1
|
Ford SA, Ness RW, Kwon M, Ro DK, Phillips MA. A chromosome level reference genome of Diviner's sage (Salvia divinorum) provides insight into salvinorin A biosynthesis. BMC PLANT BIOLOGY 2024; 24:914. [PMID: 39350001 PMCID: PMC11443658 DOI: 10.1186/s12870-024-05633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Diviner's sage (Salvia divinorum; Lamiaceae) is the source of the powerful hallucinogen salvinorin A (SalA). This neoclerodane diterpenoid is an agonist of the human Κ-opioid receptor with potential medical applications in the treatment of chronic pain, addiction, and post-traumatic stress disorder. Only two steps of the approximately twelve step biosynthetic sequence leading to SalA have been resolved to date. RESULTS To facilitate pathway elucidation in this ethnomedicinal plant species, here we report a chromosome level genome assembly. A high-quality genome sequence was assembled with an N50 value of 41.4 Mb and a BUSCO completeness score of 98.4%. The diploid (2n = 22) genome of ~ 541 Mb is comparable in size and ploidy to most other members of this genus. Two diterpene biosynthetic gene clusters were identified and are highly enriched in previously unidentified cytochrome P450s as well as crotonolide G synthase, which forms the dihydrofuran ring early in the SalA pathway. Coding sequences for other enzyme classes with likely involvement in downstream steps of the SalA pathway (BAHD acyl transferases, alcohol dehydrogenases, and O-methyl transferases) were scattered throughout the genome with no clear indication of clustering. Differential gene expression analysis suggests that most of these genes are not inducible by methyl jasmonate treatment. CONCLUSIONS This genome sequence and associated gene annotation are among the highest resolution in Salvia, a genus well known for the medicinal properties of its members. Here we have identified the cohort of genes responsible for the remaining steps in the SalA pathway. This genome sequence and associated candidate genes will facilitate the elucidation of SalA biosynthesis and enable an exploration of its full clinical potential.
Collapse
Affiliation(s)
- Scott A Ford
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto - Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Present Address: Division of Applied Life Science (BK21 Four), ABC-RLRC, RIMA, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Biology, University of Toronto - Mississauga, Mississauga, ON, L5L 1C6, Canada.
| |
Collapse
|
2
|
Lu WL, Xie XG, Ai HW, Wu HF, Dai YY, Wang LN, Rahman K, Su J, Sun K, Han T. Crosstalk between H 2O 2 and Ca 2+ signaling is involved in root endophyte-enhanced tanshinone biosynthesis of Salvia miltiorrhiza. Microbiol Res 2024; 285:127740. [PMID: 38795408 DOI: 10.1016/j.micres.2024.127740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/28/2024]
Abstract
Tanshinones are bioactive ingredients derived from the herbal plant Salvia miltiorrhiza and are used for treating diseases of the heart and brain, thus ensuring quality of S. miltiorrhiza is paramount. Applying the endophytic fungus Trichoderma atroviride D16 can significantly increase the content of tanshinones in S. miltiorrhiza, but the potential mechanism remains unknown. In the present study, the colonization of D16 effectively enhanced the levels of Ca2+ and H2O2 in the roots of S. miltiorrhiza, which is positively correlated with increased tanshinones accumulation. Further experiments found that the treatment of plantlets with Ca2+ channel blocker (LaCl3) or H2O2 scavenger (DMTU) blocked D16-promoted tanshinones production. LaCl3 suppressed not only the D16-induced tanshinones accumulation but also the induced Ca2+ and H2O2 generation; nevertheless, DMTU did not significantly inhibit the induced Ca2+ biosynthesis, implying that Ca2+ acted upstream in H2O2 production. These results were confirmed by observations that S. miltiorrhiza treated with D16, CaCl2, and D16+LaCl3 exhibit H2O2 accumulation and influx in the roots. Moreover, H2O2 as a downstream signal of Ca2+ is involved in D16 enhanced tanshinones synthesis by inducing the expression of genes related to the biosynthesis of tanshinones, such as DXR, HMGR, GGPPS, CPS, KSL and CYP76AH1 genes. Transcriptomic analysis further supported that D16 activated the transcriptional responses related to Ca2+ and H2O2 production and tanshinones synthesis in S. miltiorrhiza seedlings. This is the first report that Ca2+ and H2O2 play important roles in regulating fungal-plant interactions thus improving the quality in the D16-S. miltiorrhiza system.
Collapse
Affiliation(s)
- Wei-Lan Lu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xing-Guang Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Hong-Wei Ai
- The 967th hospital of PLA, Dalian 116000, People's Republic of China
| | - Hui-Fen Wu
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Yuan-Yuan Dai
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China; School of Pharmacy, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, People's Republic of China
| | - Lu-Nuan Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Ting Han
- School of Pharmacy, Naval Medical University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
3
|
Ahmed AA, Bazyad A, Alotaibi F, Alotaibi KD, Codling G, Alharbi HA. Imidacloprid Uptake and Accumulation in Lettuce Plant ( Lactuca sativa L. var. longipolia) and Its Effects on Abundance of Microbial Communities in Cultivated and Non-Cultivated Arid Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2017. [PMID: 39124135 PMCID: PMC11313857 DOI: 10.3390/plants13152017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Systemic plant protection products, such as neonicotinoids (NIs), are capable of being translocated throughout a plant. Although NIs are less toxic to mammals, fish, and birds, their impact on microbial and non-target insects is of concern. This study investigates the uptake, translocation, and accumulation of the NI, imidacloprid (IMI), in romaine lettuce (Lactuca sativa L. var. longipolia). Exposing 15-day-old seedlings to "10 mg/L" of IMI, the effects on microbial communities in both cultivated (CS) and non-cultivated soil (NCS) were studied along with IMI translocation within plant tissues. The concentrations of IMI in soil varied temporally and between soil types after initial application, with a decrease from 2.0 and 7.7 mg/kg on the first day of sampling to 0.5 and 2.6 mg/kg on the final sampling day (day 35) for CS and NCS, respectively. The half-life of IMI soil was 10.7 and 72.5 days in CS and NCS, respectively, indicating that IMI degraded more quickly in CS, possibly due to smaller grain size, aeration, microbial degradation, and water flow. The accumulated concentrations of IMI in lettuce tissues ranged from 12.4 ± 0.2 and 18.7± 0.9 mg/kg in CS and NCS, respectively. The highest concentration of IMI was found in the shoots, followed by the roots, whereas the soil showed the lowest IMI residuals at the end of the trial. Soil bacteria and fungi were altered by the application of IMI, with a lower abundance index within the bacterial community, indicating a negative impact on the distribution of bacteria in the soil.
Collapse
Affiliation(s)
- Ahmed A. Ahmed
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Abdulgader Bazyad
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Fahad Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Khaled D. Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Garry Codling
- Centre for Resilience in Environment, Water and Waste (CREWW), University of Exeter, N. Park Road Exeter, Devon EX4 4QE, UK;
| | - Hattan A. Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| |
Collapse
|
4
|
Gao X, Ma Q, Zhang X, Wang X, Wang N, Cui Y, Li S, Ma S, Wang H, Zhang K. The reference genome sequence of Artemisia argyi provides insights into secondary metabolism biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1406592. [PMID: 39006964 PMCID: PMC11239399 DOI: 10.3389/fpls.2024.1406592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.
Collapse
Affiliation(s)
- Xinqiang Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Qiang Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xiaomeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Xingyun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuyan Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shengming Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Hong Wang
- Henan Artemisia Argyi Medical Research Center, Anyang, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| |
Collapse
|
5
|
Gao Y, Li J, Xie Y, Zhang T, Tian K, Li X, Yao L. Chromosome-level genome assembly of Ajuga decumbens. FRONTIERS IN PLANT SCIENCE 2024; 15:1413468. [PMID: 38962248 PMCID: PMC11220202 DOI: 10.3389/fpls.2024.1413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Yubang Gao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Province Artemisia Argyi Development and Utilization Engineering Technology Research Center, Nanyang Normal University, Nanyang, Henan, China
| | - Jingzhao Li
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Province Artemisia Argyi Development and Utilization Engineering Technology Research Center, Nanyang Normal University, Nanyang, Henan, China
| | - Yuli Xie
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Teng Zhang
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Kai Tian
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Xiaotang Li
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Lunguang Yao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
- Henan Province Artemisia Argyi Development and Utilization Engineering Technology Research Center, Nanyang Normal University, Nanyang, Henan, China
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
6
|
Jiang M, Yan Y, Zhou B, Li J, Cui L, Guo L, Liu W. Metabolomic and transcriptomic analyses highlight metabolic regulatory networks of Salvia miltiorrhiza in response to replant disease. BMC PLANT BIOLOGY 2024; 24:575. [PMID: 38890577 PMCID: PMC11184839 DOI: 10.1186/s12870-024-05291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Salvia miltiorrhiza, a well-known traditional Chinese medicine, frequently suffers from replant diseases that adversely affect its quality and yield. To elucidate S. miltiorrhiza's metabolic adaptations to replant disease, we analyzed its metabolome and transcriptome, comparing normal and replant diseased plants for the first time. RESULTS We identified 1,269 metabolites, 257 of which were differentially accumulated metabolites, and identified 217 differentially expressed genes. Integrated transcriptomic and metabolomic analyses revealed a significant up-regulation and co-expression of metabolites and genes associated with plant hormone signal transduction and flavonoid biosynthesis pathways in replant diseases. Within plant hormone signal transduction pathway, plants afflicted with replant disease markedly accumulated indole-3-acetic acid and abscisic acid, correlating with high expression of their biosynthesis-related genes (SmAmidase, SmALDH, SmNCED, and SmAAOX3). Simultaneously, changes in hormone concentrations activated plant hormone signal transduction pathways. Moreover, under replant disease, metabolites in the local flavonoid metabolite biosynthetic pathway were significantly accumulated, consistent with the up-regulated gene (SmHTC1 and SmHTC2). The qRT-PCR analysis largely aligned with the transcriptomic results, confirming the trends in gene expression. Moreover, we identified 10 transcription factors co-expressed with differentially accumulated metabolites. CONCLUSIONS Overall, we revealed the key genes and metabolites of S. miltiorrhiza under replant disease, establishing a robust foundation for future inquiries into the molecular responses to combat replant stress.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - YaXing Yan
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - BingQian Zhou
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Jian Li
- Jinan Institute of Product Quality Inspection, Jinan, 250101, China
| | - Li Cui
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - LanPing Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
7
|
Chai S, Deng W, Yang J, Guo L, Wang L, Jiang Y, Liao J, Deng X, Yang R, Zhang Y, Lu Z, Wang X, Zhang L. Physiological and molecular mechanisms of ZnO quantum dots mitigating cadmium stress in Salvia miltiorrhiza. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134245. [PMID: 38603910 DOI: 10.1016/j.jhazmat.2024.134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
This study delved into the physiological and molecular mechanisms underlying the mitigation of cadmium (Cd) stress in the model medicinal plant Salvia miltiorrhiza through the application of ZnO quantum dots (ZnO QDs, 3.84 nm). A pot experiment was conducted, wherein S. miltiorrhiza was subjected to Cd stress for six weeks with foliar application of 100 mg/L ZnO QDs. Physiological analyses demonstrated that compared to Cd stress alone, ZnO QDs improved biomass, reduced Cd accumulation, increased the content of photosynthetic pigments (chlorophyll and carotenoids), and enhanced the levels of essential nutrient elements (Ca, Mn, and Cu) under Cd stress. Furthermore, ZnO QDs significantly lowered Cd-induced reactive oxygen species (ROS) content, including H2O2, O2-, and MDA, while enhancing the activity of antioxidant enzymes (SOD, POD, APX, and GSH-PX). Additionally, ZnO QDs promoted the biosynthesis of primary and secondary metabolites, such as total protein, soluble sugars, terpenoids, and phenols, thereby mitigating Cd stress in S. miltiorrhiza. At the molecular level, ZnO QDs were found to activate the expression of stress signal transduction-related genes, subsequently regulating the expression of downstream target genes associated with metal transport, cell wall synthesis, and secondary metabolite synthesis via transcription factors. This activation mechanism contributed to enhancing Cd tolerance in S. miltiorrhiza. In summary, these findings shed light on the mechanisms underlying the mitigation of Cd stress by ZnO QDs, offering a potential nanomaterial-based strategy for enhancing Cd tolerance in medicinal plants.
