compromised antioxidant system havocs cerebellum and brainstem related function. Cellular alteration of Purkinje neurons in the cerebellum and presence of axonal spheroids in the brainstem are suggestive of impairment to neural circuits involved in motor function. Down regulation of Neuregulin 1, ErbB 2, ErbB 3, ErbB 4 and Ki67 expression observed during diabetes and hypoglycemia may critically cause regenerative deficiency in cerebellum. The coincident up regulation of Neuregulin 1, ErbB 2, ErbB 3 and ErbB 4 in brainstem during diabetes is an attempt to maintain regenerative homeostasis to ensure its function. However, hypoglycemic insults results in down regulation of Neuregulin 1, ErbB 4 expression that severely compromises their role in brainstem. Grid walking test confirmed motor impairment during diabetes that showed further deterioration due to hypoglycemic stress. Thus altered expression of Neuregulin 1, ErbB receptor subtypes and Ki67 during diabetes and hypoglycemia contributes to reduced cellular proliferation and deficits in motor function.
Collapse
Affiliation(s)
- Madhavi Joshi
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway Ahmedabad 382481, Gujarat, India.
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Sarkhej- Gandhinagar Highway Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
22
|
Investigation of Neuregulin-1 and Glial Cell-Derived Neurotrophic Factor in Rodent Astrocytes and Microglia. J Mol Neurosci 2019; 67:484-493. [PMID: 30680593 DOI: 10.1007/s12031-019-1258-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Growth factors play a crucial role during de- and remyelination of the central nervous system (CNS) due to their neurotrophic functions. We have previously shown that the growth factors neuregulin-1 (Nrg-1) and glial cell-derived neurotrophic factor (Gdnf) are upregulated during the first 2 weeks after induction of toxic demyelination in the CNS. Nevertheless, the factors responsible for Nrg-1/Gdnf upregulation and their effects on glia cells are unknown. We investigated the effect on Nrg-1 and Gdnf expressions after stimulation of primary mouse microglia or astrocytes with various pro- and anti-inflammatory factors. Additionally, primary cells were incubated with NRG-1 and/or GDNF followed by determining the gene expression level of their receptors, chemokines, and other growth factors. We demonstrate that inflammatory stimuli have a distinct impact on the expression of Gdnf, Nrg-1, and their receptors in astrocytes and microglia. In microglia, LPS or simultaneous treatment with IFNγ plus TNFα led to downregulation of Nrg-1, whereas LPS treatment slightly increased Nrg-1 expression in astrocytes. Furthermore, Gdnf was slightly upregulated after TFG-β treatment in microglia, while Gdnf was significantly upregulated after LPS treatment in astrocytes. In contrast, treatment with GDNF or/and NRG-1 did not alter any measured gene expression in microglia or astrocytes. Taken together, our in vitro studies show that Nrg-1, Gdnf, and their receptors are differently regulated in astrocytes and microglia upon inflammatory stimuli. The lack of response of astrocytes and microglia to NRG-1 and GDNF suggests that both factors exert their effects directly on neurons.
Collapse
|
23
|
Pankratova S, Klingelhofer J, Dmytriyeva O, Owczarek S, Renziehausen A, Syed N, Porter AE, Dexter DT, Kiryushko D. The S100A4 Protein Signals through the ErbB4 Receptor to Promote Neuronal Survival. Theranostics 2018; 8:3977-3990. [PMID: 30083275 PMCID: PMC6071530 DOI: 10.7150/thno.22274] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100-ErbB axis may be an important mechanism regulating neuronal survival and plasticity.
