1
|
Omotola EO, Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES. Evidence of the occurrence, detection, and ecotoxicity studies of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in aqueous environments. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:10. [PMID: 40018265 PMCID: PMC11861503 DOI: 10.1007/s40201-025-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Perflorochemicals (PFCs), among which are the most commonly detected perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent emergent contaminants of concern in recent times. These compounds have been reported for their cytotoxicity, genotoxicity, carcinogenicity, immunotoxicity, and developmental toxicities. Meanwhile, they have been detected in diverse matrices such as soil, sediment, and, surprisingly, in serum and even breastmilk. Worrisomely, these compounds are detected in drinking water across the globe, aquaculture water, and other surface waters. Thus, it was important to appraise the studies conducted on PFOS and PFOA to provide an overview of the environmental status of contamination regarding them. The present review article sought to provide insights into the occurrence patterns and ecotoxic effects of both pollutants in the water ecosystems within five continents of the world. Based on the information gathered in this article, the ∑ P F O S concentration (ng/L) within the five continents is in the order Europe > Asia > Africa > North America > South America, while the ∑ P F O A level (ng/L) is in the order Europe > Asia > South America > Africa > North America. The study also investigated the previous works that have been conducted regarding the diverse elimination technologies employed for the removal of these pollutants from the aqueous environments, with plasma combined with surfactant process being the most efficient. Generally, studies on PFOS/PFOA are still scanty when compared to those on pharmaceuticals and personal care products (PPCPs), especially in North America. The information gathered in this study could be useful in establishing thresholds of PFOA and PFOS environmental levels and be adopted by appropriate authorities as safety guidelines.
Collapse
Affiliation(s)
| | - Chinemerem Ruth Ohoro
- Department of Environmental Science, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, 1710 Gauteng South Africa
| | - James F. Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
- Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha, 6031 South Africa
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G. Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein, 9300 South Africa
- Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O. Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark, 1911 South Africa
| | - Kayode Adesina Adegoke
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, Engineering, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|
2
|
Zhang Z, Cui M, Wang H, Yuan W, Liu Z, Gao H, Guan X, Chen X, Xie L, Chen S, He Y, Wang Q. Co-exposure to F-53B and nanoplastics induced hepatic glucolipid metabolism disorders by the PI3K-AKT signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125771. [PMID: 39894156 DOI: 10.1016/j.envpol.2025.125771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Recent investigations suggest that the chemical compound F-53B (6:2 chlorinated polyfluorinated ether sulfonate) may pose risks of liver toxicity. Within environmental settings, F-53B attaches to microplastics and nanoplastics, which are capable of being consumed by diverse species. To investigate the synergistic effects on hepatotoxicity, adult male mice were subjected to F-53B at daily doses of 1, 10, and 100 μg/kg, NPs at 100 mg/kg per day, or a combination of both treatments for a duration of 2 months. The results indicated that NPs moderately increased the buildup of F-53B within both the liver and plasma. Co-exposure to F-53B (100 μg/kg/day) and NPs induced hepatocellular edema and elevated plasma ALT levels, which were rarely observed in groups exposed to F-53B or NPs alone. Additionally, we found that co-exposure decreased the concentrations of total cholesterol (TC) and triglycerides (TG) in both plasma and liver tissues, while increasing fasting plasma glucose and insulin levels. Transcriptomic analysis revealed that the PI3K-AKT signaling pathway is potentially involved in mediating hepatic metabolic disorders. Further experiments demonstrated that the combined treatment significantly suppressed the expression of FGF21, an upstream regulator of the PI3K-AKT pathway. This alteration resulted in the suppression of PI3K-regulated gene expression associated with glucose and lipid metabolism. The findings suggest that F-53B impairs hepatic glucolipid metabolism in mice by suppressing of the PI3K-AKT signaling cascade, with NPs amplifying its toxicity.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenke Yuan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Gao
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinchao Guan
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijie Xie
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shilin Chen
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yujie He
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Balgooyen S, Scott M, Blackwell BR, Pulster EL, Mahon MB, Lepak RF, Backe WJ. A High Efficiency Method for the Extraction and Quantitative Analysis of 45 PFAS in Whole Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3759-3770. [PMID: 39954005 DOI: 10.1021/acs.est.4c10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
This study describes and validates a new method for extracting perfluoroalkyl and polyfluoroalkyl substances (PFAS) from whole-body fish tissue, demonstrates that freeze-dry preservation of tissue conserves bioaccumulative PFAS, and details a method demonstration on Lake Michigan fish. While fish filets are more commonly analyzed for their significance to human health, whole fish are useful to determine ecological impacts, but published methods such as EPA 1633 do not produce reliable results for this more challenging matrix. Here we show that lipid removal technology produces clean extracts without the need for solid-phase extraction or evaporative concentration, which often lead to loss of some PFAS. This method achieves an accuracy of 96 ± 9% for the detection of 45 PFAS while also offering benefits of a simple procedure, reduced processing time, and decreased waste generation compared to multistep cleanup and concentration methods. A test of freeze-drying demonstrated that compounds detected in Great Lakes fish were retained, but volatile compounds including sulfonamide precursors and ethanols were lost. To demonstrate field performance, the entire method was applied to whole-fish composites from Lake Michigan. Results from these samples reveal that the PFAS concentration was driven by collection location, while the distribution of PFAS was dictated by fish species.
Collapse
Affiliation(s)
- Sarah Balgooyen
- SpecPro Professional Services, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Madelynn Scott
- Oak Ridge Associated Universities, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Erin L Pulster
- U.S. Geological Survey Columbia Environmental Research Center, 4200 East New Haven Road, Columbia, Missouri 65201, United States
| | - Michael B Mahon
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Ryan F Lepak
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Will J Backe
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| |
Collapse
|
4
|
England-Mason G, Reardon AJF, Reynolds JE, Grohs MN, MacDonald AM, Kinniburgh DW, Martin JW, Lebel C, Dewey D. Maternal concentrations of perfluoroalkyl sulfonates and alterations in white matter microstructure in the developing brains of young children. ENVIRONMENTAL RESEARCH 2025; 267:120638. [PMID: 39681179 DOI: 10.1016/j.envres.2024.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Maternal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to child neurodevelopmental difficulties. Neuroimaging research has linked these neurodevelopmental difficulties to white matter microstructure alterations, but the effects of PFAS on children's white matter microstructure remains unclear. We investigated associations between maternal blood concentrations of six common perfluoroalkyl sulfonates and white matter alterations in young children using longitudinal neuroimaging data. METHODS This study included 84 maternal-child pairs from a Canadian pregnancy cohort. Maternal second trimester blood concentrations of perfluorohexanesulfonate (PFHxS) and five perfluorooctane sulfonate (PFOS) isomers were quantified. Children underwent magnetic resonance imaging scans between ages two and six (279 scans total). Adjusted linear mixed models investigated associations between each exposure and white matter fractional anisotropy (FA) and mean diffusivity (MD). RESULTS Higher maternal concentrations of perfluoroalkyl sulfonates were associated with higher MD and lower FA in the body and splenium of the corpus callosum of young children. Multiple sex-specific associations were found. In males, PFHxS was negatively associated with FA in the superior longitudinal fasciculus, while PFOS isomers were positively associated with MD in the inferior longitudinal fasciculus (ILF). In females, PFOS isomers were positively associated with FA in the pyramidal fibers and MD in the fornix, but negatively associated with MD in the ILF. CONCLUSION Maternal exposure to perfluoroalkyl sulfonates may alter sex-specific white matter development in young children, potentially contributing to neurodevelopmental difficulties. Larger studies are needed to replicate these findings and examine the neurotoxicity of these chemicals.
Collapse
Affiliation(s)
- Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | - Jess E Reynolds
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Melody N Grohs
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Catherine Lebel
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Shukla S, Khan R, Chrzanowski Ł, Vagliasindi FGA, Roccaro P. Advancing sustainable agriculture through multi-omics profiling of biosolids for safe application: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124292. [PMID: 39889433 DOI: 10.1016/j.jenvman.2025.124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
Biosolids, derived from wastewater treatment processes, are valuable resources for soil amendment in agriculture due to their nutrient-rich composition. However, various contaminants of concern (CEC) such as pharmaceuticals, per-and poly-fluoroalkyl substances, endocrine disruptive chemicals, surfactants, pathogens, nanoplastics, and microplastics, are also reported in biosolids. The use of biosolids for agriculture may introduce these CEC into the soil, which raises concerns about their environmental and human health impacts. Moreover, the presence of pathogens (Escherichia coli, Salmonella sp., Shigella, Giardia, Rotavirus, etc.) even after treatment calls for microbial profiling of biosolids, especially in developing countries. Multi-omics approaches can be used as powerful tools for characterizing microbial communities and highlighting metabolic pathways. Moreover, these approaches also help in predicting the ecological and agronomic effects of biosolids application in agricultural soils. This review discusses the advantages and challenges of using biosolids in agriculture, considering the range of different CEC reported in biosolids. Moreover, the current legislation for the use of biosolids in agriculture is also presented, highlighting the limitations with respect to guidelines for emerging contaminants in biosolids. Furthermore, the role of the multi-omics approach in biosolids management, focusing on genomics, transcriptomics, proteomics, and metabolomics is also assessed. Multi-omics also allows for real-time monitoring, ensuring continuous optimization of biosolids towards changing environmental conditions. This dynamic approach not only enhances the safe use, but also enhances the sustainability of waste management practices, minimizing the negative effects. Finally, the future research directions for integrating the multi-omics approach into biosolid management practices are also suggested. The need for updating the legislative framework, continued innovation to promote sustainable and robust agricultural systems, bringing the process closer to the principles of a circular bioeconomy is also empahasized.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Ramsha Khan
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | | | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Catania, Italy.
| |
Collapse
|
6
|
Wu W, Wang Y, Li W, Shen J, Zhang B, Li P, Han R, Cao C, Wang R. Association between exposure to per- and polyfluoroalkyl substances (PFAS) and chronic cough in American adults: Results from NHANES 2003-2012. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117901. [PMID: 39955867 DOI: 10.1016/j.ecoenv.2025.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Chronic cough, which affects approximately 10 % of the global population, is recognized as a significant health issue, especially among females. Recent research suggests that chronic cough may be an independent disease rather than merely a symptom of other conditions. This study focuses on the potential role of exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS) in the development of chronic cough, noting that PFAS exposure has been linked to various adverse health outcomes. We aimed to explore the association between PFAS exposure and the risk of chronic cough in the U.S. population, analyzing data from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2012 and examining potential sex-based differences. Our findings reveal several factors independently associated with an increased incidence of chronic cough, including elevated levels of serum perfluorobutane sulfonic acid (PFBS) and perfluoroheptanoic acid (PFHP). The multi-pollutant models consistently demonstrated a significant positive correlation between PFAS exposure and a higher risk of chronic cough in adult males, with PFBS and PFHP as the primary contributors. However, due to the cross-sectional design of the NHANES study, further research is necessary to elucidate the precise mechanisms by which PFAS contribute to chronic cough.
