1
|
Hui L, Wu F, Xu Y, Yang G, Luo Q, Li Y, Ma L, Yao X, Li J. The T-cell receptor β chain CDR3 insights of bovine liver immune repertoire under heat stress. Anim Biosci 2024; 37:2178-2188. [PMID: 38938039 PMCID: PMC11541024 DOI: 10.5713/ab.24.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The liver plays a dual role in regulating temperature and immune responses. Examining the influence of heat stress (HS) on liver T cells contributes significantly to understanding the intricate interplay between the immune system and hepatic tissues under thermal stress. This study focused on investigating the characteristics of the T-cell receptor (TCR) β chain CDR3 repertoire in bovine liver samples under both HS and pairfed (PF) environmental conditions. METHODS Sequencing data from six samples sourced from the GEO database underwent annotation. Utilizing immunarch and VDJtool software, the study conducted comprehensive analyses encompassing basic evaluation, clonality assessment, immune repertoire comparison, diversity estimation, gene usage profiling, VJ gene segment pairing scrutiny, clonal tracking, and Kmers analysis. RESULTS All four TCR chains, namely α, β, γ, and δ, were detected, with the α chains exhibiting the highest detection frequency, followed closely by the β chains. The prevalence of αβ TCRs in bovine liver samples underscored their crucial role in governing hepatic tissue's physiological functions. The TCR β CDR3 repertoire showcased substantial inter-individual variability, featuring diverse clonotypes exhibiting distinct amino acid lengths. Intriguingly, HS cattle displayed heightened diversity and clonality, suggesting potential peripheral T cell migration into the liver under environmental conditions. Notably, differential VJ gene pairings were observed in HS cattle compared to the PF, despite individual variations in V and J gene utilization. Additionally, while most high-frequency amino acid 5-mers remained consistent between the HS and PF, GELHF, and YDYHF were notably prevalent in the HS group. Across all samples, a prevalent trend of high-frequency 5mers skewed towards polar and hydrophobic amino acids was evident. CONCLUSION This study elucidates the characteristics of liver TCR β chain CDR3 repertoire under HS conditions, enhancing our understanding of HS implications.
Collapse
Affiliation(s)
- Linhu Hui
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Guangjun Yang
- Xiangyun County Livestock Workstation, Xiangyun 671000,
China
| | - Qiaorong Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201,
China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| |
Collapse
|
2
|
Colombi D, Perini F, Bettini S, Mastrangelo S, Abeni F, Conte G, Marletta D, Cassandro M, Bernabucci U, Ciampolini R, Lasagna E. Genomic responses to climatic challenges in beef cattle: A review. Anim Genet 2024; 55:854-870. [PMID: 39219301 DOI: 10.1111/age.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Climate change is a major concern for the near future and for livestock breeding. Cattle breeding, due to its greenhouse gas emissions, is one of the most implicated industries. Consequently, the main future goals are to breed animals resilient to climate change, with the aim of lowering the livestock impact on the environment and selecting animals that will be able to resist different, unsuitable, and changing climates. The aim of this literature review is to compare the most recent studies on the response and adaptation of beef cattle breeds to extreme environments, in terms of genes and pathways involved. Beef breeding is just starting to implement genomics in its selection plans, and shedding light on the genomic responses to extreme climates could speed up and simplify the adaptation of these breeds to climate change. This review discusses the genes involved in climatic stress responses, including those related to extremely cold climates, in beef and dual-purpose cattle breeds. Genes were associated with productive traits, coat and skin structure and development, thermotolerance, cellular physiology and DNA repair mechanisms, immune system, and fertility traits. The knowledge of genes and pathways involved in climate resilience should be taken into consideration for further selection in beef cattle breeding and could promote the valorization of local breeds adapted to extreme environmental conditions. The use of local or resilient breeds could enhance the environmental and social sustainability, animal welfare, and production, compared with the introduction of cosmopolitan breeds with uncertain adaptation in uncontrolled environmental areas.
Collapse
Affiliation(s)
- Daniele Colombi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Francesco Perini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Stefano Bettini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Fabio Abeni
- Centro di Ricerca Zootecnia e Acquacoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Lodi, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| | - Donata Marletta
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Martino Cassandro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| | - Umberto Bernabucci
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Agriculture and Forest Sciences, Università Della Tuscia, Viterbo, Italy
| | - Roberta Ciampolini
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Emiliano Lasagna
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
- Interuniversity Center for Adaptability of Livestock Systems to Climate Change (ASIZOCACLI), Catania, Italy
| |
Collapse
|
3
|
Lohova E, Pilmane M, Šerstņova K, Melderis I, Gontar Ł, Kochański M, Drutowska A, Maróti G, Prieto-Simón B. Analysis of Inflammatory and Regulatory Cytokines in the Milk of Dairy Cows with Mastitis: A Comparative Study with Healthy Animals. Immunol Invest 2024; 53:1397-1421. [PMID: 39287131 DOI: 10.1080/08820139.2024.2404623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bovine mastitis remains a major problem in the global dairy cattle industry. The acute invasion of udder by pathogens induces innate immune response as the first defence mechanism in subclinical and clinical mastitis. The aim of the study was to determine inflammatory and regulatory cytokines IL-2, IL-4, TGF-β1, IL-17A, beta-defensin 3 and IL-10 and their potential changes in milk of dairy cows with subclinical and clinical mastitis, and to compare the findings with healthy animals. Milk samples from 15 holstein Friesian breed cows were used in the study. Cows were divided into three groups based on their health status (5 healthy, 5 subclinical and 5 clinical animals). All samples were tested using immunohistochemistry to evaluate IL-2, IL-4, IL-10, IL17A, TGF-β1 and β-Def 3 proteins. Expression of all proteins was detected in all milk samples. High expression of IL-2, IL-4, IL17A, TGF-β1 was detected in healthy cows' milk and in milk of cows with subclinical and clinical mastitis. However, expression of IL-10 and β-Def 3 in milk samples of healthy cows was significantly higher compared to the milk of cows with subclinical and clinical mastitis (p < .001). IL-10 and β-Def 3 can be considered as informative biomarkers in diagnosis of subclinical and clinical mastitis.
Collapse
Affiliation(s)
- Elizabeta Lohova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Mara Pilmane
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ksenija Šerstņova
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Ivars Melderis
- The Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Łukasz Gontar
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Maksymilian Kochański
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Andzelika Drutowska
- Research and Innovation Centre Pro-Akademia, Centrum Badan i Innowacji Pro-Akademia, Konstantynów Łódzki, Poland
| | - Gergely Maróti
- Seqomics Biotechnology Ltd., Morahalom, Hungary
- Biological Research Center, Plant Biology Institute, Szeged, Hungary
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
4
|
Aufmhof L, Yin T, May K, König S. Effects of the Prenatal Maternal Health Status on Calf Disease Prevalences and Respective Genetic Parameter Estimates in German Holstein Cattle. J Anim Breed Genet 2024. [PMID: 39462232 DOI: 10.1111/jbg.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
The aim of the present study was to infer phenotypic responses and genetic parameters of the F1 calf diseases diarrhoea (DIAR) and pneumonia (PNEU) in dependency of the prenatal maternal health status (PMHS) of the dam and of the herd-calving year. The PMHS considered diagnoses for the cow disease mastitis (MAST) and claw disorders (CD) during gestation of F0 dams. Furthermore, 305-d milk production traits of F1 offspring from either healthy or diseased dam groups were compared. The study comprised 20,045 female calves (F1 = generation 1) and their corresponding dams (F0 = parental generation 0), kept in 41 large-scale herds. All F1 calves were from their dams' 2nd parity, implying that all dam (maternal) diseases were recorded during the first lactation and dry period of the dams. The F1 calves were phenotyped for DIAR up to 30 days post-partum, and for PNEU up to 180 days of age. At least one entry for the respective disease implied a score = 1 = sick, otherwise, a score = 0 = healthy, was assigned. Production records of the 10,129 F1 cows comprised 305-d records in first lactation for milk yield (MY), protein yield (PY) and fat yield (FY). Linear and generalised linear mixed models were applied to infer phenotypic responses of F1 traits in dependency of the PMHS for CD and MAST. A diagnosis for MAST or CD in F0 cows during gestation was significantly (p ≤ 0.05) associated with an increased prevalence for DIAR and PNEU, with pairwise differences of least-squares-means between calves from healthy and diseased cow groups up to 3.61%. The effects of PMHS on 305-d production traits in offspring were non-significant (p > 0.05). In bivariate genetic analyses, DIAR and PNEU were defined as different traits according to the PMHS, i.e., DIAR-MASThealthy and DIAR-MASTdiseased, DIAR-CDhealthy and DIAR-CDdiseased, PNEU-MASThealthy and PNEU-MASTdiseased, and PNEU-CDhealthy and PNEU-CDdiseased. The direct heritabilities for DIAR and PNEU were quite similar in the healthy and respective diseased dam group. Slightly larger direct heritabilities in the diseased dam groups were due to increased genetic variances. Maternal heritabilities were quite stable and smaller than the direct heritabilities. In random regression models, genetic parameters for DIAR and PNEU were estimated along the continuous herd-calving-year prevalence scale, considering a prevalence for MAST and CD (based on the 20,045 dam records plus 16,193 herd contemporary records) in the range from 0% to 30%. Direct heritabilities for PNEU were quite stable along the herd-calving-year gradient for MAST and CD. For DIAR, we observed stronger estimate fluctuations, especially increasing direct heritabilities in dependency of the herd-calving-year prevalence for MAST from 0.13 (at a MAST prevalence of 0%) to 0.30 (at a MAST prevalence of 30%). Consequently, obvious genotype x herd-calving-year PMHS interactions were observed for DIAR on the prenatal MAST scale, with a minimal correlation of 0.48 between direct genetic effects at 0% MAST prevalence and at 30% MAST prevalence. The correlations between direct genetic and maternal genetic effects were antagonistic at all herd-calving-year prevalence levels, displaying strongest fluctuations for "DIAR-MAST." The genotype x herd-calving-year PMHS interactions for DIAR suggest consideration of specific sires according to the herd health status for CD and for MAST.
Collapse
Affiliation(s)
- Laura Aufmhof
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
5
|
Mendonca LC, Carvalho WA, Campos MM, Souza GN, de Oliveira SA, Meringhe GKF, Negrao JA. Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J Dairy Sci 2024:S0022-0302(24)01185-8. [PMID: 39343218 DOI: 10.3168/jds.2024-25498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Heat stress during lactation affects the physiological responses, hormonal release, health, and productivity of dairy cows. However, the adverse effects of heat stress on milk synthesis, immune response, and cellular apoptosis in mammary cells remains unknown in Bos indicus cows. This study aimed to understand the relationship between milk yield, milk quality, and the expression of genes related to milk synthesis, cell apoptosis, and immune response in mammary cells of Girolando cows. Twenty-four Girolando cows (3/4 Holstein and 1/4 Gir) were subjected to control (CT, with a temperature-humidity index ranging from 60 to 74, n = 12) or heat stress treatments (HS, with a temperature- humidity index ranging from 60 to 85, n = 12), from 111 to 120 d of lactation. Heat stress significantly increased the expression of heat shock proteins (HSPD1 and HSPD90AA1), insulin receptors (INSR), and prolactin receptors (PRLRsf) genes, and decreased the expression of glucocorticoid receptor (NR3C1) gene in mammary cells of the HS cows when compared with the CT cows. The HS cows exhibited significantly higher vaginal temperatures and cortisol release compared with the CT cows. Moreover, the HS cows had significantly lower dry matter intake and milk yield than CT cows. Although, HS cows showed higher percentage of lymphocytes in milk when compared with that from CT cows. There was no effect of heat stress on other leukocyte counts, somatic cell counts, bacterial counts in milk, or milk composition. Finally, this study demonstrated that Girolando cows are susceptible to heat stress, which decreases milk yield and affects the expression of genes linked to milk synthesis in the mammary cells.
