1
|
Hsu AL, Wu CY, Ng HYH, Chuang CH, Huang CM, Wu CW, Chao YP. Classification of mindfulness experiences from gamma-band effective connectivity: Application of machine-learning algorithms on resting, breathing, and body scan. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108446. [PMID: 39369588 DOI: 10.1016/j.cmpb.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived connectivity possesses the potential to differentiate brain functions between mindfulness naïve and mindfulness experienced, where such quantitative differentiation could benefit telediagnosis for mental health. However, there is no prior guidance in model selection targeting on the mindfulness-experience prediction. Here we hypothesized that the EEG effective connectivity could reach a good prediction performance in mindfulness experiences with brain interpretability. METHODS We aimed at probing direct Directed Transfer Function (dDTF) to classify the participants' history of mindfulness-based stress reduction (MBSR), and aimed at optimizing the prediction accuracy by comparing multiple machine learning (ML) algorithms. Targeting the gamma-band effective connectivity, we evaluated the EEG-based prediction of the mindfulness experiences across 7 machine learning (ML) algorithms and 3 sessions (i.e., resting, focus-breathing, and body-scan). RESULTS The support vector machine and naïve Bayes classifiers exhibited significant accuracies above the chance level across all three sessions, and the decision tree algorithm reached the highest prediction accuracy of 91.7 % with the resting state, compared to the classification accuracies with the other two mindful states. We further conducted the analysis on essential EEG channels to preserve the classification accuracy, revealing that preserving just four channels (F7, F8, T7, and P7) out of 19 yielded the accuracy of 83.3 %. Delving into the contribution of connectivity features, specific connectivity features predominantly located in the frontal lobe contributed more to classifier construction, which aligned well with the existing mindfulness literature. CONCLUSION In the present study, we initiated a milestone of developing an EEG-based classifier to detect a person's mindfulness experience objectively. The prediction accuracy of the decision tree was optimal to differentiate the mindfulness experiences using the local resting-state EEG data. The suggested algorithm and key channels on the mindfulness-experience prediction may provide guidance for predicting mindfulness experiences using the EEG-based classification embedded in future wearable neurofeedback systems or plausible digital therapeutics.
Collapse
Affiliation(s)
- Ai-Ling Hsu
- Department of Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chun-Yu Wu
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Hei-Yin Hydra Ng
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan; Department of Educational Psychology and Counseling, College of Education, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Hsiang Chuang
- Research Center for Education and Mind Sciences, College of Education, National Tsing Hua University, Hsinchu, Taiwan; Institute of Information Systems and Applications, College of Electrical Engineering and Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, New Taipei, Taiwan; Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Ghaderi S, Mohammadi M, Sayehmiri F, Mohammadi S, Tavasol A, Rezaei M, Ghalyanchi-Langeroudi A. Machine Learning Approaches to Identify Affected Brain Regions in Movement Disorders Using MRI Data: A Systematic Review and Diagnostic Meta-analysis. J Magn Reson Imaging 2024; 60:2518-2546. [PMID: 38538062 DOI: 10.1002/jmri.29364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Movement disorders such as Parkinson's disease are associated with structural and functional changes in specific brain regions. Advanced magnetic resonance imaging (MRI) techniques combined with machine learning (ML) are promising tools for identifying imaging biomarkers and patterns associated with these disorders. PURPOSE/HYPOTHESIS We aimed to systematically identify the brain regions most commonly affected in movement disorders using ML approaches applied to structural and functional MRI data. We searched the PubMed and Scopus databases using relevant keywords up to June 2023 for studies that used ML approaches to detect brain regions associated with movement disorders using MRI data. STUDY TYPE A systematic review and diagnostic meta-analysis. POPULATION/SUBJECTS Sixty-seven studies with 6,285 patients were included. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5T or 3T MR scanners and the acquisition of diffusion tensor imaging (DTI), structural MRI (sMRI), functional MRI (fMRI), or a combination of these were included. ASSESSMENT The authors independently assessed the study quality using the CLAIM and QUADAS-2 criteria and extracted data on diagnostic accuracy measures. STATISTICAL TESTS Sensitivity, specificity, accuracy, and area under the curve were pooled using random-effects models. Q statistics and the I2 index were used to evaluate heterogeneity, and Begg's funnel plot was used to identify publication bias. RESULTS sMRI showed the highest sensitivity (93%) and mixed modalities had the highest specificity (90%) for detecting regional abnormalities. sMRI had a 94% sensitivity for identifying subcortical changes. The support vector machine (93%) and logistic regression (91%) models exhibited high diagnostic accuracies. DATA CONCLUSION The combination of advanced MR neuroimaging techniques and ML is a promising approach for identifying brain biomarkers and affected regions in movement disorders with subcortical structures frequently implicated. Structural MRI, in particular, showed strong performance. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Rezaei
- Medical Physics and Radiology Department, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Azadeh Ghalyanchi-Langeroudi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Tehran, Iran
| |
Collapse
|
3
|
Jin S, Chen H, Li L, Liu Y, Liu P, Xie A, Liao Y. Resting-state functional connectome predicts sleep quality two months after the first negative COVID-19 antigen test. Sleep Med 2024; 124:727-736. [PMID: 39549632 DOI: 10.1016/j.sleep.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The COVID-19 pandemic has led to long-term neurological and psychological effects, including sleep disturbances. While prior studies have identified altered brain function post-COVID-19, specific functional connectivity (FC) patterns predicting sleep quality after recovery remain unclear. This study aims to identify FC patterns associated with sleep quality two months after the first negative COVID-19 antigen test. METHODS Using a connectome-based predictive modeling (CPM) approach, we identified the functional connectome regulating sleep quality based on a 164-region parcellation. Significant connections were analyzed using mediation models to examine their role in the relationship between anxiety, depression, and sleep. RESULTS FC between the right cerebellar peduncle and the left VIII of the cerebellum, and between the left middle temporal pole (MTP) and left ventral tegmental area (VTA), significantly predicted Pittsburgh Sleep Quality Index (PSQI) scores for sleep disturbances two months post-recovery (q2 = 0.059, MSE = 0.154, p = 0.017, r = 0.350). Mediation analysis showed a significant indirect effect of FC between the left MTP and VTA on the relationship between generalized anxiety and sleep disturbances (indirect effect = 0.013, 95% CI = [0.002, 0.03], pfdr <0.05). FC between the right dorsal raphe nucleus and ipsilateral regions-including occipital, parietal, and temporal areas-predicted PSQI scores for daytime dysfunction (q2 = 0.092, MSE = 0.678, p = 0.025, r = 0.342). CONCLUSION Post-COVID-19 brain connectivity and anxiety predict sleep quality. These findings highlight the potential for targeted therapeutic strategies to improve sleep and identify patients at risk for prolonged disturbances through FC biomarkers.
Collapse
Affiliation(s)
- Shuyu Jin
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Haobo Chen
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Yi Liu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China
| | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - An Xie
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Department of Radiology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), 61 Jiefang West Road, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Glasbrenner C, Höchsmann C, Pieper CF, Wasserfurth P, Dorling JL, Martin CK, Redman LM, Koehler K. Prediction of individual weight loss using supervised learning: findings from the CALERIE TM 2 study. Am J Clin Nutr 2024; 120:1233-1244. [PMID: 39270937 DOI: 10.1016/j.ajcnut.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Predicting individual weight loss (WL) responses to lifestyle interventions is challenging but might help practitioners and clinicians select the most promising approach for each individual. OBJECTIVE The primary aim of this study was to develop machine learning (ML) models to predict individual WL responses using only variables known before starting the intervention. In addition, we used ML to identify pre-intervention variables influencing the individual WL response. METHODS We used 12-mo data from the comprehensive assessment of long-term effects of reducing intake of energy (CALERIETM) phase 2 study, which aimed to analyze the long-term effects of caloric restriction on human longevity. On the basis of the data from 130 subjects in the intervention group, we developed classification models to predict binary ("Success" and "No/low success") or multiclass ("High success," "Medium success," and "Low/no success") WL outcomes. Additionally, regression models were developed to predict individual weight change (percent). Models were evaluated on the basis of accuracy, sensitivity, specificity (classification models), and root mean squared error (RMSE; regression models). RESULTS Best classification models used 20-40 predictors and achieved 89%-97% accuracy, 91%-100% sensitivity, and 56%-86% specificity for binary classification. For multiclass classification, accuracy (69%) and sensitivity (50%) tended to be lower. The best regression performance was obtained with 36 variables with an RMSE of 2.84%. Among the 21 variables predicting individual weight change most consistently, we identified 2 novel predictors, namely orgasm satisfaction and sexual behavior/experience. Other common predictors have previously been associated with WL (16) or are already used in traditional prediction models (3). CONCLUSIONS The prediction models could be implemented by practitioners and clinicians to support the decision of whether lifestyle interventions are sufficient or more aggressive interventions are needed for a given individual, thereby supporting better, faster, data-driven, and unbiased decisions. The CALERIETM phase 2 study was registered at clinicaltrials.gov as NCT00427193.
Collapse
Affiliation(s)
- Christina Glasbrenner
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Christoph Höchsmann
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - Carl F Pieper
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Paulina Wasserfurth
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany
| | - James L Dorling
- Human Nutrition, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corby K Martin
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Karsten Koehler
- TUM School of Medicine and Health, Department of Health and Sport Sciences, Technical University of Munich, Munich, Germany.
| |
Collapse
|
5
|
Liu J, Younk R, M Drahos L, S Nagrale S, Yadav S, S Widge A, Shoaran M. Neural decoding and feature selection methods for closed-loop control of avoidance behavior. J Neural Eng 2024; 21:056041. [PMID: 39419091 PMCID: PMC11523571 DOI: 10.1088/1741-2552/ad8839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
6
|
Sun B, Xu Y, Kat S, Sun A, Yin T, Zhao L, Su X, Chen J, Wang H, Gong X, Liu Q, Han G, Peng S, Li X, Liu J. Exploring the most discriminative brain structural abnormalities in ASD with multi-stage progressive feature refinement approach. Front Psychiatry 2024; 15:1463654. [PMID: 39483728 PMCID: PMC11524921 DOI: 10.3389/fpsyt.2024.1463654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by increasing prevalence, diverse impairments, and unclear origins and mechanisms. To gain a better grasp of the origins of ASD, it is essential to identify the most distinctive structural brain abnormalities in individuals with ASD. Methods A Multi-Stage Progressive Feature Refinement Approach was employed to identify the most pivotal structural magnetic resonance imaging (MRI) features that distinguish individuals with ASD from typically developing (TD) individuals. The study included 175 individuals with ASD and 69 TD individuals, all aged between 7 and 18 years, matched in terms of age and gender. Both cortical and subcortical features were integrated, with a particular focus on hippocampal subfields. Results Out of 317 features, 9 had the most significant impact on distinguishing ASD from TD individuals. These structural features, which include a specific hippocampal subfield, are closely related to the brain areas associated with the reward system. Conclusion Structural irregularities in the reward system may play a crucial role in the pathophysiology of ASD, and specific hippocampal subfields may also contribute uniquely, warranting further investigation.