Collapse
Affiliation(s)
- Wenlong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Wang
- Department of Infectious Diseases, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230001, China
| | - Wenhao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jiran Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo, Zhejiang 315010, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
7
|
Qi Y, Yang Y, Yu X, Wu S, Wang W, Yu Q, Wang C, Liang Y, Sun H. Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1875-1886. [PMID: 39800992 DOI: 10.1021/acs.est.4c10411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
At present, the defluorination of per- and polyfluoroalkyl substances (PFASs), including perfluoroether compounds as substitutes of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate, is limited by the effective active species produced during the oxidation-reduction process. The contribution of the hydrogen radical (•H) as a companion active substance in the photoreduction and electrocatalytic degradation of PFASs has been neglected. Herein, we demonstrate that perfluorocarboxylic acids and perfluoroether compounds such as PFOA and hexafluoropropylene oxide dimer acid (GenX) underwent near-complete photodegradation and effective defluorination by continuously generating •H through perfluoroalkyl radical activation of water under UV irradiation without any reagents and catalysts. Importantly, the initial dissolved oxygen, H+, and impurities in surface water scarcely inhibited the defluorination of the PFASs. The difference in the defluorination mechanism between PFOA and GenX under the action of •H was elucidated by combining theoretical calculations with targeted and nontargeted analysis methods. The investigation of the photodegradation of different PFASs indicates that perfluoroether compounds were not easily photodegraded via reduction of •H compared with other compounds, whereas polyfluorinated compounds in which some F atoms were replaced with Cl were more prone to elimination. However, the UV/•H system was ineffective against perfluorosulfonic acids. This study provides an unprecedented perspective for further development of the removal technology of PFASs and the design of alternative PFASs that are easy to eliminate.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yinbo Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xue Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Sai Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Weicheng Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qin Yu
- Liaoning Jinhua Xinda Ecological Environment Technology Co., Ltd., Panjin 124000, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, New York 12222, United States
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
8
|
Sun R, Bhat AP, Arnold WA, Xiao F. Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1756-1768. [PMID: 39792993 PMCID: PMC11781311 DOI: 10.1021/acs.est.4c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA). Sixteen reactions involving chlorine with N-AP-FHxSA and its quaternary ammonium analog were investigated; seven were confirmed, while the remainder were either disproved or found to be insignificant. The quaternary ammonium moiety did not determine a polyfluoroalkyl substance's reactivity toward chlorine. For example, while 6:2 fluorotelomer sulfonamide betaine transformed rapidly to PFHxA, other quaternary-ammonium-containing polyfluoroalkyl substances, such as 5:1:2 and 5:3 fluorotelomer betaines, showed significant resistance to chlorination. Further investigation identified potential sites for electrophilic attacks near the amine region by examining the highest occupied molecular orbitals of the polyfluoroalkyl substances. Visualization techniques helped pinpoint electron-deficient and electron-rich sites as potential targets for nucleophilic and electrophilic attacks, respectively. Increasing the solution pH from 6 to 10 did not diminish the apparent degradation of the studied polyfluoroalkyl substances, likely due to the greater reactivity of the deprotonated forms compared to the conjugate acids. Finally, we also examined the hydrolysis of polyfluoroalkyl substances at pH 6 to 11 in the absence of chlorine.
Collapse
Affiliation(s)
- Runze Sun
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Akash P. Bhat
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Missouri
Water Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Suman TY, Kwak IS. Current understanding of human bioaccumulation patterns and health effects of exposure to perfluorooctane sulfonate (PFOS). JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137249. [PMID: 39842114 DOI: 10.1016/j.jhazmat.2025.137249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant of global concern due to its environmental presence,bioaccumulative potential and toxicological impacts. This review synthesizes current knowledge regarding PFOS exposure, bioaccumulation patterns and adverse health outcomes in human population. Analysis of worldwide biomonitoring data, and epidemiological studies reveals PFOS systemic effects, including immunological dysfunction (decreased vaccine response), developmental toxicity (reduced birth weight), hepatic metabolic disruption, potential carcinogenogenicity, and reproductive abnormalities. At the molecular level, PFOS induces toxicity through multiple pathways, including PI3K/AKT/mTOR pathway inhibition, PPARα activation, NF-κB signaling modulation, and oxidative stress induction. Recent advances in analytical methodologies have enhanced our understanding of PFOS distribution and fate, while evolving egulatory frameworks attempts to address its risk. This review identifies critical research gaps and emphasized the need for coordinated multidisciplinary approaches to address this persistent environmental contaminant.
Collapse
Affiliation(s)
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
10
|
Megson D, Bruce-Vanderpuije P, Idowu IG, Ekpe OD, Sandau CD. A systematic review for non-targeted analysis of per- and polyfluoroalkyl substances (PFAS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178240. [PMID: 39765171 DOI: 10.1016/j.scitotenv.2024.178240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
This review follows the PRISMA guidelines to provide a systematic review of 115 peer reviewed articles that used non-targeted analysis (NTA) methods to detect per- and polyfluoroalkylated substances (PFAS). This literature highlights the significant positive impact of NTA in understanding PFAS in the environment. Within the literature a geographical bias exists, with most NTA studies (∼60 %) conducted in the United States and China. Future studies in other regions (such as South America and Africa) are needed to gain a more global understanding. More research is required in marine environments and the atmosphere, as current studies focus mainly on freshwater, groundwater, soil, and sediments. The majority of studies focus on measuring PFAS in the environment, rather than in commercial products (with the exception of AFFF). Non-lethal blood sampling has been successful for NTA in humans and wildlife, but additional biomonitoring studies are required on exposed cohorts to understand health risks and PFAS biotransformation pathways. NTA methods mostly use liquid chromatography and negative ionisation, which biases the literature towards the detection of specific PFAS. Despite improvements in data reporting and quality assurance and control (QA/QC) procedures, factors such as false negative and false positive rates are often overlooked, and many NTA workflows remain highly subjective. Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) are the most detected PFAS classes, identified in over 80 % of NTA studies, and are common in routine monitoring. However, our review identified >1000 PFAS from a total of 382 different PFAS classes, with over 300 classes found in fewer than 5 % of studies. This highlights the variety of different PFAS present in the environment, and the limitations of relying solely on targeted methods. Future monitoring programs and regulations would benefit from considering NTA methods to provide more comprehensive information on PFAS present in the environment.
Collapse
Affiliation(s)
- David Megson
- Chemistry Matters, Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | - Pennante Bruce-Vanderpuije
- Chemistry Matters, Calgary, Canada; Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | | | - Okon Dominic Ekpe
- Chemistry Matters, Calgary, Canada; Pusan National University, Busan 46241, Republic of Korea
| | - Courtney D Sandau
- Chemistry Matters, Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
11
|
Litvanová K, Klemetsrud B, Xiao F, Kubátová A. Investigation of Real-Time Gaseous Thermal Decomposition Products of Representative Per- and Polyfluoroalkyl Substances (PFAS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:108-118. [PMID: 39667807 DOI: 10.1021/jasms.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The thermal decomposition of per- and poly fluoroalkyl substances (PFAS) is poorly understood. Here, we present an innovative, comprehensive analytical method to investigate their thermal decomposition, including perfluorocarboxylic acids (PFCAs), alcohol, sulfonates, and GenX (acid dimer), focusing on identifying their breakdown products. In this study, evolved gas analysis-mass spectrometry (EGA-MS) was used for fast real-time screening to determine the significant temperatures to be investigated with the thermal desorption-pyrolysis coupled with gas chromatography-mass spectrometry (TD-Py-GC-MS), which provided detailed information about evolved PFAS and their breakdown products. This approach enabled a systematic study of perfluorocarboxylic acids (PFCAs) ranging from C3 to C9 and GenX showing volatilization, followed by degradation and formation of respective perfluorinated-1-alkenes and C5F10O perfluorinated ether (from GenX). At elevated temperatures (e.g., 600 °C), the products observed included perfluorinated butene and higher molecular-weight products, likely formed by pyrolytic polymerization of perfluorinated radicals. 1H,1H,2H,2H-perfluoro-1-decanol, i.e., 8:2 FTOH, volatilized at 100 °C; however, at higher temperatures, several novel decomposition products were observed, including perfluoro-1-decene and perfluorinated compounds suggesting the presence of the hydroxylic group. Our method offers an alternative approach to studying the thermal behavior of currently regulated and emerging PFAS with a focus on application to a wide range of matrices (laboratory grade standards or environmental samples).
Collapse
Affiliation(s)
- Kateřina Litvanová
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Bethany Klemetsrud
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
12
|
Jeong N, Park S, Mahajan S, Zhou J, Blotevogel J, Li Y, Tong T, Chen Y. Elucidating governing factors of PFAS removal by polyamide membranes using machine learning and molecular simulations. Nat Commun 2024; 15:10918. [PMID: 39738140 DOI: 10.1038/s41467-024-55320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) have recently garnered considerable concerns regarding their impacts on human and ecological health. Despite the important roles of polyamide membranes in remediating PFASs-contaminated water, the governing factors influencing PFAS transport across these membranes remain elusive. In this study, we investigate PFAS rejection by polyamide membranes using two machine learning (ML) models, namely XGBoost and multimodal transformer models. Utilizing the Shapley additive explanation method for XGBoost model interpretation unveils the impacts of both PFAS characteristics and membrane properties on model predictions. The examination of the impacts of chemical structure involves interpreting the multimodal transformer model incorporated with simplified molecular input line entry system strings through heat maps, providing a visual representation of the attention score assigned to each atom of PFAS molecules. Both ML interpretation methods highlight the dominance of electrostatic interaction in governing PFAS transport across polyamide membranes. The roles of functional groups in altering PFAS transport across membranes are further revealed by molecular simulations. The combination of ML with computer simulations not only advances our knowledge of PFAS removal by polyamide membranes, but also provides an innovative approach to facilitate data-driven feature selection for the development of high-performance membranes with improved PFAS removal efficiency.
