1
|
Tan Y, Li M, Ma X, Shi D, Liu W. Angiogenesis after acute myocardial infarction: a bibliometric -based literature review. Front Cardiovasc Med 2025; 12:1426583. [PMID: 40017521 PMCID: PMC11865093 DOI: 10.3389/fcvm.2025.1426583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Objective The prevalence of acute myocardial infarction, a severe ischemic cardiac disease, is on the rise annually. The establishment of coronary collateral circulation in the border zone of the infarct can effectively relieve myocardial ischemia and impede cell death, while angiogenesis can promote the formation of collateral circulation in the ischemic tissues. Over the past two decades, studies related to angiogenesis in acute myocardial infarction have increased rapidly. However, there is a lack of bibliometric studies in this particular field. Methods For this study, we employed bibliometric analysis to outline focal points and patterns in scientific and clinical research. The collection of literature was gathered using the Web of Science Core Collection database. Bibliometric and visual analysis were conducted. Knowledge maps were generated using CiteSpace and VOSviewer software. Results and conclusions With the deepening of the research, therapeutic angiogenesis will become a treatment direction for acute myocardial infarction in the future.
Collapse
Affiliation(s)
- Yu Tan
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Yu X, Zhang X, Bilal H, Shi C, Sun L. Exploring potential biomarkers for acute myocardial infarction by combining circadian rhythm gene expression and immune cell infiltration. Sci Rep 2025; 15:4012. [PMID: 39893248 PMCID: PMC11787365 DOI: 10.1038/s41598-025-88568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Current diagnostic biomarkers for acute myocardial infarction (AMI), such as troponins, often lack specificity, leading to false positives under non-cardiac conditions. Recent studies have implicated circadian rhythm and immune infiltration in the pathogenesis of AMI. This study hypothesizes that analyzing the interplay between circadian rhythm-related gene expression and immune infiltration identify highly specific diagnostic biomarkers for AMI. Our results demonstrated differential expression of 15 circadian rhythm-related genes (CRGs) between AMI patients and healthy individuals, with five key genes-JUN, NAMPT, S100A8, SERPINA1, and VCAN identified as key contributors to this process. Functional enrichment analyses suggest these genes significantly influence cytokine and chemokine production in immune responses. Immune infiltration assessments using ssGSEA indicated elevated levels of neutrophils, macrophages, and eosinophils in AMI patients. Additionally, we identified potential therapeutic implications with 13 pivotal miRNAs and 10 candidate drugs targeting these genes. The Benjamini-Hochberg method was employed to adjust for multiple testing, and the results retained statistical significance. RT-qPCR analysis further confirmed the upregulation of these five genes under hypoxic conditions, compared to controls. Collectively, our findings highlight the critical role of CRGs in AMI, providing a foundation for improved diagnostic approaches and novel therapeutic targets.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaopeng Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hazrat Bilal
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chang Shi
- Department of Pathology, First Affiliated Hospital, Dalian, Liaoning Province, China.
| | - Lei Sun
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Deng B, Zhang G, Zeng Y, Li N, Hu C, Pang M, Lu S, Gu Y, Chen G, Zhou Y, Liu Y, Hua Y. Gualou Xiebai Banxia Decoction suppresses cardiomyocyte apoptosis in mice after myocardial infarction through activation of acetaldehyde dehydrogenase 2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119143. [PMID: 39577675 DOI: 10.1016/j.jep.2024.119143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiac apoptosis has been reported to be involved in the development of Heart failure (HF) after Myocardial infarction (MI). As a traditional Chinese medicine with cardioprotective properties, Gualou Xiebai Banxia Decoction (GXBD) is therapeutically effective in treating MI. However, whether GXBD regulates cardiac apoptosis in HF after MI remains unknown, and the underlying mechanisms still unclear. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of GXBD on cardiac apoptosis after MI. MATERIALS AND METHODS The MI model was constructed by ligating the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of GXBD were determined by echocardiography, masson staining, and haematoxylin and eosin (HE) staining. Bioinformatics analysis and network Pharmacology were used to explore the underlying molecular mechanisms of GXBD in MI. The effects of GXBD on cardiomyocyte apoptosis as well as the ALDH2 were examined by TUNEL staining, Immunohistochemistry (IHC), and Western blot (WB). Additionally, the effects of GXBD on oxidative stress, apoptosis and the ALDH2 in H9c2 cells were investigated using reactive oxygen species (ROS) detection, Hoechst33342/PI stainingand and WB. Moreover, the effects of suppressing and overexpressing ALDH2 in H9c2 cells were further examined. RESULTS Target prediction analysis showed that ALDH2 was a key target of GXBD which could ameliorate myocardial infarction. GXBD dose-dependently reduced cardiomyocyte apoptosis and ventricular dysfunction. In vivo experiments, GXBD activated ALDH2 enzymatic activity and inhibited the expression levels of Bax, Bcl-2, Cleaved Caspase 3, and Caspase 9. In vitro experiments, GXBD inhibited apoptosis in H9c2 cells. The inhibitory effects of GXBD on these were at least partially attributed to ALDH2 activation while silencing of ALDH2 significantly reversed these inhibitory effects of GXBD. CONCLUSION GXBD exerts inhibitory effects on cardiomyocyte apoptosis in mice after MI and suppresses H9c2 cells oxidative stress and apoptosis through activation of the enzyme activity of ALDH2.
Collapse
Affiliation(s)
- Bingying Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guoyong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yixuan Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Nireng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sifan Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufeng Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yingchun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Cao S, Wang S, Luo H, Guo J, Xuan L, Sun L. The effect of macrophage-cardiomyocyte interactions on cardiovascular diseases and development of potential drugs. Mol Biol Rep 2024; 51:1056. [PMID: 39417949 DOI: 10.1007/s11033-024-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
The interaction between macrophages and cardiomyocytes plays an important role not only in maintaining cardiac homeostasis, but also in the development of many cardiovascular diseases (CVDs), such as myocardial infarction (MI) and heart failure (HF). In addition to supporting cardiomyocytes, macrophages and cardiomyocytes have a close and complex relationship. By studying their cross-talk, we can better understand novel mechanisms and target pathogenic mechanisms, and improve the treatment of CVDs. We review macrophage-cardiomyocyte communication through connexin 43 (Cx43)-containing gap junctions (GJs) directly, secreted protein factors indirectly, and discuss the implications of these interactions in cardiac homeostasis and the development of various CVDs, including MI, HF, arrhythmia, cardiac fibrosis and myocarditis. In this section, we review various drugs that work by modulating cytokines or other proteins to reduce inflammation in CVDs. The clinical findings from targeting inflammation in CVDs are also discussed. Additionally, we examine the challenges and opportunities for improving our understanding of macrophage-cardiomyocyte coupling as it relates to pathophysiological disease processes, extending our research scope, and helping identify new molecular targets and improve the effectiveness of existing therapies.
Collapse
Affiliation(s)
- Shoupeng Cao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Lina Xuan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| | - Lihua Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University (Key Laboratory of Cardiovascular Research, Ministry of Education, Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medicial University, Harbin, 157 Baojian Road, Nangang District, 150081, heilongjiang, China.
| |
Collapse
|
5
|
Pop RM, Vassilopoulou E, Jianu ME, Roșian ȘH, Taulescu M, Negru M, Bercian C, Boarescu PM, Bocsan IC, Feketea G, Chedea VS, Dulf F, Cruceru J, Pârvu AE, Buzoianu AD. Nigella sativa oil attenuates inflammation and oxidative stress in experimental myocardial infarction. BMC Complement Med Ther 2024; 24:362. [PMID: 39375628 PMCID: PMC11459993 DOI: 10.1186/s12906-024-04648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND A growing interest in using Nigella sativa oil (NSO) in the prevention or treatment of several cardiovascular diseases has prompted this study. The research aims to investigate the effect of NSO on cardiac damage prevention after long-term administration in induced myocardial infarction (MI) in rats. METHODS NSO was analyzed for its fatty acids composition using gas chromatography-mass spectrometry (GC-MS) analysis and administered in rats before and after isoproterenol (45 mg/kg body weight) induced myocardial infarction. The following parameters were assessed: electrocardiograms, histopathological examination, serum biochemical aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase-myocardial band (CK-MB), serum and heart inflammation (tumor necrosis factor-alpha (TNF), interleukin 1 beta (IL-1b), and interleukin 6 (IL-6)), and tissue oxidative stress (total antioxidant capacity (TAC), total oxidative stress (TOS), nitric oxide (NO), malondialdehyde (MDA), and the total thiols (THIOL)). RESULTS Linoleic acid (C18:2n-6) and oleic acid (C18:1n-9) were approximately 89% of total fatty acids while palmitic acid (C16:0) was 6.10%. Administration of NSO for 28 days helped in preventing QT and QTc interval prolongation and reduced heart rate (HR), after MI induction. The histological assessment showed improvement in myofibrillary degeneration and necrosis and also better reduced inflammatory process in the groups treated with NSO. In serum, pro-inflammatory cytokines IL-1b and IL-6 were downregulated in chronic conditions (for IL-1b, NSO vs. control was 86.09vs 150.39 pg/mL, and for IL-6 NSO vs. control was 78.00 vs. 184.98 pg/ml). In the heart tissue, the downregulation was observed only for TNF in both acute and chronic conditions (acute NSO vs. control was 132.37 vs. 207.63 pg/mL, and chronic NSO vs. control was 135.83 vs. 183.29 pg/ml). The pro-oxidant parameters TOS, NO, MDA, and OSI, were reduced in the groups treated with NSO only after 14 days of treatment, suggesting that the NSO antioxidant effect is time-dependent. CONCLUSIONS NSO administration might have a favourable impact on the regulation of oxidative stress and inflammation processes after MI induction in rats, and it is worth considering its administration as an adjuvant treatment.