Collapse
Affiliation(s)
- Bingxi Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yingying Xu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Siuching Kat
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Anlan Sun
- Yizhun Medical AI Co., Ltd, Algorithm and Development Department, Beijing, China
| | - Tingni Yin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Liyang Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jialu Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hui Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiaoyun Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qinyi Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Gangqiang Han
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuchen Peng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
7
|
Alves CL, Martinelli T, Sallum LF, Rodrigues FA, Toutain TGLDO, Porto JAM, Thielemann C, Aguiar PMDC, Moeckel M. Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis. PLoS One 2024; 19:e0305630. [PMID: 39418298 PMCID: PMC11486369 DOI: 10.1371/journal.pone.0305630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/03/2024] [Indexed: 10/19/2024] Open
Abstract
Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML classification rests, agree with established diagnostic approaches based on clinical symptoms. Furthermore, complex network analyses highlight differences in brain network integration and segregation among the three groups. Our findings pave the way for refined, ML-enhanced diagnostics in accordance with established practices, offering a promising avenue for developing trustworthy clinical decision-support systems.
Collapse
Affiliation(s)
- Caroline L. Alves
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Tiago Martinelli
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Loriz Francisco Sallum
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Joel Augusto Moura Porto
- Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil
- Institute of Biological Information Processing, Heinrich Heine University Düsseldorf, Düsseldorf, North Rhine–Westphalia Land, Germany
| | - Christiane Thielemann
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| | - Patrícia Maria de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Michael Moeckel
- Laboratory for Hybrid Modeling, Aschaffenburg University of Applied Sciences, Aschaffenburg, Bayern, Germany
| |
Collapse
|
8
|
Li J, Segel A, Feng X, Tu JC, Eck A, King KT, Adeyemo B, Karcher NR, Chen L, Eggebrecht AT, Wheelock MD. Network-level enrichment provides a framework for biological interpretation of machine learning results. Netw Neurosci 2024; 8:762-790. [PMID: 39355443 PMCID: PMC11349033 DOI: 10.1162/netn_a_00383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Machine learning algorithms are increasingly being utilized to identify brain connectivity biomarkers linked to behavioral and clinical outcomes. However, research often prioritizes prediction accuracy at the expense of biological interpretability, and inconsistent implementation of ML methods may hinder model accuracy. To address this, our paper introduces a network-level enrichment approach, which integrates brain system organization in the context of connectome-wide statistical analysis to reveal network-level links between brain connectivity and behavior. To demonstrate the efficacy of this approach, we used linear support vector regression (LSVR) models to examine the relationship between resting-state functional connectivity networks and chronological age. We compared network-level associations based on raw LSVR weights to those produced from the forward and inverse models. Results indicated that not accounting for shared family variance inflated prediction performance, the k-best feature selection via Pearson correlation reduced accuracy and reliability, and raw LSVR model weights produced network-level associations that deviated from the significant brain systems identified by forward and inverse models. Our findings offer crucial insights for applying machine learning to neuroimaging data, emphasizing the value of network enrichment for biological interpretation.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Ari Segel
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Xinyang Feng
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Jiaxin Cindy Tu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Andy Eck
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Kelsey T King
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Likai Chen
- Department of Statistics and Data Science, Washington University in St. Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| |
Collapse
|
9
|
DeRosa J, Friedman NP, Calhoun V, Banich MT. Neurodevelopmental subtypes of functional brain organization in the ABCD study using a rigorous analytic framework. Neuroimage 2024; 299:120827. [PMID: 39245397 DOI: 10.1016/j.neuroimage.2024.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
The current study demonstrates that an individual's resting-state functional connectivity (RSFC) is a dependable biomarker for identifying differential patterns of cognitive and emotional functioning during late childhood. Using baseline RSFC data from the Adolescent Brain Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four distinct RSFC subtypes. We introduce an integrated methodological pipeline for testing the reliability and importance of these subtypes. In the Identification phase, Leiden Community Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample technique in the Validation stage. The Evaluation phase showed that distinct cognitive and mental health profiles are associated with each subtype, with the Predictive phase indicating that subtypes better predict various cognitive and mental health characteristics than individual RSFC connections. The Replication stage employed bootstrapping and down-sampling methods to substantiate the reproducibility of these subtypes further. This work allows future explorations of developmental trajectories of these RSFC subtypes.
Collapse
Affiliation(s)
- Jacob DeRosa
- Department of Psychology and Neuroscience, University of Colorado Boulder, United States; Institute of Cognitive Science, University of Colorado Boulder, United States.
| | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, United States; Institute for Behavioral Genetics, University of Colorado Boulder, United States
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, United States
| | - Marie T Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder, United States; Institute of Cognitive Science, University of Colorado Boulder, United States
| |
Collapse
|
10
|
Ooi LQR, Orban C, Zhang S, Nichols TE, Tan TWK, Kong R, Marek S, Dosenbach NU, Laumann T, Gordon EM, Yap KH, Ji F, Chong JSX, Chen C, An L, Franzmeier N, Roemer SN, Hu Q, Ren J, Liu H, Chopra S, Cocuzza CV, Baker JT, Zhou JH, Bzdok D, Eickhoff SB, Holmes AJ, Yeo BTT. MRI economics: Balancing sample size and scan duration in brain wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580448. [PMID: 38405815 PMCID: PMC10889017 DOI: 10.1101/2024.02.16.580448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A pervasive dilemma in neuroimaging is whether to prioritize sample size or scan time given fixed resources. Here, we systematically investigate this trade-off in the context of brain-wide association studies (BWAS) using functional magnetic resonance imaging (fMRI). We find that total scan duration (sample size × scan time per participant) robustly explains individual-level phenotypic prediction accuracy via a logarithmic model, suggesting that sample size and scan time are broadly interchangeable up to 20-30 min of data. However, the returns of scan time diminish relative to sample size, which we explain with principled theoretical derivations. When accounting for fixed overhead costs associated with each participant (e.g., recruitment, non-imaging measures), prediction accuracy in many small-scale and some large-scale BWAS might benefit from longer scan time than typically assumed. These results generalize across phenotypic domains, scanners, acquisition protocols, racial groups, mental disorders, age groups, as well as resting-state and task-state functional connectivity. Overall, our study emphasizes the importance of scan time, which is ignored in standard power calculations. Standard power calculations maximize sample size, at the expense of scan time, which can result in sub-optimal prediction accuracies and inefficient use of resources. Our empirically informed reference is available for future study design: WEB_APPLICATION_LINK.
Collapse
Affiliation(s)
- Leon Qi Rong Ooi
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Csaba Orban
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Shaoshi Zhang
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Thomas E. Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Trevor Wei Kiat Tan
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
| | - Nico U.F. Dosenbach
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
- Department of Neurology, Washington University, School of Medicine, USA
- Department of Psychiatry, Washington University, School of Medicine, USA
- Deparments of Paediatrics, Biomedical Engineering, and Psychological and Brain Sciences, Washington University, School of Medicine, USA
| | - Timothy Laumann
- Department of Psychiatry, Washington University, School of Medicine, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University, School of Medicine, USA
| | - Kwong Hsia Yap
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fang Ji
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joanna Su Xian Chong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lijun An
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Sebastian Niclas Roemer
- Institute for Stroke and Dementia Research, LMU Munich, Munich, Germany
- Department of Neurology, LMU Hospital, LMU Munich, Munich, Germany
| | - Qingyu Hu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Jianxun Ren
- Division of Brain Sciences, Changping Laboratory, Beijing, China
| | - Hesheng Liu
- Division of Brain Sciences, Changping Laboratory, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Orygen, Center for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Carrisa V. Cocuzza
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Justin T. Baker
- Department of Psychiatry, Harvard Medical School, Boston, USA
- Institute for Technology in Psychiatry, McLean Hospital, Boston, USA
| | - Juan Helen Zhou
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada
- Faculty of Medicine, School of Computer Science, McGill University, Montreal, QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - B. T. Thomas Yeo
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, Healthy Longevity Translational Research Programme, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
11
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024. [PMID: 39290174 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
- Fabio Di Camillo
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annabella Di Giorgio
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Clara Locatelli
- Department of Mental Health and Addictions, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Adyasha Khuntia
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Paolo Enrico
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCSS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nikolaos Koutsouleris
- Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, Munich University Hospital, Munich, Germany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy
- Padova Neuroscience Center, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Zhang A, Yao C, Zhang Q, Zhao Z, Qu J, Lui S, Zhao Y, Gong Q. Individualized multi-modal MRI biomarkers predict 1-year clinical outcome in first-episode drug-naïve schizophrenia patients. Front Psychiatry 2024; 15:1448145. [PMID: 39345917 PMCID: PMC11427343 DOI: 10.3389/fpsyt.2024.1448145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 10/01/2024] Open
Abstract
Background Antipsychotic medications offer limited long-term benefit to about 30% of patients with schizophrenia. We aimed to explore the individual-specific imaging markers to predict 1-year treatment response of schizophrenia. Methods Structural morphology and functional topological features related to treatment response were identified using an individualized parcellation analysis in conjunction with machine learning (ML). We performed dimensionality reductions using the Pearson correlation coefficient and three feature selection analyses and classifications using 10 ML classifiers. The results were assessed through a 5-fold cross-validation (training and validation cohorts, n = 51) and validated using the external test cohort (n = 17). Results ML algorithms based on individual-specific brain network proved more effective than those based on group-level brain network in predicting outcomes. The most predictive features based on individual-specific parcellation involved the GMV of the default network and the degree of the control, limbic, and default networks. The AUCs for the training, validation, and test cohorts were 0.947, 0.939, and 0.883, respectively. Additionally, the prediction performance of the models constructed by the different feature selection methods and classifiers showed no significant differences. Conclusion Our study highlighted the potential of individual-specific network parcellation in treatment resistant schizophrenia prediction and underscored the crucial role of feature attributes in predictive model accuracy.