Collapse
Affiliation(s)
- L C Mendonca
- São Paulo State University (UNESP), Faculty of Agricultural and Veterinary Sciences, Campus Jaboticabal; Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - W A Carvalho
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - M M Campos
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - G N Souza
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - S A de Oliveira
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil
| | - G K F Meringhe
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil
| | - J A Negrao
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil.
| |
Collapse
|
6
|
Stefanska B, Pruszynska-Oszmalek E, Fievez V, Purwin C, Nowak W. Impact of heat stress during close-up dry period on performance, fertility and immunometabolic blood indices of dairy cows: prospective cohort study. Sci Rep 2024; 14:21211. [PMID: 39261589 PMCID: PMC11390746 DOI: 10.1038/s41598-024-72294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
This study aimed to investigate whether heat stress, as defined by the temperature-humidity index (THI) during the close-up dry period, had any impact on the productive performance, fertility, and immunometabolic blood indices of dairy cows in the subsequent lactation. Lactation performance was associated with increasing THI values on - 21, - 14, and - 7 d before calving resulting in decreased milk yield by about 2.30, 2.60, and 2.90 kg, respectively. The THI on the - 7 d before the calving was negatively associated with fertility parameters such as delayed first estrus postpartum, an elongated calving interval by approximately 32 d, a higher number of services per conception by 1.00, and an elongated artificial insemination service period, days open, and inter-calving period by about 20, 52, and 52 d, respectively. The study found that the immunometabolic blood indices were associated with increasing THI values during the close-up dry period. The study showed that exposing dairy cows to close-up dry period heat stress had negative consequences on performance, fertility, and immunometabolic blood indices in the subsequent lactation. Therefore, it is recommended that herd management and barn microclimate changes be implemented earlier, starting from the late dry period, to mitigate the negative impact of heat stress.
Collapse
Affiliation(s)
- Barbara Stefanska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632, Poznan, Poland.
| | - Ewa Pruszynska-Oszmalek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Science, 60-637, Poznan, Poland
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Gent, Belgium
| | - Cezary Purwin
- Department of Animal Nutrition, Feed Science, and Cattle Breeding, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | - Włodzimierz Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 60-637, Poznan, Poland
| |
Collapse
|
7
|
Upadhyay VR, Ashutosh, Shashank CG, Singh NP. Deciphering the immune responses in late gestation Sahiwal cows under different microclimate and its carryover effect on progenies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1885-1895. [PMID: 38861181 DOI: 10.1007/s00484-024-02716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The current investigation aimed to comprehend the inflammatory and related immune responses in intrauterine calves subjected to heat stress (HS) during late gestation. For this purpose, 48 Sahiwal cows in late gestation were chosen and categorized into four equal groups: naturally heat stressed (NHS), cooling-treated (CLT), spring, and winter, and likewise their neonate calves born in summer (IUHS - intrauterine heat stressed and IUCL - intrauterine cooled), spring, and winter seasons. Environmental parameters were recorded, and the temperature-humidity index (THI) was calculated daily throughout the study period. The average THI values ranged between 84.18 (summer-NHS), 73.88 (summer-CLT), 78.92 (spring), and 64.91 (winter). NHS and spring groups exhibited thermal stress based on THI (> 76.00). Various treatments significantly (P < 0.01) impacted parameters like rectal temperature (RT), respiratory rate (RR), pulse rate (PR), and skin temperature (ST) in Sahiwal cows and their calves during the study, except for heart rate (HR). Blood samples collected during different seasons and from cows housed in a climatic chamber were used to extract plasma. Plasma cortisol, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and thiobarbituric acid reactive substances (TBARS) levels were notably higher (P < 0.05) in the NHS compared to the CLT group. Conversely, total antioxidant capacity (TAC) and immunoglobulin G (IgG) levels were higher (P < 0.05) in the CLT and winter groups. IUHS calves exhibited significantly (P < 0.05) lower overall mean plasma TAC and IgG levels but higher inflammatory and oxidative biomarkers, such as IL-6, TNF-α, and TBARS. Additionally, significant impacts on body weight were observed for factors such as interval (P < 0.01) and the interaction between treatment and interval (P < 0.05), exhibiting consistently lower body weight in IUHS calves throughout the study period. These findings suggest that late gestation heat stress may lead to physiological alterations in future calves. Strategies aimed at mitigating heat stress during late gestation should be considered not only for the productivity and well-being of the pregnant dam but also for the development and future performance of the calf.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, 334001, India.
| | - Ashutosh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - N P Singh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
8
|
Rakib MRH, Messina V, Gargiulo JI, Lyons NA, Garcia SC. Potential use of HSP70 as an indicator of heat stress in dairy cows - a review. J Dairy Sci 2024:S0022-0302(24)01096-8. [PMID: 39218068 DOI: 10.3168/jds.2024-24947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Heat stress (HS) poses significant challenges to the dairy industry, resulting in reduced milk production, impaired reproductive performance, and compromised animal welfare. Therefore, understanding the molecular mechanisms underlying cellular responses to HS is crucial for developing effective strategies to mitigate its adverse effects. Heat shock protein 70 (HSP70) has emerged as a potential player involved in cellular thermotolerance in dairy cows. This review provides a comprehensive overview of the role of HSP70 as a molecular chaperone in cellular thermotolerance in dairy cows under HS. HSP70 facilitates proper protein folding and prevents the aggregation of denatured proteins. By binding to misfolded proteins, it helps maintain protein homeostasis and prevents the accumulation of damaged proteins during HS. Additionally, HSP70 interacts with various regulatory proteins and signaling pathways, contributing to the cellular adaptive response to HS. The upregulation of HSP70 expression in response to HS is regulated by a complex network involving heat-shock factors (HSFs), heat-shock element-binding proteins, and HSF co-chaperones. Therefore, HSP70 holds the potential to be a useful indicator of tissue stress due to its role in maintaining cellular balance, and as it is released both inside and outside cells in response to stress. Traditional methods of measuring HSP70 in blood samples are labor-intensive, and with the process being potentially stressful for the animals and may subsequently affect the results. Therefore, measuring HSP expression in cow's milk has shown promise as an easy, non-invasive, and accurate way to detect HS in dairy cows. Monitoring HSP70 levels in milk can be applied as a supplementary approach to identify HS or HS resistance of individual cows, selection of suitable animals and to guide targeted management strategies. However, despite the potential advantages of using HSP70 as a biomarker for monitoring HS on dairy cows, challenges remain in standardizing measurement protocols, establishing species-specific reference ranges, addressing inter-individual variations, and determining the specificity of changes in HSP70 due to HS. Future research should focus on developing non-invasive techniques for HSP70 detection, with consideration of climatic conditions, and unravelling the molecular interactions and regulatory networks involving HSP70.
Collapse
Affiliation(s)
- M R H Rakib
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; Bangladesh Livestock Research Institute, Savar, Dhaka 1341, Bangladesh.
| | - V Messina
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - J I Gargiulo
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; NSW Department of Primary Industries and Regional Development, Menangle, NSW 2568, Australia
| | | | - S C Garcia
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
9
|
Qi J, Fang J, Huang F, Li Z, Kumbhar MA, Guo H, Ren Z, Geng Y, Deng J, Zuo Z. Effects of meloxicam on the welfare of Holstein calves from 6 weeks to 6 months old undergoing amputation dehorning. J Dairy Sci 2024; 107:6065-6078. [PMID: 38554819 DOI: 10.3168/jds.2023-24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Amputation dehorning (AD) is a common practice performed on calves, causing harmful effects such as pain, distress, anxiety, and fear. These effects extend to behavioral, physiological, and hematological responses, prompting serious ethical concerns regarding animal welfare, even when performed with local anesthesia. Meloxicam, a nonsteroidal anti-inflammatory drug, has been widely used to mitigate the side effects of dehorning and disbudding in calves. However, there is a notable gap in research regarding the effects of meloxicam on calves aged 6 wk to 6 mo undergoing AD procedures. This study was designed to assess the effectiveness of co-administering meloxicam with lidocaine, a cornual nerve anesthetic, in alleviating the adverse effects caused by the AD procedure in calves within this age range, compared with the use of lidocaine alone. Thirty Holstein calves were enrolled and randomly divided into 2 groups. The first group received a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 0.9% saline at a dose of 0.025 mL/kg in the neck, administered 10 min before the AD procedure. The second group received a combination of lidocaine and meloxicam: a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 20 mg/mL meloxicam at a dose of 0.025 mL/kg in the neck, also administered 10 min before the AD procedure. To avoid subjective bias, the researchers were blinded to the treatment groups. Pain-related behaviors, including tail flicking, head shaking, ear flicking, head rubbing, head crossing bar, and kicking, were observed, and physiological parameters, including heart rate, rectal temperature, respiration rate, mechanical nociceptive threshold (MNT), daily active steps, and food intake were monitored. Hematological conditions were determined using enzyme-linked immunosorbent assays and routine blood tests. The data were processed using a generalized linear mixed model. The outcomes demonstrated that the AD procedure increased the frequencies of ear flicking and resulted in rises in the respiration rate, heart rate, rectal temperature, and daily active steps. It also led to decreases in total food intake, forage intake, hay intake, MNT, and increased concentrations of prostaglandin E2 (PgE2), IL-1β, tumor necrosis factor-α (TNF-α), nitric oxide (NO), and malondialdehyde, as well as glutathione peroxidase activity. However, calves that received meloxicam treatment showed significant improvements in response to the AD procedure, including lower respiration rates, heart rates, and rectal temperatures; higher MNT; and lower intermediate cell ratio. They also had higher red blood counts, hemoglobin levels, hematocrit values; larger mean platelet volumes; and lower concentrations of PgE2, IL-1β, TNF-α, and NO. These results suggest that co-administration of lidocaine and meloxicam may aid in mitigating the adverse effects induced by the AD procedure on these calves, thereby supporting the use of meloxicam in conjunction with a local anesthetic in AD procedures for calves aged 6 wk to 6 mo.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Fangyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Zhiqiang Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130; Animal Disease Control and Prevention Center of Zhongjiang County, Deyang, Sichuan, China 618100
| | - Maqsood Ahmed Kumbhar
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China 611130.
| |
Collapse
|
10
|
Chavarría I, Alvarado AS, Macías-Cruz U, Avendaño-Reyes L, Ángel-García O, Contreras V, Carrillo DI, Mellado M. Unmasking seasonal cycles in a high-input dairy herd in a hot environment: How climate shapes dynamics of milk yield, reproduction, and productive status. J Therm Biol 2024; 123:103944. [PMID: 39137568 DOI: 10.1016/j.jtherbio.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to predict the annual herd milk yield, lactation, and reproductive cycle stages in a high-input dairy herd in a zone with prolonged thermal stress. Also, the impact of climatic conditions on milk yield and productive and reproductive status was assessed. An autoregressive integrated moving average (ARIMA) model was used in data fitting to predict future monthly herd milk yield and reproductive status using data from 2014 to 2020. Based on the annual total milk output, the highest predicted percentage of milk yield based on the yearly milk production was in February (9.1%; 95% CI = 8.3-9.9) and the lowest in August (6.9%; 95% CI = 6.0-7.9). The predicted highest percentage of pregnant cows for 2021 was in May (61.8; 95% CI = 53.0-70.5) and the lowest for November (33.2%; 95% CI = 19.9-46.5). The monthly percentage of dry cows in this study showed a steady trend across years; the predicted highest percentage was in September (20.1%; CI = 16.4-23.7) and the lowest in March (7.5%; 4.0-11.0). The predicted days in milk (DIM) were lower in September (158; CI = 103-213) and highest in May (220; 95% CI = 181-259). Percentage of calvings was seasonal, with the predicted maximum percentage of calvings occurring in September (10.3%; CI = 8.0-12.5) and the minimum in April (3.2%; CI = 1.0-5.5). The highest predicted culling rate for the year ensuing the present data occurred in November (4.3%; 95% CI = 3.2-5.4) and the lowest in April (2.5%; 95% CI = 1.4-3.5). It was concluded that meteorological factors strongly influenced rhythms of monthly milk yield and reproductive status. Also, ARIMA models robustly estimated and forecasted productive and reproductive events in a dairy herd in a hot environment.