Collapse
Affiliation(s)
- Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Emilia Vassilopoulou
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Mihaela-Elena Jianu
- Histology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania.
| | - Ștefan Horia Roșian
- "Niculae Stăncioiu" Heart Institute Cluj-Napoca, 19-21 Calea Moților Street, Cluj-Napoca, 400001, Romania.
- Department of Cardiology-Heart Institute, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street No. 19-21, Cluj-Napoca, 400001, Romania.
| | - Marian Taulescu
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania
- Synevovet Laboratory, Bucharest, 021408, Romania
| | - Mihai Negru
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, 400372, Romania
- Department of Agriculture, Food and the Marine, Agriculture House, Kildare Street, Dublin, D02 WK12, Ireland
| | - Crina Bercian
- "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Paul-Mihai Boarescu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, "Stefan cel Mare" University of Suceava, Suceava, 720229, Romania
| | - Ioana Corina Bocsan
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Gavriela Feketea
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
- Pediatric Allergy Outpatient Clinic, Department of Pediatrics, "Karamandaneio" Children's Hospital of Patra, Patras, 26331, Greece
| | - Veronica Sanda Chedea
- Research Station for Viticulture and Enology Blaj (SCDVV Blaj), Blaj, 515400, Romania
| | - Francisc Dulf
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mănăştur Street, Cluj-Napoca, 400372, Romania
| | - Jeanine Cruceru
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| | - Alina Elena Pârvu
- Pathophysiology, Department of Morphofunctional Sciences, Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology, Department of Morphofunctional Sciences, "Iuliu Haţieganu" University of Medicine and Pharmacy, Victor Babeș, No 8, Cluj-Napoca, 400012, Romania
| |
Collapse
|
6
|
Kain V, Grilo GA, Upadhyay G, Nadler JL, Serhan CN, Halade GV. Macrophage-specific lipoxygenase deletion amplify cardiac repair activating Treg cells in chronic heart failure. J Leukoc Biol 2024; 116:864-875. [PMID: 38785336 PMCID: PMC11444306 DOI: 10.1093/jleuko/qiae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Splenic leukocytes, particularly macrophage-expressed lipoxygenases, facilitate the biosynthesis of resolution mediators essential for cardiac repair. Next, we asked whether deletion of 12/15 lipoxygenase (12/15LOX) in macrophages impedes the resolution of inflammation following myocardial infarction (MI). Using 12/15flox/flox and LysMcre scheme, we generated macrophage-specific 12/15LOX (Mɸ-12/15LOX-/-) mice. Young C57BL/6J wild-type and Mɸ-12/15LOX-/- male mice were subjected to permanent coronary ligation microsurgery. Mice were monitored at day 1 (d1) to d5 (as acute heart failure [AHF]) and to d56 (chronic HF) post-MI, maintaining no MI as d0 naïve control animals. Post ligation, Mɸ-12/15LOX-/- mice showed increased survival (88% vs 56%) and limited heart dysfunction compared with wild-type. In AHF, Mɸ-12/15LOX-/- mice have increased biosynthesis of epoxyeicosatrienoic acid by 30%, with the decrease in D-series resolvins, protectin, and maresin by 70% in the infarcted heart. Overall, myeloid cell profiling from the heart and spleen indicated that Mɸ-12/15LOX-/- mice showed higher immune cells with reparative Ly6Clow macrophages during AHF. In addition, the detailed immune profiling revealed reparative macrophage phenotype (Ly6Clow) in Mɸ-12/15LOX-/- mice in a splenocardiac manner post-MI. Mɸ-12/15LOX-/- mice showed an increase in myeloid population that coordinated increase of T regulatory cells (CD4+/Foxp3+) in the spleen and injured heart at chronic HF compared with wild-type. Thus, macrophage-specific deletion of 12/15LOX directs reparative macrophage phenotype to facilitate cardiac repair. The presented study outlines the complex role of 12/15LOX in macrophage plasticity and T regulatory cell signaling that indicates that resolution mediators are viable targets to facilitate cardiac repair in HF post-MI.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Sciences, Heart Institute, Department of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States
| | - Gabriel Araujo Grilo
- Division of Cardiovascular Sciences, Heart Institute, Department of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States
| | - Gunjan Upadhyay
- Division of Cardiovascular Sciences, Heart Institute, Department of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States
| | - Jerry L Nadler
- Department of Medicine, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 60, Fenwood Road, Boston, MA 02115, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Heart Institute, Department of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, United States
| |
Collapse
|
7
|
Lin Z, Jiwani Z, Serpooshan V, Aghaverdi H, Yang PC, Aguirre A, Wu JC, Mahmoudi M. Sex Influences the Safety and Therapeutic Efficacy of Cardiac Nanomedicine Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305940. [PMID: 37803920 PMCID: PMC10997742 DOI: 10.1002/smll.202305940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Nanomedicine technologies are being developed for the prevention, diagnosis, and treatment of cardiovascular disease (CVD), which is the leading cause of death worldwide. Before delving into the nuances of cardiac nanomedicine, it is essential to comprehend the fundamental sex-specific differences in cardiovascular health. Traditionally, CVDs have been more prevalent in males, but it is increasingly evident that females also face significant risks, albeit with distinct characteristics. Females tend to develop CVDs at a later age, exhibit different clinical symptoms, and often experience worse outcomes compared to males. These differences indicate the need for sex-specific approaches in cardiac nanomedicine. This Perspective discusses the importance of considering sex in the safety and therapeutic efficacy of nanomedicine approaches for the prevention, diagnosis, and treatment of CVD.
Collapse
Affiliation(s)
- Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zahra Jiwani
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Haniyeh Aghaverdi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
| | - Phillip C Yang
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
| | - Aitor Aguirre
- Regenerative Biology and cell Reprogramming Laboratory, Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48823, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Joseph C. Wu
- Department of Medicine, Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA 94309
- Department of Medicine, Division of Cardiology, Stanford University, Stanford, CA 94305, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48824 USA
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
8
|
Kufazvinei TTJ, Chai J, Boden KA, Channon KM, Choudhury RP. Emerging opportunities to target inflammation: myocardial infarction and type 2 diabetes. Cardiovasc Res 2024; 120:1241-1252. [PMID: 39027945 DOI: 10.1093/cvr/cvae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
After myocardial infarction (MI), patients with type 2 diabetes have an increased rate of adverse outcomes, compared to patients without. Diabetes confers a 1.5-2-fold increase in early mortality and, importantly, this discrepancy has been consistent over recent decades, despite advances in treatment and overall survival. Certain assumptions have emerged to explain this increased risk, such as differences in infarct size or coronary artery disease severity. Here, we re-evaluate that evidence and show how contemporary analyses using state-of-the-art characterization tools suggest that the received wisdom tells an incomplete story. Simultaneously, epidemiological and mechanistic biological data suggest additional factors relating to processes of diabetes-related inflammation might play a prominent role. Inflammatory processes after MI mediate injury and repair and are thus a potential therapeutic target. Recent studies have shown how diabetes affects immune cell numbers and drives changes in the bone marrow, leading to pro-inflammatory gene expression and functional suppression of healing and repair. Here, we review and re-evaluate the evidence around adverse prognosis in patients with diabetes after MI, with emphasis on how targeting processes of inflammation presents unexplored, yet valuable opportunities to improve cardiovascular outcomes in this vulnerable patient group.