Collapse
Affiliation(s)
- Aoxiang Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chenyang Yao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qian Zhang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyuan Zhao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiao Qu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
13
|
Sundermann B, Pfleiderer B, McLeod A, Mathys C. Seeing more than the Tip of the Iceberg: Approaches to Subthreshold Effects in Functional Magnetic Resonance Imaging of the Brain. Clin Neuroradiol 2024; 34:531-539. [PMID: 38842737 PMCID: PMC11339104 DOI: 10.1007/s00062-024-01422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/05/2024] [Indexed: 06/07/2024]
Abstract
Many functional magnetic resonance imaging (fMRI) studies and presurgical mapping applications rely on mass-univariate inference with subsequent multiple comparison correction. Statistical results are frequently visualized as thresholded statistical maps. This approach has inherent limitations including the risk of drawing overly-selective conclusions based only on selective results passing such thresholds. This article gives an overview of both established and newly emerging scientific approaches to supplement such conventional analyses by incorporating information about subthreshold effects with the aim to improve interpretation of findings or leverage a wider array of information. Topics covered include neuroimaging data visualization, p-value histogram analysis and the related Higher Criticism approach for detecting rare and weak effects. Further examples from multivariate analyses and dedicated Bayesian approaches are provided.
Collapse
Affiliation(s)
- Benedikt Sundermann
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany.
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany.
| | - Bettina Pfleiderer
- Clinic of Radiology, Medical Faculty, University of Münster, Münster, Germany
| | - Anke McLeod
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus Oldenburg, Universitätsmedizin Oldenburg, Steinweg 13-17, 26122, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Yang X, Shang T, Ding Z, Qin X, Qi J, Han J, Lv D, Li T, Ma J, Zhan C, Xiao J, Sun Z, Wang N, Yu Z, Li C, Meng X, Chen Y, Li P. Abnormal structure and function of white matter in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111061. [PMID: 38901756 DOI: 10.1016/j.pnpbp.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/19/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Abnormal structure and function of gray matter (GM) have been discovered in the cortico-striatal-thalamic-cortical (CSTC) circuit in obsessive-compulsive disorder (OCD). The GM structure and function may be influenced by the structure and function of the white matter (WM). Therefore, it is crucial to explore the characteristics of WM in OCD. METHODS Diffusion tensor imaging and resting-state functional magnetic resonance imaging data of 52 patients with OCD and 39 healthy controls (HCs) were collected. The tract-based spatial statistics, amplitude of low-frequency fluctuations (ALFF), and structural-functional coupling approaches were utilized to explore the WM structure and function. Furthermore, the relationship between the abnormal WM structure and function and clinical symptoms of OCD was investigated using Pearson's correlation. Support vector machine was performed to evaluate whether patients with OCD could be identified with the changed WM structure and function. RESULTS Compared to HCs, the lower fractional anisotropy (FA) values of four clusters including the superior corona radiata, anterior corona radiata, right superior longitudinal fasciculus, corpus callosum, left posterior corona radiata, fornix, and the right anterior limb of internal capsule, reduced ALFF/FA ratio in the left anterior thalamic radiation (ATR), and the decreased functional connectivity between the left ATR and the left dorsal lateral prefrontal cortex within CSTC circuit at rest were observed in OCD. The decreased ALFF/FA ratio in the left ATR negatively correlated with Yale-Brown Obsessive-Compulsive Scale obsessive thinking scores and Hamilton Anxiety Rating Scale scores in OCD. Furthermore, the features that combined the abnormal WM structure and function performed best in distinguishing OCD from HCs with the appropriate accuracy (0.80), sensitivity (0.82), as well as specificity (0.80). CONCLUSION Current research discovered changed WM structure and function in OCD. Furthermore, abnormal WM structural-functional coupling may lead to aberrant GM connectivity within the CSTC circuit at rest in OCD. TRIAL REGISTRATION Study on the mechanism of brain network in obsessive-compulsive disorder with multi-model magnetic resonance imaging (ChiCTR-COC-17013301).
Collapse
Affiliation(s)
- Xu Yang
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhipeng Ding
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiaoqing Qin
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiale Qi
- Medical Technology Department, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jiaqi Han
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Jian Xiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Na Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Zengyan Yu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Xiangyu Meng
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, Heilongjiang 150050, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China.
| |
Collapse
|
15
|
Jang H, Dai R, Mashour GA, Hudetz AG, Huang Z. Classifying Unconscious, Psychedelic, and Neuropsychiatric Brain States with Functional Connectivity, Graph Theory, and Cortical Gradient Analysis. Brain Sci 2024; 14:880. [PMID: 39335376 PMCID: PMC11430472 DOI: 10.3390/brainsci14090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Accurate and generalizable classification of brain states is essential for understanding their neural underpinnings and improving clinical diagnostics. Traditionally, functional connectivity patterns and graph-theoretic metrics have been utilized. However, cortical gradient features, which reflect global brain organization, offer a complementary approach. We hypothesized that a machine learning model integrating these three feature sets would effectively discriminate between baseline and atypical brain states across a wide spectrum of conditions, even though the underlying neural mechanisms vary. To test this, we extracted features from brain states associated with three meta-conditions including unconsciousness (NREM2 sleep, propofol deep sedation, and propofol general anesthesia), psychedelic states induced by hallucinogens (subanesthetic ketamine, lysergic acid diethylamide, and nitrous oxide), and neuropsychiatric disorders (attention-deficit hyperactivity disorder, bipolar disorder, and schizophrenia). We used support vector machine with nested cross-validation to construct our models. The soft voting ensemble model marked the average balanced accuracy (average of specificity and sensitivity) of 79% (62-98% across all conditions), outperforming individual base models (70-76%). Notably, our models exhibited varying degrees of transferability across different datasets, with performance being dependent on the specific brain states and feature sets used. Feature importance analysis across meta-conditions suggests that the underlying neural mechanisms vary significantly, necessitating tailored approaches for accurate classification of specific brain states. This finding underscores the value of our feature-integrated ensemble models, which leverage the strengths of multiple feature types to achieve robust performance across a broader range of brain states. While our approach offers valuable insights into the neural signatures of different brain states, future work is needed to develop and validate even more generalizable models that can accurately classify brain states across a wider array of conditions.
Collapse
Affiliation(s)
- Hyunwoo Jang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Rui Dai
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zirui Huang
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; (H.J.); (G.A.M.); (A.G.H.)
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Kuhles G, Hamdan S, Heim S, Eickhoff S, Patil KR, Camilleri J, Weis S. Pitfalls in using ML to predict cognitive function performance. RESEARCH SQUARE 2024:rs.3.rs-4745684. [PMID: 39184094 PMCID: PMC11343279 DOI: 10.21203/rs.3.rs-4745684/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls that need to be considered during their implementation and interpretation of the results. Hence, the present study aimed at drawing attention to the risks of erroneous conclusions incurred by confounding variables illustrated by a case example predicting executive function performance by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests. From 264 prosodic features, we predicted EF performance using 66 variables, controlling for confounding effects of age, sex, and education. A reasonable model fit was apparently achieved for EF variables of the Trail Making Test. However, in-depth analyses revealed indications of confound leakage, leading to inflated prediction accuracies, due to a strong relationship between confounds and targets. These findings highlight the need to control confounding variables in ML pipelines and caution against potential pitfalls in ML predictions.
Collapse
|
17
|
García-Gutiérrez F, Hernández-Lorenzo L, Cabrera-Martín MN, Matias-Guiu JA, Ayala JL. Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI. Neuroimage 2024; 297:120695. [PMID: 38942101 DOI: 10.1016/j.neuroimage.2024.120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions of the disease, such as variations in brain metabolism assessed via [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI) who will progress to dementia (pMCI). METHODS We analyzed data from 1,617 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals. Finally, this model underwent further analysis using eXplainable AI (XAI) techniques. RESULTS Our results confirm a strong association between hypometabolism, disease progression, and cognitive decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training enhanced the models' ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the application of XAI techniques enabled us to delve into the brain regions with the most significant impact on model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical structures. CONCLUSION This study introduces a novel dimension to predictive modeling in AD, emphasizing the importance of projecting variations in brain metabolism under a multi-task learning paradigm.
Collapse
Affiliation(s)
| | | | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - José L Ayala
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
18
|
Jirsaraie RJ, Gatavins MM, Pines AR, Kandala S, Bijsterbosch JD, Marek S, Bogdan R, Barch DM, Sotiras A. Mapping the neurodevelopmental predictors of psychopathology. Mol Psychiatry 2024:10.1038/s41380-024-02682-7. [PMID: 39107582 DOI: 10.1038/s41380-024-02682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Neuroimaging research has uncovered a multitude of neural abnormalities associated with psychopathology, but few prediction-based studies have been conducted during adolescence, and even fewer used neurobiological features that were extracted across multiple neuroimaging modalities. This gap in the literature is critical, as deriving accurate brain-based models of psychopathology is an essential step towards understanding key neural mechanisms and identifying high-risk individuals. As such, we trained adaptive tree-boosting algorithms on multimodal neuroimaging features from the Lifespan Human Connectome Developmental (HCP-D) sample that contained 956 participants between the ages of 8 to 22 years old. Our feature space consisted of 1037 anatomical, 1090 functional, and 192 diffusion MRI features, which were used to derive models that separately predicted internalizing symptoms, externalizing symptoms, and the general psychopathology factor. We found that multimodal models were the most accurate, but all brain-based models of psychopathology yielded out-of-sample predictions that were weakly correlated with actual symptoms (r2 < 0.15). White matter microstructural properties, including orientation dispersion indices and intracellular volume fractions, were the most predictive of general psychopathology, followed by cortical thickness and functional connectivity. Spatially, the most predictive features of general psychopathology were primarily localized within the default mode and dorsal attention networks. These results were mostly consistent across all dimensions of psychopathology, except orientation dispersion indices and the default mode network were not as heavily weighted in the prediction of internalizing and externalizing symptoms. Taken with prior literature, it appears that neurobiological features are an important part of the equation for predicting psychopathology but relying exclusively on neural markers is clearly not sufficient, especially among adolescent samples with subclinical symptoms. Consequently, risk factor models of psychopathology may benefit from incorporating additional sources of information that have also been shown to explain individual differences, such as psychosocial factors, environmental stressors, and genetic vulnerabilities.