Collapse
Affiliation(s)
- I Chavarría
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - A S Alvarado
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - U Macías-Cruz
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - L Avendaño-Reyes
- Institute of Agricultural Sciences, Autonomous University of Baja California, Mexicali, Mexico.
| | - O Ángel-García
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - V Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - D I Carrillo
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico.
| | - M Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Coah, Mexico.
| |
Collapse
|
11
|
Hu L, Fang H, Abbas Z, Luo H, Brito LF, Wang Y, Xu Q. The HSP90AA1 gene is involved in heat stress responses and its functional genetic polymorphisms are associated with heat tolerance in Holstein cows. J Dairy Sci 2024; 107:5132-5149. [PMID: 38395401 DOI: 10.3168/jds.2023-24007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
As the stress-inducible isoform of the heat-shock protein 90 (HSP90), the HSP90AA1 gene encodes HSP90α and plays an important role in heat stress (HS) response. Therefore, this study aimed to investigate the role of the HSP90AA1 gene in cellular responses during HS and to identify functional SNPs associated with thermotolerance in Holstein cattle. For the in vitro validation experiment of acute HS, cells from the Madin-Darby bovine kidney cell line were exposed to 42°C for 1 h, and various parameters were assessed, including cell apoptosis, cell autophagy, and the cellular functions of HSP90α by using its inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Furthermore, the polymorphisms identified in the HSP90AA1 gene and their functions related to HS were validated in vitro. Acute HS exposure induced cell apoptosis, cell autophagy, and upregulated expression of the HSP90AA1 gene. Inhibition of HSP90α by 17-AAG treatment had a significant effect on the expression of the HSP90α protein and increased cell apoptosis. However, autophagy decreased in comparison to the control treatment when cells were exposed to 42°C for 1 h. Five SNPs identified in the HSP90AA1 gene were significantly associated with rectal temperature and respiration score in Holstein cows, in which the rs109256957 SNP is located in the 3' untranslated region (3' UTR). Furthermore, we demonstrated that the 3' UTR of HSP90AA1 is a direct target of bta-miR-1224 by cell transfection with exogenous microRNA (miRNA) mimic and inhibitor. The luciferase assays revealed that the SNP rs109256957 affects the regulation of bta-miR-1224 binding activity and alters the expression of the HSP90AA1 gene. Heat stress-induced HSP90AA1 expression maintains cell survival by inhibiting cell apoptosis and increasing cell autophagy. The rs109256957 located in the 3' UTR region is a functional variation and it affects the HSP90AA1 expression by altering its binding activity with bta-miR-1224, thereby associating with the physiological parameters of Holstein cows.
Collapse
Affiliation(s)
- Lirong Hu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Hao Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China
| | - Zaheer Abbas
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing, 100044, China.
| |
Collapse
|
12
|
Moradpour Z, Khavanin A, Abdolmaleki P, Hajipour-Verdom B, Mola SJ, Hamidi M, Zendehdel R. Cell toxicity assessment in co-treatment to metalworking fluids and vibration: an in vitro study of occupational exposure setting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2766-2775. [PMID: 37952631 DOI: 10.1080/09603123.2023.2272703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
This study was designed to study dual risk of MWFs and vibration according to exposure simulation of selected industry. Air samples of two types MWFs were evaluated according to NIOSH 5026. Vibration acceleration exposure was assessed based on the ISO 8041:2005 standard. Cell treatment of both MWF air samples and vibration as the same as dual exposure to MWF airborne and vibration was assessed. There is a potency of nitrosamine formation in airborne samples of ethylamine containing MWF, while heterocyclic including bore is found in airborne bore containing MWF. DNA breaks caused by boron-containing MWF were higher than nitrosamine air samples. Oxidative stress production and chronic inflammation were highlighted in the response to cell treatments. The risk of cell toxicity in machining workers was evaluated at a level lower than the occupational exposure limit for MWFs and vibration.
Collapse
Affiliation(s)
- Zahra Moradpour
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hajipour-Verdom
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mola
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Hamidi
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Danso F, Iddrisu L, Lungu SE, Zhou G, Ju X. Effects of Heat Stress on Goat Production and Mitigating Strategies: A Review. Animals (Basel) 2024; 14:1793. [PMID: 38929412 PMCID: PMC11200645 DOI: 10.3390/ani14121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Goats, versatile creatures selectively bred for various purposes, have become pivotal in shaping the socioeconomic landscape, particularly in rural and economically challenged areas. Their remarkable ability to withstand and adapt to extreme heat has proven invaluable, allowing them to flourish and reproduce in even the harshest climates on Earth. Goat farming has emerged as a reliable and sustainable solution for securing food resources. However, despite its significance, the goat-producing industry has received less attention than other ruminants. Despite goats' inherent resilience to heat, their productivity and reproductive performance suffer under high ambient temperatures, leading to heat stress. This presents a significant challenge for goat production, necessitating a comprehensive multidisciplinary approach to mitigating the adverse effects of heat stress. This review aims to explore the diverse impacts of heat stress on goats and propose effective measures to address the sector's challenges. By understanding and addressing these issues, we can enhance the resilience and sustainability of goat farming, ensuring its continued contribution to food security and socioeconomic development.
Collapse
Affiliation(s)
- Felix Danso
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Shera Elizabeth Lungu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
| | - Guangxian Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (F.D.); (S.E.L.)
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Sarubbi J, Martínez-Burnes J, Ghezzi MD, Olmos-Hernandez A, Lendez PA, Ceriani MC, Hernández-Avalos I. Hypothalamic Neuromodulation and Control of the Dermal Surface Temperature of Livestock during Hyperthermia. Animals (Basel) 2024; 14:1745. [PMID: 38929364 PMCID: PMC11200636 DOI: 10.3390/ani14121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hyperthermia elicits several physiological and behavioral responses in livestock to restore thermal neutrality. Among these responses, vasodilation and sweating help to reduce core body temperature by increasing heat dissipation by radiation and evaporation. Thermoregulatory behaviors such as increasing standing time, reducing feed intake, shade-seeking, and limiting locomotor activity also increase heat loss. These mechanisms are elicited by the connection between peripheral thermoreceptors and cerebral centers, such as the preoptic area of the hypothalamus. Considering the importance of this thermoregulatory pathway, this review aims to discuss the hypothalamic control of hyperthermia in livestock, including the main physiological and behavioral changes that animals adopt to maintain their thermal stability.
Collapse
Affiliation(s)
- Juliana Sarubbi
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, Palmeira das Missões 3751, RS, Brazil
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Marcelo Daniel Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina;
| | - Adriana Olmos-Hernandez
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires, CIVETAN, UNCPBA-CICPBA-CONICET (UNCPBA), University Campus, Tandil 7000, Argentina
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| |
Collapse
|
15
|
Dos Santos JCG, de Araujo Neto FR, de Oliveira Seno L, de Abreu Santos DJ, de Oliveira KJ, Aspilcueta-Borquis RR, de Oliveira HN, Tonhati H. Genomic analysis of genotype-environment interaction in age at first calving of Murrah buffaloes. J Anim Breed Genet 2024. [PMID: 38837529 DOI: 10.1111/jbg.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Age at first calving (AFC) is a measure of sexual maturity associated with the start of productive life of dairy animals. Additionally, a lower AFC reduces the generation interval and early culling of females. However, AFC has low heritability, making it a trait highly influenced by environmental factors. In this scenario, one way to improve the reproductive performance of buffalo cows is to select robust animals according to estimated breeding value (EBV) using models that include genotype-environment interaction (GEI) with the application of reaction norm models (RNMs). This can be achieved by understanding the genomic basis related to GEI of AFC. Thus, in this study, we aimed to predict EBV considering GEI via the RNM and identify candidate genes related to this component in dairy buffaloes through genome-wide association studies (GWAS). We used 1795 AFC records from three Murrah buffalo herds and formed environmental gradients (EGs) from contemporary group solutions obtained from genetic analysis of 270-day cumulative milk yield. Heritability estimates ranged from 0.15 to 0.39 along the EG. GWAS of the RNM slope parameter identified important genomic regions. The genomic window that explained the highest percentage of genetic variance of the slope (0.67%) was located on BBU1. After functional analysis, five candidate genes were detected, involved in two biological processes. The results suggested the existence of a GEI for AFC in Murrah buffaloes, with reclassification of animals when different environmental conditions were considered. The inclusion of genomic information increased the accuracy of breeding values for the intercept and slope of the reaction norm. GWAS analysis suggested that important genes associated with the AFC reaction norm slope were possibly also involved in biological processes related to lipid metabolism and immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Humberto Tonhati
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal - UNESP, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
16
|
Zhou L, Liu S, Li H, Wu S, Cao Y. Inhibitory Effect of Puerarin on Lipopolysaccharide-triggered Inflammatory Responses of Bovine Kidney Cells. Cell Biochem Biophys 2024; 82:1503-1510. [PMID: 38753248 DOI: 10.1007/s12013-024-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 08/25/2024]
Abstract
Puerarin (Pue), a flavonoid compound, possesses cytoprotective effects and LPS has been reported to induce renal inflammatory injury in bovine. However, whether Pue inhibits lipopolysaccharide (LPS)-induced inflammatory damage of bovine kidney cells remains unknown. Based on an in vitro model with Madin-Darby bovine kidney (MDBK) cell line, it has found that Pue attenuated LPS-induced damage of MDBK cells, as evidenced by cell viability and lactic dehydrogenase (LDH) release rescued by Pue (P < 0.05). Additionally, the real-time quantitative PCR (qPCR) and enzyme linked immunosorbent assay (ELISA) showed that LPS elevated the levels of pro-inflammatory factors interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α, which was reversed by pretreatment of Pue (P < 0.05). Besides, Pue reduced the expression of Toll like receptor 4 (TLR4) and phosphorylated nuclear factor kappa B (p-NF-κB) of LPS-exposed MDBK cells (P < 0.05). Collectively, these results showed that Pue suppresses LPS-evoked inflammatory damage of bovine kidney cells, suggesting Pue a potential compound for intervention of bovine inflammation.