Collapse
Affiliation(s)
- Nohyeong Jeong
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Subhamoy Mahajan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ji Zhou
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae, 5064, Australia
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, USA.
| | - Yongsheng Chen
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Li X, Hua Z, Zhang J, Jin J, Wang D. Concentration-dependent cellular responses of coontail (Ceratophyllum demersum) during the substitutions to perfluorooctanoic acid by its two alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135837. [PMID: 39288520 DOI: 10.1016/j.jhazmat.2024.135837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The substitutions of alternatives to legacy per- and polyfluoroalkyl substances (PFASs) may lead to unknown and variational joint toxicity on ecosystems. To comprehensively understand the effects of substitutions on aquatic ecosystems, the single and joint effects of perfluorooctanoic acid (PFOA) and its alternatives (perfluorobutanoic acid, PFBA; 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3,heptafluoropropoxy)propanoic acid, GenX) with various concentrations and compositions on a primary producer, coontail (Ceratophyllum demersum), were investigated at cellular level. Results showed that the substitutions of PFBA/GenX could alleviate the inhibition of PFOA on plant length, hydrogen peroxide accumulation, and chlorophyll b, due to the shifts of reactive oxygen species and their less toxicity to antioxidants. Significant up-regulations of superoxide dismutase, glutathione, and carotenoid implied their primary roles in defensing against PFASs (p < 0.05). Catalase/peroxidase was significantly up-regulated in PFBA/GenX substitutions (p < 0.05) to help alleviate stress. PFBA substitutions reduced 23.9 % of PFOA in organelle and GenX reduced the subcellular concentrations of PFOA by 1.8-17.4 %. Redundancy analysis suggested that PFOA, PFBA, and GenX in cell wall and organelle, as well as GenX in soluble fractions, were responsible for the cellular responses. These findings were helpful to understand the integrated effects on aquatic ecosystems during the substitutions to legacy PFASs by alternatives.
Collapse
Affiliation(s)
- Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China.
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Junliang Jin
- Yangtze Institute for Conservation and Development, Jiangsu, 210098, PR China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Dawei Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Yu X, Gutang Q, Wang Y, Wang S, Li Y, Li Y, Liu W, Wang X. Microplastic and associated emerging contaminants in marine fish from the South China Sea: Exposure and human risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136200. [PMID: 39437472 DOI: 10.1016/j.jhazmat.2024.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Microplastics can act as vectors of chemical contaminants in aquatic environments, but the extent to which this phenomenon contributes to chemical exposure in marine organisms remains poorly understood. We investigated the occurrence of microplastics and emerging contaminants (ECs), including antibiotics and per- and polyfluoroalkyl substances (PFAS) in 14 marine fish species. Microplastics were detected in all marine fish species, mainly in the gastrointestinal tract. Fluoroquinolones and tetracyclines were the dominant antibiotics in fish muscles with maximum concentrations of 24.84 and 26.95 ng g-1 ww, while perfluorooctanesulfonic acid (PFOS, 0.039-0.95 ng g-1 ww) was the dominant component in the PFAS profile. Fish with more microplastics had significantly higher concentrations of fluoroquinolones and perfluoroalkyl acids than fish with less microplastics (p < 0.05), but the correlation was not observed in other chemicals. Structural equation modeling revealed the contribution of microplastics in fish on the level of ECs contamination. The health quotient value indicated the low health risk of single compounds via fish consumption to humans; however, the combined risk of microplastics and ECs still needs to be considered. This work highlights the link between microplastics with associated ECs ingested by aquatic organisms and the human health risk of consuming polluted seafood.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qilin Gutang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yuxuan Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Sijia Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenhua Liu
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Jrad A, Das G, Alkhatib N, Prakasam T, Benyettou F, Varghese S, Gándara F, Olson M, Kirmizialtin S, Trabolsi A. Cationic covalent organic framework for the fluorescent sensing and cooperative adsorption of perfluorooctanoic acid. Nat Commun 2024; 15:10490. [PMID: 39622838 PMCID: PMC11612209 DOI: 10.1038/s41467-024-53945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
The contamination of water by per- and polyfluorinated substances (PFAS) is a pressing global issue due to their harmful effects on health and the environment. This study explores a cationic covalent organic framework (COF), TG-PD COF, for the efficient detection and removal of perfluorooctanoic acid (PFOA) from water. Synthesized via a simple sonochemical method, TG-PD COF shows remarkable selectivity and sensitivity to PFOA, with a detection limit as low as 1.8 µg·L⁻¹. It achieves significant PFOA adsorption exceeding 2600 mg·g⁻¹ within seconds over several cycles in batch mode and complete removal at environmentally relevant concentrations in column adsorption. Results reveal unique adsorption behavior characterized by two phases, leveraging PFOA aggregation through hydrophobic interactions. Computer simulations elucidate the mechanisms underlying TG-PD COF's sensing, adsorption, and charge transfer dynamics. Our findings position this COF design strategy as a promising solution for combating PFAS contamination in water bodies worldwide.
Collapse
Affiliation(s)
- Asmaa Jrad
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, New York, 10003, USA
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Mark Olson
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Chemistry, New York University, New York, New York, 10003, USA.
- Center for Smart Engineering Materials, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ali Trabolsi
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Ojemaye CY, Abegunde A, Green L, Petrik L. The efficacy of wastewater treatment plant on removal of perfluoroalkyl substances and their impacts on the coastal environment of False Bay, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64772-64795. [PMID: 39556229 PMCID: PMC11624228 DOI: 10.1007/s11356-024-35509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), which have their origins in both industrial processes and consumer products, can be detected at all treatment stages in wastewater treatment plants (WWTPs). Quantifying the emissions of PFAS from WWTPs into the marine environment is crucial because of their potential impacts on receiving aquatic ecosystems. In this study, the levels of five PFAS were measured in both influent and effluent sewage water samples obtained from a municipal WWTP, the discharges of which flow into False Bay, on the Indian Ocean coast of Cape Town, South Africa. Additionally, seawater, sediment, and biota samples from eight sites along the False Bay coast were also analysed. Results showed high prevalence of PFAS in the different environmental matrices. Perfluorononanoic acid was most dominant in all these matrices with maximum concentration in wastewater, 10.50 ng/L; seawater, 18.76 ng/L; marine sediment, 239.65 ng/g dry weight (dw); invertebrates, 0.72-2.45 µg/g dw; seaweed, 0.36-2.01 µg/g dw. The study used the chemical fingerprint of five PFASs detected in WWTP effluents to track their dispersion across a large, previously pristine marine environment and examined how each chemical accumulated in different marine organisms. The study also demonstrates that primary and secondary wastewater treatment processes cannot fully remove such compounds. There is thus a need to improve effluent quality before its release into the environment and promote continuous monitoring focusing on the sources of PFAS, including their potential transformation products, their environmental fate and ecological risks, particularly in areas receiving effluents from WWTP.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa.
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa.
| | - Adeola Abegunde
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
17
|
Gonda N, Zhang C, Tepedelen D, Smith A, Schaefer C, Higgins CP. Quantitative assessment of poly- and perfluoroalkyl substances (PFASs) in aqueous film forming foam (AFFF)-impacted soils: a comparison of analytical protocols. Anal Bioanal Chem 2024; 416:6879-6892. [PMID: 39414643 DOI: 10.1007/s00216-024-05585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Quantitatively assessing all per- and poly fluoroalkyl substances (PFASs) in an environmental sample, particularly soils impacted by aqueous film forming foams (AFFFs), has proven to be a challenge. To make such an assessment, a comprehensive sample processing procedure and analytical tool must be used. However, doubts remain whether current analytical tools such as high-resolution mass spectrometry (HRMS) with targeted quantitation and semi-quantitative analysis of suspects (Semi-Q HRMS) or total organic fluorine (TOF) are capable of accurately quantifying all non-polymeric PFASs in a sample. Further, current comprehensive soil PFAS HRMS methods are incompatible with TOF, preventing direct comparisons of the approaches. To enable direct comparisons, a soil sample processing procedure that is comprehensive as well as compatible with multiple analytical tools is needed. In this study, we assessed the performance of a previously developed soil PFAS method, EPA Method 1633, and a hybrid solid phase extraction (SPE)-based method for characterizing AFFF-impacted soil composites while maintaining compatibility with multiple analytical tools (i.e., Semi-Q HRMS and TOF). Comparative results for AFFF-impacted soil composites indicate analysis via EPA Method 1633 (as compared to the novel hybrid method) results in maybe up to 75% of the PFAS mass being missed by only analyzing for compounds listed in EPA Method 1633. Simply expanding the EPA Method 1633 analyte list was insufficient to account for the missing mass: up to 69% of the PFAS mass was still missed because of EPA Method 1633's extraction and cleanup bias. Additionally, the novel method developed offers a more comprehensive analysis with minimal reductions to sensitivity when compared to those reported in EPA Method 1633, with limits of quantification ranging from 0.12 to 2.4 ng/g as compared to 0.16-4.0 ng/g, respectively. For these reasons, an alternative hybrid SPE-based method is proposed for comprehensive evaluation of PFASs in AFFF-impacted soils.
Collapse
Affiliation(s)
- Nicholas Gonda
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
- CDM Smith, Denver, CO, 80202, USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Dylan Tepedelen
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adam Smith
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
18
|
Sigler K, Messer TL, Ford W, Sanderson W. Occurrence, transformation, and transport of PFAS entering, leaving, and flowing past wastewater treatment plants with diverse land uses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123129. [PMID: 39504663 DOI: 10.1016/j.jenvman.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected ubiquitously throughout the environment. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for the introduction of PFAS into the environment. Therefore, the occurrence, transformation, and transport of 18 PFAS in two WWTPs with varying treatment processes, prevailing land uses, and during two distinct time periods were investigated. Polar Organic Chemical Integrative Samplers (POCIS) were installed at two WWTPs in Central Kentucky during April and July of 2022. PFAS concentrations typically increased from influent to effluent at both WWTPs, regardless of wastewater treatment processes, but changes in surface water concentrations from upstream to downstream of the effluent mixing zones varied. Both WWTPs discharged the 18 PFAS at higher loads than received, indicating prevalent transformation of PFAS precursors and non-measured PFAS analytes into measurable PFAS. Nearly all measured PFAS persisted in aqueous (86-98%) compartments rather than sediment or biosolids (2-14%). All biosolids had low content of PFAS with the dominant compound being PFOS (1.59-2.60 ng/g). Based on recent US EPA proposed maximum contaminant levels, hazard indexes for drinking water were exceeded in effluent and downstream surface waters at both WWTPs. The WWTP located in a heavily developed area and downstream from a firefighting training facility, had significantly higher concentrations of most PFAS species at most monitoring sites and was less impacted by sampling period compared to the WWTP located in a moderately developed, pastured area. Findings support the importance of WWTPs and land use practices as contributing to PFAS impact to downstream ecosystems along with potentially increasing strains on downstream drinking water source waters in regions that are surface water dependent.