Collapse
Affiliation(s)
- Tafadzwa T J Kufazvinei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jason Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Katherine A Boden
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
10
|
Liu Y, Chen Q, Hu T, Deng C, Huang J. Dexmedetomidine administration is associated with improved outcomes in critically ill patients with acute myocardial infarction partly through its anti-inflammatory activity. Front Pharmacol 2024; 15:1428210. [PMID: 39239649 PMCID: PMC11375293 DOI: 10.3389/fphar.2024.1428210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Background Dexmedetomidine (DEX) is a commonly used sedative in the intensive care unit and has demonstrated cardioprotective properties against ischemia-reperfusion injury in preclinical studies. However, the protective effects of early treatment of DEX in patients with acute myocardial infarction (AMI) and its underlying mechanism are still not fully understood. This study aims to investigate the association between early DEX treatment and in-hospital mortality in patients with AMI, and to explore the potential mediating role of white blood cell (WBC) reduction in this relationship. Methods A retrospective cohort analysis was conducted using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Patients with AMI were divided into the DEX and non-DEX group, based on whether they received DEX treatment in the early stage of hospitalization. The primary outcome measured was in-hospital mortality. The study evaluated the association between DEX use and in-hospital mortality using the Kaplan-Meier (KM) method and Cox proportional hazards model. Additionally, 1:1 propensity score matching (PSM) was conducted to validate the results. Furthermore, causal mediation analysis (CMA) was utilized to explore potential causal pathways mediated by WBC reduction between early DEX use and the primary outcome. Results This study analyzed data from 2,781 patients, with 355 in the DEX group and 2,426 in the non-DEX group. KM survival analysis revealed a significantly lower in-hospital mortality rate in the DEX group compared to the non-DEX group. After adjusting for multiple confounding factors, the Cox regression model demonstrated a significant positive impact of DEX on the risk of in-hospital mortality in patients with AMI, with hazard ratios (HR) of 0.50 (95% confidence interval (CI): 0.35-0.71, p < 0.0001). PSM analysis confirmed these results, showing HR of 0.49 (95% CI: 0.31-0.77, p = 0.0022). Additionally, CMA indicated that 13.7% (95% CI: 1.8%-46.9%, p = 0.022) of the beneficial effect of DEX on reducing in-hospital mortality in patients with AMI was mediated by the reduction in WBC. Conclusion The treatment of DEX was associated with a lower risk of in-hospital mortality in patients with AMI, potentially due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Yimou Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changming Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Liu G, Huang L, Lv X, Guan Y, Li L. Thrombomodulin as a potential diagnostic marker of acute myocardial infarction and correlation with immune infiltration: Comprehensive analysis based on multiple machine learning. Transpl Immunol 2024; 85:102070. [PMID: 38839020 DOI: 10.1016/j.trim.2024.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/02/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a global health problem with high mortality. Early diagnosis can prevent the development of AMI and provide valuable information for subsequent treatment. Angiogenesis has been shown to be a critical factor in the development of infarction and targeting this process may be a potential protective strategy for preventing myocardial injury and improving the prognosis of AMI patients. This study aimed to screen and verify diagnostic markers related to angiogenesis in AMI and to investigate the molecular mechanisms of action associated with AMI in terms of immune cell infiltration. METHODS The GSE66360 and the GSE60993 datasets were both downloaded from the GEO database and were used as the training cohort and the external validation cohort, respectively. Angiogenesis-related genes (ARGs) were downloaded from the MSigDB database. The hub ARGs were identified via LASSO, RF, and SVM-RFE algorithms. ROC curves were used to assess the accuracy of the hub ARGs. The potential mechanisms of the hub ARGs were analyzed by GSEA. The ssGSEA algorithm was used to determine differences in immune cell infiltration and immune function. The CIBERSORT algorithm was used for immune cell infiltration analysis. In addition, we constructed a ceRNA network map of differentially expressed ARGs. RESULTS We identified the thrombomodulin (THBD) gene from ARGs as a potential diagnostic marker for AMI based on the LASSO, SVM-RFE, and RF algorithms. THBD was differentially expressed and had a potential diagnostic value (area under the curve [AUC] = 0.931 and 0.765 in the training and testing datasets, respectively). GSEA showed that the MAPK signaling pathway was more enriched in the high-expression group of THBD (P < 0.05). Immune cell infiltration analysis demonstrated that THBD was mainly positively correlated with monocytes (R = 0.48, P = 0.00055) and neutrophils (R = 0.36, P = 0.013). Finally, in the ceRNA regulatory network, THBD was closely associated with 9 miRNAs and 42 lncRNAs involved in AMI. CONCLUSION THBD can be used as a potential diagnostic marker for AMI. This study provides new insights for future AMI diagnosis and molecular mechanism research. Moreover, immune cell infiltration plays an essential role in the occurrence and development of AMI.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Lixia Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Xiangwen Lv
- Department of Cardiology, The Second Affiliated Hospital Guangxi Medical University, Nanning, Guangxi, China
| | - Yuting Guan
- Guangxi Medical University, Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Pan H, Ji Q, Zhao M, Zheng Z, Lu X, Feng Y, Gan L, Ye J, Wan J, Ye D. IL-12p40 deletion reduces M1 macrophage polarization and alleviates cardiac remodeling via regulating Th17 cells differentiation, but not γδT 17 cells, in TAC mice. Eur J Pharmacol 2024; 974:176602. [PMID: 38677538 DOI: 10.1016/j.ejphar.2024.176602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qingwei Ji
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, China; Institute of Cardiovascular Diseases, Guangxi Academy of Medical Sciences, Nanning, 530000, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
13
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Zhou S, Wang L, Huang X, Wang T, Tang Y, Liu Y, Xu M. Comprehensive bioinformatics analytics and in vivo validation reveal SLC31A1 as an emerging diagnostic biomarker for acute myocardial infarction. Aging (Albany NY) 2024; 16:8361-8377. [PMID: 38713173 PMCID: PMC11132003 DOI: 10.18632/aging.205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing evidence suggests that the role of energy production within the mitochondria strongly links to the development and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet been comprehensively analyzed from the aspect of cardiovascular medicine. MATERIALS AND METHODS 8 transcriptome profiles curated from the GEO database were integrated, from which a diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, with which we further validated the expression of the key contributor gene to the model. Finally, we explored the immune implications of the key contributor gene. RESULTS A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further transcriptome analysis revealed that its high expression was correlated with significant potential immunological implications in the infiltration of many immune cell types, especially monocyte. CONCLUSIONS We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the key contributor gene in animal modeling. We also analyzed the effects on the immune system for its overexpression in AMI.
Collapse
Affiliation(s)
- Shujing Zhou
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Longbin Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xufeng Huang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ting Wang
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ying Liu
- Department of Cardiology, Sixth Medical Center, PLA General Hospital, Beijing, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Lu L, Li J, Jiang X, Bai R. CXCR4/CXCL12 axis: "old" pathway as "novel" target for anti-inflammatory drug discovery. Med Res Rev 2024; 44:1189-1220. [PMID: 38178560 DOI: 10.1002/med.22011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Inflammation is the body's defense response to exogenous or endogenous stimuli, involving complex regulatory mechanisms. Discovering anti-inflammatory drugs with both effectiveness and long-term use safety is still the direction of researchers' efforts. The inflammatory pathway was initially identified to be involved in tumor metastasis and HIV infection. However, research in recent years has proved that the CXC chemokine receptor type 4 (CXCR4)/CXC motif chemokine ligand 12 (CXCL12) axis plays a critical role in the upstream of the inflammatory pathway due to its chemotaxis to inflammatory cells. Blocking the chemotaxis of inflammatory cells by CXCL12 at the inflammatory site may block and alleviate the inflammatory response. Therefore, developing CXCR4 antagonists has become a novel strategy for anti-inflammatory therapy. This review aimed to systematically summarize and analyze the mechanisms of action of the CXCR4/CXCL12 axis in more than 20 inflammatory diseases, highlighting its crucial role in inflammation. Additionally, the anti-inflammatory activities of CXCR4 antagonists were discussed. The findings might help generate new perspectives for developing anti-inflammatory drugs targeting the CXCR4/CXCL12 axis.