Collapse
|
24
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Ledda F, Paratcha G. Mechanisms regulating dendritic arbor patterning. Cell Mol Life Sci 2017; 74:4511-4537. [PMID: 28735442 PMCID: PMC11107629 DOI: 10.1007/s00018-017-2588-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
The nervous system is populated by diverse types of neurons, each of which has dendritic trees with strikingly different morphologies. These neuron-specific morphologies determine how dendritic trees integrate thousands of synaptic inputs to generate different firing properties. To ensure proper neuronal function and connectivity, it is necessary that dendrite patterns are precisely controlled and coordinated with synaptic activity. Here, we summarize the molecular and cellular mechanisms that regulate the formation of cell type-specific dendrite patterns during development. We focus on different aspects of vertebrate dendrite patterning that are particularly important in determining the neuronal function; such as the shape, branching, orientation and size of the arbors as well as the development of dendritic spine protrusions that receive excitatory inputs and compartmentalize postsynaptic responses. Additionally, we briefly comment on the implications of aberrant dendritic morphology for nervous system disease.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine, University of Buenos Aires (UBA), Paraguay 2155, 3rd Floor, CABA, 1121, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Carriba P, Davies AM. CD40 is a major regulator of dendrite growth from developing excitatory and inhibitory neurons. eLife 2017; 6:30442. [PMID: 29111976 PMCID: PMC5687868 DOI: 10.7554/elife.30442] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Dendrite size and morphology are key determinants of the functional properties of neurons and neural circuits. Here we show that CD40, a member of the TNF receptor superfamily, is a major regulator of dendrite growth and elaboration in the developing brain. The dendrites of hippocampal excitatory neurons were markedly stunted in Cd40-/- mice, whereas those of striatal inhibitory neurons were much more exuberant. These striking and opposite phenotypic changes were also observed in excitatory and inhibitory neurons cultured from Cd40-/- mice and were rescued by soluble CD40. The changes in excitatory and inhibitory neurons cultured from Cd40-/- mice were mimicked in neurons of Cd40+/+ mice by treatment with soluble CD40L and were dependent on PKC-β and PKC-γ, respectively. These results suggest that CD40-activated CD40L reverse signalling has striking and opposite effects on the growth and elaboration of dendrites among major classes of brain neurons by PKC-dependent mechanisms.
Collapse
Affiliation(s)
- Paulina Carriba
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Alun M Davies
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN, Gu Q, Bassell GJ. Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Rep 2017; 20:1-12. [PMID: 28683304 PMCID: PMC5745041 DOI: 10.1016/j.celrep.2017.06.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/28/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
Genomic studies have repeatedly associated variants in the gene encoding the microRNA miR-137 with increased schizophrenia risk. Bioinformatic predictions suggest that miR-137 regulates schizophrenia-associated signaling pathways critical to neural development, but these predictions remain largely unvalidated. In the present study, we demonstrate that miR-137 regulates neuronal levels of p55γ, PTEN, Akt2, GSK3β, mTOR, and rictor. All are key proteins within the PI3K-Akt-mTOR pathway and act downstream of neuregulin (Nrg)/ErbB and BDNF signaling. Inhibition of miR-137 ablates Nrg1α-induced increases in dendritic protein synthesis, phosphorylated S6, AMPA receptor subunits, and outgrowth. Inhibition of miR-137 also blocks mTORC1-dependent responses to BDNF, including increased mRNA translation and dendritic outgrowth, while leaving mTORC1-independent S6 phosphorylation intact. We conclude that miR-137 regulates neuronal responses to Nrg1α and BDNF through convergent mechanisms, which might contribute to schizophrenia risk by altering neural development.
Collapse
Affiliation(s)
- Kristen Therese Thomas
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Bart Russell Anderson
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Niraj Shah
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Stephanie Elaine Zimmer
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Daniel Hawkins
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Arielle Nicole Valdez
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Qiaochu Gu
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | - Gary Jonathan Bassell
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Endesfelder S, Makki H, von Haefen C, Spies CD, Bührer C, Sifringer M. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS One 2017; 12:e0171498. [PMID: 28158247 PMCID: PMC5291450 DOI: 10.1371/journal.pone.0171498] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hanan Makki
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
29
|
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A, Tahirovic S, Michaelsen M, Schreiber F, Haupt S, Peitz M, Brüstle O, Küpper C, Klopstock T, Otto M, Ludolph AC, Arzberger T, Kuhn PH, Edbauer D. TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 2016; 35:2350-2370. [PMID: 27621269 PMCID: PMC5090220 DOI: 10.15252/embj.201694221] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased β2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.
Collapse
Affiliation(s)
- Benjamin M Schwenk
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Alperen Serdaroglu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Felix Meissner
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Denise Orozco
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | | | - Michael Peitz
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology University of Bonn, Bonn, Germany
| | - Clemens Küpper
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Friedrich-Baur-Institute LMU Munich, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Advanced Study Technische Universität München, München, Germany.,Institut für Allgemeine Pathologie Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Institute for Metabolic Biochemistry LMU Munich, Munich, Germany
| |
Collapse
|
30
|
Discovery of Novel Biomarkers for Alzheimer's Disease from Blood. DISEASE MARKERS 2016; 2016:4250480. [PMID: 27418712 PMCID: PMC4932164 DOI: 10.1155/2016/4250480] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Blood-based biomarkers for Alzheimer's disease would be very valuable because blood is a more accessible biofluid and is suitable for repeated sampling. However, currently there are no robust and reliable blood-based biomarkers for practical diagnosis. In this study we used a knowledge-based protein feature pool and two novel support vector machine embedded feature selection methods to find panels consisting of two and three biomarkers. We validated these biomarker sets using another serum cohort and an RNA profile cohort from the brain. Our panels included the proteins ECH1, NHLRC2, HOXB7, FN1, ERBB2, and SLC6A13 and demonstrated promising sensitivity (>87%), specificity (>91%), and accuracy (>89%).