Collapse
Affiliation(s)
- Lingbo Zhou
- Loudi Vocational and Technical College, Loudi, 417000, China.
| | - Shasha Liu
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Huizhen Li
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Shujun Wu
- Loudi Vocational and Technical College, Loudi, 417000, China
| | - Yan Cao
- Loudi Vocational and Technical College, Loudi, 417000, China
| |
Collapse
|
17
|
Sheriff O, Ahbara AM, Haile A, Alemayehu K, Han JL, Mwacharo JM. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Front Genet 2024; 15:1353026. [PMID: 38854428 PMCID: PMC11156998 DOI: 10.3389/fgene.2024.1353026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.
Collapse
Affiliation(s)
- Oumer Sheriff
- Department of Animal Science, Assosa University, Assosa, Ethiopia
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abulgasim M. Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
| | - Aynalem Haile
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Kefyalew Alemayehu
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Ethiopian Agricultural Transformation Institute, Amhara Agricultural Transformation Center, Bahir Dar, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Katthöfer P, Zhang Y, Wente N, Preine F, Nitz J, Krömker V. The Influence of Milk Leakage, Udder Pressure and Further Risk Factors on the Development of New Intramammary Infections during the Dry Period of Dairy Cows. Pathogens 2024; 13:430. [PMID: 38787282 PMCID: PMC11124326 DOI: 10.3390/pathogens13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Prevention of new intramammary infection (NIMI) during the dry period (DP) is essential to prevent the development of mastitis in dairy cows. To investigate risk factors for NIMI, 212 cows, comprising a total of 848 udder quarters, were examined in this study. Quarter milk samples were taken on the day of drying off and 7 ± 3 days after calving. Cow- and quarter-level associated risk factors were assessed at the beginning of the DP and after calving. In total, 7.1% of the udder quarters developed an NIMI between the samplings. Non-aureus staphylococci (40.4%) and Gram-negative pathogens (22.8%) were most frequently the cause of NIMI. The observed milk leakage prevalence was 16.7%, with a peak 24 h after drying off. Simultaneously, the udder pressure peaked 24 h after drying off. A significant correlation between milk yield on the day before drying off and milk leakage could be proven. Cows with quarters leaking milk produced an average milk yield of 28.32 kg on the day before drying off. Generalised linear mixed models and odds ratios were calculated to determine the significant risk factors for NIMI during the DP and early lactation. Quarters leaking milk had 3.4 higher odds for NIMI between the samplings compared to quarters without milk leakage. Quarters from cows with dirty udders had 3.1 higher odds of developing an NIMI between the samplings compared to quarters from cows with clean udders. The results of this study demonstrate the importance of dry cow management before drying off and during the critical period of active involution of the udder tissue.
Collapse
Affiliation(s)
- Pauline Katthöfer
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany; (P.K.); (Y.Z.); (N.W.); (F.P.); (J.N.)
| | - Yanchao Zhang
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany; (P.K.); (Y.Z.); (N.W.); (F.P.); (J.N.)
| | - Nicole Wente
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany; (P.K.); (Y.Z.); (N.W.); (F.P.); (J.N.)
| | - Franziska Preine
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany; (P.K.); (Y.Z.); (N.W.); (F.P.); (J.N.)
| | - Julia Nitz
- Department of Microbiology, Faculty of Mechanical and Bioprocess Engineering, University of Applied Sciences and Arts, 30453 Hannover, Germany; (P.K.); (Y.Z.); (N.W.); (F.P.); (J.N.)
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
19
|
Uysal S, Yoruk MA. Boric Acid in Milk Replacer as a Health Enhancer and Growth Promoter for Lambs in the Suckling Period. Biol Trace Elem Res 2024:10.1007/s12011-024-04214-4. [PMID: 38758480 DOI: 10.1007/s12011-024-04214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
This study was performed to investigate the effects of boric acid supplementation in milk replacer of lambs in the suckling period on performance, biochemical parameters, the antioxidant system, fecal culture, and expression of some genes. During the suckling period, 60 lambs (4 days old) were randomly given four levels of boric acid (0, 30, 60, and 90 mg/kg body weight) via milk replacer for 57 days. The lambs supplemented with boric acid had a higher weight gain and better feed conversion ratio. Boric acid supplementation quadratically increased serum triglyceride, total protein, alkaline phosphatase, serum antioxidant activity and oxidative stress biomarkers, and fecal flora and decreased IL1β, IL10, iNOS, NF-kB, and TNF-α gene expressions. The effect of boric acid on rumen papilla development could not be determined since the animals were not slaughtered. In conclusion, the use of boric acid to lambs in the suckling period improved the average weekly body weight gain and feed conversion efficiency, positively affected some biochemical parameters, antioxidant system, and intestinal flora, and also affected gene expressions related to the immune system. Boric acid supplementation had a beneficial effect on the health and growth of suckling lambs.
Collapse
Affiliation(s)
- Soner Uysal
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey.
| | - Mehmet Akif Yoruk
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55139, Turkey
| |
Collapse
|
20
|
Li Y, Pan M, Meng S, Xu W, Wang S, Dou M, Zhang C. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. Biol Trace Elem Res 2024; 202:2042-2051. [PMID: 37648935 DOI: 10.1007/s12011-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 μg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Pan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenhao Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
21
|
Hu Q, Zhang T, He H, Pu F, Zhang R, Li L, Hu J, Bai L, Han C, Wang J, Liu H. Impacts of longitudinal water curtain cooling system on transcriptome-related immunity in ducks. BMC Genomics 2024; 25:333. [PMID: 38570739 PMCID: PMC10988813 DOI: 10.1186/s12864-024-10179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The closed poultry houses integrated with a longitudinal water curtain cooling system (LWCCS) are widely used in modern poultry production. This study showed the variations in environmental conditions in closed houses integrated with a longitudinal water curtain cooling system. We evaluated the influence of different environmental conditions on duck growth performance and the transcriptome changes of immune organs, including the bursa of Fabricius and the spleen. RESULT This study investigated the slaughter indicators and immune organ transcriptomes of 52-day-old Cherry Valley ducks by analyzing the LWCC at different locations (water curtain end, middle position, and fan cooling end). The results showed that the cooling effect of the LWCCS was more evident from 10:00 a.m. -14:00. And from the water curtain end to the fan cooling end, the hourly average temperature differently decreased by 0.310℃, 0.450℃, 0.480℃, 0.520℃, and 0.410℃, respectively (P < 0.05). The daily and hourly average relative humidity decreased from the water curtain end to the fan cooling end, dropping by 7.500% and 8.200%, respectively (P < 0.01). We also observed differences in production performance, such as dressing weight, half-eviscerated weight, skin fat rate, and percentage of abdominal fat (P < 0.01), which may have been caused by environmental conditions. RNA-sequencing (RNA-seq) revealed 211 and 279 differentially expressed genes (DEGs) in the ducks' bursa of Fabricius and spleen compared between the water curtain end and fan cooling end, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the two organs showed the DEGs were mainly enriched in cytokine-cytokine receptor interaction, integral component of membrane, Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathway, etc. Our results implied that full-closed poultry houses integrated with LWCCS could potentially alter micro-environments (water curtain vs. fan cooling), resulting in ducks experiencing various stressful situations that eventually affect their immunity and production performance. CONCLUSION In this study, our results indicated that uneven distributions of longitudinal environmental factors caused by LWCCS would affect the dressed weight, breast muscle weight, skin fat rate, and other product performance. Moreover, the expression of immune-related genes in the spleen and bursa of ducks could be affected by the LWCCS. This provides a new reference to optimize the use of LWCCS in conjunction with close duck houses in practical production.
Collapse
Affiliation(s)
- Qian Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Tao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Fajun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Rongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 611130, Chengdu, Sichuan, P.R. China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, 611130, Chengdu, Wenjiang District, Sichuan, P.R. China.
- National Key Laboratory for Swine and Poultry Breeding, Wuhan, P.R. China.
| |
Collapse
|
22
|
Lazzari J, Isola JVV, Szambelan VL, Menegazzi G, Busanello M, Rovani MT, Sarubbi J, Schmitt E, Ferreira R, Gonçalves PBD, Gasperin BG, Mondadori RG. Thermoregulatory response of black or red lactating Holstein cows in the hot and cold season in southern Brazil. J Therm Biol 2024; 121:103833. [PMID: 38527387 DOI: 10.1016/j.jtherbio.2024.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Dairy cows in pasture-based systems are more susceptible to heat stress. Holstein cows have the black or red phenotypes, the latter having lower absorbance of solar radiation. Therefore, the study's objective was to evaluate whether cows with red (R) coats are more resistant than black (B) cows to hot weather in a subtropical climate. R and B lactating Holstein cows were evaluated during the cold and hot seasons for internal and surface temperature and sweating rate. In the cold season, body temperature (n = 9/group) did not differ between groups, but the average superficial temperature (n = 13/group) was lower in R cows (B: 30.9 ± 0.3 °C; RW: 29.6 ± 0.3 °C; p = 0.02). In the hot season, under mild to moderate heat stress, mean body temperature (n = 9/group) of R cows was lower (B: 38.75 ± 0.01 °C; R: 38.62 ± 0.1 °C; p=<0.0001), whereas no difference was observed in superficial temperature (n = 17/group). The maximum internal temperature and sweating rate (n = 11/group), measured in the hot season, and the number of evaluations in hyperthermia in both seasons did not differ. Therefore, there were differences in thermoregulation between phenotypes under mild to moderate heat stress conditions. However, considering that only discrete differences were observed, the red and white coat is unlikely to benefit the Holstein cow's welfare under mild to moderate thermal stress.
Collapse
Affiliation(s)
- Jéssica Lazzari
- Veterinary Medicine Graduate Program, Federal University of Pelotas, Av. Eliseu Maciel, Capão do Leão, RS, Brazil.
| | - José Victor Vieira Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
| | - Vanessa Lambrecht Szambelan
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, 3751, Palmeira Das Missões, RS, Brazil.
| | - Gabriel Menegazzi
- Department of Animal Science, Faculty of Agronomy, University of the Republic, Ruta 3 Km 363, Paysandú, Uruguay.
| | - Marcos Busanello
- Department of Agricultural Sciences, High Uruguay and Missions Regional Integrated University, Av. Assis Brasil, 709, Frederico Westphalen, RS, Brazil.
| | - Monique Tomazele Rovani
- Department of Animal Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9090, Agronomia, Porto Alegre, RS, Brazil.
| | - Juliana Sarubbi
- Department of Animal Science, Federal University of Santa Maria, Av. Independência, 3751, Palmeira Das Missões, RS, Brazil.
| | - Eduardo Schmitt
- Department of Veterinary Clinics, Federal University of Pelotas, Av. Eliseu Maciel, Capão do Leão, RS, Brazil.
| | - Rogerio Ferreira
- Department of Animal Science, Santa Catarina State University, Av. Luiz de Camões, 2090, Chapecó, SC, Brazil.
| | | | - Bernardo Garziera Gasperin
- Department of Animal Pathology, Federal University of Pelotas, Av. Eliseu Maciel, Capão do Leão, RS, Brazil.
| | - Rafael Gianella Mondadori
- Department of Morphology, Federal University of Pelotas, Av. Eliseu Maciel, Capão do Leão, RS, Brazil.