Collapse
Affiliation(s)
- Songyue Chai
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Weihao Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianping Yang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Linfeng Guo
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China.
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
8
|
Zhou H, Jiang M, Li J, Xu Y, Li C, Lu S. Genome-Wide Identification and Functional Analysis of Salvia miltiorrhiza MicroRNAs Reveal the Negative Regulatory Role of Smi-miR159a in Phenolic Acid Biosynthesis. Int J Mol Sci 2024; 25:5148. [PMID: 38791194 PMCID: PMC11121111 DOI: 10.3390/ijms25105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs in plants. They play critical functions in various biological processes during plant growth and development. Salvia miltiorrhiza is a well-known traditional Chinese medicinal plant with significant medicinal, economic, and academic values. In order to elucidate the role of miRNAs in S. miltiorrhiza, six small RNA libraries from mature roots, young roots, stems, mature leaves, young leaves and flowers of S. miltiorrhiza and one degradome library from mixed tissues were constructed. A total of 184 miRNA precursors, generating 137 known and 49 novel miRNAs, were genome-widely identified. The identified miRNAs were predicted to play diversified regulatory roles in plants through regulating 891 genes. qRT-PCR and 5' RLM-RACE assays validated the negative regulatory role of smi-miR159a in SmMYB62, SmMYB78, and SmMYB80. To elucidate the function of smi-miR159a in bioactive compound biosynthesis, smi-miR159a transgenic hairy roots were generated and analyzed. The results showed that overexpression of smi-miR159a caused a significant decrease in rosmarinic acid and salvianolic acid B contents. qRT-PCR analysis showed that the targets of smi-miR159a, including SmMYB62, SmMYB78, and SmMYB80, were significantly down-regulated, accompanied by the down-regulation of SmPAL1, SmC4H1, Sm4CL1, SmTAT1, SmTAT3, SmHPPR1, SmRAS, and SmCYP98A14 genes involved in phenolic acid biosynthesis. It suggests that smi-miR159a is a significant negative regulator of phenolic acid biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Maochang Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (H.Z.); (M.J.); (J.L.); (Y.X.)
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
9
|
Zhu B, Wang M, Pang Y, Hu X, Sun C, Zhou H, Deng Y, Lu S. The Smi-miR858a- SmMYB module regulates tanshinone and phenolic acid biosynthesis in Salvia miltiorrhiza. HORTICULTURE RESEARCH 2024; 11:uhae047. [PMID: 38706582 PMCID: PMC11069429 DOI: 10.1093/hr/uhae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
Tanshinones and phenolic acids are two major classes of bioactive compounds in Salvia miltiorrhiza. Revealing the regulatory mechanism of their biosynthesis is crucial for quality improvement of S. miltiorrhiza medicinal materials. Here we demonstrated that Smi-miR858a-Smi-miR858c, a miRNA family previously known to regulate flavonoid biosynthesis, also played critical regulatory roles in tanshinone and phenolic acid biosynthesis in S. miltiorrhiza. Overexpression of Smi-miR858a in S. miltiorrhiza plants caused significant growth retardation and tanshinone and phenolic acid reduction. Computational prediction and degradome and RNA-seq analyses revealed that Smi-miR858a could directly cleave the transcripts of SmMYB6, SmMYB97, SmMYB111, and SmMYB112. Yeast one-hybrid and transient transcriptional activity assays showed that Smi-miR858a-regulated SmMYBs, such as SmMYB6 and SmMYB112, could activate the expression of SmPAL1 and SmTAT1 involved in phenolic acid biosynthesis and SmCPS1 and SmKSL1 associated with tanshinone biosynthesis. In addition to directly activating the genes involved in bioactive compound biosynthesis pathways, SmMYB6, SmMYB97, and SmMYB112 could also activate SmAOC2, SmAOS4, and SmJMT2 involved in the biosynthesis of methyl jasmonate, a significant elicitor of plant secondary metabolism. The results suggest the existence of dual signaling pathways for the regulation of Smi-miR858a in bioactive compound biosynthesis in S. miltiorrhiza.
Collapse
Affiliation(s)
- Butuo Zhu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Meizhen Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yongqi Pang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiangling Hu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Pharmaceutical Sciences, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Chao Sun
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hong Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
10
|
Liu T, Yang Y, Zhu R, Wang Q, Wang Y, Shi M, Kai G. Genome-Wide Identification and Expression Analysis of Sucrose Nonfermenting 1-Related Protein Kinase ( SnRK) Genes in Salvia miltiorrhiza in Response to Hormone. PLANTS (BASEL, SWITZERLAND) 2024; 13:994. [PMID: 38611523 PMCID: PMC11013873 DOI: 10.3390/plants13070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
The SnRK gene family is the chief component of plant stress resistance and metabolism through activating the phosphorylation of downstream proteins. S. miltiorrhiza is widely used for the treatment of cardiovascular diseases in Asian countries. However, information about the SnRK gene family of S. miltiorrhiza is not clear. The aim of this study is to comprehensively analyze the SnRK gene family of S. miltiorrhiza and its response to phytohormone. Here, 33 SmSnRK genes were identified and divided into three subfamilies (SmSnRK1, SmSnRK2 and SmSnRK3) according to phylogenetic analysis and domain. SmSnRK genes within same subgroup shared similar protein motif composition and were unevenly distributed on eight chromosomes of S. miltiorrhiza. Cis-acting element analysis showed that the promoter of SmSnRK genes was enriched with ABRE motifs. Expression pattern analysis revealed that SmSnRK genes were preferentially expressed in leaves and roots. Most SmSnRK genes were induced by ABA and MeJA treatment. Correlation analysis showed that SmSnRK3.15 and SmSnRK3.18 might positively regulate tanshinone biosynthesis; SmSnRK3.10 and SmSnRK3.12 might positively regulate salvianolic acid biosynthesis. RNAi-based silencing of SmSnRK2.6 down-regulated the biosynthesis of tanshinones and biosynthetic genes expression. An in vitro phosphorylation assay verified that SmSnRK2.2 interacted with and phosphorylated SmAREB1. These findings will provide a valuable basis for the functional characterization of SmSnRK genes and quality improvement of S. miltiorrhiza.
Collapse
Affiliation(s)
- Tingyao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ruiyan Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qichao Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yao Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Min Shi
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
11
|
Shi M, Zhang S, Zheng Z, Maoz I, Zhang L, Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:510-531. [PMID: 38441295 DOI: 10.1111/jipb.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants, for example, terpenoids, alkaloids, and phenolic acids. However, in most cases, the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues. Transcription factors (TFs) regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes. Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs. In this review, we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network, and future perspectives are discussed, which will help develop high-yield plant resources.
Collapse
Affiliation(s)
- Min Shi
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siwei Zhang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zizhen Zheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon, LeZion, 7505101, Israel
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
12
|
Chai S, Yang Z, Deng X, Wang L, Jiang Y, Liao J, Yang R, Wang X, Zhang L. ZnO quantum dots alleviate salt stress in Salvia miltiorrhiza by enhancing growth, scavenging reactive oxygen species, and modulating stress-responsive genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123363. [PMID: 38242309 DOI: 10.1016/j.envpol.2024.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Experiments were conducted to investigate the alleviating effects of ZnO quantum dots (ZnO QDs) on salt stress in Salvia miltiorrhiza by comparing them with conventional ZnO nanoparticles (ZnO NPs). The results demonstrated that compared with salt stress alone, foliar application of ZnO QDs significantly improved the biomass as well as the total chlorophyll and carotenoids contents under salt stress. ZnO QDs reduced H2O2 and MDA levels, decreased non-enzymatic antioxidant (ASA and GSH) content, and improved antioxidant enzyme (POD, SOD, CAT, PAL, and PPO) activity under salt stress. Metal elemental analysis further demonstrated that the ZnO QDs markedly increased Zn and K contents while decreasing Na content, resulting in a lower Na/K ratio compared to salt stress alone. Finally, RNA sequencing results indicated that ZnO QDs primarily regulated genes associated with stress-responsive pathways, including plant hormone signal transduction, the MAPK signaling pathway, and metabolic-related pathways, thereby alleviating the adverse effects of salt stress. In comparison, ZnO NPs did not exhibit similar effects in terms of improving plant growth, enhancing the antioxidant system, or regulating stress-responsive genes under salt stress. These findings highlight the distinct advantages of ZnO QDs and suggest their potential as a valuable tool for mitigating salt stress in plants.