Collapse
|
31
|
Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev 2016; 68:946-978. [PMID: 27143622 DOI: 10.1016/j.neubiorev.2016.04.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments.
Collapse
|
32
|
Ryu J, Hong BH, Kim YJ, Yang EJ, Choi M, Kim H, Ahn S, Baik TK, Woo RS, Kim HS. Neuregulin-1 attenuates cognitive function impairments in a transgenic mouse model of Alzheimer's disease. Cell Death Dis 2016; 7:e2117. [PMID: 26913607 PMCID: PMC4849157 DOI: 10.1038/cddis.2016.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
The neuregulin (NRG) family of epidermal growth factor-related proteins is composed of a wide variety of soluble and membrane-bound proteins that exert their effects via the tyrosine kinase receptors ErbB2-ErbB4. In the nervous system, the functions of NRG1 are essential for peripheral myelination, the establishment and maintenance of neuromuscular and sensorimotor systems and the plasticity of cortical neuronal circuits. In the present study, we report that an intracerebroventricular infusion of NRG1 attenuated cognitive impairments in 13-month-old Tg2576 mice, an animal model of Alzheimer's disease (AD). In addition, according to Golgi-Cox staining, NRG1 rescued the reduction in the number of dendritic spines detected in the brains of Tg2576 mice compared with vehicle (PBS)-infused mice. This result was also corroborated in vitro as NRG1 attenuated the oligomeric amyloid beta peptide1-42 (Aβ1-42)-induced decrease in dendritic spine density in rat primary hippocampal neuron cultures. NRG1 also alleviated the decrease in neural differentiation induced by oligomeric Aβ1-42 in mouse fetal neural stem cells. Collectively, these results suggest that NRG1 has a therapeutic potential for AD by alleviating the reductions in dendritic spine density and neurogenesis found in AD brains.
Collapse
Affiliation(s)
- J Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - B-H Hong
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - Y-J Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - E-J Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - M Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - H Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - S Ahn
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - T-K Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - R-S Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - H-S Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea.,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea.,Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
33
|
Barrenschee M, Lange C, Cossais F, Egberts JH, Becker T, Wedel T, Böttner M. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front Cell Neurosci 2015; 9:360. [PMID: 26441531 PMCID: PMC4585281 DOI: 10.3389/fncel.2015.00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Neuregulin 1 (NRG1) is suggested to promote the survival and maintenance of the enteric nervous system (ENS). As deficiency in its corresponding receptor signaling complex ERBB2/ERBB3 leads to postnatal colonic hypo/aganglionosis we assessed the distributional and expressional pattern of the NRG1-ERBB2/ERBB3 system in the human colon and explored the neurotrophic capacity of NRG1 on cultured enteric neurons. Site-specific mRNA expression of the NRG1-ERBB2/3 system was determined in microdissected samples harvested from enteric musculature and ganglia. Localization of NRG1, ERBB2 and ERBB3 was determined by dual-label-immunohistochemistry using pan-neuronal and pan-glial markers. Morphometric analysis was performed on NRG1-stimulated rat enteric nerve cultures to evaluate neurotrophic effects. mRNA expression of the NRG1-ERBB2/3 system was determined by qPCR. Co-localization of NRG1 with neuronal or synaptic markers was analyzed in enteric nerve cultures stimulated with glial cell line-derived neurotrophic factor (GDNF). The NRG1 system was expressed in both neurons and glial cells of enteric ganglia and in nerve fibers. NRG1 significantly enhanced growth parameters in enteric nerve cell cultures and ErB3 mRNA expression was down-regulated upon NRG1 stimulation. GDNF negatively regulates ErbB2 and ErbB3 mRNA expression. The NRG1-ERBB2/3 system is physiologically present in the human ENS and NRG1 acts as a neurotrophic factor for the ENS. The down-regulation of ErbB3/ErbB2 in GDNF stimulated nerve cell cultures points to an interaction of both neurotrophic factors. Thus, the data may provide a basis to assess disturbed signaling components of the NRG1 system in enteric neuropathies.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Christina Lange