Collapse
Affiliation(s)
- Liuxin Lu
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junjie Li
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Bricher Choque PN, Porter MH, Teixeira MS, Dellê H, Elias RM, Durante B, Dutra MRH, Metz CN, Pavlov VA, Consolim Colombo FM. Cholinergic Stimulation Exerts Cardioprotective Effects and Alleviates Renal Inflammatory Responses after Acute Myocardial Infarction in Spontaneous Hypertensive Rats (SHRs). Pharmaceuticals (Basel) 2024; 17:547. [PMID: 38794117 PMCID: PMC11124479 DOI: 10.3390/ph17050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND In this investigation, we explored the effects of pharmacological cholinergic stimulation on cardiac function and renal inflammation following acute myocardial infarction (AMI) in spontaneously hypertensive rats (SHRs). METHODS Adult male SHRs were randomized into three experimental groups: sham-operated; AMI + Veh (infarcted, treated with vehicle); and AMI + PY (infarcted, treated with the cholinesterase inhibitor, pyridostigmine bromide (PY)-40 mg/kg, once daily for seven days). Rats were euthanized 7 or 30 days post-surgery. The clinical parameters were assessed on the day before euthanasia. Subsequent to euthanasia, blood samples were collected and renal tissues were harvested for histological and gene expression analyses aimed to evaluate inflammation and injury. RESULTS Seven days post-surgery, the AMI + PY group demonstrated improvements in left ventricular diastolic function and autonomic regulation, and a reduction in renal macrophage infiltration compared to the AMI + Veh group. Furthermore, there was a notable downregulation in pro-inflammatory gene expression and an upregulation in anti-inflammatory gene expression. Analysis 30 days post-surgery showed that PY treatment had a sustained positive effect on renal gene expression, correlated with a decrease in biomarkers, indicative of subclinical kidney injury. CONCLUSIONS Short-term cholinergic stimulation with PY provides both cardiac and renal protection by mitigating the inflammatory response after AMI.
Collapse
Affiliation(s)
- Pamela Nithzi Bricher Choque
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Maria Helena Porter
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Manuella S. Teixeira
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| | - Humberto Dellê
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Rosilene Motta Elias
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Bruno Durante
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| | - Marina Rascio Henriques Dutra
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
| | - Christine N. Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (C.N.M.); (V.A.P.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA; (C.N.M.); (V.A.P.)
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA
| | - Fernanda M. Consolim Colombo
- Department of Medicine, Universidade Nove de Julho (Uninove), São Paulo 01504-001, SP, Brazil; (P.N.B.C.); (M.H.P.); (H.D.); (R.M.E.); (M.R.H.D.)
- Hypertension Unit, Heart Institute, Medical School, University of São Paulo, São Paulo 05403-900, SP, Brazil; (M.S.T.); (B.D.)
| |
Collapse
|
17
|
Marriott E, Singanayagam A, El-Awaisi J. Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Front Cardiovasc Med 2024; 11:1362564. [PMID: 38450367 PMCID: PMC10915015 DOI: 10.3389/fcvm.2024.1362564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), particularly following acute exacerbations (AE-COPD), significantly heightens the risks and mortality associated with acute myocardial infarction (AMI). The intersection of COPD and AMI is characterised by a considerable overlap in inflammatory mechanisms, which play a crucial role in the development of both conditions. Although extensive research has been conducted on individual inflammatory pathways in AMI and COPD, the understanding of thrombo-inflammatory crosstalk in comorbid settings remains limited. The effectiveness of various inflammatory components in reducing AMI infarct size or slowing COPD progression has shown promise, yet their efficacy in the context of comorbidity with COPD and AMI is not established. This review focuses on the critical importance of both local and systemic inflammation, highlighting it as a key pathophysiological connection between AMI and COPD/AE-COPD.
Collapse
Affiliation(s)
- Eloise Marriott
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aran Singanayagam
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Juma El-Awaisi
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Zhang Z, Qi J, Fan X, Pan M. XAV939 Improves the Prognosis of Myocardial Infarction by Blocking the Wnt/β-Catenin Signalling Pathway. Appl Biochem Biotechnol 2024; 196:605-615. [PMID: 37166649 DOI: 10.1007/s12010-023-04485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Myocardial infarction (MI) is closely related to the Wnt signalling pathway, but the role of XAV939 (a Wnt/β-catenin signalling pathway blocker) in MI has not been elucidated. The purpose of this study was to explore the role of XAV939 in mouse hearts and to provide a new and feasible treatment for improving the prognosis of MI. C57BL/6 (male, 8 weeks old, 20-25 g) mice were selected for our study. The MI model was made by ligating the left anterior descending coronary artery. On day 28 after the operation, cardiac function was examined by echocardiography. Infarct size, fibrosis, and angiogenesis were individually measured by TTC assays, Masson's trichrome staining, and CD31 analysis, respectively. Apoptosis was examined by TdT-mediated dUTP nick-end labelling (TUNEL) staining. The expression of Wnt, β-catenin, caspase 3, Bax, and Bcl-2 was determined by western blotting. XAV939 successfully blocked Wnt/β-catenin signalling pathway activation in cardiomyocytes after MI by promoting the degradation of β-catenin. XAV939 suppressed fibrosis and apoptosis, promoted angiogenesis, reduced myocardial infarct size and improved cardiac function after MI. XAV939 can reduce myocardial infarct size and improve cardiac function by blocking the Wnt/β-catenin signalling pathway, which may provide a new strategy for improving the prognosis of MI.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Jiancheng Qi
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Xiucai Fan
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Min Pan
- Department of Cardiology, West China (Sanya) Hospital, Sichuan University, No. 228 Jiefang Road, Sanya, 572022, Hainan, China.
| |
Collapse
|
19
|
Sato T, Sawashita Y, Yoshikawa Y, Yamakage M. Japanese Traditional Herbal Medicine, Rikkunshito, Partially Suppresses Inflammatory Responses in Myocardial Ischemia/Reperfusion Injury. Cureus 2024; 16:e54485. [PMID: 38516440 PMCID: PMC10954439 DOI: 10.7759/cureus.54485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
INTRODUCTION Myocardial ischemia/reperfusion (I/R) injury can cause additional damage to an ischemic myocardium, even after successful reperfusion therapy. Inflammation is a mechanism that exacerbates myocardial damage after I/R injury. Rikkunshito (RKT) is a traditional Japanese herbal medicine widely used to treat gastrointestinal symptoms. It attenuates inflammation and fibrosis in some diseases of the heart; however, it remains unclear whether RKT exerts cardioprotective effects against myocardial I/R injury. To elucidate this, we evaluated the effects of RKT pre-treatment by oral administration on the myocardium in a mouse model of in vivo I/R injury. METHODS Mice were randomly assigned to a group receiving distilled water (DW) or one receiving RKT (1000 mg/kg/day) for 14 days orally. For each of the RKT and DW groups, a sham group, an I/R 2 h group, and an I/R 24 h group were created. On day 15, myocardial I/R surgery was performed. The left anterior descending coronary artery (LAD) was ligated for 30 min, and reperfusion time was set at 2 h or 24 h. The myocardial infarct size (IS) was measured after 2 h of reperfusion, and cardiac cytokine mRNA expression levels were evaluated by quantitative reverse transcription polymerase chain reaction (RT-PCR) after 2 h and 24 h of reperfusion. RESULTS RKT pre-treatment significantly suppressed the cardiac mRNA expression level of interleukin-1β in the RKT-I/R 2 h group compared to the DW-I/R 2 h group (P < 0.05). Additionally, RKT significantly suppressed the mRNA expression levels of transforming growth factor-β compared to DW; the same result was obtained for the expression levels of interleukin-6. However, RKT did not reduce the IS or mRNA expression levels of the cardiac congestive markers natriuretic peptide a (NPPA) and natriuretic peptide b (NPPB). In addition, RKT did not alter the plasma concentration of ghrelin and sirtuin 1 (Sirt1), which have been reported to be stimulated by RKT. CONCLUSION This study showed that pre-treatment of RKT for myocardial I/R injury partially suppressed inflammation-related cytokines. However, further studies are needed on the effect of RKT on the reduction of myocardial infarction size.
Collapse
Affiliation(s)
- Tomoe Sato
- Anesthesiology, School of Medicine, Sapporo Medical University, Sapporo, JPN
| | | | - Yusuke Yoshikawa
- Anesthesiology, School of Medicine, Sapporo Medical University, Sapporo, JPN
| | - Michiaki Yamakage
- Anesthesiology, School of Medicine, Sapporo Medical University, Sapporo, JPN
| |
Collapse
|
20
|
More SA, Deore RS, Pawar HD, Sharma C, Nakhate KT, Rathod SS, Ojha S, Goyal SN. CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1683. [PMID: 38338960 PMCID: PMC10855244 DOI: 10.3390/ijms25031683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-β/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.