Collapse
Affiliation(s)
- Songyue Chai
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ziya Yang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China; College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
13
|
Das S, Kwon M, Kim JY. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1279738. [PMID: 38450402 PMCID: PMC10915232 DOI: 10.3389/fpls.2024.1279738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Plants are the richest source of specialized metabolites. The specialized metabolites offer a variety of physiological benefits and many adaptive evolutionary advantages and frequently linked to plant defense mechanisms. Medicinal plants are a vital source of nutrition and active pharmaceutical agents. The production of valuable specialized metabolites and bioactive compounds has increased with the improvement of transgenic techniques like gene silencing and gene overexpression. These techniques are beneficial for decreasing production costs and increasing nutritional value. Utilizing biotechnological applications to enhance specialized metabolites in medicinal plants needs characterization and identification of genes within an elucidated pathway. The breakthrough and advancement of CRISPR/Cas-based gene editing in improving the production of specific metabolites in medicinal plants have gained significant importance in contemporary times. This article imparts a comprehensive recapitulation of the latest advancements made in the implementation of CRISPR-gene editing techniques for the purpose of augmenting specific metabolites in medicinal plants. We also provide further insights and perspectives for improving metabolic engineering scenarios in medicinal plants.
Collapse
Affiliation(s)
- Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Moonhyuk Kwon
- Division of Life Science, Anti-aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Research Institute of Molecular Alchemy (RIMA), Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
- Nulla Bio R&D Center, Nulla Bio Inc., Jinju, Republic of Korea
| |
Collapse
|
14
|
Li Y, Li B, Pang Q, Lou Y, Wang D, Wang Z. Identification and expression analysis of expansin gene family in Salvia miltiorrhiza. Chin Med 2024; 19:22. [PMID: 38311790 PMCID: PMC10838462 DOI: 10.1186/s13020-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Expansins (EXP) are important enzymes that are involved in the extension of plant cells and regulation of root configurations, which play important roles in resisting various stresses. As a model medicinal plant, Salvia miltiorrhiza is well recognized for treating coronary heart disease, myocardial infection, and other cardiovascular and cerebrovascular diseases; however, the SmEXP gene family has not yet been analyzed. METHODS The SmEXP family was systematically analyzed using bioinformatics. Quantitative real-time PCR was employed to analyze the tissue expression patterns of the SmEXP family, as well as its expression under abscisic acid (ABA) treatment and abiotic stress. Subcellular localization assay revealed the localization of SmEXLA1, SmEXLB1, and SmEXPA2. RESULTS This study identified 29 SmEXP that belonged to four different subfamilies. SmEXP promoter analysis suggested that it may be involved in the growth, development, and stress adaptation of S. miltiorrhiza. An analysis of the expression patterns of SmEXP revealed that ABA, Cu2+, and NaCl had regulatory effects on its expression. A subcellular localization assay showed that SmEXLA1 and SmEXLB1 were located on the nucleus and cell membrane, while SmEXPA2 was located on the cell wall. CONCLUSION For this study, the SmEXP family was systematically analyzed for the first time, which lays a foundation for further elucidating its physiological and biological functionality.
Collapse
Affiliation(s)
- Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Bin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
- Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, China
| | - Qiyue Pang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Yaoyu Lou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
15
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
16
|
Shao J, Peng B, Zhang Y, Yan X, Yao X, Hu X, Li L, Fu X, Zheng H, Tang K. A high-efficient protoplast transient system for screening gene editing elements in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:45. [PMID: 38261110 DOI: 10.1007/s00299-023-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.
Collapse
Affiliation(s)
- Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zheng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Wang L, Qin H, Zhan H, Dong S, Li T, Cao X. Comparative analysis of three SmHPPR genes encoding hydroxyphenylpyruvate reductases in Salvia miltiorrhiza. Gene 2024; 892:147868. [PMID: 37797780 DOI: 10.1016/j.gene.2023.147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Hydroxyphenylpyruvate reductase (HPPR) is an enzyme that is involved in the biosynthesis of hydrophilic phenolic acids in Salvia miltiorrhiza, which is a model medicinal plant. Three SmHPPR genes have been identified in the S. miltiorrhiza genome; however, only one has been functionally analyzed. Here, we cloned three SmHPPR genes (SmHPPR1, SmHPPR2, and SmHPPR3) from the cDNA of S. miltiorrhiza, and their expression profiles were studied. The expression levels of SmHPPR1 were significantly higher than those of SmHPPR2 and SmHPPR3, where SmHPPR1 revealed the highest level in stems, while SmHPPR2 and SmHPPR3 exhibited the highest level in flowers. SmHPPR1, SmHPPR2, and SmHPPR3 are localized in the cytoplasm. All three recombinant enzymes had HPPR activities and catalyzed the reduction of 4-hydroxyphenylpyruvic acid (pHPP) to 4-hydroxyphenyllactic acid (pHPL), with SmHPPR1 showing the highest activity. The transient over-expression of SmHPPR1, SmHPPR2, and SmHPPR3 in the leaves of Nicotiana benthamiana promoted the production of pHPL, which indicated that all three SmHPPRs had in vivo activities. Overall, between the three homologs, SmHPPR1 plays a dominant role in catalyzing pHPP to pHPL, which provides new insights into the biosynthesis of phenolic acids in S. miltiorrhiza.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Huiting Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongbin Zhan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shuai Dong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tao Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
18
|
Zou P, Wang L, Liu F, Yan Z, Chen X. Effect of interfering TOR signaling pathway on the biosynthesis of terpenoids in Salvia miltiorrhiza Bge. PLANT SIGNALING & BEHAVIOR 2023; 18:2199644. [PMID: 37039834 PMCID: PMC10101657 DOI: 10.1080/15592324.2023.2199644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The TOR (Target of Rapamycin) signaling pathway, which takes TOR kinase as the core, regulates the absorption, distribution, and recycling of nutrients by integrating metabolic network and other signaling pathways, thus participating in the plant growth-defense trade-off. While terpenoids play an important role in plant growth, development, stress response, and signal transduction. The effect of the TOR signaling pathway on terpenoid biosynthesis in plants has yet to be studied in detail. In this study, the tissue culture seedlings of Salvia miltiorrhiza were treated with the TOR inhibitor AZD8055. The results show that the roots of the control group had begun to grow on the 8th day, while the seedlings treated with AZD8055 had no rooting signs. Combined with the expression changes of genes related to the TOR signaling pathway in the first 8 days, samples on the 3rd, 6th, and 8th days were selected for RNA-Seq analysis. Through RNA-Seq analysis, a total of 50,689 unigenes were obtained from the samples of these three periods, of which 4088 unigenes showed differential expression. The function enrichment and time-series analysis of differentially expressed genes (DEGs) showed that the main influence of the TOR signal pathway on plant growth-related processes was gradually transmitted with treatment time after TOR was inhibited. Pathway enrichment analysis of DEGs showed that the genes in the biosynthesis of terpenoids, such as diterpenoid and carotenoid biosynthetic pathways, could be regulated. Compared with other stages, DEGs related to terpenoid biosynthesis were mainly regulated in the S2 stage. In addition, the genes involved in terpenoid skeleton biosynthesis was also considerably enriched in the S2 stage, according to the results of gene set enrichment analysis (GSEA) of unigenes. Inhibition of the TOR signaling pathway may affect the biosynthesis of terpenoid signaling molecules, inhibit gibberellin's biosynthesis, and promote abscisic acid's biosynthesis. This study has discussed the effect of interfering with the TOR pathway on terpenoid biosynthesis in S. miltiorrhiza from the perspective of omics and provides new insight into the interaction between the terpenoid biosynthesis pathway and the growth-defense trade-off of medicinal plants.
Collapse
Affiliation(s)
- Peijin Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuyun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- CONTACT Xin Chen School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, Sichuan611171, China
| |
Collapse
|
19
|
Wang Q, Zhao X, Jiang Y, Jin B, Wang L. Functions of Representative Terpenoids and Their Biosynthesis Mechanisms in Medicinal Plants. Biomolecules 2023; 13:1725. [PMID: 38136596 PMCID: PMC10741589 DOI: 10.3390/biom13121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | - Li Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Q.W.); (X.Z.); (Y.J.); (B.J.)
| |
Collapse
|
20
|
Li T, Zhang S, Li Y, Zhang L, Song W, Chen C, Ruan W. Simultaneous Promotion of Salt Tolerance and Phenolic Acid Biosynthesis in Salvia miltiorrhiza via Overexpression of Arabidopsis MYB12. Int J Mol Sci 2023; 24:15506. [PMID: 37958490 PMCID: PMC10648190 DOI: 10.3390/ijms242115506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Transcription factors play crucial roles in regulating plant abiotic stress responses and physiological metabolic processes, which can be used for plant molecular breeding. In this study, an R2R3-MYB transcription factor gene, AtMYB12, was isolated from Arabidopsis thaliana and introduced into Salvia miltiorrhiza under the regulation of the CaMV35S promoter. The ectopic expression of AtMYB12 resulted in improved salt tolerance in S. miltiorrhiza; transgenic plants showed a more resistant phenotype under high-salinity conditions. Physiological experiments showed that transgenic plants exhibited higher chlorophyll contents, and decreased electrolyte leakage and O2- and H2O2 accumulation when subjected to salt stress. Moreover, the activity of reactive oxygen species (ROS)-scavenging enzymes was enhanced in S. miltiorrhiza via the overexpression of AtMYB12, and transgenic plants showed higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities compared with those of the wild type (WT) under salt stress, coupled with lower malondialdehyde (MDA) levels. In addition, the amount of salvianolic acid B was significantly elevated in all AtMYB12 transgenic hair roots and transgenic plants, and qRT-PCR analysis revealed that most genes in the phenolic acid biosynthetic pathway were up-regulated. In conclusion, these results demonstrated that AtMYB12 can significantly improve the resistance of plants to salt stress and promote the biosynthesis of phenolic acids by regulating genes involved in the biosynthetic pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China; (T.L.); (S.Z.); (Y.L.); (L.Z.); (W.S.)