Collapse
Affiliation(s)
- Robert J Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M Gatavins
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam R Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sridhar Kandala
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- AI for Health Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Madububambachu U, Ukpebor A, Ihezue U. Machine Learning Techniques to Predict Mental Health Diagnoses: A Systematic Literature Review. Clin Pract Epidemiol Ment Health 2024; 20:e17450179315688. [PMID: 39355197 PMCID: PMC11443461 DOI: 10.2174/0117450179315688240607052117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 10/03/2024]
Abstract
Introduction This study aims to investigate the potential of machine learning in predicting mental health conditions among college students by analyzing existing literature on mental health diagnoses using various machine learning algorithms. Methods The research employed a systematic literature review methodology to investigate the application of deep learning techniques in predicting mental health diagnoses among students from 2011 to 2024. The search strategy involved key terms, such as "deep learning," "mental health," and related terms, conducted on reputable repositories like IEEE, Xplore, ScienceDirect, SpringerLink, PLOS, and Elsevier. Papers published between January, 2011, and May, 2024, specifically focusing on deep learning models for mental health diagnoses, were considered. The selection process adhered to PRISMA guidelines and resulted in 30 relevant studies. Results The study highlights Convolutional Neural Networks (CNN), Random Forest (RF), Support Vector Machine (SVM), Deep Neural Networks, and Extreme Learning Machine (ELM) as prominent models for predicting mental health conditions. Among these, CNN demonstrated exceptional accuracy compared to other models in diagnosing bipolar disorder. However, challenges persist, including the need for more extensive and diverse datasets, consideration of heterogeneity in mental health condition, and inclusion of longitudinal data to capture temporal dynamics. Conclusion This study offers valuable insights into the potential and challenges of machine learning in predicting mental health conditions among college students. While deep learning models like CNN show promise, addressing data limitations and incorporating temporal dynamics are crucial for further advancements.
Collapse
Affiliation(s)
- Ujunwa Madububambachu
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | | | - Urenna Ihezue
- Department of Public Health, College of Nursing and Health Professions, University of Southern Mississippi, Hattiesburg Mississippi, United States of America
| |
Collapse
|
20
|
Dagnew TM, Tseng CEJ, Yoo CH, Makary MM, Goodheart AE, Striar R, Meyer TN, Rattray AK, Kang L, Wolf KA, Fiedler SA, Tocci D, Shapiro H, Provost S, Sultana E, Liu Y, Ding W, Chen P, Kubicki M, Shen S, Catana C, Zürcher NR, Wey HY, Hooker JM, Weiss RD, Wang C. Toward AI-driven neuroepigenetic imaging biomarker for alcohol use disorder: A proof-of-concept study. iScience 2024; 27:110159. [PMID: 39021792 PMCID: PMC11253155 DOI: 10.1016/j.isci.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Alcohol use disorder (AUD) is a disorder of clinical and public health significance requiring novel and improved therapeutic solutions. Both environmental and genetic factors play a significant role in its pathophysiology. However, the underlying epigenetic molecular mechanisms that link the gene-environment interaction in AUD remain largely unknown. In this proof-of-concept study, we showed, for the first time, the neuroepigenetic biomarker capability of non-invasive imaging of class I histone deacetylase (HDAC) epigenetic enzymes in the in vivo brain for classifying AUD patients from healthy controls using a machine learning approach in the context of precision diagnosis. Eleven AUD patients and 16 age- and sex-matched healthy controls completed a simultaneous positron emission tomography-magnetic resonance (PET/MR) scan with the HDAC-binding radiotracer [11C]Martinostat. Our results showed lower HDAC expression in the anterior cingulate region in AUD. Furthermore, by applying a genetic algorithm feature selection, we identified five particular brain regions whose combined [11C]Martinostat relative standard uptake value (SUVR) features could reliably classify AUD vs. controls. We validate their promising classification reliability using a support vector machine classifier. These findings inform the potential of in vivo HDAC imaging biomarkers coupled with machine learning tools in the objective diagnosis and molecular translation of AUD that could complement the current diagnostic and statistical manual of mental disorders (DSM)-based intervention to propel precision medicine forward.
Collapse
Affiliation(s)
- Tewodros Mulugeta Dagnew
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chieh-En J. Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Meena M. Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt
| | - Anna E. Goodheart
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Robin Striar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler N. Meyer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna K. Rattray
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leyi Kang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kendall A. Wolf
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Darcy Tocci
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah Shapiro
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, USA
| | - Scott Provost
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, USA
| | - Eleanor Sultana
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, USA
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Ding
- Department of Computer Science, University of Massachusetts Boston, Boston, MA, USA
| | - Ping Chen
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole R. Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roger D. Weiss
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Division of Alcohol, Drugs, and Addiction, McLean Hospital, Belmont, MA, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Sun H, Liu N, Qiu C, Tao B, Yang C, Tang B, Li H, Zhan K, Cai C, Zhang W, Lui S. Applications of MRI in Schizophrenia: Current Progress in Establishing Clinical Utility. J Magn Reson Imaging 2024. [PMID: 38946400 DOI: 10.1002/jmri.29470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Schizophrenia is a severe mental illness that significantly impacts the lives of affected individuals and with increasing mortality rates. Early detection and intervention are crucial for improving outcomes but the lack of validated biomarkers poses great challenges in such efforts. The use of magnetic resonance imaging (MRI) in schizophrenia enables the investigation of the disorder's etiological and neuropathological substrates in vivo. After decades of research, promising findings of MRI have been shown to aid in screening high-risk individuals and predicting illness onset, and predicting symptoms and treatment outcomes of schizophrenia. The integration of machine learning and deep learning techniques makes it possible to develop intelligent diagnostic and prognostic tools with extracted or selected imaging features. In this review, we aimed to provide an overview of current progress and prospects in establishing clinical utility of MRI in schizophrenia. We first provided an overview of MRI findings of brain abnormalities that might underpin the symptoms or treatment response process in schizophrenia patients. Then, we summarized the ongoing efforts in the computer-aided utility of MRI in schizophrenia and discussed the gap between MRI research findings and real-world applications. Finally, promising pathways to promote clinical translation were provided. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Hui Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Naici Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Bo Tao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongwei Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Kongcai Zhan
- Department of Radiology, Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong, China
| | - Chunxian Cai
- Department of Radiology, the Second People's Hospital of Neijiang, Neijiang, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
22
|
Sharma CM, Chariar VM. Diagnosis of mental disorders using machine learning: Literature review and bibliometric mapping from 2012 to 2023. Heliyon 2024; 10:e32548. [PMID: 38975193 PMCID: PMC11225745 DOI: 10.1016/j.heliyon.2024.e32548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background Mental disorders (MDs) are becoming a leading burden in non-communicable diseases (NCDs). As per the World Health Organization's 2022 assessment report, there was a steep increase of 25 % in MDs during the COVID-19 pandemic. Early diagnosis of MDs can significantly improve treatment outcome and save disability-adjusted life years (DALYs). In recent times, the application of machine learning (ML) and deep learning (DL)) has shown promising results in the diagnosis of MDs, and the field has witnessed a huge research output in the form of research publications. Therefore, a bibliometric mapping along with a review of recent advancements is required. Methods This study presents a bibliometric analysis and review of the research, published over the last 10 years. Literature searches were conducted in the Scopus database for the period from January 1, 2012, to June 9, 2023. The data was filtered and screened to include only relevant and reliable publications. A total of 2811 journal articles were found. The data was exported to a comma-separated value (CSV) format for further analysis. Furthermore, a review of 40 selected studies was performed. Results The popularity of ML techniques in diagnosing MDs has been growing, with an annual research growth rate of 17.05 %. The Journal of Affective Disorders published the most documents (n = 97), while Wang Y. (n = 64) has published the most articles. Lotka's law is observed, with a minority of authors contributing the majority of publications. The top affiliating institutes are the West China Hospital of Sichuan University followed by the University of California, with China and the US dominating the top 10 institutes. While China has more publications, papers affiliated with the US receive more citations. Depression and schizophrenia are the primary focuses of ML and deep learning (DL) in mental disease detection. Co-occurrence network analysis reveals that ML is associated with depression, schizophrenia, autism, anxiety, ADHD, obsessive-compulsive disorder, and PTSD. Popular algorithms include support vector machine (SVM) classifier, decision tree classifier, and random forest classifier. Furthermore, DL is linked to neuroimaging techniques such as MRI, fMRI, and EEG, as well as bipolar disorder. Current research trends encompass DL, LSTM, generalized anxiety disorder, feature fusion, and convolutional neural networks.
Collapse
Affiliation(s)
- Chandra Mani Sharma
- CRDT, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- School of Computer Science, UPES, Dehradun, Uttarakhand, India
| | | |
Collapse
|
23
|
Chhade F, Tabbal J, Paban V, Auffret M, Hassan M, Vérin M. Predicting creative behavior using resting-state electroencephalography. Commun Biol 2024; 7:790. [PMID: 38951602 PMCID: PMC11217288 DOI: 10.1038/s42003-024-06461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
Neuroscience research has shown that specific brain patterns can relate to creativity during multiple tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain remain largely unexplored. This study aims to uncover resting-state networks related to creative behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of functional connectivity within these networks could predict individual creativity in novel subjects. We acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior inventory. We then employed connectome-based predictive modeling; a machine-learning technique that predicts behavioral measures from brain connectivity features. Using a support vector regression, our results reveal functional connectivity patterns related to high and low creativity, in the gamma frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore, the model's predictive power is established through external validation on an independent dataset (N = 41), showing a statistically significant correlation between observed and predicted creativity scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of creativity.