Collapse
Affiliation(s)
- Sagar A. More
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Rucha S. Deore
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Harshal D. Pawar
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Sumit S. Rathod
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| |
Collapse
|
21
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
22
|
Zhang L, Zhang X, Deng X, Wang P, Mo Y, Zhang Y, Tong X. Cytokines as drivers: Unraveling the mechanisms of epithelial-mesenchymal transition in COVID-19 lung fibrosis. Biochem Biophys Res Commun 2023; 686:149118. [PMID: 37931361 DOI: 10.1016/j.bbrc.2023.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), like other viruses, can induce proliferation of myofibroblasts and even lead to fibrosis in the lung. Epithelial-mesenchymal transition (EMT) is thought to play an essential role in the pathogenesis of Coronavirus disease 19 (COVID-19). EMT is originally a critical process that regulates the development of different tissues in the embryo, but in inflammatory situations, EMT tries to be activated again to control inflammation or even heal inflammatory damage. However, in pathological situations, such as chronic viral infections (e.g., COVID-19) or pulmonary fibrosis initiation, this benign healing transforms into sinister nature, pushing the lung into the fibrotic process. Notably, the cytokines released by inflammatory cells and the chronic inflammatory microenvironment shared by fibrotic cells promote each other as critical factors in the induction of pathological EMT. In the induction of SARS-CoV-2 virus, cytokines are an essential mediator of EMT transformation, and a summary of whether COVID-19 patients, during the infection phase, have many persistent inflammatory mediators (cytokines) that are a causative factor of EMT has not yet appeared. The following common signaling drivers, including Transforming growth factor beta (TGF-β), cytokines, Notch signaling pathway, Wnt and hypoxia signaling pathways, drive the regulation of EMT. In this review, we will focus on 3 key EMT signaling pathways: TGF-β, Leucine zipper transcription factor like 1 (LZTFL1) and the common interleukin family expressed in the lung. TGF-β-induced SNAIL and LZTFL1 were identified as regulatory EMT in COVID-19. For cytokines, the interleukin family is a common inducer of EMT and plays an essential role in the formation of the microenvironment of fibrosis. We sought to demonstrate that cytokines act as "communicators" and build the "microenvironment" of fibrosis together with EMT as a "bridge" to induce EMT in fibrosis. The mechanisms utilized by these two pathways could serve as templates for other mesenchymal transformations and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, China.
| | - Xin Zhang
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaoqian Deng
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, China
| | - Pengbo Wang
- School of Professional Studies, Columbia University, USA
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Yuansheng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Tong
- Department of Gastroenterology, West China (Airport) Hospital of Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Li J, Xin Y, Wang Z, Li J, Li W, Li H. The role of cardiac resident macrophage in cardiac aging. Aging Cell 2023; 22:e14008. [PMID: 37817547 PMCID: PMC10726886 DOI: 10.1111/acel.14008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Advancements in longevity research have provided insights into the impact of cardiac aging on the structural and functional aspects of the heart. Notable changes include the gradual remodeling of the myocardium, the occurrence of left ventricular hypertrophy, and the decline in both systolic and diastolic functions. Macrophages, a type of immune cell, play a pivotal role in innate immunity by serving as vigilant agents against pathogens, facilitating wound healing, and orchestrating the development of targeted acquired immune responses. Distinct subsets of macrophages are present within the cardiac tissue and demonstrate varied functions in response to myocardial injury. The differentiation of cardiac macrophages according to their developmental origin has proven to be a valuable strategy in identifying reparative macrophage populations, which originate from embryonic cells and reside within the tissue, as well as inflammatory macrophages, which are derived from monocytes and recruited to the heart. These subsets of macrophages possess unique characteristics and perform distinct functions. This review aims to summarize the current understanding of the roles and phenotypes of cardiac macrophages in various conditions, including the steady state, aging, and other pathological conditions. Additionally, it will highlight areas that require further investigation to expand our knowledge in this field.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Zhaojia Wang
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Weiping Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
- Laboratory for Clinical MedicineBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular DiseaseBeijingChina
| |
Collapse
|
24
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
25
|
Nisimura LM, Ferreira RR, Coelho LL, de Oliveira GM, Gonzaga BM, Meuser-Batista M, Lannes-Vieira J, Araujo-Jorge T, Garzoni LR. Vascular Growth Factor Inhibition with Bevacizumab Improves Cardiac Electrical Alterations and Fibrosis in Experimental Acute Chagas Disease. BIOLOGY 2023; 12:1414. [PMID: 37998013 PMCID: PMC10669550 DOI: 10.3390/biology12111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents and therapies that control cardiac alterations. However, there is no treatment for the progressive cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis. Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also characterized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were performed. We found that bevacizumab significantly increased survival, reduced inflammation, improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopathy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
- Laboratory of Applied Genomics and Bioinnovations, Oswaldo Cruz Institute (LAGABI-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Gabriel Melo de Oliveira
- Laboratory of Cell Biology, Oswaldo Cruz Institute (LBC-IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil;
| | - Beatriz Matheus Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Marcelo Meuser-Batista
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute (LBI-IOC/Fiocruz), Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | - Tania Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil; (L.M.N.); (R.R.F.); (L.L.C.); (B.M.G.); (M.M.-B.); (T.A.-J.)
| |
Collapse
|
26
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
27
|
Zhao Y, Li S, Feng M, Zhang M, Liu Z, Yao Y, Zhang T, Jiang Y, Lin Y, Cai X. Effects of Puerarin-Loaded Tetrahedral Framework Nucleic Acids on Osteonecrosis of the Femoral Head. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302326. [PMID: 37317020 DOI: 10.1002/smll.202302326] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy. Tetrahedral framework nucleic acids (tFNAs) are promising novel DNA nanomaterials in drug delivery. In this study, tFNAs as Pue carriers is used and synthesized a tFNA/Pue complex (TPC) that exhibited better stability, biocompatibility, and tissue utilization than free Pue. A dexamethasone (DEX)-treated BMSC model in vitro and a methylprednisolone (MPS)-induced ONFH model in vivo is also established, to explore the regulatory effects of TPC on osteogenesis and apoptosis of BMSCs. This findings showed that TPC can restore osteogenesis dysfunction and attenuated BMSC apoptosis induced by high-dose glucocorticoids (GCs) through the hedgehog and Akt/Bcl-2 pathways, contributing to the prevention of GC-induced ONFH in rats. Thus, TPC is a promising drug for the treatment of ONFH and other osteogenesis-related diseases.
Collapse
Affiliation(s)
- Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maogeng Feng
- The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, P. R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yueying Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
28
|
Sun B, Wang L, Guo W, Chen S, Ma Y, Wang D. New treatment methods for myocardial infarction. Front Cardiovasc Med 2023; 10:1251669. [PMID: 37840964 PMCID: PMC10569499 DOI: 10.3389/fcvm.2023.1251669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
For a long time, cardiovascular clinicians have focused their research on coronary atherosclerotic cardiovascular disease and acute myocardial infarction due to their high morbidity, high mortality, high disability rate, and limited treatment options. Despite the continuous optimization of the therapeutic methods and pharmacological therapies for myocardial ischemia-reperfusion, the incidence rate of heart failure continues to increase year by year. This situation is speculated to be caused by the current therapies, such as reperfusion therapy after ischemic injury, drugs, rehabilitation, and other traditional treatments, that do not directly target the infarcted myocardium. Consequently, these therapies cannot fundamentally solve the problems of myocardial pathological remodeling and the reduction of cardiac function after myocardial infarction, allowing for the progression of heart failure after myocardial infarction. Coupled with the decline in mortality caused by acute myocardial infarction in recent years, this combination leads to an increase in the incidence of heart failure. As a new promising therapy rising at the beginning of the twenty-first century, cardiac regenerative medicine provides a new choice and hope for the recovery of cardiac function and the prevention and treatment of heart failure after myocardial infarction. In the past two decades, regeneration engineering researchers have explored and summarized the elements, such as cells, scaffolds, and cytokines, required for myocardial regeneration from all aspects and various levels day and night, paving the way for our later scholars to carry out relevant research and also putting forward the current problems and directions for us. Here, we describe the advantages and challenges of cardiac tissue engineering, a contemporary innovative therapy after myocardial infarction, to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Bingbing Sun
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Long Wang
- Department of General Internal Medicine, Beijing Dawanglu Emergency Hospital, Beijing, China
| | - Wenmin Guo
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Shixuan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yujie Ma
- Department of Critical Care Medicine, The Air Force Characteristic Medical Center, Air Force Medical University, Beijing, China
| | - Dongwei Wang
- Department of Cardiac Rehabilitation, Zhengzhou Central Hospital affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Wołowiec A, Wołowiec Ł, Grześk G, Jaśniak A, Osiak J, Husejko J, Kozakiewicz M. The Role of Selected Epigenetic Pathways in Cardiovascular Diseases as a Potential Therapeutic Target. Int J Mol Sci 2023; 24:13723. [PMID: 37762023 PMCID: PMC10531432 DOI: 10.3390/ijms241813723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetics is a rapidly developing science that has gained a lot of interest in recent years due to the correlation between characteristic epigenetic marks and cardiovascular diseases (CVDs). Epigenetic modifications contribute to a change in gene expression while maintaining the DNA sequence. The analysis of these modifications provides a thorough insight into the cardiovascular system from its development to its further functioning. Epigenetics is strongly influenced by environmental factors, including known cardiovascular risk factors such as smoking, obesity, and low physical activity. Similarly, conditions affecting the local microenvironment of cells, such as chronic inflammation, worsen the prognosis in cardiovascular diseases and additionally induce further epigenetic modifications leading to the consolidation of unfavorable cardiovascular changes. A deeper understanding of epigenetics may provide an answer to the continuing strong clinical impact of cardiovascular diseases by improving diagnostic capabilities, personalized medical approaches and the development of targeted therapeutic interventions. The aim of the study was to present selected epigenetic pathways, their significance in cardiovascular diseases, and their potential as a therapeutic target in specific medical conditions.