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin 300071, China; (T.L.); (S.Z.); (Y.L.); (L.Z.); (W.S.)
| |
Collapse
|
21
|
Chen J, Wang Y, Di P, Wu Y, Qiu S, Lv Z, Qiao Y, Li Y, Tan J, Chen W, Yu M, Wei P, Xiao Y, Chen W. Phenotyping of Salvia miltiorrhiza Roots Reveals Associations between Root Traits and Bioactive Components. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0098. [PMID: 37791248 PMCID: PMC10545446 DOI: 10.34133/plantphenomics.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Plant phenomics aims to perform high-throughput, rapid, and accurate measurement of plant traits, facilitating the identification of desirable traits and optimal genotypes for crop breeding. Salvia miltiorrhiza (Danshen) roots possess remarkable therapeutic effect on cardiovascular diseases, with huge market demands. Although great advances have been made in metabolic studies of the bioactive metabolites, investigation for S. miltiorrhiza roots on other physiological aspects is poor. Here, we developed a framework that utilizes image feature extraction software for in-depth phenotyping of S. miltiorrhiza roots. By employing multiple software programs, S. miltiorrhiza roots were described from 3 aspects: agronomic traits, anatomy traits, and root system architecture. Through K-means clustering based on the diameter ranges of each root branch, all roots were categorized into 3 groups, with primary root-associated key traits. As a proof of concept, we examined the phenotypic components in a series of randomly collected S. miltiorrhiza roots, demonstrating that the total surface of root was the best parameter for the biomass prediction with high linear regression correlation (R2 = 0.8312), which was sufficient for subsequently estimating the production of bioactive metabolites without content determination. This study provides an important approach for further grading of medicinal materials and breeding practices.
Collapse
Affiliation(s)
- Junfeng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Wang
- School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application,
Jilin Agricultural University, Changchun 130118, China
| | - Yulong Wu
- School of Computer Science,
Sichuan Normal University, Chengdu 610066, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zongyou Lv
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqi Qiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yajing Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingfu Tan
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co., Ltd., Linyi 276000, China
| | - Weixu Chen
- Shangyao Huayu (Linyi) Traditional Chinese Resources Co., Ltd., Linyi 276000, China
| | - Ma Yu
- School of Life Science and Engineering,
Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Ping Wei
- Sichuan Academy of Traditional Chinese Medicine, Chengdu 610041, China
| | - Ying Xiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacy, Changzheng Hospital,
Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
22
|
Ding M, Xie Y, Zhang Y, Cai X, Zhang B, Ma P, Dong J. Salicylic acid regulates phenolic acid biosynthesis via SmNPR1-SmTGA2/SmNPR4 modules in Salvia miltiorrhiza. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5736-5751. [PMID: 37504514 DOI: 10.1093/jxb/erad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Phenolic acids are the main active ingredients in Salvia miltiorrhiza, which can be used for the treatment of many diseases, particularly cardiovascular diseases. It is known that salicylic acid (SA) can enhance phenolic acid content, but the molecular mechanism of its regulation is still unclear. Nonexpresser of PR genes 1 (NPR1) plays a positive role in the SA signaling pathway. In this study, we identified a SmNPR1 gene that responds to SA induction and systematically investigated its function. We found that SmNPR1 positively affected phenolic acid biosynthesis. Then, we identified a novel TGA transcription factor, SmTGA2, which interacts with SmNPR1. SmTGA2 positively regulates phenolic acid biosynthesis by directly up-regulating SmCYP98A14 expression. After double-gene transgenic analysis and other biochemical assays, it was found that SmNPR1 and SmTGA2 work synergistically to regulate phenolic acid biosynthesis. In addition, SmNPR4 forms a heterodimer with SmNPR1 to inhibit the function of SmNPR1, and SA can alleviate this effect. Collectively, these findings elucidate the molecular mechanism underlying the regulation of phenolic acid biosynthesis by SmNPR1-SmTGA2/SmNPR4 modules and provide novel insights into the SA signaling pathway regulating plant secondary metabolism.
Collapse
Affiliation(s)
- Meiling Ding
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Yongfeng Xie
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Yuhang Zhang
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Xiaona Cai
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Bin Zhang
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
23
|
Zeeshan Ul Haq M, Yu J, Yao G, Yang H, Iqbal HA, Tahir H, Cui H, Liu Y, Wu Y. A Systematic Review on the Continuous Cropping Obstacles and Control Strategies in Medicinal Plants. Int J Mol Sci 2023; 24:12470. [PMID: 37569843 PMCID: PMC10419402 DOI: 10.3390/ijms241512470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Continuous cropping (CC) is a common practice in agriculture, and usually causes serious economic losses due to soil degeneration, decreased crop yield and quality, and increased disease incidence, especially in medicinal plants. Continuous cropping obstacles (CCOs) are mainly due to changes in soil microbial communities, nutrient availability, and allelopathic effects. Recently, progressive studies have illustrated the molecular mechanisms of CCOs, and valid strategies to overcome them. Transcriptomic and metabolomics analyses revealed that identified DEGs (differently expressed genes) and metabolites involved in the response to CCOs are involved in various biological processes, including photosynthesis, carbon metabolism, secondary metabolite biosynthesis, and bioactive compounds. Soil improvement is an effective strategy to overcome this problem. Soil amendments can improve the microbial community by increasing the abundance of beneficial microorganisms, soil fertility, and nutrient availability. In this review, we sum up the recent status of the research on CCOs in medicinal plants, the combination of transcriptomic and metabolomics studies, and related control strategies, including uses of soil amendments, crop rotation, and intercropping. Finally, we propose future research trends for understanding CCOs, and strategies to overcome these obstacles and promote sustainable agriculture practices in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ya Liu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
24
|
Li J, Li C, Deng Y, Wei H, Lu S. Characteristics of Salvia miltiorrhiza methylome and the regulatory mechanism of DNA methylation in tanshinone biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad114. [PMID: 37577393 PMCID: PMC10419789 DOI: 10.1093/hr/uhad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/21/2023] [Indexed: 08/15/2023]
Abstract
Salvia miltiorrhiza is a model medicinal plant with significant economic and medicinal value. Its roots produce a group of diterpenoid lipophilic bioactive components, termed tanshinones. Biosynthesis and regulation of tanshinones has attracted widespread interest. However, the methylome of S. miltiorrhiza has not been analysed and the regulatory mechanism of DNA methylation in tanshinone production is largely unknown. Here we report single-base resolution DNA methylomes from roots and leaves. Comparative analysis revealed differential methylation patterns for CG, CHG, and CHH contexts and the association between DNA methylation and the expression of genes and small RNAs. Lowly methylated genes always had higher expression levels and 24-nucleotide sRNAs could be key players in the RdDM pathway in S. miltiorrhiza. DNA methylation variation analysis showed that CHH methylation contributed mostly to the difference. Go enrichment analysis showed that diterpenoid biosynthetic process was significantly enriched for genes with downstream overlapping with hypoCHHDMR in July_root when comparing with those in March_root. Tanshinone biosynthesis-related enzyme genes, such as DXS2, CMK, IDI1, HMGR2, DXR, MDS, CYP76AH1, 2OGD25, and CYP71D373, were less CHH methylated in gene promoters or downstream regions in roots collected in July than those collected in March. Consistently, gene expression was up-regulated in S. miltiorrhiza roots collected in July compared with March and the treatment of DNA methylation inhibitor 5-azacytidine significantly promoted tanshinone production. It suggests that DNA methylation plays a significant regulatory role in tanshinone biosynthesis in S. miltiorrhiza through changing the levels of CHH methylation in promoters or downstreams of key enzyme genes.
Collapse
Affiliation(s)
- Jiang Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yuxing Deng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Shanfa Lu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
25
|
Chai S, Li K, Deng X, Wang L, Jiang Y, Liao J, Yang R, Zhang L. Genome-Wide Analysis of the MADS-box Gene Family and Expression Analysis during Anther Development in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:10937. [PMID: 37446115 DOI: 10.3390/ijms241310937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
MADS-box genes constitute a large family of transcription factors that play important roles in plant growth and development. However, our understanding of MADS-box genes involved in anther development and male sterility in Salvia miltiorrhiza is still limited. In this study, 63 MADS-box genes were identified from the genome of the male sterility ecotype Sichuan S. miltiorrhiza (S. miltiorrhiza_SC) unevenly distributed among eight chromosomes. Phylogenetic analysis classified them into two types and 17 subfamilies. They contained 1 to 12 exons and 10 conserved motifs. Evolution analysis showed that segmental duplication was the main force for the expansion of the SmMADS gene family, and duplication gene pairs were under purifying selection. Cis-acting elements analysis demonstrated that the promoter of SmMADS genes contain numerous elements associated with plant growth and development, plant hormones, and stress response. RNA-seq showed that the expression levels of B-class and C-class SmMADS genes were highly expressed during anther development, with SmMADS11 likely playing an important role in regulating anther development and male fertility in S. miltiorrhiza_SC. Overall, this study provides a comprehensive analysis of the MADS-box gene family in S. miltiorrhiza, shedding light on their potential role in anther development and male sterility.