Collapse
Affiliation(s)
- Fatima Chhade
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France.
| | - Judie Tabbal
- Institute of Clinical Neurosciences of Rennes (INCR), Rennes, France
- MINDIG, Rennes, France
| | - Véronique Paban
- CRPN, CNRS-UMR 7077, Aix Marseille Université, Marseille, France
| | - Manon Auffret
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France
- France Développement Électronique, Monswiller, France
| | - Mahmoud Hassan
- MINDIG, Rennes, France
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Marc Vérin
- CIC-IT INSERM 1414, Université de Rennes, Rennes, France
- B-CLINE, Laboratoire Interdisciplinaire pour l'Innovation et la Recherche en Santé d'Orléans (LI²RSO), Université d'Orléans, Orléans, France
| |
Collapse
|
24
|
Liu J, Younk R, Drahos LM, Nagrale SS, Yadav S, Widge AS, Shoaran M. Neural Decoding and Feature Selection Techniques for Closed-Loop Control of Defensive Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597165. [PMID: 38895388 PMCID: PMC11185693 DOI: 10.1101/2024.06.06.597165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Objective Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low time complexity, requiring <110 ms for training and <1 ms for inference. Significance Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Collapse
Affiliation(s)
- Jinhan Liu
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
| | - Rebecca Younk
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Lauren M Drahos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sumedh S Nagrale
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Shreya Yadav
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- These authors jointly supervised this work
| | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, EPFL, Lausanne, Switzerland
- Neuro-X Institute, EPFL, Geneva, Switzerland
- These authors jointly supervised this work
| |
Collapse
|
25
|
Eken A, Nassehi F, Eroğul O. Diagnostic machine learning applications on clinical populations using functional near infrared spectroscopy: a review. Rev Neurosci 2024; 35:421-449. [PMID: 38308531 DOI: 10.1515/revneuro-2023-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
Functional near-infrared spectroscopy (fNIRS) and its interaction with machine learning (ML) is a popular research topic for the diagnostic classification of clinical disorders due to the lack of robust and objective biomarkers. This review provides an overview of research on psychiatric diseases by using fNIRS and ML. Article search was carried out and 45 studies were evaluated by considering their sample sizes, used features, ML methodology, and reported accuracy. To our best knowledge, this is the first review that reports diagnostic ML applications using fNIRS. We found that there has been an increasing trend to perform ML applications on fNIRS-based biomarker research since 2010. The most studied populations are schizophrenia (n = 12), attention deficit and hyperactivity disorder (n = 7), and autism spectrum disorder (n = 6) are the most studied populations. There is a significant negative correlation between sample size (>21) and accuracy values. Support vector machine (SVM) and deep learning (DL) approaches were the most popular classifier approaches (SVM = 20) (DL = 10). Eight of these studies recruited a number of participants more than 100 for classification. Concentration changes in oxy-hemoglobin (ΔHbO) based features were used more than concentration changes in deoxy-hemoglobin (ΔHb) based ones and the most popular ΔHbO-based features were mean ΔHbO (n = 11) and ΔHbO-based functional connections (n = 11). Using ML on fNIRS data might be a promising approach to reveal specific biomarkers for diagnostic classification.
Collapse
Affiliation(s)
- Aykut Eken
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| | - Farhad Nassehi
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| | - Osman Eroğul
- Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Sogutozu, 06510, Ankara, Türkiye
| |
Collapse
|
26
|
Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14:804-811. [PMID: 38984327 PMCID: PMC11230103 DOI: 10.5498/wjp.v14.i6.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disease, and its prevalence is higher. However, diagnosis of early-stage schizophrenia is still considered a challenging task. AIM To employ brain morphological features and machine learning method to differentiate male individuals with schizophrenia from healthy controls. METHODS The least absolute shrinkage and selection operator and t tests were applied to select important features from structural magnetic resonance images as input features for classification. Four commonly used machine learning algorithms, the general linear model, random forest (RF), k-nearest neighbors, and support vector machine algorithms, were used to develop the classification models. The performance of the classification models was evaluated according to the area under the receiver operating characteristic curve (AUC). RESULTS A total of 8 important features with significant differences between groups were considered as input features for the establishment of classification models based on the four machine learning algorithms. Compared to other machine learning algorithms, RF yielded better performance in the discrimination of male schizophrenic individuals from healthy controls, with an AUC of 0.886. CONCLUSION Our research suggests that brain morphological features can be used to improve the early diagnosis of schizophrenia in male patients.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Wen-Zhi Pei
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chun-Yuan Xu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chen-Chen Deng
- Department of Gynaecology, Anhui Maternal and Child Health Hospital, Hefei 230032, Anhui Province, China
| | - Xu-Lai Zhang
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| |
Collapse
|
27
|
Meyhoefer I, Sprenger A, Derad D, Grotegerd D, Leenings R, Leehr EJ, Breuer F, Surmann M, Rolfes K, Arolt V, Romer G, Lappe M, Rehder J, Koutsouleris N, Borgwardt S, Schultze-Lutter F, Meisenzahl E, Kircher TTJ, Keedy SS, Bishop JR, Ivleva EI, McDowell JE, Reilly JL, Hill SK, Pearlson GD, Tamminga CA, Keshavan MS, Gershon ES, Clementz BA, Sweeney JA, Hahn T, Dannlowski U, Lencer R. Evidence from comprehensive independent validation studies for smooth pursuit dysfunction as a sensorimotor biomarker for psychosis. Sci Rep 2024; 14:13859. [PMID: 38879556 PMCID: PMC11180169 DOI: 10.1038/s41598-024-64487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 64% for the prediction of psychosis status are in line with recent results from other large heterogenous psychiatric samples. They are confirmed by external validation in independent large samples including probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis (N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis syndromes. Our findings make a significant contribution to the identification of biologically defined profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of sensorimotor dysfunction in psychosis.
Collapse
Affiliation(s)
- Inga Meyhoefer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
| | - Andreas Sprenger
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - David Derad
- Department of Neurology, University of Luebeck, Luebeck, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Marian Surmann
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Karen Rolfes
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Volker Arolt
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Georg Romer
- Department of Child Adolescence Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Markus Lappe
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Institute of Psychology, University of Muenster, Muenster, Germany
| | - Johanna Rehder
- Institute of Psychology, University of Muenster, Muenster, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University Munich, Munich, Germany
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Max-Planck-Institute of Psychiatry Munich, Munich, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany
- Department of Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
- Department of Psychology, Faculty of Psychology, Airlangga University, Surabaya, Indonesia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Duesseldorf/LVR, Duesseldorf, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Sarah S Keedy
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, USA
| | - Elena I Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer E McDowell
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - James L Reilly
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scot Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale School of Medicine, and Olin Research Center, Institute of Living/Hartford Hospital, Hartford, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Muenster, Albert Schweitzer Campus 1, Build. A9a, 48149, Muenster, Germany.
- Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.
- Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
28
|
Vieira S, Bolton TAW, Schöttner M, Baecker L, Marquand A, Mechelli A, Hagmann P. Multivariate brain-behaviour associations in psychiatric disorders. Transl Psychiatry 2024; 14:231. [PMID: 38824172 PMCID: PMC11144193 DOI: 10.1038/s41398-024-02954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Mapping brain-behaviour associations is paramount to understand and treat psychiatric disorders. Standard approaches involve investigating the association between one brain and one behavioural variable (univariate) or multiple variables against one brain/behaviour feature ('single' multivariate). Recently, large multimodal datasets have propelled a new wave of studies that leverage on 'doubly' multivariate approaches capable of parsing the multifaceted nature of both brain and behaviour simultaneously. Within this movement, canonical correlation analysis (CCA) and partial least squares (PLS) emerge as the most popular techniques. Both seek to capture shared information between brain and behaviour in the form of latent variables. We provide an overview of these methods, review the literature in psychiatric disorders, and discuss the main challenges from a predictive modelling perspective. We identified 39 studies across four diagnostic groups: attention deficit and hyperactive disorder (ADHD, k = 4, N = 569), autism spectrum disorders (ASD, k = 6, N = 1731), major depressive disorder (MDD, k = 5, N = 938), psychosis spectrum disorders (PSD, k = 13, N = 1150) and one transdiagnostic group (TD, k = 11, N = 5731). Most studies (67%) used CCA and focused on the association between either brain morphology, resting-state functional connectivity or fractional anisotropy against symptoms and/or cognition. There were three main findings. First, most diagnoses shared a link between clinical/cognitive symptoms and two brain measures, namely frontal morphology/brain activity and white matter association fibres (tracts between cortical areas in the same hemisphere). Second, typically less investigated behavioural variables in multivariate models such as physical health (e.g., BMI, drug use) and clinical history (e.g., childhood trauma) were identified as important features. Finally, most studies were at risk of bias due to low sample size/feature ratio and/or in-sample testing only. We highlight the importance of carefully mitigating these sources of bias with an exemplar application of CCA.
Collapse
Affiliation(s)
- S Vieira
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - T A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital, Lausanne, Switzerland
| | - M Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - L Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - A Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | - A Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
van der Wijk G, Zamyadi M, Bray S, Hassel S, Arnott SR, Frey BN, Kennedy SH, Davis AD, Hall GB, Lam RW, Milev R, Müller DJ, Parikh S, Soares C, Macqueen GM, Strother SC, Protzner AB. Large Individual Differences in Functional Connectivity in the Context of Major Depression and Antidepressant Pharmacotherapy. eNeuro 2024; 11:ENEURO.0286-23.2024. [PMID: 38830756 PMCID: PMC11163402 DOI: 10.1523/eneuro.0286-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Clinical studies of major depression (MD) generally focus on group effects, yet interindividual differences in brain function are increasingly recognized as important and may even impact effect sizes related to group effects. Here, we examine the magnitude of individual differences in relation to group differences that are commonly investigated (e.g., related to MD diagnosis and treatment response). Functional MRI data from 107 participants (63 female, 44 male) were collected at baseline, 2, and 8 weeks during which patients received pharmacotherapy (escitalopram, N = 68) and controls (N = 39) received no intervention. The unique contributions of different sources of variation were examined by calculating how much variance in functional connectivity was shared across all participants and sessions, within/across groups (patients vs controls, responders vs nonresponders, female vs male participants), recording sessions, and individuals. Individual differences and common connectivity across groups, sessions, and participants contributed most to the explained variance (>95% across analyses). Group differences related to MD diagnosis, treatment response, and biological sex made significant but small contributions (0.3-1.2%). High individual variation was present in cognitive control and attention areas, while low individual variation characterized primary sensorimotor regions. Group differences were much smaller than individual differences in the context of MD and its treatment. These results could be linked to the variable findings and difficulty translating research on MD to clinical practice. Future research should examine brain features with low and high individual variation in relation to psychiatric symptoms and treatment trajectories to explore the clinical relevance of the individual differences identified here.