Collapse
Affiliation(s)
- Kyra Sigler
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Tiffany L Messer
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA.
| | - William Ford
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Wayne Sanderson
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
19
|
Ma K, Tian J, Zhang Y, Li Y, Zhang Y, Zhu L. Insights into the neurotoxicity and oxidative stress to the freshwater amphipod Hyalella azteca induced by hexafluoropropylene oxide trimer acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176434. [PMID: 39307363 DOI: 10.1016/j.scitotenv.2024.176434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
With the regulation and phase-out of conventional per- and polyfluoroalkyl substances (PFAS), there is a growing trend towards seeking alternatives that are less toxic and less persistent. Hexafluoropropylene oxide trimer acid (HFPO-TA) is one of the alternatives to perfluorooctanoic acid (PFOA), the latter being widely present in the environment globally. However, there is limited information regarding the biological toxicity of HFPO-TA to aquatic organisms. In this study, the freshwater benthic amphipod, Hyalella azteca, was used to assess the acute and chronic toxicity of HFPO-TA in both water and sediment. HFPO-TA was found to be more toxic to H. azteca than PFOA, as indicated by greater production of reactive oxygen species (p < 0.05) and increasing catalase activity (p < 0.05). In addition, exposure to HFPO-TA affected the swimming behavior and the acetylcholinesterase (AChE) activity of the amphipod. Molecular docking models revealed that HFPO-TA can bind to AChE with a stronger binding affinity than PFOA. Furthermore, an integrated biomarker response index indicated that environmentally relevant concentration (1-100 μg/L) of HFPO-TA may cause toxicity to H. azteca, encompassing oxidative stress and neurotoxicity. This study provides new insights into the toxicity mechanisms of HFPO-TA and is valuable for assessing the ecological safety of this compound.
Collapse
Affiliation(s)
- Kaiyuan Ma
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jiayi Tian
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ying Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuqing Li
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yanfeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
20
|
Huang C, Zhang Y, Zhang Q, He D, Dong S, Xiao X. Rapid detection of perfluorooctanoic acid by surface enhanced Raman spectroscopy and deep learning. Talanta 2024; 280:126693. [PMID: 39167934 DOI: 10.1016/j.talanta.2024.126693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Perfluorooctanoic acid (PFOA) has received increasing concerns in recent years due to its wide distribution and potential toxicity. Existing detection techniques of PFOA require complex pre-treatment, therefore often taking several hours. Here, we developed a rapid PFOA detection mode to detect approximate concentrations of PFOA (ranging from 10-15 to 10-3 mol/L) in deionized water, and detecting one sample takes only 20 min. The detection mode was achieved using a deep learning model trained by a large surface enhanced Raman spectra dataset, based on the agglomeration of PFOA with crystal violet. In addition, transfer learning approach was used to fine tune the model, the fine-tuned model was generalizable across water samples with different impurities and environments to determine whether meet the safety standards of PFOA, the accuracy was 96.25 % and 94.67 % for tap water and lake water samples, respectively. The mechanism and specificity of the detection mode were further confirmed by molecular dynamics simulation. Our work provides a promising solution for PFOA detection, especially in the context of the increasingly widespread application of PFOA.
Collapse
Affiliation(s)
- Chaoning Huang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Ying Zhang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qi Zhang
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Dong He
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China
| | - Shilian Dong
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China.
| | - Xiangheng Xiao
- School of Physics and Technology, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, 430072, China; Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Jonathan JWA, Essumang DK, Bentum JK, Kabotso DEK, Gborgblorvor IR, Eshun A, Hlorlewu ND, Davordzi E. Exploring perfluoroalkyl substances contamination in human breast milk: First ghanaian study. CHEMOSPHERE 2024; 369:143769. [PMID: 39580088 DOI: 10.1016/j.chemosphere.2024.143769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/28/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) represent a category of synthetic organic chemical contaminants that have garnered increasing attention due to their potential adverse impacts. Existing research underscores the contamination of human breast milk by PFAS, raising concerns regarding potential deleterious health effects in children. The study aimed to explore the levels of some PFAS in human breast milk in a previously unstudied population to determine the extent of infants' exposure. The research was conducted at Ho Teaching Hospital in Ghana. The study protocol was reviewed and approval by University of Health and Allied Sciences Ethics Research Committee (UHAS-REC). Twenty-nine (29) mothers, aged 18-44 years, were enrolled in the research. Sample collection spanned from December 28, 2020 to June 30, 2021. Ten millilitres (10 mL) of breast milk were collected from each participant into cleaned bottles from day of birth to after two weeks postpartum, following a standardized protocol and stored at -20 °C. Sample preparation and analysis employed solid phase extraction methodology. Subsequently, the processed extracts were subjected to analysis using ultra-high-performance liquid chromatography (UPLC-MS/MS). The data obtained were analysed using IBM SPSS Statistics version 26, Excel 2016, and Xlstat 2022. Descriptive statistics were employed to summarize the study variables. The mean/mode input method was used to treat missing data. The median and interquartile range (IQR) of PFAS concentrations in the breast milk were: PFHxA, 6.0 ng/L(IQR, 2.2 ng/L), PFHpA, 5.6 ng/L(IQR, 2.1 ng/L), PFOA, 72.0 ng/L(IQR, 16.0 ng/L), and PFOS, 93.0 ng/L(IQR, 8.0 ng/L) ng/L) respectively. PFOS and PFOA were the most dominant PFAS in the breast milk which is consistent with worldwide reports. The levels of PFAS, particularly PFOS and PFOA, in breast milk points to seemingly high levels of PFAS exposure and contamination of mothers and neonates in the region.
Collapse
Affiliation(s)
- Justice Wiston Amstrong Jonathan
- University of Cape Coast, School of Physical Sciences, Department of Chemistry, Cape Coast, Ghana; University of Health and Allied Sciences, School of Basic and Biomedical Sciences, Department of Basic Sciences, Ho, Ghana.
| | - David K Essumang
- University of Cape Coast, School of Physical Sciences, Department of Chemistry, Cape Coast, Ghana.
| | - John K Bentum
- University of Cape Coast, School of Physical Sciences, Department of Chemistry, Cape Coast, Ghana.
| | - Daniel Elorm Kwame Kabotso
- University of Health and Allied Sciences, School of Basic and Biomedical Sciences, Department of Basic Sciences, Ho, Ghana.
| | | | - Albert Eshun
- University of Cape Coast, School of Physical Sciences, Department of Chemistry, Cape Coast, Ghana.
| | | | - Elizabeth Davordzi
- University of Cape Coast, School of Physical Sciences, Department of Chemistry, Cape Coast, Ghana.
| |
Collapse
|
22
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
23
|
Tipplook M, Hisama K, Koyama M, Fujisawa K, Hayashi F, Sudare T, Teshima K. Cation-Doped Nanocarbons for Enhanced Perfluoroalkyl Substance Removal: Exotic Bottom-Up Solution Plasma Synthesis and Characterization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61832-61845. [PMID: 39348279 DOI: 10.1021/acsami.4c08925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Perfluorinated alkyl substances (PFAS), such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are pervasive organic contaminants that are widespread in aquatic environments, posing significant health risks to humans and wildlife. Due to their persistent nature, urgent removal is necessary. Conventional adsorbents are inefficient at removing PFOS and PFOA, highlighting the need for alternative materials. Herein, we present a synthetic method for quaternary ammonium cation-doped carbon nanoparticles (QACNs) using a solution plasma process for the efficient removal of PFOS and PFOA. QACN is formed simultaneously through a one-step discharge of nonequilibrium plasma at the interface of benzene and pyridinium chloride. The resulting material exhibited a high surface electrical charge and enhanced hydrophilicity as well as an amorphous structure of a nonporous nature, involving nanoparticles with an undefined shape. The obtained adsorbent demonstrated high adsorption efficiency and stability, adsorbing 998.45 and 889.37 mg g-1 of PFOS and PFOA, respectively, exceeding the efficiencies of conventional carbon-based adsorbents (80.89-313.15 mg g-1). The adsorption performance was dependent on the adsorbent dosage, pH of the solution, and the coexisting ionic species. Adsorption studies, including adsorption kinetics, isotherms, and thermodynamics, revealed that PFOS and PFOA were chemisorbed to the QACN surface, forming multilayers endothermically and spontaneously. Experimental and computational analyses revealed that adsorption primarily occurs via electronic interactions between the PFAS active sites and the quaternary ammonium group in the carbon framework. The slightly lower adsorption potential of the PFOS and PFOA fluorocarbon chains on the adsorbent was elucidated. Furthermore, the dispersibility of the adsorbent in solution significantly affected the adsorption performance. These findings highlight the potential of the novel synthetic method proposed in this study, offering a pathway for the development of highly effective carbon adsorbents for environmental remediation.