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thomas Becker
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| |
Collapse
|
34
|
Chohan TW, Boucher AA, Spencer JR, Kassem MS, Hamdi AA, Karl T, Fok SY, Bennett MR, Arnold JC. Partial genetic deletion of neuregulin 1 modulates the effects of stress on sensorimotor gating, dendritic morphology, and HPA axis activity in adolescent mice. Schizophr Bull 2014; 40:1272-84. [PMID: 24442851 PMCID: PMC4193694 DOI: 10.1093/schbul/sbt193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress has been linked to the pathogenesis of schizophrenia. Genetic variation in neuregulin 1 (NRG1) increases the risk of developing schizophrenia and may help predict which high-risk individuals will transition to psychosis. NRG1 also modulates sensorimotor gating, a schizophrenia endophenotype. We used an animal model to demonstrate that partial genetic deletion of Nrg1 interacts with stress to promote neurobehavioral deficits of relevance to schizophrenia. Nrg1 heterozygous (HET) mice displayed greater acute stress-induced anxiety-related behavior than wild-type (WT) mice. Repeated stress in adolescence disrupted the normal development of higher prepulse inhibition of startle selectively in Nrg1 HET mice but not in WT mice. Further, repeated stress increased dendritic spine density in pyramidal neurons of the medial prefrontal cortex (mPFC) selectively in Nrg1 HET mice. Partial genetic deletion of Nrg1 also modulated the adaptive response of the hypothalamic-pituitary-adrenal axis to repeated stress, with Nrg1 HET displaying a reduced repeated stress-induced level of plasma corticosterone than WT mice. Our results demonstrate that Nrg1 confers vulnerability to repeated stress-induced sensorimotor gating deficits, dendritic spine growth in the mPFC, and an abberant endocrine response in adolescence.
Collapse
Affiliation(s)
- Tariq W. Chohan
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Aurelie A. Boucher
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jarrah R. Spencer
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Mustafa S. Kassem
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Areeg A. Hamdi
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Sandra Y. Fok
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Maxwell R. Bennett
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C. Arnold
- The Brain and Mind Research Institute, University of Sydney, Sydney, NSW 2006, Australia;,Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, NSW 2006, Australia;,*To whom correspondence should be addressed; The Brain and Mind Research Institute, University of Sydney, 94-100 Mallett Street, Sydney, Australia; tel: +61-2-9351-0812, e-mail:
| |
Collapse
|
35
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
36
|
Cooper MA, Koleske AJ. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol 2014; 522:3351-62. [PMID: 24752666 DOI: 10.1002/cne.23615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/18/2022]
Abstract
Dendritic spine loss is observed in many psychiatric disorders, including schizophrenia, and likely contributes to the altered sense of reality, disruption of working memory, and attention deficits that characterize these disorders. ErbB4, a member of the EGF family of receptor tyrosine kinases, is genetically associated with schizophrenia, suggesting that alterations in ErbB4 function contribute to the disease pathology. Additionally, ErbB4 functions in synaptic plasticity, leading us to hypothesize that disruption of ErbB4 signaling may affect dendritic spine development. We show that dendritic spine density is reduced in the dorsomedial prefrontal cortex of ErbB4 conditional whole-brain knockout mice. We find that ErbB4 localizes to dendritic spines of excitatory neurons in cortical neuronal cultures and is present in synaptic plasma membrane preparations. Finally, we demonstrate that selective ablation of ErbB4 from excitatory neurons leads to a decrease in the proportion of mature spines and an overall reduction in dendritic spine density in the prefrontal cortex of weanling (P21) mice that persists at 2 months of age. These results suggest that ErbB4 signaling in excitatory pyramidal cells is critical for the proper formation and maintenance of dendritic spines in excitatory pyramidal cells.