| |
Collapse
|
23
|
Dettleff P, Toloza C, Fuentes M, Aedo J, Zuloaga R, Estrada JM, Molina A, Valdés JA. Gills de novo assembly reveals oxidative stress, unfolded protein, and immune response on red cusk-eel (Genypterus chilensis) under thermal stress. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106440. [PMID: 38479297 DOI: 10.1016/j.marenvres.2024.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
The heat waves on the South Pacific coast could lead to thermal stress in native fish. The red cusk-eel (Genypterus chilensis) is relevant for Chilean artisanal fisheries and aquaculture diversification. This study examined the effect of high-temperature stress in the gills of G. chilensis in control (14 °C) and high-temperature stress (19 °C) conditions. High-temperature stress induces a significant increase in gills cortisol levels. Additionally, oxidative damage was observed in gills (protein carbonylation and lipoperoxidation). RNA-seq data was used to build the first transcriptome assembly of gills in this species (23,656 annotated transcripts). A total of 1138 down-regulated and 1531 up-regulated transcripts were observed in response to high-temperature stress in gills. The enrichment analysis showed immune response and replication enriched processes (on down-regulated transcripts), and processes related to the folding of proteins, endoplasmic reticulum, and transporter activity (on up-regulated transcripts). The present study showed how gills could be affected by high-temperature stress.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Carla Toloza
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile.
| |
Collapse
|
24
|
Stefanska B, Sobolewska P, Fievez V, Pruszynska-Oszmałek E, Purwin C, Nowak W. The effect of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J Dairy Sci 2024; 107:2111-2128. [PMID: 37923214 DOI: 10.3168/jds.2023-23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
The aim of this study was to assess the potential effect of heat stress on dairy cow productivity, fertility, and biochemical blood indices during the early lactation stage in a temperate climate. Additionally, the study aimed to determine the role of leptin and adiponectin in regulating the immune response accompanying lipolysis after calving in dairy cows. The study included 100 clinically healthy Polish Holstein-Friesian dairy cows selected based on parity and 305 d of milk yield from 5 commercial farms with similar herd management and housing systems. Prospective cohort data were recorded from calving day until 150 d in milk, and microclimate loggers installed inside the barns were used to record temperature and relative humidity data to calculate daily temperature-humidity index (THI) on the calving day, through +7, +14, and +21 d during early lactation. Additionally, monthly productive performance parameters such as milk yield, chemical composition, fatty acids composition, and fertility indices were analyzed. Results showed that the THI from calving day through +7, +14, and +21 d during early lactation was negatively associated with fertility parameters such as delayed first estrus postpartum and an elongated calving interval, respectively, by 29, 27, 25, and 16 d. Furthermore, an increase in THI value during early lactation was associated with an elongated artificially inseminated service period, days open, and intercalving period. Increasing THI from calving day (0 d) through +7, +14, and up to +21 d during early lactation was also linked to decreased milk yield by 3.20, 4.10, 5.60, and 5.60 kg, respectively. The study also found that heat stress during early lactation was associated with a lower body condition score in dairy cows and higher concentrations of leptin, nonesterified fatty acids, and β-hydroxybutyrate, accompanied by a drastic reduction in adipose tissue-secreted adiponectin levels after calving. Additionally, heat stress-induced lipolysis in adipose tissue caused an inflammatory response that increased biochemical blood indices associated with immune responses such as cytokines, acute phase proteins, and heat shock protein. These findings suggest that exposing dairy cows to heat stress during early lactation can negatively affect their productive performance, fertility, and biochemical blood indices in subsequent lactations. Thus, farm management changes should be implemented during early lactation to mitigate the negative consequences of heat stress occurrence.
Collapse
Affiliation(s)
- B Stefanska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland.
| | - P Sobolewska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - V Fievez
- Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - E Pruszynska-Oszmałek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Science, 60-637 Poznań, Poland
| | - C Purwin
- Department of Animal Nutrition, Feed Science, and Cattle Breeding, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - W Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
25
|
Li B, Wu K, Duan G, Yin W, Lei M, Yan Y, Ren Y, Zhang C. Folic Acid and Taurine Alleviate the Impairment of Redox Status, Immunity, Rumen Microbial Composition and Fermentation of Lambs under Heat Stress. Animals (Basel) 2024; 14:998. [PMID: 38612237 PMCID: PMC11010938 DOI: 10.3390/ani14070998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-β, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Youshe Ren
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| | - Chunxiang Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China; (B.L.); (K.W.); (G.D.); (W.Y.); (M.L.); (Y.Y.)
| |
Collapse
|
26
|
Luo M, Zhu W, Liang Z, Feng B, Xie X, Li Y, Liu Y, Shi X, Fu J, Miao L, Dong Z. High-temperature stress response: Insights into the molecular regulation of American shad (Alosa sapidissima) using a multi-omics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170329. [PMID: 38280591 DOI: 10.1016/j.scitotenv.2024.170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
High temperature is an important abiotic stressor that limits the survival and growth of aquatic organisms. American shad (Alosa sapidissima), a migratory fish suitable for culturing at low temperatures, is known for its delicious taste and thus has high economic value. Studies concerning changes in A. sapidissima under high temperature are limited, especially at the gene expression and protein levels. High-temperature stress significantly reduced the survival rates and increased vacuolar degeneration and inflammatory infiltration in the gills and liver. High temperature increased the activities of SOD, CAT, and cortisol, with a trend of initial increase followed by decreases in MDA, ALP, and LDH, and irregular changes in T-AOC and Na-K-ATPase. Comprehensive analysis of the transcriptome, proteome, and metabolome of gills from fish treated with different culture temperatures (24, 27, and 30 °C) revealed that differentially expressed genes, proteins, and metabolites were highly enriched in pathways involved in protein digestion and absorption, protein processing in endoplasmic reticulum, metabolic pathways, and purine metabolism. Gene expression and protein profiles indicated that genes coding for antioxidants (i.e., cat and alpl) and members of the heat shock protein (i.e., HSP70, HSP90AA1, and HSP5) were significantly upregulated. Additionally, a conjoint analysis revealed that several key enzymes, including nucleoside diphosphate kinase 2, adenosine deaminase, and ectonucleoside triphosphate diphosphohydrolase 5/6 were altered, thereby affecting the metabolism of guanosine, guanine, and inosine. An interaction network further confirmed that levels of the essential amino acids DL-arginine and L-histidine were significantly reduced, and corticosterone levels were significantly increased, suggesting that A. sapidissima may be more dependent on amino acids for energy in vivo. Overall, this work suggests that living in a high-temperature environment leads to differential defense responses in fishes. The results provide novel perspectives for studying the molecular basis of adaptation to climate change in A. sapidissima and for genetic selection.
Collapse
Affiliation(s)
- Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, Jiangsu, China
| | - Xudong Xie
- Zhenjiang Xinrun Agriculture Development Co., Ltd, Zhenjiang, Jiangsu, China
| | - Yulin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Ying Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Xiulan Shi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
| |
Collapse
|
27
|
Tamminen LM, Båge R, Åkerlind M, Olmos Antillón G. Farmers´ sense of the biological impact of extreme heat and seasonality on Swedish high-yielding dairy cows - A mixed methods approach. Prev Vet Med 2024; 224:106131. [PMID: 38277818 DOI: 10.1016/j.prevetmed.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Supporting dairy farmers in becoming resilient towards extreme weather requires a broad understanding of the experiences and perceived risks associated with these events from those who undergo them. We used a mixed methods approach to explore national trends of biological consequences on dairy cow udder health and fertility, combined with in-depth farmer conversations around extreme weather events, focusing on heat. The aim is to provide a comprehensive picture of how dairy farmer perceptions, priorities and decision-making are related to the season and extreme weather to identify preventive pathways that can reduce biological costs of heat stress on Swedish dairy cattle during summer. Data collected monthly at cow and farm level between 2016-2019 as part of the Swedish milk and disease recording system confirm seasonal trends and show increased somatic cell counts (SCC) and negatively impacted fertility during summers. In addition, transcriptions of 18 interviews with dairy farmers across the country and seasonal variations of SCC and fertility were thematically analysed. The results suggest that farmers have a broad definition of extreme weather and are aware of the negative impacts. Yet handling of extreme weather events can mainly be classified as reactive. Nevertheless, there are long-term effects on the farm economy, health and herd dynamics. Swedish dairy farmers are currently showing resilience, albeit a fragile one. The capability to ensure sufficient feed production in extreme weather is critical for farm self-perceived resilience. However, acknowledging the long-term biological costs related to fertility, currently not perceived by farmers, has the potential to support proactive planning and improve farm resilience and profitability.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | - Renée Båge
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| | | | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden.
| |
Collapse
|
28
|
Wang K, Ruiz-González A, Räisänen SE, Ouellet V, Boucher A, Rico DE, Niu M. Dietary supplementation of vitamin D 3 and calcium partially recover the compromised time budget and circadian rhythm of lying behavior in lactating cows under heat stress. J Dairy Sci 2024; 107:1707-1718. [PMID: 37863290 DOI: 10.3168/jds.2023-23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
Heat stress (HS) impedes cattle behavior and performance and is an animal comfort and welfare issue. The objective of this study was to characterize the time budget and circadian rhythm of lying behavior in dairy cows during HS and to assess the effect of dietary supplementation of vitamin D3 and Ca. Twelve multiparous Holstein cows (42.2 ± 5.6 kg milk/d; 83 ± 27 d in milk) housed in tiestalls were used in a split-plot design with the concentration of dietary vitamin E and Se as main plots (LESe: 11.1 IU/kg and 0.55 mg/kg, and HESe: 223 IU/kg and 1.8 mg/kg, respectively). Within each plot cows were randomly assigned to (1) HS with low concentrations of vitamin D3 and Ca (HS, 1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) thermoneutral pair-fed (TNPF) with low concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively) in a Latin square design with 14-d periods and 7-d washouts. Lying behavior was measured with HOBO Loggers in 15-min intervals. Overall, cows in HS spent less time lying per day relative to TNPF from d 7 to 14. Daily lying time was positively correlated with milk yield, energy-corrected milk yield, and feed efficiency, and was negatively correlated with rectal temperature, respiratory rate, fecal calprotectin, tumor necrosis factor-α, and C-reactive protein. A treatment by time interaction was observed for lying behavior: the time spent lying was lesser for cows in HS than in TNPF in the early morning (0000-0600 h) and in the night (1800-2400 h). The circadian rhythm of lying behavior was characterized by fitting a cosine function of time into linear mixed model. Daily rhythmicity of lying was detected for cows in TNPF and HS+D3/Ca, whereas only a tendency in HS cows was observed. Cows in TNPF had the highest mesor (the average level of diurnal fluctuations; 34.2 min/h) and amplitude (the distance between the peak and mesor; 17.9 min/h). Both the mesor and amplitude were higher in HS+D3/Ca relative to HS (26.6 vs. 25.2 min/h and 3.91 min/h vs. 2.18 min/h, respectively). The acrophase (time of the peak) of lying time in TNPF, HS, and HS+D3/Ca were 0028, 0152, and 0054 h, respectively. Lastly, a continuous increase in daily lying time in TNPF was observed during the first 4 d of the experimental period in which DMI was gradually restricted, suggesting that intake restrictions may shift feeding behavior and introduce biases in the behavior of animals. In conclusion, lying behavior was compromised in dairy cows under HS, characterizing reduced daily lying time and disrupted circadian rhythms, and the compromised lying behavior can be partially restored by supplementation of vitamin D3 and Ca. Further research may be required for a more suitable model to study behavior of cows under HS.