Collapse
Affiliation(s)
- Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Kexin Li
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
26
|
Zhang S, Qiu L, Zheng Y, Wang W, Zhao H, Yang D. Comparative transcriptome analysis reveals the regulatory effects of exogenous auxin on lateral root development and tanshinone accumulation in Salvia miltiorrhiza. PLANTA 2023; 258:33. [PMID: 37378716 DOI: 10.1007/s00425-023-04193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
MAIN CONCLUSION The physiological and transcriptome analysis revealed that auxin was a positive regulator of lateral root development and tanshinone accumulation in Salvia miltiorrhiza. Roots of S. miltiorrhiza are widely used as medicinal materials in China, and the root morphology and content of bioactive compounds [such as phenolic acids and diterpenoid quinones (tanshinones)] are the main factors to determine the quality of this herb. Auxin regulates root development and secondary metabolism in many plant species, but little is known about its function in S. miltiorrhiza. In this study, S. miltiorrhiza seedlings were treated (exogenous application) with the auxin indole-3-acetic acid (IAA) and the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) to investigate the regulatory roles of auxin in S. miltiorrhiza. The results indicated that exogenous IAA promoted both lateral root development and tanshinones biosynthesis in S. miltiorrhiza. The NPA application suppressed the lateral root development but showed no obvious effects on tanshinones accumulation. Based on the RNA-seq analysis, expressions of genes related to auxin biosynthesis and signaling transduction were altered in both treated groups. Coincidental with the enhanced content of tanshinones, transcripts of several key enzyme genes in the tanshinones biosynthetic pathway were stimulated after the exogenous IAA application. The expression profiles of seven common transcription factor domain-containing gene families were analyzed, and the results implied that some AP2/ERF genes were probably responsible for the auxin-induced lateral root development in S. miltiorrhiza. These findings shed new light on the regulatory roles of auxin on root development and bioactive compounds biosynthesis in S. miltiorrhiza, and lay the groundwork for future research into the detailed molecular mechanism underlying these biological functions.
Collapse
Affiliation(s)
- Shuncang Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| | - Lin Qiu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yuwei Zheng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Wei Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Hongguang Zhao
- Shaanxi Origin Agricultural Science and Technology Co., Ltd, Tongchuan, 727000, People's Republic of China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
27
|
He H, Li Q, Fang L, Yang W, Xu F, Yan Y, Mao R. Comprehensive analysis of NAC transcription factors in Scutellaria baicalensis and their response to exogenous ABA and GA 3. Int J Biol Macromol 2023:125290. [PMID: 37302633 DOI: 10.1016/j.ijbiomac.2023.125290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
The NAC is a plant-specific family of transcription factor that plays important roles in various biological processes. Scutellaria baicalensis Georgi, belongs to the Lamiaceae family and has been widely used as a traditional herb with a wide range of pharmacological activities, including antitumor, heat-clearing, and detoxifying functions. However, no study on the NAC family in S. baicalensis has been conducted to date. In the present study, we identified 56 SbNAC genes using genomic and transcriptome analyses. These 56 SbNACs were unevenly distributed across nine chromosomes and were phylogenetically divided into six clusters. Cis-element analysis identified plant growth and development-, phytohormone-, light-, and stress-responsive elements were present in SbNAC genes promoter regions. Protein-protein interaction analysis was performed using Arabidopsis homologous proteins. Potential transcription factors, including bHLH, ERF, MYB, WRKY, and bZIP, were identified and constructed a regulatory network with SbNAC genes. The expression of 12 flavonoid biosynthetic genes was significantly upregulated with abscisic acid (ABA) and gibberellin (GA3) treatments. Eight SbNAC genes (SbNAC9/32/33/40/42/43/48/50) also exhibited notable variation with two phytohormone treatments, among which SbNAC9 and SbNAC43 showed the most significant variation and deserved further study. Additionally, SbNAC44 displayed a positive correlation with C4H3, PAL5, OMT3, and OMT6, while SbNAC25 had negatively correlated with OMT2, CHI, F6H2, and FNSII-2. This study constitutes the first analysis of SbNAC genes and lays the basis foundation for further functional studies of SbNAC genes family members, while it may also facilitate the genetic improvement of plants and breeding of elite S. baicalensis varieties.
Collapse
Affiliation(s)
- Huan He
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Qiuyue Li
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Liang Fang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Wen Yang
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Feican Xu
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Yan Yan
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China
| | - Renjun Mao
- College of Life Sciences, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
28
|
Pan X, Chang Y, Li C, Qiu X, Cui X, Meng F, Zhang S, Li X, Lu S. Chromosome-level genome assembly of Salvia miltiorrhiza with orange roots uncovers the role of Sm2OGD3 in catalyzing 15,16-dehydrogenation of tanshinones. HORTICULTURE RESEARCH 2023; 10:uhad069. [PMID: 37293533 PMCID: PMC10244880 DOI: 10.1093/hr/uhad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023]
Abstract
Salvia miltiorrhiza is well known for its clinical practice in treating heart and cardiovascular diseases. Its roots, used for traditional Chinese medicine materials, are usually brick-red due to accumulation of red pigments, such as tanshinone IIA and tanshinone I. Here we report a S. miltiorrhiza line (shh) with orange roots. Compared with the red roots of normal S. miltiorrhiza plants, the contents of tanshinones with a single bond at C-15,16 were increased, whereas those with a double bond at C-15,16 were significantly decreased in shh. We assembled a high-quality chromosome-level genome of shh. Phylogenomic analysis showed that the relationship between two S. miltiorrhiza lines with red roots was closer than the relationship with shh. It indicates that shh could not be the mutant of an extant S. miltiorrhiza line with red roots. Comparative genomic and transcriptomic analyses showed that a 1.0 kb DNA fragment was deleted in shh Sm2OGD3m. Complementation assay showed that overexpression of intact Sm2OGD3 in shh hairy roots recovered furan D-ring tanshinone accumulation. Consistently, in vitro protein assay showed that Sm2OGD3 catalyzed the conversion of cyptotanshinone, 15,16-dihydrotanshinone I and 1,2,15,16-tetrahydrotanshinone I into tanshinone IIA, tanshinone I and 1,2-dihydrotanshinone I, respectively. Thus, Sm2OGD3 functions as tanshinone 15,16-dehydrogenase and is a key enzyme in tanshinone biosynthesis. The results provide novel insights into the metabolic network of medicinally important tanshinone compounds.
Collapse
Affiliation(s)
- Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yujie Chang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xian’en Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | | |
Collapse
|
29
|
Zhang G, Ma C, He Q, Dong H, Cui L, Li L, Li L, Wang Y, Wang X. An efficient Pt@MXene platform for the analysis of small-molecule natural products. iScience 2023; 26:106622. [PMID: 37250310 PMCID: PMC10214401 DOI: 10.1016/j.isci.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
Small-molecule (m/z<500) natural products have rich biological activity and significant application value thus need to be effectively detected. Surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) has become a powerful detection tool for small-molecule analysis. However, more efficient substrates need to be developed to improve the efficiency of SALDI MS. Thus, platinum nanoparticle-decorated Ti3C2 MXene (Pt@MXene) was synthesized in this study as an ideal substrate for SALDI MS in positive ion mode and exhibited excellent performance for the high-throughput detection of small molecules. Compared with using MXene, GO, and CHCA matrix, a stronger signal peak intensity and wider molecular coverage was obtained using Pt@MXene in the detection of small-molecule natural products, with a lower background, excellent salt and protein tolerance, good repeatability, and high detection sensitivity. The Pt@MXene substrate was also successfully used to quantify target molecules in medicinal plants. The proposed method has potentially wide application.
Collapse
Affiliation(s)
- Guanhua Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Qing He
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Li Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yan Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| |
Collapse
|
30
|
Ding M, Zhang B, Zhang S, Hao R, Xia Y, Ma P, Dong J. The SmNPR4-SmTGA5 module regulates SA-mediated phenolic acid biosynthesis in Salvia miltiorrhiza hairy roots. HORTICULTURE RESEARCH 2023; 10:uhad066. [PMID: 37249952 PMCID: PMC10208894 DOI: 10.1093/hr/uhad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/02/2023] [Indexed: 05/31/2023]
Abstract
Phenolic acids are the main bioactive compounds in Salvia miltiorrhiza, which can be increased by salicylic acid (SA) elicitation. However, the specific molecular mechanism remains unclear. The nonexpresser of PR genes 1 (NPR1) and its family members are essential components of the SA signaling pathway. Here, we report an NPR protein, SmNPR4, that showed strong expression in hairy root after SA treatment, acting as a negative moderator of SA-induced phenolic acid biosynthesis in S. miltiorrhiza (S. miltiorrhiza). Moreover, a basic leucine zipper family transcription factor SmTGA5 was identified and was found to interact with SmNPR4. SmTGA5 activates the expression of phenolic acid biosynthesis gene SmTAT1 through binding to the as-1 element. Finally, a series of biochemical assays and dual gene overexpression analysis demonstrated that the SmNPR4 significantly inhibited the function of SmTGA5, and SA can alleviate the inhibitory effect of SmNPR4 on SmTGA5. Overall, our results reveal the molecular mechanism of salicylic acid regulating phenolic acid biosynthesis in S. miltiorrhiza and provide new insights for SA signaling to regulate secondary metabolic biosynthesis.
Collapse
Affiliation(s)
- Meiling Ding
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Bin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuo Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - RongRong Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yu Xia
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | | | | |
Collapse
|
31
|
Feng X, Li G, Wu W, Lyu H, Wang J, Liu C, Zhong C, Shi S, He Z. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:155-168. [PMID: 37275537 PMCID: PMC10232687 DOI: 10.1007/s42995-023-00177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus Avicennia. We found that both the number and the proportion of TFs and WRKYs in Avicennia species exceeded their inland relatives, indicating a significant expansion of WRKYs in Avicennia. We identified 109 WRKY genes in the representative species Avicennia marina. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of WRKYs, and 88% of Avicennia marina WRKYs (AmWRKYs) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained AmWRKYs. Moreover, we found that the expression of 16 AmWRKYs was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in A. marina broadens the understanding of how a TF family relates to the adaptive evolution of mangroves. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00177-y.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cong Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100 China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
32
|
Huang B, Qi Y, Huang X, Yang P. Genome-wide identification and co-expression network analysis of Aux/IAA gene family in Salvia miltiorrhiza. PeerJ 2023; 11:e15212. [PMID: 37090108 PMCID: PMC10117383 DOI: 10.7717/peerj.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) gene family serves as a principal group of genes responsible for modulating plant growth and development through the auxin signaling pathway. Despite the significance of this gene family, the identification and characterization of members within the well-known Chinese medicinal herb Salvia miltiorrhiza (S. miltiorrhiza) have not been thoroughly investigated. In this study, we employed bioinformatics methods to identify 23 Aux/IAA genes within the genome of S. miltiorrhiza. These genes were classified into typical IAA and atypical IAA based on their domain structure. Our analysis of the promoter regions revealed that the expression of these genes is regulated not only by auxins, but also by other hormones and environmental factors. Furthermore, we found that the expression patterns of these genes varied across various tissues of S. miltiorrhiza. While our initial hypothesis suggested that the primary function of these genes was the interaction between SmIAA and ARF, gene co-expression network analysis revealed that they are also influenced by various other transcription factors, such as WRKY and ERF. The findings establish a sturdy basis for future investigations into the function of the Aux/IAA gene family and exhibit promising prospects for enhancing the genetics of this medicinal flora and its associated species.