Collapse
Affiliation(s)
- Anna Wołowiec
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Albert Jaśniak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Joanna Osiak
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Jakub Husejko
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
30
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Saito Y, Sasaki K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Sci 2023; 114:3487-3495. [PMID: 37480223 PMCID: PMC10475783 DOI: 10.1111/cas.15890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.
Collapse
Grants
- 17cm0106414h0002 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- JP21lm0203007 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 18KK0251 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 19K2265 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 20H00541 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 21K19526 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22K19559 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 16H06279 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yasuko Arao
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Saito
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Shogo Kobayashi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
31
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
32
|
Chen Y, Xue J, Yan X, Fang DG, Li F, Tian X, Yan P, Feng Z. Identification of crucial genes related to heart failure based on GEO database. BMC Cardiovasc Disord 2023; 23:376. [PMID: 37507655 PMCID: PMC10385922 DOI: 10.1186/s12872-023-03400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The molecular biological mechanisms underlying heart failure (HF) remain poorly understood. Therefore, it is imperative to use innovative approaches, such as high-throughput sequencing and artificial intelligence, to investigate the pathogenesis, diagnosis, and potential treatment of HF. METHODS First, we initially screened Two data sets (GSE3586 and GSE5406) from the GEO database containing HF and control samples from the GEO database to establish the Train group, and selected another dataset (GSE57345) to construct the Test group for verification. Next, we identified the genes with significantly different expression levels in patients with or without HF and performed functional and pathway enrichment analyses. HF-specific genes were identified, and an artificial neural network was constructed by Random Forest. The ROC curve was used to evaluate the accuracy and reliability of the constructed model in the Train and Test groups. Finally, immune cell infiltration was analyzed to determine the role of the inflammatory response and the immunological microenvironment in the pathogenesis of HF. RESULTS In the Train group, 153 significant differentially expressed genes (DEGs) associated with HF were found to be abnormal, including 81 down-regulated genes and 72 up-regulated genes. GO and KEGG enrichment analyses revealed that the down-regulated genes were primarily enriched in organic anion transport, neutrophil activation, and the PI3K-Akt signaling pathway. The upregulated genes were mainly enriched in neutrophil activation and the calcium signaling. DEGs were identified using Random Forest, and finally, 16 HF-specific genes were obtained. In the ROC validation and evaluation, the area under the curve (AUC) of the Train and Test groups were 0.996 and 0.863, respectively. CONCLUSIONS Our research revealed the potential functions and pathways implicated in the progression of HF, and designed an RNA diagnostic model for HF tissues using machine learning and artificial neural networks. Sensitivity, specificity, and stability were confirmed by ROC curves in the two different cohorts.
Collapse
Affiliation(s)
- Yongliang Chen
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Jing Xue
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Xiaoli Yan
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Da-Guang Fang
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Fangliang Li
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Xuefei Tian
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China
| | - Peng Yan
- Experimental Center of Morphology, College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Zengbin Feng
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, 36 Nanyingzi Street, Chengde, Hebei, 067000, China.
| |
Collapse
|
33
|
Yamamoto M, Yasukawa H, Takahashi J, Nohara S, Sasaki T, Shibao K, Akagaki D, Okabe K, Yanai T, Shibata T, Fukumoto Y. Endogenous interleukin-22 prevents cardiac rupture after myocardial infarction in mice. PLoS One 2023; 18:e0286907. [PMID: 37319277 PMCID: PMC10270598 DOI: 10.1371/journal.pone.0286907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Myocardial infarction (MI) can result in fatal myocardial rupture or heart failure due to adverse remodeling and dysfunction of the left ventricle. Although recent studies have shown that exogenous interleukin (IL)-22 shows cardioprotective effect after MI, the pathophysiological significance of endogenous IL-22 is unknown. In this study, we investigated the role of endogenous IL-22 in a mouse model of MI. We produced MI model by permanent ligation of the left coronary artery in wild-type (WT) and IL-22 knock-out (KO) mice. The post-MI survival rate was significantly worse in IL-22KO mice than in WT mice due to a higher rate of cardiac rupture. Although IL-22KO mice exhibited a significantly greater infarct size than WT mice, there was no significant difference in left ventricular geometry or function between WT and IL-22KO mice. IL-22KO mice showed increase in infiltrating macrophages and myofibroblasts, and altered expression pattern of inflammation- and extracellular matrix (ECM)-related genes after MI. While IL-22KO mice showed no obvious changes in cardiac morphology or function before MI, expressions of matrix metalloproteinase (MMP)-2 and MMP-9 were increased, whereas that of tissue inhibitor of MMPs (TIMP)-3 was decreased in cardiac tissue. Protein expression of IL-22 receptor complex, IL-22 receptor alpha 1 (IL-22R1) and IL-10 receptor beta (IL-10RB), were increased in cardiac tissue 3 days after MI, regardless of the genotype. We propose that endogenous IL-22 plays an important role in preventing cardiac rupture after MI, possibly by regulating inflammation and ECM metabolism.
Collapse
Affiliation(s)
- Mai Yamamoto
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| | - Hideo Yasukawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Jinya Takahashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Shoichiro Nohara
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tomoko Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kodai Shibao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Daiki Akagaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kota Okabe
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toshiyuki Yanai
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tatsuhiro Shibata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yoshihiro Fukumoto
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
34
|
Ma X, Meng Q, Gong S, Shi S, Liang X, Lin F, Gong L, Liu X, Li Y, Li M, Wei L, Han W, Gao L, Liu Z, Zhou X. IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction. Heliyon 2023; 9:e17099. [PMID: 37441391 PMCID: PMC10333439 DOI: 10.1016/j.heliyon.2023.e17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Excessive and chronic inflammation post myocardial infarction (MI) causes cardiac fibrosis and progressive ventricular remodeling, which leads to heart failure. We previously found high levels of IL-27 in the heart and serum until day 14 in murine cardiac ischemia‒reperfusion injury models. However, whether IL-27 is involved in chronic inflammation-mediated ventricular remodeling remains unclear. In the present study, we found that MI triggered high IL-27 expression in murine cardiac macrophages. The increased expression of IL-27 in serum is correlated with cardiac dysfunction and aggravated fibrosis after MI. Furthermore, the addition of IL-27 significantly activated the JAK/STAT signaling pathway in cardiac fibroblasts (CFs). Meanwhile, IL-27 treatment promoted the proliferation, migration and extracellular matrix (ECM) production of CFs induced by angiotensin II (Ang II). Collectively, high levels of IL-27 mainly produced by cardiac macrophages post MI contribute to the activation of CFs and aggravate cardiac fibrosis.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121000, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Shiyu Gong
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Li Gong
- Shanghai East Hospital, Jinzhou Medical University, Jinzhou, 121000, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Mimi Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Lu Wei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Leng Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, PR China
| | - Zhongmin Liu
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Heart Failure Research Center, Shanghai, 200120, China
| |
Collapse
|
35
|
Ajoolabady A, Pratico D, Vinciguerra M, Lip GYH, Franceschi C, Ren J. Inflammaging: mechanisms and role in the cardiac and vasculature. Trends Endocrinol Metab 2023; 34:373-387. [PMID: 37076375 DOI: 10.1016/j.tem.2023.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 04/21/2023]
Abstract
Aging triggers a wide range of cellular and molecular aberrations in the body, giving rise to inflammation and associated diseases. In particular, aging is associated with persistent low-grade inflammation even in absence of inflammatory stimuli, a phenomenon commonly referred to as 'inflammaging'. Accumulating evidence has revealed that inflammaging in vascular and cardiac tissues is associated with the emergence of pathological states such as atherosclerosis and hypertension. In this review we survey molecular and pathological mechanisms of inflammaging in vascular and cardiac aging to identify potential targets, natural therapeutic compounds, and other strategies to suppress inflammaging in the heart and vasculature, as well as in associated diseases such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Manlio Vinciguerra
- Liverpool Centre for Cardiovascular Science, Liverpool Johns Moore University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Claudio Franceschi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russia.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Zhou MM, Li DW, Xu L, Kong B, Wang X, Tang YH, Huang H, Liu Y. Propionate alleviated post-infarction cardiac dysfunction by macrophage polarization in a rat model. Int Immunopharmacol 2023; 115:109618. [PMID: 36565559 DOI: 10.1016/j.intimp.2022.109618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The propionate (C3), the important components of short-chain fatty acids (SCFAs), had the effect of inhibiting pro-inflammatory macrophages. Earlier macrophages phenotypic transition from pro-inflammatory M1 to reparative M2 in early stage was a central juncture of cardiac dysfunction mitigation after myocardial infarction (MI). METHODS 160 Sprague-Dawley rats were assigned to 4 groups: sham group (n = 40), sham + C3 group (n = 40), MI group (n = 40) and MI + C3 group (n = 40). The rats in sham + C3 and MI + C3 group were treated with oral sodium propionate (200 mM), and equivalent concentration of sodium chloride was administered in sham and MI group as control. After 7 days of propionate adaptive feeding, rats were anesthetized and induced the MI by coronary occlusion. The classification of macrophages, the level of inflammatory factors and inflammatory signaling were estimated at 3rd days after thoracotomy, and the extent of myocardial fibrosis was evaluated at 7th and 28th days after operation. Echocardiography was estimated on 28th day after surgery. RAW264.7 cells, stimulated by LPS + IFN-γ with or without propionate, were harvested for western blot and supernatants were collected for cytokine analysis by ELISA. RESULTS Propionate administration reduced the MI-induced myocardial fibrosis in infarcted border and attenuated cardiac function deterioration compared with MI group. In comparison with MI group, propionate promoted macrophages reduction, macrophage M2-like polarization, and inflammatory cytokines decrease in infarcted border zone following MI, which partly depends on the inhibition of JNK/P38/NFκB signaling pathways. CONCLUSIONS Oral propionate in early stage, as a nutritional intervention, alleviated post-MI chronic cardiac remodeling and cardiac dysfunction at least in part by modulating macrophages polarization and pro-inflammatory cytokine, which were associated with reduction of JNK/P38/NFκB phosphorylation.