Collapse
Affiliation(s)
- Margaret A Cooper
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | | |
Collapse
|
37
|
Zschätzsch M, Oliva C, Langen M, De Geest N, Ozel MN, Williamson WR, Lemon WC, Soldano A, Munck S, Hiesinger PR, Sanchez-Soriano N, Hassan BA. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling. eLife 2014; 3:e01699. [PMID: 24755286 PMCID: PMC3990184 DOI: 10.7554/elife.01699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI:http://dx.doi.org/10.7554/eLife.01699.001 In the human brain, 100 billion neurons form 100 trillion connections. Each neuron consists of a cell body with numerous small branch-like projections known as dendrites (from the Greek word for ‘tree’), plus a long cable-like structure called the axon. Neurons receive electrical inputs from neighboring cells via their dendrites, and then relay these signals onto other cells in their network via their axons. The development of the brain relies on new neurons integrating successfully into existing networks. Axon branching helps with this by enabling a single neuron to establish connections with several cells, but it is unclear how individual neurons decide when and where to form branches. Now, Zschätzsch et al. have revealed the mechanism behind this process in the fruit fly, Drosophila. Mutant flies that lack a protein called EGFR produce abnormal numbers of axon branches, suggesting that this molecule regulates branch formation. Indeed in fruit flies, just as in mammals, the developing brain initially produces excessive numbers of branches, which are subsequently pruned to leave only those that have formed appropriate connections. In Drosophila, an uneven distribution of EGFR between branches belonging to the same axon acts as a signal to regulate this pruning process. To examine this mechanism in more detail, high-resolution four-dimensional imaging was used to study brains that had been removed from Drosophila pupae and kept alive in special culture chambers. Axon branching and loss could now be followed in real time, and were found to occur more slowly in brains that lacked EGFR. The receptor controlled the branching of axons by influencing the distribution of another protein called actin, which is a key component of the internal skeleton that gives cells their structure. In addition to providing new insights into a fundamental aspect of brain development, the work of Zschätzsch et al. also highlights the importance of stochastic events in shaping the network of connections within the developing brain. These findings may well be relevant to ongoing efforts to map the human brain ‘connectome’. DOI:http://dx.doi.org/10.7554/eLife.01699.002
Collapse
Affiliation(s)
- Marlen Zschätzsch
- Center for the Biology of Disease, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nickl-Jockschat T, Stöcker T, Krug A, Markov V, Huang R, Schneider F, Habel U, Eickhoff SB, Zerres K, Nöthen MM, Treutlein J, Rietschel M, Shah NJ, Kircher T. A Neuregulin-1 schizophrenia susceptibility variant causes perihippocampal fiber tract anomalies in healthy young subjects. Brain Behav 2014; 4:215-26. [PMID: 24683514 PMCID: PMC3967537 DOI: 10.1002/brb3.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Changes in fiber tract architecture have gained attention as a potentially important aspect of schizophrenia neuropathology. Although the exact pathogenesis of these abnormalities yet remains to be elucidated, a genetic component is highly likely. Neuregulin-1 (NRG1) is one of the best-validated schizophrenia susceptibility genes. We here report the impact of the Neuregulin-1 rs35753505 variant on white matter structure in healthy young individuals with no family history of psychosis. METHODS We compared fractional anisotropy in 54 subjects that were either homozygous for the risk C allele carriers (n = 31) for rs35753505 or homozygous for the T allele (n = 23) using diffusion tensor imaging with 3T. Tract-Based Spatial Statistics (TBSS), a method especially developed for diffusion data analysis, was used to improve white matter registration and to focus the statistical analysis to major fiber tracts. RESULTS Statistical analysis showed that homozygous risk C allele carriers featured elevated fractional anisotropy (FA) in the right perihippocampal region and the white matter proximate to the left area 4p as well as the right hemisphere of the cerebellum. We found three clusters of reduced FA values in homozygous C allele carriers: in the left superior parietal region, the right prefrontal white matter and in the deep white matter of the left frontal lobe. CONCLUSION Our results highlight the importance of Neuregulin-1 for structural connectivity of the right medial temporal lobe. This finding is in line with well known neuropathological findings in this region in patients with schizophrenia.