Collapse
Affiliation(s)
- Mongkol Tipplook
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Kaoru Hisama
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Michihisa Koyama
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Kazunori Fujisawa
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Fumitaka Hayashi
- Department of Materials Chemistry, Shinshu University, Nagano 380-8553, Japan
| | - Tomohito Sudare
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
| | - Katsuya Teshima
- Research Initiative for Supra-Materials (RISM), Shinshu University, Nagano 380-8553, Japan
- Department of Materials Chemistry, Shinshu University, Nagano 380-8553, Japan
- Institute for Aqua Regeneration, Shinshu University, Nagano 380-8553, Japan
| |
Collapse
|
24
|
Tajdini B, Vatankhah H, Pezoulas ER, Zhang C, Higgins CP, Bellona C. Adsorbability of a wide range of per- and polyfluoroalkyl substances on granular activated carbon, ion exchange resin, and surface modified clay. WATER RESEARCH 2024; 268:122774. [PMID: 39556982 DOI: 10.1016/j.watres.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The increased detection of understudied per- and polyfluoroalkyl substances (PFAS) in environmental matrices has highlighted the need to evaluate the treatability of a wide-range of PFAS by sorption-based processes. This study investigated the efficacy of three commercial adsorbents (i.e., granular activated carbon (GAC), surface modified clay (SMC), and anionic exchange resin (AER)) for the removal of a wide range of cationic, zwitterionic, and anionic PFAS from an aqueous film forming foam (AFFF)-impacted groundwater employing rapid small-scale column tests (RSSCTs) coupled with high resolution mass spectrometry (HRMS) and suspect screening analysis (SQ). AER exhibited later breakthrough times for the majority of anionic and zwitterionic PFAS compared to SMC and GAC. However, both AER and SMC exhibited negligible removal of cationic PFAS presumably due to the reliance of these adsorbents on electrostatic interactions and the counteraction of hydrophobic forces caused by the repulsion between cationic PFAS and positively charged surfaces of AER and SMC. GAC, being a non-selective adsorbent, was largely unaffected by the ionic charge of the evaluated PFAS with molecular structure having a bigger impact on adsorbability. The detection of a variety of PFAS classes in the investigated AFFF-impacted groundwater enabled assessment of the relative impact of chemical structure on adsorptive removal of PFAS. Chain-length dependent adsorption was observed across all investigated anionic and zwitterionic PFAS classes. The PFAS structures possessing hydroxyl and/or methyl functional groups exhibited later breakthrough times compared to their homologues lacking these functional groups and cyclic/unsaturated structures were removed less efficiently compared to their linear/saturated homologues. In the case of perfluoroalkyl acid (PFAA)-derivative structures, hydrogen-substituted classes (i.e., H-PFAAs) were removed more efficiency than PFAAs while keto-substituted structures (i.e., K-PFSA) and pentahydrido-fluoroalkane sulfates (PeH-FAOS) exhibited lower adsorbability compared to PFAAs for all adsorbents. Oxa-PFAAs (O-PFSA; isomer class of PFA-OS) on the other hand demonstrated higher adsorbability compared to PFAAs in the case of AER-like adsorbents, while this trend was reversed for GAC.
Collapse
Affiliation(s)
- Bahareh Tajdini
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Hooman Vatankhah
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Department of Civil and Environmental Engineering, Florida International University, Miami, FL, USA
| | - Ethan R Pezoulas
- Department of Chemistry, University of California, Berkeley, CA , USA
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Christopher Bellona
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
25
|
Mohamed M, Chaplin BP, Abokifa AA. Ab Initio Investigation of Per- and Poly-fluoroalkyl Substance (PFAS) Adsorption on Zerovalent Iron (Fe 0). ACS OMEGA 2024; 9:44532-44541. [PMID: 39524632 PMCID: PMC11541440 DOI: 10.1021/acsomega.4c06612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
In this study, dispersion-corrected density functional theory (DFT) calculations were employed to investigate the adsorption of per- and poly-fluoroalkyl substances (PFAS) onto zerovalent iron (Fe0). The main objective of this investigation was to shed light on the adsorption properties, including adsorption energies, geometries, and charge transfer mechanisms, for four PFAS molecules, namely, perfluorooctanesulfonic acid (PFOS), perfluorobutanesulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorobutanoic acid (PFBA), on the most thermodynamically accessible Fe0 surface facets. Additionally, the DFT investigation examined the role of PFAS chain length, functional group, protonation/deprotonation state, and solvation in water in their adsorption to Fe0. Overall, the adsorption of the four PFAS molecules on various Fe0 surfaces exhibited thermodynamically favorable energetics. Nevertheless, solvation in water resulted in less exothermic adsorption energies, and the presence of preadsorbed oxygen blocked the Fe0 surface, preventing PFAS adsorption. Additionally, the inclusion of a monolayer of Ni on top of the Fe0 surface reduced the stability of PFAS adsorption compared to pristine Fe0. Results of the computational investigation were compared to experimental results from the literature for qualitative validation.
Collapse
Affiliation(s)
- Mohamed
S. Mohamed
- Department
of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
- Faculty of
Engineering, Cairo University, Giza 12613, Egypt
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Ahmed A. Abokifa
- Department
of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
26
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
27
|
Zheng Y, Wang L, Wu J, Xiang L, Gao Y, Chen H, Sun H, Pan Y, Zhao H. Integrated non-targeted metabolomics and lipidomics reveal mechanisms of fluorotelomer sulfonates-induced toxicity in human hepatocytes. ENVIRONMENT INTERNATIONAL 2024; 193:109092. [PMID: 39486253 DOI: 10.1016/j.envint.2024.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Fluorotelomer sulfonates (FTSs) are widely used as novel substitutes for perfluorooctane sulfonate, inevitably leading to FTSs accumulation in various environmental media and subsequent exposure to humans. This accumulation eventually poses environmental hazards and health risks. However, their toxicity mechanisms remain unclear. Herein, the mechanisms of two FTSs (6:2 and 8:2 FTS) induced toxicity in human hepatocellular carcinoma cells were investigated via non-targeted metabolomics and lipidomics based on liquid chromatography-high resolution mass spectrometry. Our results revealed that amino acid, purine, acylcarnitine and lipid levels were significantly perturbed by 6:2 and 8:2 FTS exposure. The effects of 8:2 FTS exposure were largely characterized by up-regulation of pyruvate metabolism pathway and down-regulation of purine metabolism pathway, whereas the opposite trends were induced by 6:2 FTS exposure. The opposite trends were confirmed by the mRNA expression levels of four key genes (glyoxalase 1, adenylosuccinate lyase, inosine monophosphate dehydrogenase 1 (IMPDH1) and IMPDH2) determined by real-time PCR. Common lipid perturbations included significantly increased ceramide/sphingomyelin ratios, and obvious accumulation of hexosylceramides and lysoglycerophospholipids. 6:2 FTS exposure induced sharp accumulation of glycerides, including monoglycerides, diglycerides and triglycerides. 8:2 FTS exposure induced decreased levels of acylcarnitines and fatty acids. Both of 6:2 and 8:2 FTS exposure induced increased levels of intracellular reactive oxygen species, an imbalance in energy metabolism homeostasis, and mitochondrial dysfunction. The results of integrated omics analysis are expected to serve as valuable information for the health risk assessment of 6:2 FTS and 8:2 FTS.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Lu Wang
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Jianing Wu
- Institute of Germplasm Resource and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yafei Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
28
|
Xu J, Cui Q, Ren H, Liu S, Liu Z, Sun X, Sun H, Shang J, Tan W. Differential uptake and translocation of perfluoroalkyl substances by vegetable roots and leaves: Insight into critical influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175205. [PMID: 39097023 DOI: 10.1016/j.scitotenv.2024.175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Crop contamination of perfluoroalkyl substances (PFASs) may threaten human health, with root and leaves representing the primary uptake pathways of PFASs in crops. Therefore, it is imperative to elucidate the uptake characteristics of PFASs by crop roots and leaves as well as the critical influencing factors. In this study, the uptake and translocation of PFASs by roots and leaves of pak choi and radish were systematically explored based on perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS). Additionally, the roles of root Casparian strips, leaf stomata, and PFAS structures in the aforementioned processes were elucidated. Compared with pak choi, PFASs are more easily transferred to leaves after root uptake in radish, resulting from the lack of root Casparian strips. In pak choi root, the bioaccumulation of C4-C8 perfluoroalkyl carboxylic acids (PFCAs) showed a U-shaped trend with the increase of their carbon chain lengths, and the translocation potentials of individual PFASs from root to leaves negatively correlated with their chain lengths. The leaf uptake of PFOA in pak choi and radish mainly depended on cuticle sorption, with the evidence of a slight decrease in the concentrations of PFOA in exposed leaves after stomatal closure induced by abscisic acid. The leaf bioaccumulation of C4-C8 PFCAs in pak choi exhibited an inverted U-shaped trend as their carbon chain lengths increased. PFASs in exposed leaves can be translocated to the root and then re-transferred to unexposed leaves in vegetables. The longer-chain PFASs showed higher translocation potentials from exposed leaves to root. PFOS demonstrated a higher bioaccumulation than PFOA in crop roots and leaves, mainly due to the greater hydrophobicity of PFOS. Planting root vegetables lacking Casparian strips is inadvisable in PFAS-contaminated environments, in view of their higher PFAS bioaccumulation and considerable human intake.
Collapse
Affiliation(s)
- Jiayi Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Hailong Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyan Sun
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Heyang Sun
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Shang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Dai Y, Tian G, Wang H, Yuan H, Song G, Zhang H, Liu X, Yue T, Zhao J, Wang Z, Xing B. Distribution and bioaccumulation of per- and polyfluoroalkyl substances (PFASs) in the Kuroshio Extension region of Northwest Pacific Ocean. WATER RESEARCH 2024; 265:122256. [PMID: 39186864 DOI: 10.1016/j.watres.2024.122256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are prevalently present in oceans, posing potential health risks to organisms and humans. However, information of PFAS distribution in remote open oceans is limited. In the Kuroshio Extension region of Northwest Pacific Ocean (6 stations), samples of 84 seawater (0-5800 m), 9 sediments, and 9 organisms were taken, and 25, 10, and 15 out of 29 PFASs were identified, respectively, with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonates (PFOS) as the most dominant PFASs. In seawater, ΣPFASs concentration decreased from the Kuroshio region (4.47 ng/L) to the Oyashio region (3.15 ng/L), and decreased with increasing seawater depth under the function of biological and physical pumps. Additionally, 12 precursors and emerging PFASs, including perfluorooctane sulfonamide (FOSA, 0.20 ng/L), were detected. In sediment, PFASs (5.92-12.97 pg/g) were identified at depths exceeding 5000 m, including 3 precursors (e.g., FOSA, 0.82 pg/g). ΣPFASs contents were 27.12, 31.47 and 36.97 ng/g (dry weight) in brown algae (Phaeophyceae), barnacles (Balanus), and lanternfish (Myctophiformes), respectively, in which two precursors (e.g., FOSA, 0.09-0.12 ng/g) were also identified. A correlation with the trophic position was found for PFOA bioaccumulation. These findings provide useful information on PFAS distribution in the global open ocean environments.