Collapse
Affiliation(s)
- K Wang
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - A Ruiz-González
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada; Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - S E Räisänen
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - V Ouellet
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - A Boucher
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - D E Rico
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada.
| | - M Niu
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
29
|
de Andrade Pantoja MH, Poleti MD, de Novais FJ, Duarte KKS, Mateescu RG, Mourão GB, Coutinho LL, Fukumasu H, Titto CG. Skin transcriptomic analysis reveals candidate genes and pathways associated with thermotolerance in hair sheep. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:435-444. [PMID: 38147121 DOI: 10.1007/s00484-023-02602-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023]
Abstract
The skin plays an important role in thermoregulation. Identification of genes on the skin that contribute to increased heat tolerance can be used to select animals with the best performance in warm environments. Our objective was to identify candidate genes associated with the heat stress response in the skin of Santa Ines sheep. A group of 80 sheep assessed for thermotolerance was kept in a climatic chamber for 8 days at a stress level temperature of 36 °C (10 am to 04 pm) and a maintenance temperature of 28 °C (04 pm to 10 am). Two divergent groups, with seven animals each, were formed after ranking them by thermotolerance using rectal temperature. From skin biopsy samples, total RNA was extracted, quantified, and used for RNA-seq analysis. 15,989 genes were expressed in sheep skin samples, of which 4 genes were differentially expressed (DE; FDR < 0.05) and 11 DE (FDR 0.05-0.177) between the two divergent groups. These genes are involved in cellular protection against stress (HSPA1A and HSPA6), ribosome assembly (28S, 18S, and 5S ribosomal RNA), and immune response (IGHG4, GNLY, CXCL1, CAPN14, and SAA-4). The candidate genes and main pathways related to heat tolerance in Santa Ines sheep require further investigation to understand their response to heat stress in different climatic conditions and under solar radiation. It is essential to verify whether these genes and pathways are present in different breeds and to understand the relationship between heat stress and other genes identified in this study.
Collapse
Affiliation(s)
- Messy Hannear de Andrade Pantoja
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Mirele Daiana Poleti
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Francisco José de Novais
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Kelly Kéffny Souza Duarte
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Gerson Barreto Mourão
- Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, São Paulo, Brazil
| | - Heidge Fukumasu
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Cristiane Gonçalves Titto
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
30
|
Wang L, Yan X, Wu H, Wang F, Zhong Z, Zheng G, Xiao Q, Wu K, Na W. Selection Signal Analysis Reveals Hainan Yellow Cattle Are Being Selectively Bred for Heat Tolerance. Animals (Basel) 2024; 14:775. [PMID: 38473160 DOI: 10.3390/ani14050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Hainan yellow cattle are indigenous Zebu cattle from southern China known for their tolerance of heat and strong resistance to disease. Generations of adaptation to the tropical environment of southern China and decades of artificial breeding have left identifiable selection signals in their genomic makeup. However, information on the selection signatures of Hainan yellow cattle is scarce. Herein, we compared the genomes of Hainan yellow cattle with those of Zebu, Qinchuan, Nanyang, and Yanbian cattle breeds by the composite likelihood ratio method (CLR), Tajima's D method, and identifying runs of homozygosity (ROHs), each of which may provide evidence of the genes responsible for heat tolerance in Hainan yellow cattle. The results showed that 5210, 1972, and 1290 single nucleotide polymorphisms (SNPs) were screened by the CLR method, Tajima's D method, and ROH method, respectively. A total of 453, 450, and 325 genes, respectively, were identified near these SNPs. These genes were significantly enriched in 65 Gene Ontology (GO) functional terms and 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (corrected p < 0.05). Five genes-Adenosylhomocysteinase-like 2, DnaJ heat shock protein family (Hsp40) member C3, heat shock protein family A (Hsp70) member 1A, CD53 molecule, and zinc finger and BTB domain containing 12-were recognized as candidate genes associated with heat tolerance. After further functional verification of these genes, the research results may benefit the understanding of the genetic mechanism of the heat tolerance in Hainan yellow cattle, which lay the foundation for subsequent studies on heat stress in this breed.
Collapse
Affiliation(s)
- Liuhao Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xuehao Yan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Hongfen Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Feifan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziqi Zhong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Gang Zheng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kebang Wu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
31
|
Chi J, Wu N, Li P, Hu J, Cai H, Lin C, Lai Y, Yang H, Huang J, Li M, Xu L. Hygrothermal stress increases malignant arrhythmias susceptibility by inhibiting the LKB1-AMPK-Cx43 pathway. Sci Rep 2024; 14:5010. [PMID: 38424223 PMCID: PMC10904738 DOI: 10.1038/s41598-024-55804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
High mortality due to hygrothermal stress during heat waves is mostly linked to cardiovascular malfunction, the most serious of which are malignant arrhythmias. However, the mechanism associated with hygrothermal stress leading to malignant arrhythmias remains unclear. The energy metabolism regulated by liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and the electrical signaling based on gap junction protein, connexin43 (Cx43), plays important roles in the development of cardiac arrhythmias. In order to investigate whether hygrothermal stress induces arrhythmias via the LKB1-AMPK-Cx43 pathway, Sprague-Dawley rats were exposed to high temperature and humidity for constructing the hygrothermal stress model. A final choice of 40 °C and 85% humidity was made by pre-exploration based on different gradient environmental conditions with reference to arrhythmia event-inducing stability and risk of sudden death. Then, the incidence of arrhythmic events, as well as the expression, phosphorylation at Ser368, and distribution of Cx43 in the myocardium, were examined. Meanwhile, the adenosine monophosphate-activated protein kinase activator, Acadesine, was also administered to investigate the role played by AMPK in the process. Our results showed that hygrothermal stress induced malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and severe atrioventricular block. Besides, hygrothermal stress decreased the phosphorylation of Cx43 at Ser368, induced proarrhythmic redistribution of Cx43 from polar to lateral sides of the cardiomyocytes, and also caused LKB1 and phosphorylated-AMPK expression to be less abundant. While, pretreatment with Acadesine significantly actived the LKB1-AMPK-Cx43 pathway and thus ameliorated malignant arrhythmias, indicating that the hygrothermal stress-induced arrhythmias is associated with the redistribution of gap junctions in cardiomyocytes and the organism's energy metabolism.
Collapse
Affiliation(s)
- Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Ningxia Wu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jiaman Hu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailong Lin
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Lai
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Lin Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China.
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China.
| |
Collapse
|
32
|
Corrêa DC, Nunes GT, Barcelos RAD, Dos Santos JR, Vogel FSF, Cargnelutti JF. Economic losses caused by mastitis and the influence of climate variation on the occurrence of the disease in a dairy cattle farm in southern Brazil. Trop Anim Health Prod 2024; 56:78. [PMID: 38351405 DOI: 10.1007/s11250-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
This study evaluated the economic impacts caused by mastitis in a small dairy farm with similar characteristics and production to most dairy farms in southern Brazil and investigated if climatic variations influenced mastitis occurrence in the region. A farm with, on average, 45 lactating Holstein cattle was monitored from November 2021 to October 2022, and data on mastitis cases, bulk tank milk somatic cell count, animal treatment costs, milk production, animal disposal costs, and production losses were collected. Monthly averages of temperature, relative humidity (RH), and rainfall in the region were obtained. The greatest loss was related to the drop in milk production, resulting in 63.8% of total losses, followed by animal disposal (29.5%), milk disposal (4.6%), and treating animals with mastitis (2.0%), totaling a 10.6% reduction in the annual gross income. There were negative correlations between the clinical mastitis rate and monthly RH and between subclinical mastitis and temperature; the occurrence of subclinical mastitis and average RH were positively correlated. Our findings showed that mastitis negatively impacted the economy and that climate influenced mastitis occurrence.
Collapse
Affiliation(s)
- Diego Cristiano Corrêa
- Residency Program in Health Professions, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Gabriela Tormes Nunes
- Residency Program in Health Professions, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Roberto Antônio Delgado Barcelos
- Residency Program in Health Professions, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jamilly Rosa Dos Santos
- Centro de Ciências Rurais, Undergraduate Program in Veterinary Medicine - UFSM, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Silveira Flôres Vogel
- Department of Preventive Veterinary Medicine (DMVP), Centro de Ciências Rurais (CCR), UFSM, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Juliana Felipetto Cargnelutti
- Department of Preventive Veterinary Medicine (DMVP), Centro de Ciências Rurais (CCR), UFSM, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
33
|
Yang G, Zhou X, Chen S, Liu A, Liu L, Wang H, Wang Q, Lan X. Effects of Heat Stress and Lipopolysaccharides on Gene Expression in Chicken Immune Cells. Animals (Basel) 2024; 14:532. [PMID: 38396502 PMCID: PMC10886138 DOI: 10.3390/ani14040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged exposure to high temperatures and humidity can trigger heat stress in animals, leading to subsequent immune suppression. Lipopolysaccharides (LPSs) act as upstream regulators closely linked to heat stress, contributing to their immunosuppressive effects. After an initial examination of transcriptome sequencing data from individual samples, 48 genes displaying interactions were found to potentially be associated with heat stress. Subsequently, to delve deeper into this association, we gathered chicken bone marrow dendritic cells (BMDCs). We combined heat stress with lipopolysaccharides and utilized a 48 × 48 Fluidigm IFC quantitative microarray to analyze the patterns of gene changes under various treatment conditions. The results of the study revealed that the combination of heat stress and LPSs in a coinfection led to reduced expressions of CRHR1, MEOX1, and MOV10L1. These differentially expressed genes triggered a pro-inflammatory response within cells via the MAPK and IL-17 signaling pathways. This response, in turn, affected the intensity and duration of inflammation when experiencing synergistic stimulation. Therefore, LPSs exacerbate the immunosuppressive effects of heat stress and prolong cellular adaptation to stress. The combination of heat stress and LPS stimulation induced a cellular inflammatory response through pathways involving cAMP, IL-17, MAPK, and others, consequently leading to decreased expression levels of CRHR1, MEOX1, and MOV10L1.
Collapse
Affiliation(s)
- Guang Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| | - Xinyi Zhou
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| | - Shutao Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| | - Haiwei Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (H.W.); (Q.W.)
| | - Qigui Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (H.W.); (Q.W.)
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (G.Y.); (X.Z.); (S.C.); (A.L.); (L.L.)
| |
Collapse
|
34
|
Kim WS, Keng BH, Kim J. Transcriptional modulation of heat shock proteins and adipogenic regulators in bovine adipocytes following heat exposure. J Therm Biol 2024; 120:103824. [PMID: 38428104 DOI: 10.1016/j.jtherbio.2024.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
This research endeavored to elucidate the transcriptional modulation of heat shock proteins and adipogenic regulators in bovine subcutaneous adipocytes following thermal exposure. Post-differentiation, mature adipocytes were subjected to three treatments of control (CON), moderate (MHS), and extreme (EHS) heat stress. These treatments consist of thermal conditions at temperatures of 38 °C (CON), 39.5 °C (MHS), or 41 °C (EHS) along with of 3 or 12 h. There was no statistically significant variations observed in the gene expressions of HSP27 and HSP70 when comparing CON with MHS across both exposures. Contrastingly, when comparing CON with EHS, an upregulation (P < 0.01) in HSP27 gene expression was evident for both 3 and 12 h of incubation, while HSP70 gene expression exhibited elevation (P < 0.01) at the 3-h mark, with no change observed at 12 h. Protein quantification, however, revealed an elevation (P < 0.01) in HSP27 and HSP70 for both CON vs. MHS and CON vs. EHS at the 12-h exposure. This trend in protein level mirrored (P < 0.05) that of proliferator-activated receptor-gamma (PPARγ). Elevated (P < 0.05) protein levels of fatty acid synthase (FAS) were exclusively discernible in the CON vs. MHS. Increased (P < 0.01) transcriptional activity of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), stearoyl-CoA desaturase (SCD), and FAS was evident in the CON vs. EHS comparison. Complementary to these molecular findings, an augmented lipid droplet accumulation was observed (P < 0.01) in EHS-exposed adipocytes progressively from day 6 through day 9. Our current study highlights how different levels and lengths of heat stress can impact the activity of important heat-related proteins and factors that play a role in fat development in beef cattle. These findings can help guide strategies to manage how beef cattle are exposed to heat, which can affect fat storage and ultimately the quality of the meat's marbling.