Collapse
Affiliation(s)
- Gwen van der Wijk
- Department of Psychology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mojdeh Zamyadi
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada
| | - Signe Bray
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Stefanie Hassel
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta T2N 14, Canada
| | - Stephen R Arnott
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario L8N 4A6, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Centre for Mental Health, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Andrew D Davis
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Imaging Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, Ontario L8N 4A6, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Roumen Milev
- Department of Psychiatry and Psychology, and Providence Care Hospital, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Daniel J Müller
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Sagar Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109
| | - Claudio Soares
- Department of Psychiatry, Queen's University, Providence Care, Kingston, Ontario K7L 3N6, Canada
| | - Glenda M Macqueen
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta T2N 14, Canada
| | - Stephen C Strother
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta T2N 14, Canada
| |
Collapse
|
30
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Leonardsen EH, Persson K, Grødem E, Dinsdale N, Schellhorn T, Roe JM, Vidal-Piñeiro D, Sørensen Ø, Kaufmann T, Westman E, Marquand A, Selbæk G, Andreassen OA, Wolfers T, Westlye LT, Wang Y. Constructing personalized characterizations of structural brain aberrations in patients with dementia using explainable artificial intelligence. NPJ Digit Med 2024; 7:110. [PMID: 38698139 PMCID: PMC11066104 DOI: 10.1038/s41746-024-01123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Deep learning approaches for clinical predictions based on magnetic resonance imaging data have shown great promise as a translational technology for diagnosis and prognosis in neurological disorders, but its clinical impact has been limited. This is partially attributed to the opaqueness of deep learning models, causing insufficient understanding of what underlies their decisions. To overcome this, we trained convolutional neural networks on structural brain scans to differentiate dementia patients from healthy controls, and applied layerwise relevance propagation to procure individual-level explanations of the model predictions. Through extensive validations we demonstrate that deviations recognized by the model corroborate existing knowledge of structural brain aberrations in dementia. By employing the explainable dementia classifier in a longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich explanations complement the model prediction when forecasting transition to dementia and help characterize the biological manifestation of disease in the individual brain. Overall, our work exemplifies the clinical potential of explainable artificial intelligence in precision medicine.
Collapse
Affiliation(s)
- Esten H Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway.
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Edvard Grødem
- Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology & Artificial Intelligence (CRAI) Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Nicola Dinsdale
- Oxford Machine Learning in NeuroImaging (OMNI) Lab, University of Oxford, Oxford, UK
| | - Till Schellhorn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - James M Roe
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | | | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Munich, Germany
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Geir Selbæk
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Munich, Germany
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Yunpeng Wang
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Papazova I, Wunderlich S, Papazov B, Vogelmann U, Keeser D, Karali T, Falkai P, Rospleszcz S, Maurus I, Schmitt A, Hasan A, Malchow B, Stöcklein S. Characterizing cognitive subtypes in schizophrenia using cortical curvature. J Psychiatr Res 2024; 173:131-138. [PMID: 38531143 DOI: 10.1016/j.jpsychires.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Cognitive deficits are a core symptom of schizophrenia, but research on their neural underpinnings has been challenged by the heterogeneity in deficits' severity among patients. Here, we address this issue by combining logistic regression and random forest to classify two neuropsychological profiles of patients with high (HighCog) and low (LowCog) cognitive performance in two independent samples. We based our analysis on the cortical features grey matter volume (VOL), cortical thickness (CT), and mean curvature (MC) of N = 57 patients (discovery sample) and validated the classification in an independent sample (N = 52). We investigated which cortical feature would yield the best classification results and expected that the 10 most important features would include frontal and temporal brain regions. The model based on MC had the best performance with area under the curve (AUC) values of 76% and 73%, and identified fronto-temporal and occipital brain regions as the most important features for the classification. Moreover, subsequent comparison analyses could reveal significant differences in MC of single brain regions between the two cognitive profiles. The present study suggests MC as a promising neuroanatomical parameter for characterizing schizophrenia cognitive subtypes.
Collapse
Affiliation(s)
- Irina Papazova
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Geschwister-Schönert-Straße 1, 86156, Augsburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany.
| | - Stephan Wunderlich
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ulrike Vogelmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Temmuz Karali
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Susanne Rospleszcz
- Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany; Department of Epidemiology, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo (USP), São Paulo, Brazil
| | - Alkomiet Hasan
- Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Geschwister-Schönert-Straße 1, 86156, Augsburg, Germany; DZPG (German Center for Mental Health), partner site München, Augsburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
33
|
Bernasconi A, Gill RS, Bernasconi N. The use of automated and AI-driven algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia. Epilepsia 2024. [PMID: 38642009 DOI: 10.1111/epi.17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
In drug-resistant epilepsy, magnetic resonance imaging (MRI) plays a central role in detecting lesions as it offers unmatched spatial resolution and whole-brain coverage. In addition, the last decade has witnessed continued developments in MRI-based computer-aided machine-learning techniques for improved diagnosis and prognosis. In this review, we focus on automated algorithms for the detection of hippocampal sclerosis and focal cortical dysplasia, particularly in cases deemed as MRI negative, with an emphasis on studies with histologically validated data. In addition, we discuss imaging-derived prognostic markers, including response to anti-seizure medication, post-surgical seizure outcome, and cognitive reserves. We also highlight the advantages and limitations of these approaches and discuss future directions toward person-centered care.
Collapse
Affiliation(s)
- Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Ravnoor S Gill
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Li M, Racey C, Rae CL, Strawson W, Critchley HD, Ward J. Can the neural representation of physical pain predict empathy for pain in others? Soc Cogn Affect Neurosci 2024; 19:nsae023. [PMID: 38481007 PMCID: PMC11008503 DOI: 10.1093/scan/nsae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The question of whether physical pain and vicarious pain have some shared neural substrates is unresolved. Recent research has argued that physical and vicarious pain are represented by dissociable multivariate brain patterns by creating biomarkers for physical pain (Neurologic Pain Signature, NPS) and vicarious pain (Vicarious Pain Signature, VPS), respectively. In the current research, the NPS and two versions of the VPS were applied to three fMRI datasets (one new, two published) relating to vicarious pain which focused on between-subject differences in vicarious pain (Datasets 1 and 3) and within-subject manipulations of perspective taking (Dataset 2). Results show that (i) NPS can distinguish brain responses to images of pain vs no-pain and to a greater extent in vicarious pain responders who report experiencing pain when observing pain and (ii) neither version of the VPS mapped on to individual differences in vicarious pain and the two versions differed in their success in predicting vicarious pain overall. This study suggests that the NPS (created to detect physical pain) is, under some circumstances, sensitive to vicarious pain and there is significant variability in VPS measures (created to detect vicarious pain) to act as generalizable biomarkers of vicarious pain.
Collapse
Affiliation(s)
- M Li
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - C Racey
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - C L Rae
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - W Strawson
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - H D Critchley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - J Ward
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| |
Collapse
|
35
|
DeRosa J, Friedman NP, Calhoun V, Banich MT. Neurodevelopmental Subtypes of Functional Brain Organization in the ABCD Study Using a Rigorous Analytic Framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585343. [PMID: 38559171 PMCID: PMC10979961 DOI: 10.1101/2024.03.16.585343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The current study demonstrates that an individual's resting-state functional connectivity (RSFC) is a dependable biomarker for identifying differential patterns of cognitive and emotional functioning during late childhood. Using baseline RSFC data from the Adolescent Brain Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four distinct RSFC subtypes We introduce an integrated methodological pipeline for testing the reliability and importance of these subtypes. In the Identification phase, Leiden Community Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample technique in the Validation stage. The Evaluation phase showed that distinct cognitive and mental health profiles are associated with each subtype, with the Predictive phase indicating that subtypes better predict various cognitive and mental health characteristics than individual RSFC connections. The Replication stage employed bootstrapping and down-sampling methods to substantiate the reproducibility of these subtypes further. This work allows future explorations of developmental trajectories of these RSFC subtypes.
Collapse
Affiliation(s)
- Jacob DeRosa
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | - Naomi P. Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute for Behavioral Genetics, University of Colorado Boulder
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University
| | - Marie T. Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| |
Collapse
|
36
|
Su J, Shen H, Peng L, Hu D. Few-Shot Domain-Adaptive Anomaly Detection for Cross-Site Brain Images. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:1819-1835. [PMID: 34748478 DOI: 10.1109/tpami.2021.3125686] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early screening is essential for effective intervention and treatment of individuals with mental disorders. Functional magnetic resonance imaging (fMRI) is a noninvasive tool for depicting neural activity and has demonstrated strong potential as a technique for identifying mental disorders. Due to the difficulty in data collection and diagnosis, imaging data from patients are rare at a single site, whereas abundant healthy control data are available from public datasets. However, joint use of these data from multiple sites for classification model training is hindered by cross-domain distribution discrepancy and diverse label spaces. Herein, we propose few-shot domain-adaptive anomaly detection (FAAD) to achieve cross-site anomaly detection of brain images based on only a few labeled samples. We introduce domain adaptation to mitigate cross-domain distribution discrepancy and jointly align the general and conditional feature distributions of imaging data across multiple sites. We utilize fMRI data of healthy subjects in the Human Connectome Project (HCP) as the source domain and fMRI images from six independent sites, including patients with mental disorders and demographically matched healthy controls, as target domains. Experiments showed the superiority of the proposed method compared with binary classification, traditional anomaly detection methods, and several recognized domain adaptation methods.