Collapse
Affiliation(s)
- Yanhui Dai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Guopeng Tian
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Hao Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Hanyu Yuan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Guodong Song
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Honghai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Xia Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst MA 01003, USA.
| |
Collapse
|
30
|
Mahoney H, Ankley P, Roberts C, Lamb A, Schultz M, Zhou Y, Giesy JP, Brinkmann M. Unveiling the Molecular Effects of Replacement and Legacy PFASs: Transcriptomic Analysis of Zebrafish Embryos Reveals Surprising Similarities and Potencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18554-18565. [PMID: 39392652 DOI: 10.1021/acs.est.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Catherine Roberts
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alicia Lamb
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yutong Zhou
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, Texas 76798-7266, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 1K2, Canada
| |
Collapse
|
31
|
Bhardwaj S, Lee M, O'Carroll D, McDonald J, Osborne K, Khan S, Pickford R, Coleman N, O'Farrell C, Richards S, Manefield MJ. Biotransformation of 6:2/4:2 fluorotelomer alcohols by Dietzia aurantiaca J3: Enzymes and proteomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135510. [PMID: 39178776 DOI: 10.1016/j.jhazmat.2024.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are recalcitrant synthetic organohalides known to negatively impact human health. Short-chain fluorotelomer alcohols are considered the precursor of various perfluorocarboxylic acids (PFCAs) in the environment. Their ongoing production and widespread detection motivate investigations of their biological transformation. Dietzia aurantiaca strain J3 was isolated from PFAS-contaminated landfill leachate using 6:2 fluorotelomer sulphonate (6:2 FTS) as a sulphur source. Resting cell experiments were used to test if strain J3 could transform fluorotelomer alcohols (6:2 and 4:2 FTOH). Strain J3 transformed fluorotelomer alcohols into PFCAs, polyfluorocarboxylic acids and transient intermediates. Over 6 days, 80 % and 58 % of 6:2 FTOH (0.1 mM) and 4:2 FTOH (0.12 mM) were degraded with 6.4 % and 14 % fluoride recovery respectively. Fluorotelomer unsaturated carboxylic acid (6:2 FTUCA) was the most abundant metabolite, accounting for 21 to 30 mol% of 6:2 FTOH (0.015 mM) applied on day zero. Glutathione (GSH) conjugates of 6:2/4:2 FTOH and 5:3 FTCA adducts were also structurally identified. Proteomics studies conducted to identify enzymes in the biotransformation pathway have revealed the role of various enzymes involved in β oxidation. This is the first report of 6:2/4:2 FTOH glutathione conjugates and 5:3 FTCA adducts in prokaryotes, and the first study to explore the biotransformation of 4:2 FTOH by pure bacterial strain.
Collapse
Affiliation(s)
- Shefali Bhardwaj
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Denis O'Carroll
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - James McDonald
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Keith Osborne
- Environment Protection Science, NSW Department of Climate Change, Energy, the Environment and Water, Lidcombe, NSW 2141, Australia
| | - Stuart Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Russell Pickford
- UNSW Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Nicholas Coleman
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | | | | | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
32
|
Chen ZW, Hua ZL. Effect of Co-exposure to Additional Substances on the Bioconcentration of Per(poly)fluoroalkyl Substances: A Meta-Analysis Based on Hydroponic Experimental Evidence. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:270-286. [PMID: 39367139 DOI: 10.1007/s00244-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024]
Abstract
A consensus has yet to emerge regarding the bioconcentration responses of per(poly)fluoroalkyl substances under co-exposure with other additional substances in aqueous environments. This study employed a meta-analysis to systematically investigate the aforementioned issues on the basis of 1,085 published datasets of indoor hydroponic simulation experiments. A hierarchical meta-analysis model with an embedded variance covariance matrix was constructed to eliminate the non-independence and shared controls of the data. Overall, the co-exposure resulted in a notable reduction in PFAS bioaccumulation (cumulative effect size, CES = - 0.4287, p < 0.05) and bioconcentration factor (R2 = 0.9507, k < 1, b < 0) in hydroponics. In particular, the inhibition of PFAS bioconcentration induced by dissolved organic matter (percentage form of the effect size, ESP = - 48.98%) was more pronounced than that induced by metal ions (ESP = - 35.54%), particulate matter (ESP = - 24.70%) and persistent organic pollutants (ESP = - 18.66%). A lower AS concentration and a lower concentration ratio of ASs to PFASs significantly promote PFAS bioaccumulation (p < 0.05). The bioaccumulation of PFASs with long chains or high fluoride contents tended to be exacerbated in the presence of ASs. Furthermore, the effect on PFAS bioaccumulation was also significantly dependent on the duration of co-exposure (p < 0.05). The findings of this study provide novel insights into the fate and bioconcentration of PFAS in aquatic environments under co-exposure conditions.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Yangtze Institute for Conservation and Development, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
33
|
Li X, Ma Y, Zhang Y, Zhang X, Li H, Sun Y, Niu Z. Porphyrin metabolism and carbon fixation response of Skeletonema costatum at different growth phases to mixed emerging PFASs at environmental concentrations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1465-1475. [PMID: 38973378 DOI: 10.1039/d4em00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially as emerging compounds, have been widely detected in coastal seawater. However, the awareness of the interaction between PFASs at environmental concentrations and marine diatoms is still limited. In this study, Skeletonema costatum was exposed to three co-existing PFASs, namely hexafluoropropylene oxide dimer acid (HFPO-DA), 6 : 2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES), and perfluoroethylcyclohexane sulfonate (PFECHS) (15-300 ng L-1 in total), for 14 days. In the 300 ng L-1 test group, the significant down-regulation of chlorophyllide a in porphyrin metabolism, light-harvesting capacity and carbon fixation were the main inhibitory mechanisms of photosynthesis by emerging PFASs at the 14th day compared to the 8th day, which indicated that they may have a shading effect on S. costatum. Additionally, mixed PFASs could also activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase by up-regulating gene gp91 and down-regulating genes CaM4 and NDPK2 to generate excessive ROS. This resulted in a decrease in the algal biomass, which would further weaken the primary productivity of S. costatum. Our findings illustrated that mixed emerging PFASs at environmental concentrations may interfere with the carbon balance of marine diatoms.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaohan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyu Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yueling Sun
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
34
|
Clarke BO. The Role of Mass Spectrometry in Protecting Public Health and the Environment from Synthetic Chemicals. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2248-2255. [PMID: 39165229 DOI: 10.1021/jasms.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mass spectrometry (MS) has dramatically transformed environmental protection by facilitating the precise quantification and identification of pollutants. This review charts the evolution of environmental chemistry, intertwining it with advancements in analytical chemistry and MS technologies. It specifically focuses on the role of MS in studying persistent organic pollutants like organochlorine pesticides, polychlorinated biphenyls (PCBs), brominated fire retardants (BFRs), and perfluoroalkyl and polyfluoroalkyl substances (PFAS), marking significant milestones and their implications. Notably, the adoption of gas chromatography with MS in the 1970s and liquid chromatography with MS in the late 1990s profoundly expanded scientists' ability to detect complex pollutant mixtures. Over the past 50 years, the proliferation of potential pollutants has surged, necessitating more sophisticated analysis techniques, such as high-resolution mass spectrometry-nontargeted analysis (HRMS-NTA) and suspect screening. While HRMS promises to enhance the characterization of new environmental pollutants, a significant shift in chemical management strategies remains imperative. Despite technological advances, MS alone is insufficient to mitigate the risks from the continuous emergence of novel chemicals, with many potentially already present in the environment and bioaccumulating in humans.
Collapse
Affiliation(s)
- Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
35
|
Shen L, Zhou J, Ma Y, Su Q, Mao H, Su E, Tang KHD, Wang T, Zhu L. Characterization of the Bioavailability of Per- and Polyfluoroalkyl Substances in Farmland Soils and the Factors Impacting Their Translocation to Edible Plant Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15790-15798. [PMID: 39172077 DOI: 10.1021/acs.est.4c04009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In this study, various crops and farmland soils were collected from the Fen-Wei Plain, China, to investigate the bioavailability of perfluoroalkyl substances (PFAS), their accumulation in edible plant tissues, and the factors impacting their accumulation. PFAS were frequently detected in all of the crops, with total concentrations ranging from 0.61 to 35.8 ng/g. The results of sequential extractions with water, basic methanol, and acidic methanol indicate that water extraction enables to characterize the bioavailability of PFAS in soil to edible plant tissues more accurately, especially for the shorter-chain homologues. The bioavailability of PFAS was remarkably enhanced in the rhizosphere (RS) soil, with the strongest effect observed for leafy vegetables. The water-extracted Σ16PFAS in RS soil was strongly correlated with the content of dissolved organic carbon in the soil. Tannins and lignin, identified as the main components of plant root exudates by Fourier transform-ion cyclotron resonance mass spectrometry, were found to enhance the bioavailability of PFAS significantly. Redundancy analysis provided strong evidence that the lipid and protein contents in edible plant tissues play important roles in the accumulation of short- and long-chain PFAS, respectively. Additionally, the high water demand of these tissues during the growth stage greatly facilitated the translocation of PFAS, particularly for the short-chain homologues and perfluorooctanoic acid.
Collapse
Affiliation(s)
- Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Yujing Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Qian Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Heshun Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Eryuan Su
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, PR China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
36
|
Xu N, Pan Z, Guo W, Li S, Li D, Dong Y, Sun W. Impacts of rapidly urbanizing watershed comprehensive management on per- and polyfluoroalkyl substances pollution: Based on PFAS "diversity" assessment. WATER RESEARCH 2024; 261:122010. [PMID: 38986285 DOI: 10.1016/j.watres.2024.122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The impact of watershed comprehensive management (WCM) on per- and polyfluoroalkyl substances (PFAS) pollution in rapidly urbanizing areas remains unclear. In a typical rapidly urbanizing watershed of Shenzhen, China, we investigated temporal variations in contamination level, primary source and ecological risk of 50 emerging and legacy PFAS, as well as the replacement trends of emerging PFAS before and after WCM during a six-year sampling campaign. We found that large-scale dredging was a non-negligible factor in abnormally increased PFAS concentrations (6.43 %-456.16 %) during WCM through their release from river sediments. To better characterize the diverse and complex PFAS contamination, a novel pollution assessment method, PFAS "diversity", was adopted based on a modified Shannon-Weiner diversity index and Pielou evenness index, reflecting numbers of PFAS detected and how evenly each PFAS contributed to the total PFAS concentrations at specific sampling sites. Importantly, we found that the Pielou evenness index can indicate and quantify abnormal pollution sources (especially point sources) along the river. The results revealed that WCM did not effectively reduce total PFAS concentrations and diversity in the rapidly urbanizing watershed but obviously improved point source pollution. Furthermore, 6:2 polyfluorinated phosphate diesters and hexafluoropropylene oxide dimer acid (GenX) that posed high ecological risks emerged and the number of sampling sites with high risk increased from 16 to 20 after WCM. Finally, we summarize several important issues related to PFAS contamination during WCM and propose specific countermeasures, such as adopting environmental dredging and reducing the proportion of ecological water replenished by wastewater treatment plant effluent for better control of PFAS pollution. Our study highlighted the limited effectiveness of WCM in mitigating PFAS pollution and the importance of emerging contaminant regulation in rapidly urbanizing watersheds during WCM.