Collapse
Affiliation(s)
- Ming-Min Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di-Wen Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
37
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
38
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Wang J, Li J, Yang Z, Chen Y, Shen H, Chen L, Chen Y, Shen Z. The Characteristic of Resident Macrophages and their Therapeutic Potential for Myocardial Infarction. Curr Probl Cardiol 2022; 48:101570. [PMID: 36584729 DOI: 10.1016/j.cpcardiol.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Resident macrophages (R-mac) are a subset of macrophages with self-renewal functions, which play a pivotal role in the homeostasis, inflammation, injury, and repair of the heart. In this paper, we summarize the knowledge related to cardiac R-mac and describe their dominating functions in myocardial infarction, such as inhibiting fibrosis and adverse remodeling, promoting revascularization and improving arrhythmia, etc. In the last, we sketch out the extended application of R-mac in tissue engineering, providing a novel direction of research and application for the therapy in the future.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lei Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
40
|
Nisimura LM, Ferreira RR, Coelho LL, de Souza EM, Gonzaga BM, Ferrão PM, Waghabi MC, de Mesquita LB, Pereira MCDS, Moreira ODC, Lannes-Vieira J, Garzoni LR. Increased angiogenesis parallels cardiac tissue remodelling in experimental acute Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2022; 117:e220005. [PMID: 36417626 PMCID: PMC9677593 DOI: 10.1590/0074-02760220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.
Collapse
Affiliation(s)
- Lindice Mitie Nisimura
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Roberto Rodrigues Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Laura Lacerda Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Elen Mello de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Beatriz Matheus Gonzaga
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
| | - Patrícia Mello Ferrão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Mariana Caldas Waghabi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Liliane Batista de Mesquita
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, RJ, Brasil
| | | | - Otacilio da Cruz Moreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Joseli Lannes-Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia das Interações, Rio de Janeiro, RJ, Brasil
| | - Luciana Ribeiro Garzoni
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
41
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
42
|
Cardiac fibrosis in oncologic therapies. CURRENT OPINION IN PHYSIOLOGY 2022; 29. [DOI: 10.1016/j.cophys.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Toll-Like Receptor 4: A Promising Therapeutic Target for Alzheimer's Disease. Mediators Inflamm 2022; 2022:7924199. [PMID: 36046763 PMCID: PMC9420645 DOI: 10.1155/2022/7924199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that primarily manifests as memory deficits and cognitive impairment and has created health challenges for patients and society. In AD, amyloid β-protein (Aβ) induces Toll-like receptor 4 (TLR4) activation in microglia. Activation of TLR4 induces downstream signaling pathways and promotes the generation of proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), which also trigger the activation of astrocytes and influence amyloid-dependent neuronal death. Therefore, TLR4 may be an important molecular target for treating AD by regulating neuroinflammation. Moreover, TLR4 regulates apoptosis, autophagy, and gut microbiota and is closely related to AD. This article reviews the role of TLR4 in the pathogenesis of AD and a range of potential therapies targeting TLR4 for AD. Elucidating the regulatory mechanism of TLR4 in AD may provide valuable clues for developing new therapeutic strategies for AD.
Collapse
|
44
|
Ellis BW, Ronan G, Ren X, Bahcecioglu G, Senapati S, Anderson D, Handberg E, March KL, Chang HC, Zorlutuna P. Human Heart Anoxia and Reperfusion Tissue (HEART) Model for the Rapid Study of Exosome Bound miRNA Expression As Biomarkers for Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201330. [PMID: 35670145 PMCID: PMC9283287 DOI: 10.1002/smll.202201330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Indexed: 05/12/2023]
Abstract
Current biomarkers for myocardial infarction (MI) diagnosis are typically late markers released upon cell death, incapable of distinguishing between ischemic and reperfusion injury and can be symptoms of other pathologies. Circulating microRNAs (miRNAs) have recently been proposed as alternative biomarkers for MI diagnosis; however, detecting the changes in the human cardiac miRNA profile during MI is extremely difficult. Here, to study the changes in miRNA levels during acute MI, a heart-on-chip model with a cardiac channel, containing human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes in human heart decellularized matrix and collagen, and a vascular channel, containing hiPSC-derived endothelial cells, is developed. This model is exposed to anoxia followed by normoxia to mimic ischemia and reperfusion, respectively. Using a highly sensitive miRNA biosensor that the authors developed, the exact same increase in miR-1, miR-208b, and miR-499 levels in the MI-on-chip and the time-matched human blood plasma samples collected before and after ischemia and reperfusion, is shown. That the surface marker profile of exosomes in the engineered model changes in response to ischemic and reperfusion injury, which can be used as biomarkers to detect MI, is also shown. Hence, the MI-on-chip model developed here can be used in biomarker discovery.
Collapse
Affiliation(s)
- Bradley W Ellis
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - David Anderson
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Eileen Handberg
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith L March
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Hsueh-Chia Chang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
45
|
Combined therapy with dapagliflozin and entresto offers an additional benefit on improving the heart function in rat after ischemia-reperfusion injury. Biomed J 2022; 46:100546. [PMID: 35718305 DOI: 10.1016/j.bj.2022.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND This study tested whether combined dapagliflozin and entresto treatment would be superior to either one alone for preserving the left-ventricular ejection-fraction (LVEF) in rat after ischemia-reperfusion (IR) injury. METHODS AND RESULTS In vitro flow-cytometric result showed that the intracellular and mitochondrial reactive oxygen species and mitochondrial permeability transition pore, and protein levels of oxidative-stress/DNA-damaged markers [NADPH-oxidase-1 (NOX-1)/NOX-2/oxidized-protein/γ-H2A-histone-family member X (γ-H2AX)] were significantly higher in hydrogen peroxide (H2O2) (300μM)-treated H9C2 cells as compared with the controls that were significantly reversed in sacubitril/valsartan and dapagliflozin therapy in the same H2O2-treated condition, whereas the protein expressions of antioxidants [Sirtuin-1 (SIRT1)/SIRT3/superoxide dismutase/catalase/glutathione peroxidase) exhibited an opposite pattern among the groups (all p<0.001). Adult-male-Sprague-Dawley rat (n=40) were equally categorized into group 1 (sham-operated control), group 2 (IR), group 3 (IR+dapagliflozin/20mg/kg/orally at 3h and post-days 1/2/3 after IR), group 4 (IR+entresto/100mg/kg/orally at 3h and post-days 1/2/3 after IR) and group 5 (IR+dapagliflozin+entresto) and the hearts were harvested by day 3 after IR. The 3rd day's LVEF was highest in group 1, lowest in group 2 and significantly higher in group 5 than in groups 3/4, but it was similar between the latter two groups (p<0.001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), fibrotic (transforming-growth factor-ß/phosphorylated-Smad3), apoptotic [mitochondrial-Bax/cleaved-caspase-3/cleaved-poly (ADP-ribose) polymerase], mitochondria/DNA damaged (cytosolic-cytochrome-C/γ-H2AX), pressure-overload/heart-failure [brain natriuretic peptide (BNP)/ß-myosin heavy chain] and autophagic (ratio of meiotic cyclins CLB3-II/CLB3-I) biomarkers, and the upstream (high-mobility group box 1/Toll-like receptor-4/MyD88/phosphorylated-nuclear factor-κB and downstream [interleukin (IL)-1ß/IL-6/tumor necrosis factor-α] inflammatory signalings revealed an antithetical features of LVEF among the groups (all p<0.0001). The cellular levels of inflammatory (myeloperoxidase+/CD68+), pressure-overload/heart-failure (BNP+) and DNA-damage (γ-H2AX+) biomarkers as well as infarct area demonstrated an opposite pattern of LVEF among the groups (all p<0.0001). CONCLUSION Incorporated entresto-dapagliflozin treatment was superior to either one alone on protecting the heart against IR injury.