Collapse
|
37
|
Wang X, Yan C, Yang PY, Xia Z, Cai XL, Wang Y, Kwok SC, Chan RCK. Unveiling the potential of machine learning in schizophrenia diagnosis: A meta-analytic study of task-based neuroimaging data. Psychiatry Clin Neurosci 2024; 78:157-168. [PMID: 38013639 DOI: 10.1111/pcn.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
The emergence of machine learning (ML) techniques has opened up new avenues for identifying biomarkers associated with schizophrenia (SCZ) using task-related fMRI (t-fMRI) designs. To evaluate the effectiveness of this approach, we conducted a comprehensive meta-analysis of 31 t-fMRI studies using a bivariate model. Our findings revealed a high overall sensitivity of 0.83 and specificity of 0.82 for t-fMRI studies. Notably, neuropsychological domains modulated the classification performance, with selective attention demonstrating a significantly higher specificity than working memory (β = 0.98, z = 2.11, P = 0.04). Studies involving older, chronic patients with SCZ reported higher sensitivity (P <0.015) and specificity (P <0.001) than those involving younger, first-episode patients or high-risk individuals for psychosis. Additionally, we found that the severity of negative symptoms was positively associated with the specificity of the classification model (β = 7.19, z = 2.20, P = 0.03). Taken together, these results support the potential of using task-based fMRI data in combination with machine learning techniques to identify biomarkers related to symptom outcomes in SCZ, providing a promising avenue for improving diagnostic accuracy and treatment efficacy. Future attempts to deploy ML classification should consider the factors of algorithm choice, data quality and quantity, as well as issues related to generalization.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| | | | - Zheng Xia
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xin-Lu Cai
- Institute of Brain Science and Department of Physiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Sze Chai Kwok
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- Phylo-Cognition Laboratory, Division of Natural and Applied Sciences, Data Science Research Center, Duke Kunshan University, Kunshan, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Saha R, Saha DK, Rahaman MA, Fu Z, Liu J, Calhoun VD. A Method to Estimate Longitudinal Change Patterns in Functional Network Connectivity of the Developing Brain Relevant to Psychiatric Problems, Cognition, and Age. Brain Connect 2024; 14:130-140. [PMID: 38308475 PMCID: PMC10954605 DOI: 10.1089/brain.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Aim: To develop an approach to evaluate multiple overlapping brain functional change patterns (FCPs) in functional network connectivity (FNC) and apply to study developmental changes in brain function. Introduction: FNC, the network analog of functional connectivity (FC), is commonly used to capture the intrinsic functional relationships among brain networks. Ongoing research on longitudinal changes of intrinsic FC across whole-brain functional networks has proven useful for characterizing age-related changes, but to date, there has been little focus on capturing multivariate patterns of FNC change with brain development. Methods: In this article, we introduce a novel approach to evaluate multiple overlapping FCPs by utilizing FNC matrices. We computed FNC matrices from the large-scale Adolescent Brain Cognitive Development data using fully automated spatially constrained independent component analysis (ICA). We next evaluated changes in these patterns for a 2-year period using a second-level ICA on the FNC change maps. Results: Our proposed approach reveals several highly structured (modular) FCPs and significant results including strong brain FC between visual and sensorimotor domains that increase with age. We also find several FCPs that are associated with longitudinal changes of psychiatric problems, cognition, and age in the developing brain. Interestingly, FCP cross-covariation, reflecting coupling between maximally independent FCPs, also shows significant differences between upper and lower quartile loadings for longitudinal changes in age, psychiatric problems, and cognition scores, as well as baseline age in the developing brain. FCP patterns and results were also found to be highly reliable based on analysis of data collected in a separate scan session. Conclusion: In sum, our results show evidence of consistent multivariate patterns of functional change in emerging adolescents and the proposed approach provides a useful and general tool to evaluate covarying patterns of whole-brain functional changes in longitudinal data. Impact statement In this article, we introduce a novel approach utilizing functional network connectivity (FNC) matrices to estimate multiple overlapping brain functional change patterns (FCPs). The findings demonstrate several well-structured FCPs that exhibit significant changes for a 2-year period, particularly in the functional connectivity between the visual and sensorimotor domains. In addition, we discover several FCPs that are associated with psychopathology, cognition, and age. Finally, our proposed approach for studying age-related FCPs represents a pioneering method that provides a valuable tool for assessing interconnected patterns of whole-brain functional changes in longitudinal data and may be useful to study change over time with applicability to many other areas, including the study of longitudinal changes within diagnostic groups, treatment effects, aging effects, and more.
Collapse
Affiliation(s)
- Rekha Saha
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Debbrata K. Saha
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Md Abdur Rahaman
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Zening Fu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Jingyu Liu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Valizadeh A, Moassefi M, Nakhostin-Ansari A, Heidari Some'eh S, Hosseini-Asl H, Saghab Torbati M, Aghajani R, Maleki Ghorbani Z, Menbari-Oskouie I, Aghajani F, Mirzamohamadi A, Ghafouri M, Faghani S, Memari AH. Automated diagnosis of autism with artificial intelligence: State of the art. Rev Neurosci 2024; 35:141-163. [PMID: 37678819 DOI: 10.1515/revneuro-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Autism spectrum disorder (ASD) represents a panel of conditions that begin during the developmental period and result in impairments of personal, social, academic, or occupational functioning. Early diagnosis is directly related to a better prognosis. Unfortunately, the diagnosis of ASD requires a long and exhausting subjective process. We aimed to review the state of the art for automated autism diagnosis and recognition in this research. In February 2022, we searched multiple databases and sources of gray literature for eligible studies. We used an adapted version of the QUADAS-2 tool to assess the risk of bias in the studies. A brief report of the methods and results of each study is presented. Data were synthesized for each modality separately using the Split Component Synthesis (SCS) method. We assessed heterogeneity using the I 2 statistics and evaluated publication bias using trim and fill tests combined with ln DOR. Confidence in cumulative evidence was assessed using the GRADE approach for diagnostic studies. We included 344 studies from 186,020 participants (51,129 are estimated to be unique) for nine different modalities in this review, from which 232 reported sufficient data for meta-analysis. The area under the curve was in the range of 0.71-0.90 for all the modalities. The studies on EEG data provided the best accuracy, with the area under the curve ranging between 0.85 and 0.93. We found that the literature is rife with bias and methodological/reporting flaws. Recommendations are provided for future research to provide better studies and fill in the current knowledge gaps.
Collapse
Affiliation(s)
- Amir Valizadeh
- Neuroscience Institute, Tehran University of Medical Sciences, PO: 1419733141, Tehran, Iran
| | - Mana Moassefi
- Neuroscience Institute, Tehran University of Medical Sciences, PO: 1419733141, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
| | - Soheil Heidari Some'eh
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, PO: 1417755331, Tehran, Iran
| | - Hossein Hosseini-Asl
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, PO: 1417755331, Tehran, Iran
| | | | - Reyhaneh Aghajani
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, PO: 1417755331, Tehran, Iran
| | - Zahra Maleki Ghorbani
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, PO: 1417755331, Tehran, Iran
| | - Iman Menbari-Oskouie
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
| | - Faezeh Aghajani
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, PO: 14695542, Tehran, Iran
| | - Alireza Mirzamohamadi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, PO: 1417755331, Tehran, Iran
| | - Mohammad Ghafouri
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
| | - Shahriar Faghani
- Shariati Hospital, Department of Radiology, Tehran University of Medical Sciences, PO: 1411713135, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, PO: 1416634793, Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, PO: 14395578, Tehran, Iran
| |
Collapse
|
40
|
Chu T, Liu Y, Gui B, Zhang Z, Zhang G, Dong F, Dong J, Lin S. Hippocampal Subregions Volume and Texture for the Diagnosis of Mild Cognitive Impairment. Exp Aging Res 2024:1-12. [PMID: 38357913 DOI: 10.1080/0361073x.2024.2313940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
The aim was to examine the diagnostic efficacy of hippocampal subregions volume and texture in differentiating amnestic mild cognitive impairment (MCI) from normal aging changes. Ninety MCI subjects and eighty-eight well-matched healthy controls (HCs) were selected. Twelve hippocampal subregions volume and texture features were extracted using Freesurfer and MaZda based on T1 weighted MRI. Then, two-sample t-test and Least Absolute Shrinkage and Selection Operator (LASSO) regression were developed to select a subset of the original features. Support vector machine (SVM) was used to perform the classification task and the area under the curve (AUC), sensitivity, specificity and accuracy were calculated to evaluate the diagnostic efficacy of the model. The volume features with high discriminative power were mainly located in the bilateral CA1 and CA4, while texture feature were gray-level non-uniformity, run length non-uniformity and fraction. Our model based on hippocampal subregions volume and texture features achieved better classification performance with an AUC of 0.90. The volume and texture of hippocampal subregions can be utilized for the diagnosis of MCI. Moreover, we found that the features that contributed most to the model were mainly textural features, followed by volume. These results may guide future studies using structural scans to classify patients with MCI.
Collapse
Affiliation(s)
- Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Yajun Liu
- Imaging Department, Liaocheng Infectious Disease Hospital, Liaocheng, Shandong, P. R.China
| | - Bin Gui
- Department of Radiology, Wendeng Orthopedic Hospital, Weihai, Shandong, P. R. China
| | - Zhongsheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Gang Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Jianli Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| | - Shujuan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, P. R. China
| |
Collapse
|
41
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
42
|
Liu S, Ye H, Yang B, Li M, Cao F. A joint parcellation and boundary network with multi-rate-shared dilated graph attention for cortical surface parcellation. Med Biol Eng Comput 2024; 62:537-549. [PMID: 37945794 DOI: 10.1007/s11517-023-02942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Cortical surface parcellation aims to segment the surface into anatomically and functionally significant regions, which are crucial for diagnosing and treating numerous neurological diseases. However, existing methods generally ignore the difficulty in learning labeling patterns of boundaries, hindering the performance of parcellation. To this end, this paper proposes a joint parcellation and boundary network (JPBNet) to promote the effectiveness of cortical surface parcellation. Its core is developing a multi-rate-shared dilated graph attention (MDGA) module and incorporating boundary learning into the parcellation process. The former, in particular, constructs a dilated graph attention strategy, extending the dilated convolution from regular data to irregular graph data. We fuse it with different dilated rates to extract context information in various scales by devising a shared graph attention layer. After that, a boundary enhancement module and a parcellation enhancement module based on graph attention mechanisms are built in each layer, forcing MDGA to capture informative and valuable features for boundary detection and parcellation tasks. Integrating MDGA, the boundary enhancement module, and the parcellation enhancement module at each layer to supervise boundary and parcellation information, an effective JPBNet is formed by stacking multiple layers. Experiments on the public dataset reveal that the proposed method outperforms comparison methods and performs well on boundaries for cortical surface parcellation.