Collapse
Affiliation(s)
- Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China.
| | - Zhile Pan
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Wenjing Guo
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Dianbao Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Yanran Dong
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
37
|
Koval AM, Jenness GR, Shukla MK. Structural investigation of the complexation between vitamin B12 and per- and polyfluoroalkyl substances: Insights into degradation using density functional theory. CHEMOSPHERE 2024; 364:143213. [PMID: 39214410 DOI: 10.1016/j.chemosphere.2024.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental remediation of per- and polyfluoroalkyl substances (PFAS) has become a significant research topic in recent years due to the fact that these materials are omnipresent, resistant to degradation and thus environmentally persistent. Unfortunately, they have also been shown to cause health concerns. PFAS are widely used in industrial applications and consumer products. Vitamin B12 (B12) has been identified as being catalytically active towards a variety of halogenated compounds such as PFAS. It has also been shown to be effective when using sulfide as a reducing agent for B12. This is promising as sulfide is readily available in the environment. However, there are many unknowns with respect to PFAS interactions with B12. These include the reaction mechanism and B12's specificity for PFAS with certain functionalization(s). In order to understand the specificity of B12 towards branched PFAS, we examined the atomistic interactions between B12 and eight different PFAS molecules using Density Functional Theory (B3LYP/cc-pVDZ). The PFAS test set included linear PFAS and their branched analogs, carboxylic acid and sulfonic acid headgroups, and aromatic and non-aromatic cyclic structures. Conformational analyses were carried out to determine the lowest energy configurations. This analysis showed that small chain PFAS such as perfluorobutanoic acid interact with the cobalt center of B12. Bulkier PFAS prefer to interact with the amine and carbonyl groups on the sidechains of the B12 ring system. Furthermore, computed complexation energies determined that, in general, branched PFAS (e.g. perfluoro-5-methylheptane sulfonic acid) interact more strongly than linear molecules (e.g. perfluorooctanesulfonic acid). Our results indicate that it may be possible to alter the interactions between B12 and PFAS by synthetically modifying the sidechains of the ring structure.
Collapse
Affiliation(s)
- Ashlyn M Koval
- Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States.
| |
Collapse
|
38
|
Li Y, Zhao X, Li X, Zhang Y, Niu Z. The investigation of the enrichment behavior of identified PFAS and unknown PFAA-precursors in water and suspended particulate matter of the surface microlayer: A case study in Tianjin (China). WATER RESEARCH 2024; 260:121944. [PMID: 38909422 DOI: 10.1016/j.watres.2024.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The surface microlayer (SML) is an important air water interface layer, known as the skin of the ocean, which has chemical enrichment properties. Chemical enrichment in the SML can affect the occurrence of pollutants in the underlying water and air samples. Although the enrichment of per- and polyfluorinated substances (PFAS), a class of persistent organic pollutants of high concern, has been reported in the SML, information on the behavior of unknown PFAA-precursors in SML is lacked, and it is not clear whether there is a similar PFAS enrichment in suspended particulate matter (SPM) in the SML. Therefore, to investigate these questions, we conducted a systematic survey of 24 PFAS in 11 paired water and SPM samples from the SML and underlying water (U50cm and U2m) from the Duliujian River, which flows to the Bohai sea in Tianjin, China. The ∑PFAS mean concentrations in the water and SPM samples were 38.2 ng/L and 64.6 ng/g dw, respectively. The PFAS concentrations of PFAS in the SML were higher than those in the underlying water, and the enrichment factors (EFs) were greater in the SPM than that in the water. The long-chain PFAS EFs were greater than those for short-chain PFAS, indicating that the EFs were positively correlated with the hydrophobicity. Moreover, by applying the total oxidizable precursor (TOP) assay, the unknown PFAA-precursors (C5-C12) in the water and SPM contributed 11.4∼86.4 mol% and 7.1∼88.0 mol% to total PFAS, respectively. The ecological risk of the targeted PFAS in the SML was relatively higher than that in the underlying water, indicating that PFAS in the SML require more attention. Preliminary estimates indicate that the PFAS-enriched SML is an important exposure route that poses a potential risk to wildlife in rivers and oceans.
Collapse
Affiliation(s)
- Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xinhai Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaofeng Li
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; International Joint Institute of Tianjin University, Fuzhou 350205, China
| |
Collapse
|
39
|
Hafeez S, Khanam A, Cao H, Chaplin BP, Xu W. Novel Conductive and Redox-Active Molecularly Imprinted Polymer for Direct Quantification of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:871-877. [PMID: 39156924 PMCID: PMC11325644 DOI: 10.1021/acs.estlett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aysha Khanam
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., 14, Chicago, Illinois 60607, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
40
|
Wu H, Wang J, Du E, Guo H. Comparative analysis of UV-initiated ARPs for degradation of the emerging substitute of perfluorinated compounds: Does defluorination mean the sole factor? JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134687. [PMID: 38805816 DOI: 10.1016/j.jhazmat.2024.134687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Due to the increasing attention for the residual of per- and polyfluorinated compounds in environmental water, Sodium p-Perfluorous Nonenoxybenzenesulfonate (OBS) have been considered as an alternative solution for perfluorooctane sulfonic acid (PFOS). However, recent detections of elevated OBS concentrations in oil fields and Frontal polymerization foams have raised environmental concerns leading to the decontamination exploration for this compound. In this study, three advanced reduction processes including UV-Sulfate (UV-SF), UV-Iodide (UV-KI) and UV-Nitrilotriacetic acid (UV-NTA) were selected to evaluate the removal for OBS. Results revealed that hydrated electrons (eaq-) dominated the degradation and defluorination of OBS. Remarkably, the UV-KI exhibited the highest removal rate (0.005 s-1) and defluorination efficiency (35 %) along with the highest concentration of eaq- (K = -4.651). Despite that nucleophilic attack from eaq- on sp2 carbon and H/F exchange were discovered as the general mechanism, high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC/Q-TOF-MS) analysis with density functional theory (DFT) calculations revealed the diversified products and routes. Intermediates with lowest fluorine content for UV-KI were identified, the presence nitrogen-containing intermediates were revealed in the UV-NTA. Notably, the nitrogen-containing intermediates displayed the enhanced toxicity, and the iodine poly-fluorinated intermediates could be a potential-threat compared to the superior defluorination performance for UV-KI.
Collapse
Affiliation(s)
- Han Wu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
41
|
Che S, Guan X, Rodrigues R, Yu Y, Xie Y, Liu C, Men Y. Synergistic material-microbe interface toward deeper anaerobic defluorination. Proc Natl Acad Sci U S A 2024; 121:e2400525121. [PMID: 39042683 PMCID: PMC11295042 DOI: 10.1073/pnas.2400525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C6-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates. These synergies at the material-microbe interfaces surpassed the limitation of microbial defluorination and further turned the biotransformation end products into less fluorinated products, which could be less toxic and more biodegradable in the environment. This material-microbe hybrid system brings opportunities in the bioremediation of PFAS driven by renewable electricity and warrants future research on mechanistic understanding of defluorinating and electroactive microorganisms at the material-microbe interface for system optimizations.
Collapse
Affiliation(s)
- Shun Che
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Roselyn Rodrigues
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Yaochun Yu
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA90095
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA90095
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA92521
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
42
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yan M, Chen L, Schlenk D, Leung KMY, Lam PKS. Stereoselective Bioconcentration and Neurotoxicity of Perfluoroethylcyclohexane Sulfonate in Marine Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12933-12942. [PMID: 39003765 DOI: 10.1021/acs.est.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 μg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
43
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Yan M, Gao Z, Xiang X, Wang Q, Song X, Wu Y, Löffler FE, Zeng J, Lin X. Defluorination of monofluorinated alkane by Rhodococcus sp. NJF-7 isolated from soil. AMB Express 2024; 14:65. [PMID: 38842638 PMCID: PMC11156826 DOI: 10.1186/s13568-024-01729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Microbial degradation of fluorinated compounds raised significant attention because of their widespread distribution and potential environmental impacts. Here, we report a bacterial isolate, Rhodococcus sp. NJF-7 capable of defluorinating monofluorinated medium-chain length alkanes. This isolate consumed 2.29 ± 0.13 mmol L- 1 of 1-fluorodecane (FD) during a 52 h incubation period, resulting in a significant release of inorganic fluoride amounting to 2.16 ± 0.03 mmol L- 1. The defluorination process was strongly affected by the initial FD concentration and pH conditions, with lower pH increasing fluoride toxicity to bacterial cells and inhibiting enzymatic defluorination activity. Stoichiometric conversion of FD to fluoride was observed at neutral pH with resting cells, while defluorination was significantly lower at reduced pH (6.5). The discovery of the metabolites decanoic acid and methyl decanoate suggests that the initial attack by monooxygenases may be responsible for the biological defluorination of FD. The findings here provide new insights into microbial defluorination processes, specifically aiding in understanding the environmental fate of organic semi-fluorinated alkane chemicals.
Collapse
Affiliation(s)
- Meng Yan
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Zhaozhao Gao
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Xingjia Xiang
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| | - Qing Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Yucheng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, Department of Microbiology, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jun Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China.
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, People's Republic of China.