Collapse
Affiliation(s)
- Bin Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
33
|
Li H, Wu S, Lin R, Xiao Y, Malaco Morotti AL, Wang Y, Galilee M, Qin H, Huang T, Zhao Y, Zhou X, Yang J, Zhao Q, Kanellis AK, Martin C, Tatsis EC. The genomes of medicinal skullcaps reveal the polyphyletic origins of clerodane diterpene biosynthesis in the family Lamiaceae. MOLECULAR PLANT 2023; 16:549-570. [PMID: 36639870 DOI: 10.1016/j.molp.2023.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
The presence of anticancer clerodane diterpenoids is a chemotaxonomic marker for the traditional Chinese medicinal plant Scutellaria barbata, although the molecular mechanisms behind clerodane biosynthesis are unknown. Here, we report a high-quality assembly of the 414.98 Mb genome of S. barbata into 13 pseudochromosomes. Using phylogenomic and biochemical data, we mapped the plastidial metabolism of kaurene (gibberellins), abietane, and clerodane diterpenes in three species of the family Lamiaceae (Scutellaria barbata, Scutellaria baicalensis, and Salvia splendens), facilitating the identification of genes involved in the biosynthesis of the clerodanes, kolavenol, and isokolavenol. We show that clerodane biosynthesis evolved through recruitment and neofunctionalization of genes from gibberellin and abietane metabolism. Despite the assumed monophyletic origin of clerodane biosynthesis, which is widespread in species of the Lamiaceae, our data show distinct evolutionary lineages and suggest polyphyletic origins of clerodane biosynthesis in the family Lamiaceae. Our study not only provides significant insights into the evolution of clerodane biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the production of anticancer clerodanes through future metabolic engineering efforts.
Collapse
Affiliation(s)
- Haixiu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxi Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiren Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meytal Galilee
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haowen Qin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Huang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yong Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xun Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Lab. of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
34
|
Ai M, Han F, Yang X, Chu H, Luo C, Tan S, Lv S, Qin M, Xie G. Endophytic Penicillium oxalicum CX-1 prevented Phytophthora cactorum blight on Salvia miltiorrhiza and promoted plant growth. J Appl Microbiol 2023; 134:6993072. [PMID: 36657387 DOI: 10.1093/jambio/lxad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
AIM The main purpose of this study was to study the preventive effect of Penicillium sp. CX-1 on Phytophthora cactorum causing Salvia miltiorrhiza blight and its positive effect on plant growth. METHODS AND RESULTS The endophytic strain CX-1 was isolated from the medicinal plant Corydalis saxicola Bunting and identified as Penicillium oxalicum. The growth inhibitory capacity of CX-1 against Ph. cactorum was 74.4% in the strain co-culture test and 86.2% in filtrate-modified plates. In the pot experiment, the in vivo control of CX-1 against Ph. cactorum in S. miltiorrhiza was 36.0%, which was higher than that of an anti-Phytophthora fungicide (23.4%). In addition, CX-1 had a potent ability to solubilize phosphate and also showed the ability to produce the plant hormone indole-3-acetic acid (IAA) and siderophores, which increase the bioavailability of iron to plants. It was demonstrated through pot experiments that CX-1 could significantly promote plant growth. As determined by real-time quantitative PCR, the expression of some S. miltiorrhiza tanshinone-related biosynthesis genes was significantly upregulated following colonization by CX-1. CONCLUSION Strain CX-1 could effectively inhibit Ph. cactorum, the causative agent of S. miltiorrhiza blight, and significantly promoted the growth of plants through several different routes.
Collapse
Affiliation(s)
- Mingkun Ai
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Han
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Xiangyi Yang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyi Chu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chuan Luo
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Shixin Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sainan Lv
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Zhang Y, Ma L, Su P, Huang L, Gao W. Cytochrome P450s in plant terpenoid biosynthesis: discovery, characterization and metabolic engineering. Crit Rev Biotechnol 2023; 43:1-21. [PMID: 34865579 DOI: 10.1080/07388551.2021.2003292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As the largest family of natural products, terpenoids play valuable roles in medicine, agriculture, cosmetics and food. However, the traditional methods that rely on direct extraction from the original plants not only produce low yields, but also result in waste of resources, and are not applicable at all to endangered species. Modern heterologous biosynthesis is considered a promising, efficient, and sustainable production method, but it relies on the premise of a complete analysis of the biosynthetic pathway of terpenoids, especially the functionalization processes involving downstream cytochrome P450s. In this review, we systematically introduce the biotech approaches used to discover and characterize plant terpenoid-related P450s in recent years. In addition, we propose corresponding metabolic engineering approaches to increase the effective expression of P450 and improve the yield of terpenoids, and also elaborate on metabolic engineering strategies and examples of heterologous biosynthesis of terpenoids in Saccharomyces cerevisiae and plant hosts. Finally, we provide perspectives for the biotech approaches to be developed for future research on terpenoid-related P450.
Collapse
Affiliation(s)
- Yifeng Zhang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ping Su
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida, USA
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Li Y, Tong Y, Ye J, Zhang C, Li B, Hu S, Xue X, Tian Q, Wang Y, Li L, Niu J, Cao X, Wang D, Wang Z. Genome-Wide Characterization of B-Box Gene Family in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:2146. [PMID: 36768475 PMCID: PMC9916448 DOI: 10.3390/ijms24032146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
B-box (BBX) is a type of zinc finger transcription factor that contains a B-box domain. BBX transcription factors play important roles in plant photomorphogenesis, signal transduction, as well as abiotic and biological stress responses. However, the BBX gene family of Salvia miltiorrhiza has not been systematically investigated to date. For this study, based on the genomic data of Salvia miltiorrhiza, 27 SmBBXs genes were identified and clustered into five evolutionary branches according to phylogenetic analysis. The promoter analysis suggested that SmBBXs may be involved in the regulation of the light responses, hormones, stress signals, and tissue-specific development. Based on the transcriptome data, the expression patterns of SmBBXs under different abiotic stresses and plant hormones were analyzed. The results revealed that the expressions of the SmBBXs genes varied under different conditions and may play essential roles in growth and development. The transient expression analysis implied that SmBBX1, SmBBX4, SmBBX9, SmBBX20, and SmBBX27 were in the nucleus. A transcriptional activation assay showed SmBBX1, SmBBX4, SmBBX20, and SmBBX24 had transactivation activities, while SmBBX27 had none. These results provided a basis for further research on the role of SmBBXs in the development of Salvia miltiorrhiza.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
37
|
Bryson AE, Lanier ER, Lau KH, Hamilton JP, Vaillancourt B, Mathieu D, Yocca AE, Miller GP, Edger PP, Buell CR, Hamberger B. Uncovering a miltiradiene biosynthetic gene cluster in the Lamiaceae reveals a dynamic evolutionary trajectory. Nat Commun 2023; 14:343. [PMID: 36670101 PMCID: PMC9860074 DOI: 10.1038/s41467-023-35845-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The spatial organization of genes within plant genomes can drive evolution of specialized metabolic pathways. Terpenoids are important specialized metabolites in plants with diverse adaptive functions that enable environmental interactions. Here, we report the genome assemblies of Prunella vulgaris, Plectranthus barbatus, and Leonotis leonurus. We investigate the origin and subsequent evolution of a diterpenoid biosynthetic gene cluster (BGC) together with other seven species within the Lamiaceae (mint) family. Based on core genes found in the BGCs of all species examined across the Lamiaceae, we predict a simplified version of this cluster evolved in an early Lamiaceae ancestor. The current composition of the extant BGCs highlights the dynamic nature of its evolution. We elucidate the terpene backbones generated by the Callicarpa americana BGC enzymes, including miltiradiene and the terpene (+)-kaurene, and show oxidization activities of BGC cytochrome P450s. Our work reveals the fluid nature of BGC assembly and the importance of genome structure in contributing to the origin of metabolites.
Collapse
Affiliation(s)
- Abigail E Bryson
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Emily R Lanier
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Kin H Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Davis Mathieu
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Garret P Miller
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Björn Hamberger
- Department of Biochemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Wang L, Zou P, Liu F, Liu R, Yan ZY, Chen X. Integrated analysis of lncRNAs, mRNAs, and TFs to identify network modules underlying diterpenoid biosynthesis in Salvia miltiorrhiza. PeerJ 2023; 11:e15332. [PMID: 37187524 PMCID: PMC10178227 DOI: 10.7717/peerj.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides (nt) in length, with minimal or no protein-coding capacity. Increasing evidence indicates that lncRNAs play important roles in the regulation of gene expression including in the biosynthesis of secondary metabolites. Salvia miltiorrhiza Bunge is an important medicinal plant in China. Diterpenoid tanshinones are one of the main active components of S. miltiorrhiza. To better understand the role of lncRNAs in regulating diterpenoid biosynthesis in S. miltiorrhiza, we integrated analysis of lncRNAs, mRNAs, and transcription factors (TFs) to identify network modules underlying diterpenoid biosynthesis based on transcriptomic data. In transcriptomic data, we obtained 6,651 candidate lncRNAs, 46 diterpenoid biosynthetic pathway genes, and 11 TFs involved in diterpenoid biosynthesis. Combining the co-expression and genomic location analysis, we obtained 23 candidate lncRNA-mRNA/TF pairs that were both co-expressed and co-located. To further observe the expression patterns of these 23 candidate gene pairs, we analyzed the time-series expression of S. miltiorrhiza induced by methyl jasmonate (MeJA). The results showed that 19 genes were differentially expressed at least a time-point, and four lncRNAs, two mRNAs, and two TFs formed three lncRNA-mRNA and/or TF network modules. This study revealed the relationship among lncRNAs, mRNAs, and TFs and provided new insight into the regulation of the biosynthetic pathway of S. miltiorrhiza diterpenoids.