Collapse
Affiliation(s)
- Won Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Boon Hong Keng
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
35
|
Li Y, Chen G, Xu S, Xia S, Sun W, Wang J, Chen S, Lai S, Jia X. miR-425-5p Regulates Proliferation of Bovine Mammary Epithelial Cells by Targeting TOB2. Genes (Basel) 2024; 15:174. [PMID: 38397164 PMCID: PMC10888448 DOI: 10.3390/genes15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, rising temperatures have caused heat stress (HS), which has had a significant impact on livestock production and growth, presenting considerable challenges to the agricultural industry. Research has shown that miR-425-5p regulates cellular proliferation in organisms. However, the specific role of miR-425-5p in bovine mammary epithelial cells (BMECs) remains to be determined. The aim of this study was to investigate the potential of miR-425-5p in alleviating the HS-induced proliferation stagnation in BMECs. The results showed that the expression of miR-425-5p significantly decreased when BMEC were exposed to HS. However, the overexpression of miR-425-5p effectively alleviated the inhibitory effect of HS on BMEC proliferation. Furthermore, RNA sequencing analysis revealed 753 differentially expressed genes (DEGs), comprising 361 upregulated and 392 downregulated genes. Some of these genes were associated with proliferation and thermogenesis through enrichment analyses. Further experimentation revealed that TOB2, which acts as a target gene of miR-425-5p, is involved in the regulatory mechanism of BMEC proliferation. In summary, this study suggests that miR-425-5p can promote the proliferation of BMECs by regulating TOB2. The miR-425-5p/TOB2 axis may represent a potential pathway through which miR-425-5p ameliorates the proliferation stagnation of BMECs induced by HS.
Collapse
Affiliation(s)
- Yuchao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya’an 625014, China;
| | - Guanhe Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Shuxiang Xu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Siqi Xia
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Wenqiang Sun
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Jie Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Shiyi Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Songjia Lai
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| | - Xianbo Jia
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China; (G.C.); (S.X.); (S.X.); (W.S.); (J.W.); (S.C.); (S.L.)
| |
Collapse
|
36
|
Alhussien MN, Hussen J, De Matteis G. Editorial: Heat stress and immune responses in livestock: current challenges and intervention strategies. Front Vet Sci 2024; 11:1366274. [PMID: 38328258 PMCID: PMC10847576 DOI: 10.3389/fvets.2024.1366274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics, CREA, Rome, Italy
| |
Collapse
|
37
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
38
|
Jo JH, Jalil GN, Kim WS, Moon JO, Lee SD, Kwon CH, Lee HG. Effects of Rumen-Protected L-Tryptophan Supplementation on Productivity, Physiological Indicators, Blood Profiles, and Heat Shock Protein Gene Expression in Lactating Holstein Cows under Heat Stress Conditions. Int J Mol Sci 2024; 25:1217. [PMID: 38279240 PMCID: PMC10816680 DOI: 10.3390/ijms25021217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Ghassemi Nejad Jalil
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Republic of Korea;
| | - Sung-Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Chan-Ho Kwon
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| |
Collapse
|
39
|
Maddahi A, Saberivand A, Hamali H, Jafarpour F, Saberivand M. Exploring the impact of heat stress on oocyte maturation and embryo development in dairy cattle using a culture medium supplemented with vitamins E, C, and coenzyme Q10. J Therm Biol 2024; 119:103759. [PMID: 38035528 DOI: 10.1016/j.jtherbio.2023.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
Heat stress is a significant factor affecting the fertility of dairy cattle due to the generation of free radicals. In assisted reproductive techniques, the inclusion of protective antioxidants becomes crucial to mitigate potential cellular damage. This study aimed to explore the impact of supplementing vitamins E, C, and coenzyme Q10 into the oocyte culture medium, with the goal of ameliorating the adverse effects of heat stress on oocyte maturation and embryo development in dairy cattle. A group of fifty Holstein dairy cows were synchronized, and their oocytes were harvested using the ovum pick-up method. High-quality oocytes were subjected to in vitro maturation (IVM) and in vitro fertilization (IVF) procedures, utilizing a culture medium containing, no supplements (Group 1), 100 μM of vitamins E (Group 2) and C (Group 3), along with 50 μM of coenzyme Q10 (Group 4). The ensuing zygotes were cultured, and the ensuing embryos were evaluated for blastocyst formation by the seventh day. An analysis of the blastocysts' inner cell mass (ICM) and trophectoderm (TE) cells was also conducted. The findings revealed that the group receiving supplementation of vitamin E and coenzyme Q10 exhibited significantly higher maturation and cleavage rates in comparison to both the control and the vitamin C groups. Furthermore, the count of ICM, TE, and blastocyst cells was notably elevated in the vitamin E supplemented group when compared to the control group. In summary, the effectiveness of vitamin E in enhancing IVM, IVF, and embryo development under conditions of heat stress surpassed that of vitamin C and coenzyme Q10.
Collapse
Affiliation(s)
- Aref Maddahi
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Adel Saberivand
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Hossein Hamali
- Theriogenology Section, Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Farnoosh Jafarpour
- Department of Embryology, Royan Biotechnology Research Institute, Isfahan, Iran.
| | - Maryam Saberivand
- Connective Tissue Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
40
|
Tan L, Sun X, Li J, Wang Q, Zhuo Z, Li Y, Su Y, Fan C, Cheng J. Effects of bupleurum extract on the haematological, mineral, and hormonal profiles of heat-stressed dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2022.2157763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lun Tan
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xianzhi Sun
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingjing Li
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qingfeng Wang
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhao Zhuo
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Li
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanjing Su
- Bright Farming Co., Ltd, Shanghai, China
| | - Caiyun Fan
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianbo Cheng
- Department of Ruminant Nutrition, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
41
|
Sun MH, Jiang WJ, Li XH, Lee SH, Heo G, Zhou D, Guo J, Cui XS. High Temperature-Induced m6A Epigenetic Changes Affect Early Porcine Embryonic Developmental Competence in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2174-2183. [PMID: 38066680 DOI: 10.1093/micmic/ozad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
N6-methyladenosine (m6A), the most prevalent modification in eukaryotic messenger RNA (mRNA), plays a key role in various developmental processes in mammals. Three proteins that affect RNA m6A modification have been identified: methyltransferases, demethylases, and m6A-binding proteins, known as "writer," "eraser," and "reader" proteins, respectively. However, changes in the m6A modification when early porcine embryos are exposed to stress remain unclear. In this study, we exposed porcine oocytes to a high temperature (HT, 41°C) for 10 h, after which the mature oocytes were parthenogenetically activated and cultured for 7 days to the blastocyst stage. HT significantly decreased the rates of the first polar body extrusion and blastocyst formation. Further detection of m6A modification found that HT can lead to increased expression levels of "reader," YTHDF2, and "writer," METTL3, and decreased expression levels of "eraser," FTO, resulting in an increased level of m6A modification in the embryos. Additionally, heat shock protein 70 (HSP70) is upregulated under HT conditions. Our study demonstrated that HT exposure alters m6A modification levels, which further affects early porcine embryonic development.
Collapse
Affiliation(s)
- Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street 2888, Changchun, Jilin, 130118, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, South Korea
| |
Collapse
|
42
|
Li X, Bian J, Xing T, Zhao L, Li J, Zhang L, Gao F. Effects of guanidinoacetic acid supplementation on growth performance, hypothalamus-pituitary-adrenal axis, and immunity of broilers challenged with chronic heat stress. Poult Sci 2023; 102:103114. [PMID: 37826903 PMCID: PMC10571022 DOI: 10.1016/j.psj.2023.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
Heat stress can cause systemic immune dysregulation and threaten the health of broilers. Guanidinoacetic acid (GAA) has been shown to be effective against heat stress, but whether it is beneficial for immunity is unclear. Therefore, the effects of dietary GAA supplementation on the immunity of chronic heat-stressed broilers were evaluated. A total of 192 Arbor Acres male broilers (28-day old) were randomly allocated to 4 treatments: the normal control group (NC, 22°C, ad libitum feeding), the heat stress group (HS, 32°C, ad libitum feeding), the pair-fed group (PF, kept at 22°C and received food equivalent to that consumed by the HS group on the previous day), and the GAA group (HG, 32°C, ad libitum feeding; basal diet supplemented with 0.6 g/kg GAA). Samples were collected on d 7 and 14 after treatment. Results showed that broilers exposed to heat stress exhibited a decrease (P < 0.05) in ADG, ADFI, thymus and bursa of Fabricius indexes, and an increase (P < 0.05) in feed conversion ratio and panting frequency, compared to the NC group. Levels of corticotropin-releasing factor, corticosterone (CORT), heat shock protein 70 (HSP70), IL-6, and TNF-α were elevated (P < 0.05) while lysozyme and IgG concentration was decreased (P < 0.05) in the HS group compared with the NC group after 7 d of heat exposure. The concentrations of IgG and IL-2 were decreased (P < 0.05) and CORT was increased (P < 0.05) in the HS group compared with the NC group after 14 d of heat exposure. Noticeably, GAA supplementation decreased the levels of CORT (P < 0.05) and increased the IL-2, IgG, and IgM concentrations (P < 0.05) compared with the HS group. In conclusion, chronic heat stress increased CORT release, damaged immune organs, and impaired the immunity of broilers. Dietary supplementation of 0.6 g/kg GAA can reduce the CORT level and improve the immune function of broilers under heat stress conditions.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawei Bian
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
43
|
Li Y, Li X, Ma X, Qiu T, Fu X, Ma Z, Ping H, Li C. Livestock wastes from family-operated farms are potential important sources of potentially toxic elements, antibiotics, and estrogens in rural areas in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118456-118467. [PMID: 37910373 DOI: 10.1007/s11356-023-30663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The open-air storage and disposal of livestock waste from family-operated livestock farms can be a potential health threat to rural residents. In this study, the occurrence and seasonal distribution of 8 potentially toxic elements, 24 antibiotics, and 4 estrogens were investigated in 44 waste samples from 11 rural farms in North China. The results showed that these micropollutants were ubiquitous in livestock waste, with concentration ranges of 238.9-4555 mg/kg for potentially toxic elements, not detected (ND) to 286,672 μg/kg for antibiotics and ND to 229.5 μg/kg for estrogens. The pollutants in animal wastes showed seasonal variation. Since these wastes are directly applicable to nearby farmland without treatment, the risks those wastes pose to farmland soils were also evaluated. Risk assessment results showed that Zn, Cd, Hg, FF and DC in swine manures were at high risk, while total estrogens in chicken and dairy cattle manures were at high risk. The results will provide important data for the regulation of animal wastes produced by small-scale livestock farms in rural areas of China.