Collapse
Affiliation(s)
- Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Correspondence Thomas Nickl-Jockschat, Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse-30-, D-52074 Aachen, Germany. Tel: 0049-241/80-36413;, Fax: 0049-241/80-82401;, E-mail:
| | - Tony Stöcker
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| | - Valentin Markov
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
| | - Ruiwang Huang
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
- Department of Neuroscience und Medicine, INM-1, Research Center JülichJülich, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen UniversityAachen, Germany
| | - Markus M Nöthen
- Department of Genomics, Life and Brain Center, University of BonnBonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Nadim Jon Shah
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
- Department of Neurology, RWTH Aachen UniversityAachen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| |
Collapse
|
39
|
Ikeda S, Yamada M. Midkine and cytoplasmic maturation of mammalian oocytes in the context of ovarian follicle physiology. Br J Pharmacol 2014; 171:827-36. [PMID: 23889362 PMCID: PMC3925021 DOI: 10.1111/bph.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Midkine (MK) was originally characterized as a member of a distinct family of neurotrophic factors functioning in the CNS. However, it was later discovered that MK is abundantly expressed in ovarian follicles. Since then, the physiological roles of this molecule in the ovary have been steadily investigated. During the in vitro maturation (IVM) of oocytes MK was shown to promote the cytoplasmic maturation of oocytes, as indicated by post-fertilization development. This effect of MK could be mediated via its pro-survival (anti-apoptotic) effects on the cumulus-granulosa cells that surround oocytes. The oocyte competence-promoting effects of MK are discussed in the context of the recently discovered involvement of MK in the full maturation of ovarian follicles. MK was at the frontline of a new paradigm for neurotrophic factors as oocytetrophic factors. MK may promote the developmental competence of oocytes via common signalling molecules with the other neurotrophic factor(s). Alternatively or concomitantly, MK may also interact with various transmembrane molecules on cumulus-granulosa cells, which are important for ovarian follicle growth, dominance and differentiation, and act as a unique pro-survival factor in ovarian follicles, such that MK promotes oocyte competence. MK, along with other ovarian neurotrophic factors, may contribute to the optimization of the IVM system. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| |
Collapse
|
40
|
Galvez-Contreras AY, Quiñones-Hinojosa A, Gonzalez-Perez O. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci 2013; 7:258. [PMID: 24381541 PMCID: PMC3865447 DOI: 10.3389/fncel.2013.00258] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
In the adult brain, multipotent progenitor cells have been identified in three areas: the ventricular-subventricular zone (VZ-SVZ), adjacent to the striatal wall of the lateral ventricles, the subgranular zone (SGZ), located at the dentate gyrus of the hippocampus and the subcallosal zone (SCZ), located between the corpus callosum and the CA1 and CA2 regions of the hippocampus. The neural progenitor cells of these regions express the epidermal growth factor receptor (EGFR, ErbB-1 or HER1). EGF, the most important ligand for the EGFR, is a potent mitogenic agent that stimulates proliferation, survival, migration and differentiation into the oligodendrocyte lineage. Other ErbB receptors also activate several intracellular pathways for oligodendrocyte specification, migration and survival. However, the specific downstream pathways related to oligodendrogenesis and the hierarchic interaction among intracellular signaling cascades is not well-known. We summarize the current data regarding the role of EGFR and ErbB family signaling on neural stem cells and the downstream cascades involved in oligodendrogenesis in the neurogenic niches of the adult brain. Understanding the mechanisms that regulate proliferation, differentiation, migration of oligodendrocytes and myelination is of critical importance for the field of neurobiology and constitutes a crucial step in the design of stem-cell-based therapies for demyelinating diseases.
Collapse
Affiliation(s)
| | - Alfredo Quiñones-Hinojosa
- Department of Neurological Surgery and Oncology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicologia, Universidad de Colima Colima, Mexico
| |
Collapse
|
41
|
Yamashita H, Muroi Y, Ishii T. Saccharin enhances neurite extension by regulating organization of the microtubules. Life Sci 2013; 93:732-41. [PMID: 24095948 DOI: 10.1016/j.lfs.2013.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/23/2013] [Indexed: 01/31/2023]
Abstract
AIMS In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension. MAIN METHODS The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis. KEY FINDINGS Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation. SIGNIFICANCE These results suggest that saccharin enhances neurite extension by promoting microtubule organization.
Collapse
Affiliation(s)
- Hiroo Yamashita
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro Hokkaido, Japan
| | | | | |
Collapse
|
42
|
Yao JJ, Sun J, Zhao QR, Wang CY, Mei YA. Neuregulin-1/ErbB4 signaling regulates Kv4.2-mediated transient outward K+ current through the Akt/mTOR pathway. Am J Physiol Cell Physiol 2013; 305:C197-206. [PMID: 23703525 DOI: 10.1152/ajpcell.00041.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuregulin-1 (NRG-1) is a member of a family of neurotrophic factors that is required for the differentiation, migration, and development of neurons. NRG-1 signaling is thought to contribute to both neuronal development and the neuropathology of schizophrenia, which is believed to be a neurodevelopmental disorder. However, few studies have investigated the role of NRG-1 on voltage-gated ion channels. In this study, we report that NRG-1 specifically increases the density of transient outward K(+) currents (IA) in rat cerebellar granule neurons (CGNs) in a time-dependent manner without modifying the activation or inactivation properties of IA channels. The increase in IA density is mediated by increased protein expression of Kv4.2, the main α-subunit of the IA channel, most likely by upregulation of translation. The effect of NRG-1 on IA density and Kv4.2 expression was only significant in immature neurons. Mechanistically, both Akt and mammalian target of rapamycin (mTOR) signaling pathways are required for the increased NRG-1-induced IA density and expression of Kv4.2. Moreover, pharmacological blockade of the ErbB4 receptor reduced the effect of NRG-1 on IA density and Kv4.2 induction. Our data reveal, for the first time, that stimulation of ErbB4 signaling by NRG-1 upregulates the expression of K(+) channel proteins via activation of the Akt/mTOR signaling pathway and plays an important role in neuronal development and maturation. NRG1 does not acutely change IA and delayed-rectifier outward (IK) of rat CGNs, suggesting that it may not alter excitability of immature neurons by altering potassium channel property.