Collapse
Affiliation(s)
- Siqi Liu
- College of Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Hailiang Ye
- College of Sciences, China Jiliang University, Hangzhou, 310018, China.
| | - Bing Yang
- College of Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Ming Li
- Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, 321004, China
| | - Feilong Cao
- College of Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
43
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
44
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
45
|
Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, Caspers S, Jockwitz C. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience 2024; 46:283-308. [PMID: 37308769 PMCID: PMC10828156 DOI: 10.1007/s11357-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55-85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
46
|
Shen S, Wei R, Gao Y, Yang X, Zhang G, Yan B, Xiao Z, Li J. Cortical atrophy in early-stage patients with anti-NMDA receptor encephalitis: a machine-learning MRI study with various feature extraction. Cereb Cortex 2024; 34:bhad499. [PMID: 38185983 DOI: 10.1093/cercor/bhad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Conventional brain magnetic resonance imaging (MRI) of anti-N-methyl-D-aspartate-receptor encephalitis (NMDARE) is non-specific, thus showing little differential diagnostic value, especially for MRI-negative patients. To characterize patterns of structural alterations and facilitate the diagnosis of MRI-negative NMDARE patients, we build two support vector machine models (NMDARE versus healthy controls [HC] model and NMDARE versus viral encephalitis [VE] model) based on radiomics features extracted from brain MRI. A total of 109 MRI-negative NMDARE patients in the acute phase, 108 HCs and 84 acute MRI-negative VE cases were included for training. Another 29 NMDARE patients, 28 HCs and 26 VE cases were included for validation. Eighty features discriminated NMDARE patients from HCs, with area under the receiver operating characteristic curve (AUC) of 0.963 in validation set. NMDARE patients presented with significantly lower thickness, area, and volume and higher mean curvature than HCs. Potential atrophy predominately presented in the frontal lobe (cumulative weight = 4.3725, contribution rate of 29.86%), and temporal lobe (cumulative weight = 2.573, contribution rate of 17.57%). The NMDARE versus VE model achieved certain diagnostic power, with AUC of 0.879 in validation set. Our research shows potential atrophy across the entire cerebral cortex in acute NMDARE patients, and MRI machine learning model has a potential to facilitate the diagnosis MRI-negative NMDARE.
Collapse
Affiliation(s)
- Sisi Shen
- Department of Neurology, West China Hospital of Sichuan University, 37 GuoXue Alley, Chengdu 610041, China
| | - Ran Wei
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Yu Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Xinyuan Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Guoning Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Bo Yan
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Zhuoling Xiao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731| Chengdu, Sichuan, P.R. China
| | - Jinmei Li
- Department of Neurology, West China Hospital of Sichuan University, 37 GuoXue Alley, Chengdu 610041, China
| |
Collapse
|
47
|
Schulz MA, Bzdok D, Haufe S, Haynes JD, Ritter K. Performance reserves in brain-imaging-based phenotype prediction. Cell Rep 2024; 43:113597. [PMID: 38159275 PMCID: PMC11215805 DOI: 10.1016/j.celrep.2023.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/03/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
This study examines the impact of sample size on predicting cognitive and mental health phenotypes from brain imaging via machine learning. Our analysis shows a 3- to 9-fold improvement in prediction performance when sample size increases from 1,000 to 1 M participants. However, despite this increase, the data suggest that prediction accuracy remains worryingly low and far from fully exploiting the predictive potential of brain imaging data. Additionally, we find that integrating multiple imaging modalities boosts prediction accuracy, often equivalent to doubling the sample size. Interestingly, the most informative imaging modality often varied with increasing sample size, emphasizing the need to consider multiple modalities. Despite significant performance reserves for phenotype prediction, achieving substantial improvements may necessitate prohibitively large sample sizes, thus casting doubt on the practical or clinical utility of machine learning in some areas of neuroimaging.
Collapse
Affiliation(s)
- Marc-Andre Schulz
- Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany.
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Stefan Haufe
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Technische Universität Berlin, Berlin, Germany; Physikalisch-Technische Bundesanstalt, Berlin, Germany; Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Neurology, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - John-Dylan Haynes
- Bernstein Center for Computational Neuroscience, Berlin, Germany; Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Neurology, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
48
|
Bourached A, Bonkhoff AK, Schirmer MD, Regenhardt RW, Bretzner M, Hong S, Dalca AV, Giese AK, Winzeck S, Jern C, Lindgren AG, Maguire J, Wu O, Rhee J, Kimchi EY, Rost NS. Scaling behaviours of deep learning and linear algorithms for the prediction of stroke severity. Brain Commun 2024; 6:fcae007. [PMID: 38274570 PMCID: PMC10808016 DOI: 10.1093/braincomms/fcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Deep learning has allowed for remarkable progress in many medical scenarios. Deep learning prediction models often require 105-107 examples. It is currently unknown whether deep learning can also enhance predictions of symptoms post-stroke in real-world samples of stroke patients that are often several magnitudes smaller. Such stroke outcome predictions however could be particularly instrumental in guiding acute clinical and rehabilitation care decisions. We here compared the capacities of classically used linear and novel deep learning algorithms in their prediction of stroke severity. Our analyses relied on a total of 1430 patients assembled from the MRI-Genetics Interface Exploration collaboration and a Massachusetts General Hospital-based study. The outcome of interest was National Institutes of Health Stroke Scale-based stroke severity in the acute phase after ischaemic stroke onset, which we predict by means of MRI-derived lesion location. We automatically derived lesion segmentations from diffusion-weighted clinical MRI scans, performed spatial normalization and included a principal component analysis step, retaining 95% of the variance of the original data. We then repeatedly separated a train, validation and test set to investigate the effects of sample size; we subsampled the train set to 100, 300 and 900 and trained the algorithms to predict the stroke severity score for each sample size with regularized linear regression and an eight-layered neural network. We selected hyperparameters on the validation set. We evaluated model performance based on the explained variance (R2) in the test set. While linear regression performed significantly better for a sample size of 100 patients, deep learning started to significantly outperform linear regression when trained on 900 patients. Average prediction performance improved by ∼20% when increasing the sample size 9× [maximum for 100 patients: 0.279 ± 0.005 (R2, 95% confidence interval), 900 patients: 0.337 ± 0.006]. In summary, for sample sizes of 900 patients, deep learning showed a higher prediction performance than typically employed linear methods. These findings suggest the existence of non-linear relationships between lesion location and stroke severity that can be utilized for an improved prediction performance for larger sample sizes.
Collapse
Affiliation(s)
- Anthony Bourached
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anna K Bonkhoff
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Markus D Schirmer
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert W Regenhardt
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Martin Bretzner
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- University of Lille, Inserm, CHU Lille, U1171—LilNCog (JPARC)—Lille Neurosciences & Cognition, Lille F-59000, France
| | - Sungmin Hong
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adrian V Dalca
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Anne-Katrin Giese
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Stefan Winzeck
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Computing, Imperial College London, London SW7 2RH, UK
| | - Christina Jern
- Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
- Department of Clinical Genetics and Genomics Gothenburg, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg 41345, Sweden
| | - Arne G Lindgren
- Department of Neurology, Skåne University Hospital, Lund 22185, Sweden
| | - Jane Maguire
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund 22185, Sweden
- University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - John Rhee
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02139, USA
| | - Eyal Y Kimchi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evaston, IL 60201, USA
| | - Natalia S Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
49
|
Yang Z, Wen J, Abdulkadir A, Cui Y, Erus G, Mamourian E, Melhem R, Srinivasan D, Govindarajan ST, Chen J, Habes M, Masters CL, Maruff P, Fripp J, Ferrucci L, Albert MS, Johnson SC, Morris JC, LaMontagne P, Marcus DS, Benzinger TLS, Wolk DA, Shen L, Bao J, Resnick SM, Shou H, Nasrallah IM, Davatzikos C. Gene-SGAN: discovering disease subtypes with imaging and genetic signatures via multi-view weakly-supervised deep clustering. Nat Commun 2024; 15:354. [PMID: 38191573 PMCID: PMC10774282 DOI: 10.1038/s41467-023-44271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Disease heterogeneity has been a critical challenge for precision diagnosis and treatment, especially in neurologic and neuropsychiatric diseases. Many diseases can display multiple distinct brain phenotypes across individuals, potentially reflecting disease subtypes that can be captured using MRI and machine learning methods. However, biological interpretability and treatment relevance are limited if the derived subtypes are not associated with genetic drivers or susceptibility factors. Herein, we describe Gene-SGAN - a multi-view, weakly-supervised deep clustering method - which dissects disease heterogeneity by jointly considering phenotypic and genetic data, thereby conferring genetic correlations to the disease subtypes and associated endophenotypic signatures. We first validate the generalizability, interpretability, and robustness of Gene-SGAN in semi-synthetic experiments. We then demonstrate its application to real multi-site datasets from 28,858 individuals, deriving subtypes of Alzheimer's disease and brain endophenotypes associated with hypertension, from MRI and single nucleotide polymorphism data. Derived brain phenotypes displayed significant differences in neuroanatomical patterns, genetic determinants, biological and clinical biomarkers, indicating potentially distinct underlying neuropathologic processes, genetic drivers, and susceptibility factors. Overall, Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery, and is herein tested on disease-related, genetically-associated neuroimaging phenotypes.
Collapse
Affiliation(s)
- Zhijian Yang
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhao Wen
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Ahmed Abdulkadir
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Yuhan Cui
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randa Melhem
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhivya Srinivasan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sindhuja T Govindarajan
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiong Chen
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamad Habes
- Biggs Alzheimer's Institute, University of Texas San Antonio Health Science Center, San Antonio, TX, USA
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, QLD, Australia
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Pamela LaMontagne
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L S Benzinger
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Wulan N, An L, Zhang C, Kong R, Chen P, Bzdok D, Eickhoff SB, Holmes AJ, Yeo BTT. Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573801. [PMID: 38260665 PMCID: PMC10802307 DOI: 10.1101/2023.12.31.573801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Individualized phenotypic prediction based on structural MRI is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017) and HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset, as well as translating models across datasets with different MRI scanners, acquisition protocols and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.
Collapse
Affiliation(s)
- Naren Wulan
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Lijun An
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Chen Zhang
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Pansheng Chen
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal QC, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Jülich, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|