Collapse
|
39
|
De Novo Hybrid Assembly of the Salvia miltiorrhiza Mitochondrial Genome Provides the First Evidence of the Multi-Chromosomal Mitochondrial DNA Structure of Salvia Species. Int J Mol Sci 2022; 23:ijms232214267. [PMID: 36430747 PMCID: PMC9694629 DOI: 10.3390/ijms232214267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Salvia miltiorrhiza has been an economically important medicinal plant. Previously, an S. miltiorrhiza mitochondrial genome (mitogenome) assembled from Illumina short reads, appearing to be a single circular molecule, has been published. Based on the recent reports on the plant mitogenome structure, we suspected that this conformation does not accurately represent the complexity of the S. miltiorrhiza mitogenome. In the current study, we assembled the mitogenome of S. miltiorrhiza using the PacBio and Illumina sequencing technologies. The primary structure of the mitogenome contained two mitochondrial chromosomes (MC1 and MC2), which corresponded to two major conformations, namely, Mac1 and Mac2, respectively. Using two approaches, including (1) long reads mapping and (2) polymerase chain reaction amplification followed by Sanger sequencing, we observed nine repeats that can mediate recombination. We predicted 55 genes, including 33 mitochondrial protein-coding genes (PCGs), 3 rRNA genes, and 19 tRNA genes. Repeat analysis identified 112 microsatellite repeats and 3 long-tandem repeats. Phylogenetic analysis using the 26 shared PCGs resulted in a tree that was congruent with the phylogeny of Lamiales species in the APG IV system. The analysis of mitochondrial plastid DNA (MTPT) identified 16 MTPTs in the mitogenome. Moreover, the analysis of nucleotide substitution rates in Lamiales showed that the genes atp4, ccmB, ccmFc, and mttB might have been positively selected. The results lay the foundation for future studies on the evolution of the Salvia mitogenome and the molecular breeding of S. miltiorrhiza.
Collapse
|
40
|
Sun M, Zhang Y, Zhu L, Liu N, Bai H, Sun G, Zhang J, Shi L. Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. PLANT COMMUNICATIONS 2022; 3:100413. [PMID: 35841150 PMCID: PMC9700128 DOI: 10.1016/j.xplc.2022.100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 06/01/2023]
Abstract
Thyme has medicinal and aromatic value because of its potent antimicrobial and antioxidant properties. However, the absence of a fully sequenced thyme genome limits functional genomic studies of Chinese native thymes. Thymus quinquecostatus Čelak., which contains large amounts of bioactive monoterpenes such as thymol and carvacrol, is an important wild medicinal and aromatic plant in China. Monoterpenoids are abundant in glandular secretory trichomes. Here, high-fidelity and chromatin conformation capture technologies were used to assemble and annotate the T. quinquecostatus genome at the chromosome level. The 13 chromosomes of T. quinquecostatus had a total length of 528.66 Mb, a contig N50 of 8.06 Mb, and a BUSCO score of 97.34%. We found that T. quinquecostatus had experienced two whole-genome duplications, with the most recent event occurring ∼4.34 million years ago. Deep analyses of the genome, in conjunction with comparative genomic, phylogenetic, transcriptomic, and metabonomic studies, uncovered many regulatory factors and genes related to monoterpenoids and glandular secretory trichome development. Genes encoding terpene synthase (TPS), cytochrome P450 monooxygenases (CYPs), short-chain dehydrogenase/reductase (SDR), R2R3-MYB, and homeodomain-leucine zipper (HD-ZIP) IV were among those present in the T. quinquecostatus genome. Notably, Tq02G002290.1 (TqTPS1) was shown to encode the terpene synthase responsible for catalyzing production of the main monoterpene product γ-terpinene from geranyl diphosphate (GPP). Our study provides significant insight into the mechanisms of glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. This work will facilitate the development of molecular breeding tools to enhance the production of bioactive secondary metabolites in Lamiaceae.
Collapse
Affiliation(s)
- Meiyu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanan Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningning Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guofeng Sun
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
41
|
Lin C, Zhang L, Zhang X, Wang X, Wang C, Zhang Y, Wang J, Li X, Song Z. Spatiotemporal and Transcriptional Characterization on Tanshinone Initial Synthesis in Salvia miltiorrhiza Roots. Int J Mol Sci 2022; 23:ijms232113607. [PMID: 36362395 PMCID: PMC9655840 DOI: 10.3390/ijms232113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Tanshinones are the bioactive constituents of Danshen (Salvia miltiorrhiza Bunge), which is used in Traditional Chinese Medicine to treat cardiovascular and other diseases, and they synthesize and accumulate in the root periderm of S. miltiorrhiza. However, there is no relevant report on the initial stage of tanshinone synthesis, as well as the root structure and gene expression characteristics. The present study aims to provide new insights into how these bioactive principles begin to synthesize by characterizing possible differences in their biosynthesis and accumulation during early root development from both spatial and temporal aspects. The morphological characteristics and the content of tanshinones in roots of S. miltiorrhiza were investigated in detail by monitoring the seedlings within 65 days after germination (DAGs). The ONT transcriptome sequencing was applied to investigate gene expression patterns. The periderm of the S. miltiorrhiza storage taproot initially synthesized tanshinone on about 30 DAGs. Three critical stages of tanshinone synthesis were preliminarily determined: preparation, the initial synthesis, and the continuous rapid synthesis. The difference of taproots in the first two stages was the smallest, and the differentially expressed genes (DEGs) were mainly enriched in terpene synthesis. Most genes involved in tanshinone synthesis were up regulated during the gradual formation of the red taproot. Plant hormone signal transduction and ABC transport pathways were widely involved in S. miltiorrhiza taproot development. Five candidate genes that may participate in or regulate tanshinone synthesis were screened according to the co-expression pattern. Moreover, photosynthetic ferredoxin (FD), cytochrome P450 reductase (CPR), and CCAAT binding transcription factor (CBF) were predicted to interact with the known downstream essential enzyme genes directly. The above results provide a necessary basis for analyzing the initial synthesis and regulation mechanism of Tanshinones.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xia Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xin Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Chaoyang Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yufeng Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| |
Collapse
|
42
|
Li Q, Fang X, Zhao Y, Cao R, Dong J, Ma P. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. HORTICULTURE RESEARCH 2022; 10:uhac238. [PMID: 36643739 PMCID: PMC9832864 DOI: 10.1093/hr/uhac238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Tanshinone and phenolic acids are the most important active substances of Salvia miltiorrhiza, and the insight into their transcriptional regulatory mechanisms is an essential process to increase their content in vivo. SmMYB36 has been found to have important regulatory functions in the synthesis of tanshinone and phenolic acid; paradoxically, its mechanism of action in S. miltiorrhiza is not clear. Here, we demonstrated that SmMYB36 functions as a promoter of tanshinones accumulation and a suppressor of phenolic acids through the generation of SmMYB36 overexpressed and chimeric SmMYB36-SRDX (EAR repressive domain) repressor hairy roots in combination with transcriptomic-metabolomic analysis. SmMYB36 directly down-regulate the key enzyme gene of primary metabolism, SmGAPC, up-regulate the tanshinones biosynthesis branch genes SmDXS2, SmGGPPS1, SmCPS1 and down-regulate the phenolic acids biosynthesis branch enzyme gene, SmRAS. Meanwhile, SmERF6, a positive regulator of tanshinone synthesis activating SmCPS1, was up-regulated and SmERF115, a positive regulator of phenolic acid biosynthesis activating SmRAS, was down-regulated. Furthermore, the seven acidic amino acids at the C-terminus of SmMYB36 are required for both self-activating domain and activation of target gene expression. As a consequence, this study contributes to reveal the potential relevance of transcription factors synergistically regulating the biosynthesis of tanshinone and phenolic acid.
Collapse
Affiliation(s)
| | | | | | - Ruizhi Cao
- College of Life Sciences, Northwest A&F University, Yangling 71210, China
| | | | | |
Collapse
|
43
|
Gao X, Li X, Chen C, Wang C, Fu Y, Zheng Z, Shi M, Hao X, Zhao L, Qiu M, Kai G, Zhou W. Mining of the CULLIN E3 ubiquitin ligase genes in the whole genome of Salvia miltiorrhiza. Curr Res Food Sci 2022; 5:1760-1768. [PMID: 36268136 PMCID: PMC9576582 DOI: 10.1016/j.crfs.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
CULLIN (CUL) proteins are E3 ubiquitin ligases that are involved in a wide variety of biological processes as well as in response to stress in plants. In Salvia miltiorrhiza, CUL genes have not been characterized and its role in plant development, stress response and secondary metabolite synthesis have not been studied. In this study, genome-wide analyses were performed to identify and to predict the structure and function of CUL of S. miltiorrhiza. Eight CUL genes were identified from the genome of S. miltiorrhiza. The CUL genes were clustered into four subgroups according to phylogenetic relationships. The CUL domain was highly conserved across the family of CUL genes. Analysis of cis-acting elements suggested that CUL genes might play important roles in a variety of biological processes, including abscission reaction acid (ABA) processing. To investigate this hypothesis, we treated hairy roots of S. miltiorrhiza with ABA. The expression of CUL genes varied obviously after ABA treatment. Co-expression network results indicated that three CUL genes might be involved in the biosynthesis of phenolic acid or tanshinone. In summary, the mining of the CUL genes in the whole genome of S. miltiorrhiza contribute novel information to the understanding of the CUL genes and its functional roles in plant secondary metabolites, growth and development.