Collapse
Affiliation(s)
- Jin-Jing Yao
- State Key Laboratory of Medical Neurobiology, School of Life Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
43
|
García L, Castillo C, Carballo J, Rodríguez Y, Forsyth P, Medina R, Martínez JC, Longart M. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation. Neuroscience 2013; 236:88-98. [PMID: 23380500 DOI: 10.1016/j.neuroscience.2013.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.
Collapse
Affiliation(s)
- L García
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas 1015A, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Deng C, Pan B, Engel M, Huang XF. Neuregulin-1 signalling and antipsychotic treatment: potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berl) 2013; 226:201-15. [PMID: 23389757 DOI: 10.1007/s00213-013-3003-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 01/22/2013] [Indexed: 02/08/2023]
Abstract
Identifying the signalling pathways underlying the pathophysiology of schizophrenia is an essential step in the rational development of new antipsychotic drugs for this devastating disease. Evidence from genetic, transgenic and post-mortem studies have strongly supported neuregulin-1 (NRG1)-ErbB4 signalling as a schizophrenia susceptibility pathway. NRG1-ErbB4 signalling plays crucial roles in regulating neurodevelopment and neurotransmission, with implications for the pathophysiology of schizophrenia. Post-mortem studies have demonstrated altered NRG1-ErbB4 signalling in the brain of schizophrenia patients. Antipsychotic drugs have different effects on NRG1-ErbB4 signalling depending on treatment duration. Abnormal behaviours relevant to certain features of schizophrenia are displayed in NRG1/ErbB4 knockout mice or those with NRG1/ErbB4 over-expression, some of these abnormalities can be improved by antipsychotic treatment. NRG1-ErbB4 signalling has extensive interactions with the GABAergic, glutamatergic and dopaminergic neurotransmission systems that are involved in the pathophysiology of schizophrenia. These interactions provide a number of targets for the development of new antipsychotic drugs. Furthermore, the key interaction points between NRG1-ErbB4 signalling and other schizophrenia susceptibility genes may also potentially provide specific targets for new antipsychotic drugs. In general, identification of these targets in NRG1-ErbB4 signalling and interacting pathways will provide unique opportunities for the development of new generation antipsychotics with specific efficacy and fewer side effects.
Collapse
Affiliation(s)
- Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | | | | |
Collapse
|
45
|
Iwakura Y, Nawa H. ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease. Front Cell Neurosci 2013; 7:4. [PMID: 23408472 PMCID: PMC3570895 DOI: 10.3389/fncel.2013.00004] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022] Open
Abstract
Ligands for ErbB1-4 receptor tyrosine kinases, such as epidermal growth factor (EGF) and neuregulins, regulate brain development and function. Thus, abnormalities in their signaling are implicated in the etiology or pathology of schizophrenia and Parkinson's disease. Among the ErbB receptors, ErbB1, and ErbB4 are expressed in dopamine and GABA neurons, while ErbB1, 2, and/or 3 are mainly present in oligodendrocytes, astrocytes, and their precursors. Thus, deficits in ErbB signaling might contribute to the neurological and psychiatric diseases stemming from these cell types. By incorporating the latest cancer molecular biology as well as our recent progress, we discuss signal cross talk between the ErbB1-4 subunits and their neurobiological functions in each cell type. The potential contribution of virus-derived cytokines (virokines) that mimic EGF and neuregulin-1 in brain diseases are also discussed.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | | |
Collapse
|
46
|
Wang V, Chuang TC, Kao MC, Shan DE, Soong BW, Shieh TM. Polymorphic Ala-allele carriers at residue 1170 of HER2 associated with Parkinson's disease. J Neurol Sci 2013; 325:115-9. [DOI: 10.1016/j.jns.2012.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 12/16/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023]
|
47
|