Collapse
Affiliation(s)
- Yang Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xupu Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianlei Qiu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xincheng Fu
- Langfang Agricultural and Rural Bureau in Hebei Province, Langfang Hebei, 065000, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hua Ping
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| |
Collapse
|
44
|
Ashokan M, Jayanthi KV, Elango K, Sneha K, Ramesha KP, Reshma RS, Saravanan KA, Naveen KGS. Biological methylation: redefining the link between genotype and phenotype. Anim Biotechnol 2023; 34:3174-3186. [PMID: 35468300 DOI: 10.1080/10495398.2022.2065999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The central dogma of molecular biology is responsible for the crucial flow of genetic information from DNA to protein through the transcription and translation process. Although the sequence of DNA is constant in all organs, the difference in protein and variation in the phenotype is mainly due to the quality and quantity of tissue-specific gene expression and methylation pattern. The term methylation has been defined and redefined by various scientists in the last fifty years. There is always huge excitement around this field because the inheritance of something is beyond its DNA sequence. Advanced gene methylation studies have redefined molecular genetics and these tools are considered de novo in alleviating challenges of animal disease and production. Recent emerging evidence has shown that the impact of DNA, RNA, and protein methylation is crucial for embryonic development, cell proliferation, cell differentiation, and phenotype production. Currently, many researchers are focusing their work on methylation to understand its significant role in expression, disease-resistant traits, productivity, and longevity. The main aim of the present review is to provide an overview of DNA, RNA, and protein methylation, current research output from different sources, methodologies, factors responsible for methylation of genes, and future prospects in animal genetics.
Collapse
Affiliation(s)
- M Ashokan
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K V Jayanthi
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Raj S Reshma
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumar G S Naveen
- Animal Genetics and Breeding Division, Veterinary College, Hassan, KVAFSU, Karnataka, India
| |
Collapse
|
45
|
Wu T, Sheng Y, Tian Y, Wang C. Vitexin Regulates Heat Shock Protein Expression by Modulating ROS Levels Thereby Protecting against Heat-Stress-Induced Apoptosis. Molecules 2023; 28:7639. [PMID: 38005362 PMCID: PMC10675196 DOI: 10.3390/molecules28227639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Heat stress due to high temperatures can cause heat stroke, pyrexia, heat cramps, heart disease, and respiratory diseases, which seriously affect human health. Vitexin has been shown to alleviate heat stress; however, its mechanism of action remains unclear. Therefore, in this study, we used Caco-2 cells to establish a heat stress model and vitamin C as a positive control to investigate the regulatory effects of vitexin on heat-stress-induced apoptosis and the related mechanisms using Cell Counting Kit-8, flow cytometry, real-time quantitative polymerase chain reaction, and Western blot. The results showed that the mRNA expressions of Hsp27, Hsp70, and Hsp90 induced by heat stress could be effectively inhibited at vitexin concentrations as low as 30 μM. After heat stress prevention and heat stress amelioration in model cells based on this concentration, intracellular reactive oxygen species (ROS) levels and the mRNA level and the protein expression of heat shock proteins (Hsp70 and Hsp90) and apoptotic proteins were reduced. In addition, compared with the heat stress amelioration group, the expression of BCL2 mRNA and its protein (anti-apoptotic protein Bcl-2) increased in the heat stress prevention group, while the expression of BAX, CYCS, CASP3, and PARP1 mRNAs and their proteins (apoptotic proteins Bax, Cytochrome C, cle-Caspase-3, and cle-PARP1) were decreased. In summary, the heat-stress-preventive effect of vitexin was slightly better than its heat-stress-ameliorating effect, and its mechanism may be through the inhibition of intracellular ROS levels and thus the modulation of the expressions of Hsp70 and Hsp90, which in turn protects against heat-stress-induced apoptosis. This study provides a theoretical basis for the prevention and amelioration of heat stress using vitexin.
Collapse
Affiliation(s)
- Tong Wu
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yanan Sheng
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Yu Tian
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
| | - Changyuan Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (T.W.); (Y.S.); (Y.T.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| |
Collapse
|
46
|
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals (Basel) 2023; 13:3451. [PMID: 38003069 PMCID: PMC10668733 DOI: 10.3390/ani13223451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In the dairy cattle sector, the evaluation of the effects induced by heat stress is still one of the most impactful and investigated aspects as it is strongly connected to both sustainability of the production and animal welfare. On the other hand, more recently, the possibility of collecting a large dataset made available by the increasing technology diffusion is paving the way for the application of advanced numerical techniques based on machine learning or big data approaches. In this scenario, driven by rapid change, there could be the risk of dispersing the relevant information represented by the physiological animal component, which should maintain the central role in the development of numerical models and tools. In light of this, the present literature review aims to consolidate and synthesize existing research on the physiological consequences of heat stress in dairy cattle. The present review provides, in a single document, an overview, as complete as possible, of the heat stress-induced responses in dairy cattle with the intent of filling the existing research gap for extracting the veterinary knowledge present in the literature and make it available for future applications also in different research fields.
Collapse
Affiliation(s)
| | - Marco Bovo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 48, 40127 Bologna, Italy; (C.G.); (M.C.); (D.T.); (P.T.)
| | | | | | | |
Collapse
|
47
|
Yang X, Qu K, Liu J, Qi X, Li F, Zhang J, Huang B, Lei C. A missense mutation (rs209302038) of KRT9 gene associated with heat stress in Chinese cattle. Anim Biotechnol 2023; 34:1876-1882. [PMID: 35323100 DOI: 10.1080/10495398.2022.2053697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Type I keratin 9 encoded by the KRT9 gene serves an important special function either in the mature palmar and plantar skin tissue. The changes in skin conditions and thickening of the outer layer of the skin may be affected by environmental variables. A missense mutation rs209302038 (NC_037346.1: g.41782870 G > A) was detected in KRT9, which changing the isoleucine into valine. This study aimed to identify the frequency of allele in this locus in Chinese indigenous cattle, and analyze the connection with heat stress. Our results indicated that the frequency of allele A gradually decreases from south to north, while the frequency of G allele showed the opposite pattern. Further analysis of the association of the different genotypes with three climate factors, which showed that the genotypes (GG, GA, AA) were significantly related to climatic conditions (p < 0.01). Therefore, we speculated that the mutation of the rs209302038 in Chinese indigenous cattle might be a genetic marker to detect heat stress.
Collapse
Affiliation(s)
- Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Xinglei Qi
- Biyang Xianan Cattle Technology and Development Company Ltd, Biyang, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd, Lianyuan, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Ma X, Liu Y, Sun L, Hanif Q, Qu K, Liu J, Zhang J, Huang B, Lei C. A novel SNP of TECPR2 gene associated with heat tolerance in Chinese cattle. Anim Biotechnol 2023; 34:1050-1057. [PMID: 34877906 DOI: 10.1080/10495398.2021.2011305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Heat stress affects the animal production and causes serious economic losses to the husbandry. Tectonin beta-propeller repeat containing 2 (TECPR2) gene plays an important role in autophagy which may affect the temperature sensation in animals. A missense mutation (XM_024981840.1:c.3989 G > A p.Arg1330His) of the transcripts X4 in the bovine TECPR2 gene was identified. In this study, the c.3989 G > A variant in TECPR2 gene was genotyped in a total of 25 cattle breeds (520 individuals). Our results indicated that the frequency of A allele showed a decreasing pattern from southern cattle to northern cattle, while the frequency of G allele showed the opposite pattern, which was consistent with the climate distribution of China. Compared with the GG genotype, southern cattle carried more the AA and AG genotypes. Furthermore, the association results carried out that the frequencies of genotypes (GG, AG, AA) and the value of climate parameters (mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) were significantly correlated (p < 0.01). Hence, we speculated that the c.3989 G > A variant of TECPR2 gene was associated with the heat tolerance trait in Chinese cattle and the locus may be considered as a molecular marker for Chinese cattle breeding.
Collapse
Affiliation(s)
- Xiaohui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yangkai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Luyang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Shephard RW, Maloney SK. A review of thermal stress in cattle. Aust Vet J 2023; 101:417-429. [PMID: 37620993 DOI: 10.1111/avj.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/19/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Cattle control body temperature in a narrow range over varying climatic conditions. Endogenous body heat is generated by metabolism, digestion and activity. Radiation is the primary external source of heat transfer into the body of cattle. Cattle homeothermy uses behavioural and physiological controls to manage radiation, convection, conduction, and evaporative exchange of heat between the body and the environment, noting that evaporative mechanisms almost exclusively transfer body heat to the environment. Cattle control radiation by shade seeking (hot) and shelter (cold) and by huddling or standing further apart, noting there are intrinsic breed and age differences in radiative transfer potential. The temperature gradient between the skin and the external environment and wind speed (convection) determines heat transfer by these means. Cattle control these mechanisms by managing blood flow to the periphery (physiology), by shelter-seeking and standing/lying activity in the short term (behaviourally) and by modifying their coats and adjusting their metabolic rates in the longer term (acclimatisation). Evaporative heat loss in cattle is primarily from sweating, with some respiratory contribution, and is the primary mechanism for dissipating excess heat when environmental temperatures exceed skin temperature (~36°C). Cattle tend to be better adapted to cooler rather than hotter external conditions, with Bos indicus breeds more adapted to hotter conditions than Bos taurus. Management can minimise the risk of thermal stress by ensuring appropriate breeds of suitably acclimatised cattle, at appropriate stocking densities, fed appropriate diets (and water), and with access to suitable shelter and ventilation are better suited to their expected farm environment.
Collapse
Affiliation(s)
- R W Shephard
- School of Electrical and Data Engineering, Faculty of Engineering & IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - S K Maloney
- School of Human Sciences, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
50
|
Frenette AP, Rodríguez-Ramos T, Zanuzzo F, Ramsay D, Semple SL, Soullière C, Rodríguez-Cornejo T, Heath G, McKenzie E, Iwanczyk J, Bruder M, Aucoin MG, Gamperl AK, Dixon B. Expression of Interleukin-1β protein in vitro,exvivo and in vivo salmonid models. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104767. [PMID: 37406840 DOI: 10.1016/j.dci.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Interleukin-1β (IL-1β) is one of the first cytokines expressed during immune responses, and its levels are affected by many factors, including stress. To date, it has only been possible to measure IL-1β transcript (mRNA) expression quantitatively in fish using qPCR. This is because previous studies that measured IL-1β protein concentrations in these taxa used western blotting, which only provides qualitative data. To advance our knowledge of fish IL-1β biology, and because post-translational processing plays a critical role in the activation of this molecule, we developed a quantitative enzyme-linked immunosorbent assay (ELISA) to accurately measure the concentration of IL-1β protein in several cell cultures and in vivo in salmonids. We compared changes in IL-1β protein levels to the expression of its mRNA. The developed ELISA was quite sensitive and has a detection limit of 12.5 pg/mL. The tools developed, and information generated through this research, will allow for a more accurate and complete understanding of IL-1β's role in the immune response of salmonids.The assay described here has the potential to significantly advance our ability to assess fish health and immune status.
Collapse
Affiliation(s)
- Aaron P Frenette
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Fabio Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada; Universidade Estadual Paulista - UNESP, Centro de Aquicultura da UNESP, Faculdade de Ciências Agrárias e Veterinárias, Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal, CEP, 14884-900, SP, Brazil
| | - Devyn Ramsay
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Shawna L Semple
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Cheryl Soullière
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - George Heath
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Emily McKenzie
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Mark Bruder
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|