Collapse
Affiliation(s)
- Xiankui Gao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Xiujuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Chengan Chen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Can Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Yuqi Fu
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - ZiZhen Zheng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Min Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Limei Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| | - Wei Zhou
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China
| |
Collapse
|
44
|
Xia Y, Du K, Ling A, Wu W, Li J, Kang X. Overexpression of PagSTOMAGEN, a Positive Regulator of Stomatal Density, Promotes Vegetative Growth in Poplar. Int J Mol Sci 2022; 23:ijms231710165. [PMID: 36077563 PMCID: PMC9456429 DOI: 10.3390/ijms231710165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important fast-growing tree, and its photosynthetic capacity directly affects its vegetative growth. Stomatal density is closely related to photosynthetic capacity and growth characteristics in plants. Here, we isolated PagSTOMAGEN from the hybrid poplar (Populus alba × Populus glandulosa) clone 84K and investigated its biological function in vegetative growth. PagSTOMAGEN was expressed predominantly in young tissues and localized in the plasma membrane. Compared with wild-type 84K poplars, PagSTOMAGEN-overexpressing plants displayed an increased plant height, leaf area, internode number, basal diameter, biomass, IAA content, IPR content, and stomatal density. Higher stomatal density improved the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate in transgenic poplar. The differential expression of genes related to stomatal development showed a diverged influence of PagSTOMAGEN at different stages of stomatal development. Finally, transcriptomic analysis showed that PagSTOMAGEN affected vegetative growth by affecting the expression of photosynthesis and plant hormone-related genes (such as SAUR75, PQL2, PSBX, ERF1, GNC, GRF5, and ARF11). Taken together, our data indicate that PagSTOMAGEN could positively regulate stomatal density and increase the photosynthetic rate and plant hormone content, thereby promoting vegetative growth in poplar. Our study is of great significance for understanding the relationship between stoma, photosynthesis, and yield breeding in poplar.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Li
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (J.L.); (X.K.)
| |
Collapse
|
45
|
Identification and Characterization of Jasmonic Acid Biosynthetic Genes in Salvia miltiorrhiza Bunge. Int J Mol Sci 2022; 23:ijms23169384. [PMID: 36012649 PMCID: PMC9409215 DOI: 10.3390/ijms23169384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Jasmonic acid (JA) is a vital plant hormone that performs a variety of critical functions for plants. Salvia miltiorrhiza Bunge (S. miltiorrhiza), also known as Danshen, is a renowned traditional Chinese medicinal herb. However, no thorough and systematic analysis of JA biosynthesis genes in S. miltiorrhiza exists. Through genome-wide prediction and molecular cloning, 23 candidate genes related to JA biosynthesis were identified in S. miltiorrhiza. These genes belong to four families that encode lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC), and 12-OPDA reductase3 (OPR3). It was discovered that the candidate genes for JA synthesis of S. miltiorrhiza were distinct and conserved, in contrast to related genes in other plants, by evaluating their genetic structures, protein characteristics, and phylogenetic trees. These genes displayed tissue-specific expression patterns concerning to methyl jasmonate (MeJA) and wound tests. Overall, the results of this study provide valuable information for elucidating the JA biosynthesis pathway in S. miltiorrhiza by comprehensive and methodical examination.
Collapse
|
46
|
Li CY, Yang L, Liu Y, Xu ZG, Gao J, Huang YB, Xu JJ, Fan H, Kong Y, Wei YK, Hu WL, Wang LJ, Zhao Q, Hu YH, Zhang YJ, Martin C, Chen XY. The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Rep 2022; 40:111236. [PMID: 35977487 DOI: 10.1016/j.celrep.2022.111236] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
The widely cultivated medicinal and ornamental plant sage (Salvia officinalis L.) is an evergreen shrub of the Lamiaceae family, native to the Mediterranean. We assembled a high-quality sage genome of 480 Mb on seven chromosomes, and identified a biosynthetic gene cluster (BGC) encoding two pairs of diterpene synthases (diTPSs) that, together with the cytochromes P450 (CYPs) genes located inside and outside the cluster, form two expression cascades responsible for the shoot and root diterpenoids, respectively, thus extending BGC functionality from co-regulation to orchestrating metabolite production in different organs. Phylogenomic analysis indicates that the Salvia clades diverged in the early Miocene. In East Asia, most Salvia species are herbaceous and accumulate diterpenoids in storage roots. Notably, in Chinese sage S. miltiorrhiza, the diterpene BGC has contracted and the shoot cascade has been lost. Our data provide genomic insights of micro-evolution of growth type-associated patterning of specialized metabolite production in plants.
Collapse
Affiliation(s)
- Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yan Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Zhou-Geng Xu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Jian Gao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu-Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Wen-Li Hu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China.
| |
Collapse
|
47
|
Bai G, Chen C, Zhao C, Zhou T, Li D, Zhou T, Li W, Lu Y, Cong X, Jia Y, Li S. The chromosome-level genome for Toxicodendron vernicifluum provides crucial insights into Anacardiaceae evolution and urushiol biosynthesis. iScience 2022; 25:104512. [PMID: 35733792 PMCID: PMC9207680 DOI: 10.1016/j.isci.2022.104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
The lacquer tree (Toxicodendron vernicifluum (Stokes) F.A. Barkley) is an important tree with economic, industrial, and medicinal values. Here, we generated the reference genome of T. vernicifluum at the chromosome level with 491.93 Mb in size, in which 98.26% of the assembled contigs were anchored onto 15 pseudochromosomes with the scaffold N50 of 32.97 Mb. Comparative genomic analysis revealed the gene families related to urushiol biosynthesis were expanded, contributing to the ecological fitness and biological adaptability of the lacquer tree. We combined multi-omics data to identify genes that encode key enzymes in the T. vernicifluum urushiol and lignin biosynthetic pathways. Furthermore, the unique active metabolites, such as butin and fisetin, in cultivar lacquers were identified by metabolism profiling. Our work would provide crucial insights into metabolite synthesis such as urushiol and lignin, meanwhile offer a basis for further exploration of the cultivation and breeding of T. vernicifluum and other Anacardiaceae members.
Collapse
Affiliation(s)
- Guoqing Bai
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Chen Chen
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Chenxi Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dan Li
- SDIC Biotech Investment Co., Ltd., Shanghai 200082, China
| | - Tianhua Zhou
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Weimin Li
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Yuan Lu
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Xiaofeng Cong
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Yun Jia
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| | - Sifeng Li
- Xi’an Botanical Garden of Shaanxi Province, Shaanxi Province Qinling-Bashan Mountains Engineering Research Centre of Conservation and Utilization of Biological Resources, Xi’an 710061, China
| |
Collapse
|
48
|
Wang L, Lee M, Sun F, Song Z, Yang Z, Yue GH. A chromosome-level genome assembly of chia provides insights into high omega-3 content and coat color variation of its seeds. PLANT COMMUNICATIONS 2022; 3:100326. [PMID: 35605203 PMCID: PMC9284293 DOI: 10.1016/j.xplc.2022.100326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 05/26/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop for humans. Although its seeds contain high omega-3 fatty acids, the seed yield of chia is still low. Genomic resources available for this plant are limited. We report the first high-quality chromosome-level genome sequence of chia. The assembled genome size was 347.6 Mb and covered 98.1% of the estimated genome size. A total of 31 069 protein-coding genes were predicted. The absence of recent whole-genome duplication and the relatively low intensity of transposable element expansion in chia compared to its sister species contribute to its small genome size. Transcriptome sequencing and gene duplication analysis reveal that the expansion of the fab2 gene family is likely to be related to the high content of omega-3 in seeds. The white seed coat color is determined by a single locus on chromosome 4. This study provides novel insights into the evolution of Salvia species and high omega-3 content, as well as valuable genomic resources for genetic improvement of important commercial traits of chia and its related species.
Collapse
Affiliation(s)
- Le Wang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - May Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Fei Sun
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zhuojun Song
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Zituo Yang
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Gen Hua Yue
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
49
|
Xie Y, Ding M, Yin X, Wang G, Zhang B, Chen L, Ma P, Dong J. MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza. PHYTOCHEMISTRY 2022; 199:113177. [PMID: 35358599 DOI: 10.1016/j.phytochem.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Phenolic acids are the major bioactive metabolites produced in Salvia miltiorrhiza, a traditional Chinese medicine called Danshen. Many phytohormone elicitor treatments induce phenolic acid biosynthesis, even though the underlying mechanism remains obscure. Expression pattern analysis showed that SmMAPK3 was highly expressed in leaves, and SmMAPK3 was significantly induced by salicylic acid (SA) and methyl jasmonate (JA). Bioinformatics analysis revealed that SmMAPK3 belongs to group A and contains a TEY motif in the activation loop together with three conserved regions (P-loop, C-loop and CD-domain). A previous study speculated that SmMAPK3 is likely a positive regulator in the biosynthesis of phenolic acids in S. miltiorrhiza. In this study, overexpression of SmMAPK3 increased phenolic acid biosynthetic gene expression and enhanced the accumulation of phenolic acids in S. miltiorrhiza plantlets. Yeast two-hybrid (Y2H) analysis and firefly luciferase complementation imaging (LCI) assays revealed that SmMAPKK2/4/5/7-SmMAPK3-SmJAZs form a cascade that regulates the accumulation of phenolic acids. In summary, this work deepens our understanding of the posttranscriptional regulatory mechanisms of phenolic acid biosynthesis and sheds new light on metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yongfeng Xie
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Meiling Ding
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Xuecui Yin
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Guanfeng Wang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Bin Zhang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Lingxiang Chen
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Juane Dong
- College of Life Sciences, Northwest A & F University, Yangling, China.
| |
Collapse
|
50
|
Yu L, Diao S, Zhang G, Yu J, Zhang T, Luo H, Duan A, Wang J, He C, Zhang J. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of Hippophae rhamnoides. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1257-1273. [PMID: 35244328 PMCID: PMC9241383 DOI: 10.1111/pbi.13802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/01/2023]
Abstract
Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.
Collapse
Affiliation(s)
- Liyang Yu
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Research Institute of Non‐Timber ForestryChinese Academy of Forestry/Key Laboratory of Non‐timber Forest Germplasm Enhancement & Utilization of National and Grassland AdministrationZhengzhouChina
| | - Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jigao Yu
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Tong Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Hongmei Luo
- Experimental Center of Desert ForestryChinese Academy of ForestryDengkouChina
| | - Aiguo Duan
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jinpeng Wang
- School of Life SciencesNorth China University of Science and TechnologyTangshanChina
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and CultivationNational Forestry and Grassland AdministrationResearch Institute of ForestryChinese Academy of ForestryBeijingChina
- Collaborative Innovation Center of Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|