Ryu J, Yu HN, Cho H, Kim HS, Baik TK, Lee SJ, Woo RS. Neuregulin-1 exerts protective effects against neurotoxicities induced by C-terminal fragments of APP via ErbB4 receptor. J Pharmacol Sci 2012; 119:73-81. [PMID: 22739235 DOI: 10.1254/jphs.12057fp] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Neuregulin-1 (NRG1) plays important roles in the development and plasticity of the brain, and it is also reported to have potent neuroprotective properties. We previously reported that NRG1 has neuroprotective actions against Swedish amyloid precursor protein-induced neurotoxicity. In addition to the amyloid beta peptide, other metabolites of amyloid precursor protein (APP) such as the C-terminal fragments of APP (APP-CTs) have been reported to possess cytotoxic effects in neuronal cells. In this study, we investigated whether NRG1 exerts neuroprotective effects against APP-CTs and attempted to determine its neuroprotective mechanisms. NRG1 attenuated the neurotoxicities induced by the expression of APP-CTs in neuronal cells. NRG1 also reduced the accumulation of reactive oxygen species and attenuated mitochondrial membrane potential loss induced by APP-CTs. In addition, NRG1 upregulated the expression of the anti-apoptotic protein Bcl-2. This effect was blocked by the inhibition of ErbB4, a key NRG1 receptor. Taken together, these results demonstrate the neuroprotective potential of NRG1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Junghwa Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Differential regulation of neuregulin 1 expression by progesterone in astrocytes and neurons. ACTA ACUST UNITED AC 2012; 2:227-34. [PMID: 18049715 DOI: 10.1017/s1740925x07000385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glial-neuronal interactions are crucial processes in neuromodulation and synaptic plasticity. The neuregulin 1 family of growth and differentiation factors have been implicated as bidirectional signaling molecules that are involved in mediating some of these interactions. We have shown previously that neuregulin 1 expression is regulated by the gonadal hormones progesterone and 17beta-estradiol in the CNS, which might represent a novel, indirect mechanism of the neuromodulatory actions of these gonadal hormones. In the present study, we sought to determine the effects of progesterone and 17beta-estradiol on neuregulin 1 expression in rat cortical astrocytes and neurons in vitro. We observed that progesterone increased the expression of neuregulin 1 mRNA and protein in a dose-dependent manner in cultured astrocytes, which was blocked by the progesterone receptor antagonist RU-486. In contrast, 17beta-estradiol did not increase either neuregulin 1 mRNA or protein in astrocytes. We observed no effect of either progesterone or 17beta-estradiol on neuregulin 1 mRNA and protein in rat cortical neurons in vitro. Finally, we observed that treatment of cortical neurons with recombinant NRG1-beta1 caused PSD-95 to localize in puncta similar to that observed following treatment with astrocyte-conditioned medium. These results demonstrate that progesterone regulates neuregulin 1 expression, principally in astrocytes. This might represent a novel mechanism of progesterone-mediated modulation of neurotransmission through the regulation of astrocyte-derived neuregulin 1.
Collapse
|
49
|
The effects of neuregulin-1β on neuronal phenotypes of primary cultured dorsal root ganglion neurons by activation of PI3K/Akt. Neurosci Lett 2012; 511:52-7. [DOI: 10.1016/j.neulet.2012.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/19/2022]
|
50
|
Audisio C, Mantovani C, Raimondo S, Geuna S, Perroteau I, Terenghi G. Neuregulin1 administration increases axonal elongation in dissociated primary sensory neuron cultures. Exp Cell Res 2012; 318:570-7. [PMID: 22269328 DOI: 10.1016/j.yexcr.2012.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/18/2011] [Accepted: 01/07/2012] [Indexed: 12/31/2022]
Abstract
Neuregulin1 is a family of growth and differentiation factors involved in various functions of both peripheral and central nervous system including the regenerative processes that underlie regeneration of damaged peripheral nerves. In the present study we tested in vitro the effect of Neuregulin1 administration on dissociated rat dorsal root ganglion (DRG). Activity of neuregulin1 was compared to the activity of nerve growth factor in the same in vitro experimental model. Results showed that neurite outgrowth is enhanced by the addition of both neuregulin1 and nerve growth factor to the culture medium. While neuregulin1 was responsible for the growth of longer neurites, DRG neurons incubated with nerve growth factor showed shorter and more branched axons. Using enzyme-linked immunosorbent assay we also showed that the release of nerve growth factor, but not of brain derived neurotrophic factor is improved in DRG neuron treated with neuregulin1. On the other hand, the assay with growth factor blocking antibody, showed that effects exerted by neuregulin1 on neurite outgrowth is only partially due to the release of nerve growth factor. Taken together the results of this study provide a better understanding on the role of neuregulin1 in sensory neurons.
Collapse
Affiliation(s)
- Chiara Audisio
- Department of Animal and Human Biology, University of Turin, via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | | | | | |
Collapse
|