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Beijing East Road, 71, Nanjing, 210008, China
| |
Collapse
|
45
|
Mohamed MS, Chaplin BP, Abokifa AA. Adsorption of per- and poly-fluoroalkyl substances (PFAS) on Ni: A DFT investigation. CHEMOSPHERE 2024; 357:141849. [PMID: 38599331 DOI: 10.1016/j.chemosphere.2024.141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Electrocatalytic destruction of per- and polyfluoroalkyl substances (PFAS) is an emerging approach for treatment of PFAS-contaminated water. In this study, a systematic ab initio investigation of PFAS adsorption on Ni, a widely used electrocatalyst, was conducted by means of dispersion-corrected Density Functional Theory (DFT) calculations. The objective of this investigation was to elucidate the adsorption characteristics and charge transfer mechanisms of different PFAS molecules on Ni surfaces. PFAS adsorption on three of the most thermodynamically favorable Ni surface facets, namely (001), (110), and (111), was investigated. Additionally, the role of PFAS chain length and functional group was studied by comparing the adsorption characteristics of different PFAS compounds, namely perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutanesulfonic acid (PFBS), and perfluorobutanoic acid (PFBA). For each PFAS molecule-Ni surface facet pair, different adsorption configurations were considered. Further calculations were carried out to reveal the effect of solvation, pre-adsorbed atomic hydrogen (H), and surface defects on the adsorption energy. Overall, the results revealed that the adsorption of PFAS on Ni surfaces is energetically favorable, and that the adsorption is primarily driven by the functional groups. The presence of preadsorbed H and the inclusion of solvation produced less exothermic adsorption energies, while surface vacancy defects showed mixed effects on PFAS adsorption. Taken together, the results of this study suggest that Ni is a promising electrocatalyst for PFAS adsorption and destruction, and that proper control for the exposed facets and surface defects could enhance the adsorption stability.
Collapse
Affiliation(s)
- Mohamed S Mohamed
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, USA
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois Chicago, USA
| | - Ahmed A Abokifa
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, USA.
| |
Collapse
|
46
|
Jeong Y, Mok S, Park KJ, Moon HB. Accumulation features and temporal trends (2002-2015) for legacy and emerging per- and polyfluoroalkyl substances (PFASs) in finless porpoises bycaught off Korean coasts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123925. [PMID: 38593937 DOI: 10.1016/j.envpol.2024.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Legacy and emerging per- and polyfluoroalkyl substances (PFASs) were measured in livers of finless porpoises (Neophocaena asiaeorientalis; n = 167) collected in Korean waters from 2002 to 2015 to investigate their occurrence, bioaccumulation feature, temporal trends, and ecotoxicological implications. Perfulorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA), and perfluorotridecanoate (PFTrDA) were the predominant PFASs found in the porpoises. The concentration of 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B), an alternative to PFOS, was comparable to that of PFTrDA. Perfluorooctane sulfonamide (FOSA), a precursor of PFOS, was also detected in all the porpoises examined. All PFASs, including F-53B, accumulated to higher concentrations in immature porpoises compared with mature specimens, implying substantial maternal transfer and limited metabolizing capacity for PFASs. A significant correlation was observed between PFOS and F-53B concentrations, indicating similar bioaccumulation processes. Based on prenatal exposure and toxicity, F-53B is an emerging contaminant in marine ecosystems. Significantly increasing trends were observed in the concentrations of sulfonates, carboxylates, and F-53B between 2002/2003 and 2010, whereas the FOSA concentration significantly decreased. During 2010-2015, decreasing trends were observed in the concentrations of FOSA and sulfonates, whereas concentrations of carboxylate and F-53B increased without statistical significance, likely due to a gap for the implementation of regulatory actions between sulfonates and carboxylates. Although PFOS and PFOA were found to pose little health risk to porpoises, the combined toxicological effects of other contaminants should be considered to protect populations and to mitigate PFAS contamination in marine ecosystems.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyum Joon Park
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, 44780, Republic of Korea.
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
47
|
Wu C, Goodrow S, Chen H, Li M. Distinctive biotransformation and biodefluorination of 6:2 versus 5:3 fluorotelomer carboxylic acids by municipal activated sludge. WATER RESEARCH 2024; 254:121431. [PMID: 38471201 DOI: 10.1016/j.watres.2024.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Fluorotelomer carboxylic acids (FTCAs) represent an important group of per- and polyfluoroalkyl substances (PFAS) given their high toxicity, bioaccumulation potential, and frequent detection in landfill leachates and PFAS-impacted sites. In this study, we assessed the biodegradability of 6:2 FTCA and 5:3 FTCA by activated sludges from four municipal wastewater treatment plants (WWTPs) in the New York Metropolitan area. Coupling with 6:2 FTCA removal, significant fluoride release (0.56∼1.83 F-/molecule) was evident in sludge treatments during 7 days of incubation. Less-fluorinated transformation products (TPs) were formed, including 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorobutanoic acid (PFBA). In contrast, little fluoride (0.01∼0.09 F-/molecule) was detected in 5:3 FTCA-dosed microcosms, though 25∼68% of initially dosed 5:3 FTCA was biologically removed. This implies the dominance of "non-fluoride-releasing pathways" that may contribute to the formation of CoA adducts or other conjugates over 5:3 FTCA biotransformation. The discovery of defluorinated 5:3 FTUCA revealed the possibility of microbial attacks of the C-F bond at the γ carbon to initiate the transformation. Microbial community analysis revealed the possible involvement of 9 genera, such as Hyphomicrobium and Dechloromonas, in aerobic FTCA biotransformation. This study unraveled that biotransformation pathways of 6:2 and 5:3 FTCAs can be divergent, resulting in biodefluorination at distinctive degrees. Further research is underscored to uncover the nontarget TPs and investigate the involved biotransformation and biodefluorination mechanisms and molecular basis.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Sandra Goodrow
- Division of Science and Research, New Jersey Department of Environmental Protection, Trenton, NJ, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
48
|
Shi Q, Wan Z, Lu S, Fang C, Yan C, Zhang X. Investigating the effects of PFOA accumulation and depuration on specific phospholipids in zebrafish through imaging mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:700-709. [PMID: 38376352 DOI: 10.1039/d3em00413a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging persistent organic pollutant. Exposure to PFOA was observed to have a correlation with the expression levels of phospholipids. However, there are currently no studies that directly visualize the effects of PFOA on phospholipids. To this end, matrix-assisted laser desorption/ionization time of flight imaging mass spectrometry (MALDI-TOF-IMS) was used to visualize changes in phospholipids in the different tissues of zebrafish following exposure to PFOA. This study found that the major perturbed phospholipids were phosphatidylcholine (PC), diacylglycerol (DG), phosphatidic acid (PA), phosphatidylglycerol (PG), sphingomyelin (SM), and triacylglycerol (TG). These perturbed phospholipids caused by PFOA were reversible in some tissues (liver, gill, and brain) and irreversible in others (such as the highly exposed intestine). Moreover, the spatial distribution of perturbed phospholipids was mainly located around the edge or center of the tissues, implying that these tissue regions need special attention. This study provides novel insight into the biological toxicity and toxicity mechanisms induced by emerging environmental pollutants.
Collapse
Affiliation(s)
- Qiuyue Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, National Environmental Protection Dongting Lake Scientific Observation and Research Station, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhengfen Wan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, National Environmental Protection Dongting Lake Scientific Observation and Research Station, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, National Environmental Protection Dongting Lake Scientific Observation and Research Station, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
49
|
Zhang Y, Meng J, Zhou Y, Song N, Zhao Y, Hong M, Yu J, Cao L, Dou Y, Kong D. Transport and health risk of legacy and emerging per-and polyfluoroalkyl substances in the water cycle in an urban area, China: Polyfluoroalkyl phosphate esters are of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171010. [PMID: 38369148 DOI: 10.1016/j.scitotenv.2024.171010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are a group of emerging alternatives to the legacy per- and polyfluoroalkyl substances (PFAS). To better understand the transport and risk of PAPs in the water cycle, 21 PFAS including 4 PAPs and 17 perfluoroalkyl acids were investigated in multiple waterbodies in an urban area, China. PFAS concentrations ranged from 85.8 to 206 ng/L, among which PAPs concentrations ranged from 35.0 to 71.8 ng/L, in river and lake water with major substances of perfluorooctanoic acid (PFOA), 6:2 fluorotelomer phosphate (6:2 monoPAP), and 8:2 fluorotelomer phosphate (8:2 monoPAP). As transport pathways, municipal wastewater and precipitation were investigated for PFAS mass loading estimation, and PAPs transported via precipitation more than municipal wastewater discharge. Concentrations of PFAS in tap water and raw source water were compared, and PAPs cannot be removed by drinking water treatment. In tap water, PFAS concentrations ranged from 132 to 271 ng/L and among them PAPs concentrations ranged from 41.6 to 61.9 ng/L. Human exposure and health risk to PFAS via drinking water were assessed, and relatively stronger health risks were induced from PFOS, PAPs, and PFOA. The environmental contamination and health risk of PAPs are of concern, and management implications regarding their sources, exposure, and hazards were raised.
Collapse
Affiliation(s)
- Yueqing Zhang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ninghui Song
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yaxin Zhao
- College of Hydrology and Water Resources, Hohai University, Nanjing 211100, China
| | - Minghui Hong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Jia Yu
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Li Cao
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Yezhi Dou
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
| | - Deyang Kong
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China.
| |
Collapse
|
50
|
Li J, Zhang L, Li Q, Zhang S, Zhang W, Zhao Y, Zheng X, Fan Z. Hormetic effect of a short-chain PFBS on Microcystis aeruginosa and its molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133596. [PMID: 38325097 DOI: 10.1016/j.jhazmat.2024.133596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Short-chain Perfluorinated compounds (PFCs), used as substitutes for highly toxic long-chain PFCs, are increasingly entering the aquatic environment. However, the toxicity of short-chain PFCs in the environment is still controversial. This study investigated the effects of short-chain perfluorobutanesulfonic acid (PFBS) at different concentrations (2.5, 6, 14.4, 36, and 90 mg/L) on M. aeruginosa growth under 12-day exposure and explored the molecular mechanism of toxicity using transcriptomics. The results showed that M. aeruginosa exhibited hormetic effects after exposure to PFBS. Low PFBS concentrations stimulated algal growth, whereas high PFBS concentrations inhibited it, and this inhibitory effect became progressively more pronounced with increasing PFBS exposure concentrations. Transcriptomics showed that PFBS promoted the pathways of photosynthesis, glycolysis, energy metabolism and peptidoglycan synthesis, providing the energy required for cell growth and maintaining cellular morphology. PFBS, on the other hand, caused growth inhibition in algae mainly through oxidative stress, streptomycin synthesis, and genetic damage. Our findings provide new insights into the toxicity and underlying mechanism of short-chain PFCs on algae and inform the understanding of the hormetic effect of short-chain PFCs, which are crucial for assessing their ecological risks in aquatic environments.
Collapse
Affiliation(s)
- Jue Li
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Liangliang Zhang
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Qihui Li
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Shun Zhang
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yuqiang Zhao
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Xiaowei Zheng
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Zhengqiu Fan
- Department of Environmental Science &Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|