Collapse
|
46
|
Handley EL, Callanan A. Modulation of Tissue Microenvironment Following Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ella Louise Handley
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| | - Anthony Callanan
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| |
Collapse
|
47
|
Younes R, LeBlanc CA, Hiram R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules 2022; 12:biom12050720. [PMID: 35625647 PMCID: PMC9138906 DOI: 10.3390/biom12050720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can lead to chronic inflammatory disorders due to aggravation of structural damages, development of a fibrous area, and loss of function. Various human conditions show a typical unresolved inflammatory profile. Inflammatory diseases include cancer, neurodegenerative disease, asthma, right heart disease, atherosclerosis, myocardial infarction, or atrial fibrillation. New evidence has started to emerge on the role, including pro-resolution involvement of chemical mediators in the acute phase of inflammation. Although flourishing knowledge is available about the role of specialized pro-resolving mediators in neurodegenerative diseases, atherosclerosis, obesity, or hepatic fibrosis, little is known about their efficacy to combat inflammation-associated arrhythmogenic cardiac disorders. It has been shown that resolvins, including RvD1, RvE1, or Mar1, are bioactive mediators of resolution. Resolvins can stop neutrophil activation and infiltration, stimulate monocytes polarization into anti-inflammatory-M2-macrophages, and activate macrophage phagocytosis of inflammation-debris and neutrophils to promote efferocytosis and clearance. This review aims to discuss the paradigm of failed-resolution mechanisms (FRM) potentially promoting arrhythmogenicity in right heart disease-induced inflammatory status.
Collapse
Affiliation(s)
- Rim Younes
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Charles-Alexandre LeBlanc
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Roddy Hiram
- Montreal Heart Institute (MHI), Montreal, QC H1T 1C8, Canada; (R.Y.); (C.-A.L.)
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 5015)
| |
Collapse
|
48
|
Li Z, Ding Y, Peng Y, Yu J, Pan C, Cai Y, Dong Q, Zhong Y, Zhu R, Yu K, Zeng Q. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol 2022; 13:894002. [PMID: 35634320 PMCID: PMC9136064 DOI: 10.3389/fimmu.2022.894002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages play an important role in clearing necrotic myocardial tissues, myocardial ischemia-reperfusion injury, and ventricular remodeling after myocardial infarction. M1 macrophages not only participate in the inflammatory response in myocardial tissues after infarction, which causes heart damage, but also exert a protective effect on the heart during ischemia. In contrast, M2 macrophages exhibit anti-inflammatory and tissue repair properties by inducing the production of high levels of anti-inflammatory cytokines and fibro-progenitor cells. Interleukin (IL)-38, a new member of the IL-1 family, has been reported to modulate the IL-36 signaling pathway by playing a role similar to that of the IL-36 receptor antagonist, which also affects the production and secretion of macrophage-related inflammatory factors that play an anti-inflammatory role. IL-38 can relieve myocardial ischemia-reperfusion injury by promoting the differentiation of M1 macrophages into M2 macrophages, inhibit the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, and increase the secretion of anti-inflammatory cytokines, such as IL-10 and transforming growth factor-β. The intact recombinant IL-38 can also bind to interleukin 1 receptor accessory protein-like 1 (IL-1RAPL1) to activate the c-jun N-terminal kinase/activator protein 1 (JNK/AP1) pathway and increase the production of IL-6. In addition, IL-38 regulates dendritic cell-induced cardiac regulatory T cells, thereby regulating macrophage polarization and improving ventricular remodeling after myocardial infarction. Accordingly, we speculated that IL-38 and macrophage regulation may be therapeutic targets for ameliorating myocardial ischemic injury and ventricular remodeling after myocardial infarction. However, the specific mechanism of the IL-38 action warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Anzai A, Ko S, Fukuda K. Immune and Inflammatory Networks in Myocardial Infarction: Current Research and Its Potential Implications for the Clinic. Int J Mol Sci 2022; 23:5214. [PMID: 35563605 PMCID: PMC9102812 DOI: 10.3390/ijms23095214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
Despite recent scientific and technological advances, myocardial infarction (MI) still represents a major global health problem, leading to high morbidity and mortality worldwide. During the post-MI wound healing process, dysregulated immune inflammatory pathways and failure to resolve inflammation are associated with maladaptive left ventricular remodeling, progressive heart failure, and eventually poor outcomes. Given the roles of immune cells in the host response against tissue injury, understanding the involved cellular subsets, sources, and functions is essential for discovering novel therapeutic strategies that preserve the protective immune system and promote optimal healing. This review discusses the cellular effectors and molecular signals across multi-organ systems, which regulate the inflammatory and reparative responses after MI. Additionally, we summarize the recent clinical and preclinical data that propel conceptual revolutions in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Atsushi Anzai
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
50
|
Varasteh Z, Braeuer M, Mohanta S, Steinsiek AL, Habenicht A, Omidvari N, Topping GJ, Rischpler C, Weber WA, Sager HB, Raes G, Hernot S, Schwaiger M. In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Front Cardiovasc Med 2022; 9:889963. [PMID: 35548425 PMCID: PMC9081970 DOI: 10.3389/fcvm.2022.889963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction and Objectives Wound healing after myocardial infarction (MI) is a dynamic and complex multiple phase process, and a coordinated cellular response is required for proper scar formation. The current paradigm suggests that pro-inflammatory monocytes infiltrate the MI zone during the initial pro-inflammatory phase and differentiate into inflammatory macrophages, and then switch their phenotypes to anti-inflammatory during the reparative phase. Visualization of the reparative phase post-MI is of great interest because it may reveal delayed resolution of inflammation, which in turn predicts adverse cardiac remodeling. Imaging of anti-inflammatory macrophages may also be used to assess therapy approaches aiming to modulate the inflammatory response in order to limit MI size. Reparative macrophages can be distinguished from inflammatory macrophages by the surface marker mannose receptor (MR, CD206). In this study we evaluated the feasibility of 68Ga-NOTA-anti-MMR Nb for imaging of MR on alternatively activated macrophages in murine MI models. Methods Wildtype and MR-knockout mice and Wistar rats were subjected to MI via permanent ligation of the left coronary artery. Non-operated or sham-operated animals were used as controls. MR expression kinetics on cardiac macrophages was measured in mice using flow cytometry. PET/CT scans were performed 1 h after intravenous injection of 68Ga-NOTA-anti-MMR Nb. Mice and rats were euthanized and hearts harvested for ex vivo PET/MRI, autoradiography, and staining. As a non-targeting negative control, 68Ga-NOTA-BCII10 was used. Results In vivo-PET/CT scans showed focal radioactivity signals in the infarcted myocardium for 68Ga-NOTA-anti-MMR Nb which were confirmed by ex vivo-PET/MRI scans. In autoradiography images, augmented uptake of the tracer was observed in infarcts, as verified by the histochemistry analysis. Immunofluorescence staining demonstrated the presence and co-localization of CD206- and CD68-positive cells, in accordance to infarct zone. No in vivo or ex vivo signal was observed in the animals injected with control Nb or in the sham-operated animals. 68Ga-NOTA-anti-MMR Nb uptake in the infarcts of MR-knockout mice was negligibly low, confirming the specificity of 68Ga-NOTA-anti-MMR Nb to MR. Conclusion This exploratory study highlights the potential of 68Ga-NOTA-anti-MMR Nb to image MR-positive macrophages that are known to play a pivotal role in wound healing that follows acute MI.
Collapse
Affiliation(s)
- Zohreh Varasteh
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Zohreh Varasteh,
| | - Miriam Braeuer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anna-Lena Steinsiek
- Department of Cardiology, German Heart Centre Munich, Technical of University Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Negar Omidvari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Geoffrey J. Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical of University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Brussels, Belgium
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|