1
|
Wan SS, Li XY, Liu SR, Tang S. The function of carnosic acid in lipopolysaccharides-induced hepatic and intestinal inflammation in poultry. Poult Sci 2024; 103:103415. [PMID: 38215508 PMCID: PMC10821594 DOI: 10.1016/j.psj.2023.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Inflammatory processes are often accompanied by oxidative stress and lipid peroxidation, which might lead to cellular and organ damage. Carnosic acid (CA), an active component found in rosemary, exhibits pharmacological properties including antioxidative, anti-inflammatory, and antiviral effects. The aim of this research was to investigate whether CA can mitigate lipopolysaccharide (LPS)-induced oxidative stress and inflammatory responses in poultry and to understand its underlying mechanisms. We administered CA to broiler chickens via oral gavage and treated them with LPS, followed by analysis of the effects of different dosages of CA on body weight, antioxidative capacity, and inflammatory factors. Carnosic acid had no significant impact on the body weight of broiler chickens. However, serum analysis indicated that the middle dose of CA effectively enhanced the antioxidative capacity and reduced levels of oxidative stress and inflammation-related factors. Moreover, in the liver, CA demonstrated the ability to regulate the expression of proteins such as heat shock protein 60 (HSP60), heat shock protein 70 (HSP70), and P38 mitogen-activated protein kinase (P38), suggesting its protective role against liver damage induced by LPS. In the intestinal tract of broiler chickens, CA regulated the expression and localization of proteins including HSP60, HSP70, NFE2 like bZIP transcription factor 2 (Nrf2), and P38, while also influencing the expression of inflammatory markers such as protein tyrosine phosphatase receptor type C (CD45), and connexin (Cx). These findings revealed the potential protective mechanisms of CA in alleviating oxidative stress and inflammatory damage induced by LPS in poultry. Carnosic acid notably enhanced the chickens' antioxidative capacity by modulating the expression of key proteins, thereby reducing oxidative stress and inflammatory response levels. This study provides a deeper comprehension of the protective mechanisms of CA and its potential impact on avian health.
Collapse
Affiliation(s)
- Shuang-Shuang Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue-Yuan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Si-Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Coni P, Piras M, Piludu M, Lachowicz JI, Matteddu A, Coni S, Reali A, Fanos V, Jaremko M, Faa G, Pichiri G. Exploring cell surface markers and cell-cell interactions of human breast milk stem cells. J Public Health Res 2023; 12:22799036221150332. [PMID: 36712902 PMCID: PMC9880586 DOI: 10.1177/22799036221150332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background Breakthrough studies have shown that pluripotent stem cells are present in human breast milk. The expression of pluripotency markers by breast milk cells is heterogeneous, relating to cellular hierarchy, from early-stage multi-lineage stem cells to fully differentiated mammary epithelial cells, as well as weeks of gestation and days of lactation. Design and methods Here, we qualitatively analyze cell marker expression in freshly isolated human breast milk cells, without any manipulation that could influence protein expression. Moreover, we use electron microscopy to investigate cell-cell networks in breast milk for the first time, providing evidence of active intercellular communication between cells expressing different cellular markers. Results The immunocytochemistry results of human breast milk cells showed positive staining in all samples for CD44, CD45, CD133, and Ki67 markers. Variable positivity was present with P63, Tβ4 and CK14 markers. No immunostaining was detected for Wt1, nestin, Nanog, OCT4, SOX2, CK5, and CD34 markers. Cells isolated from human breast milk form intercellular connections, which together create a cell-to-cell communication network. Conclusions Cells freshly isolated form human breast milk, without particular manipulations, show heterogeneous expression of stemness markers. The studied milk staminal cells show "pluripotency" at different stages of differentiation, and are present as single cells or grouped cells. The adjacent cell interactions are evidenced by electron microscopy, which showed the formation of intercellular connections, numerous contact regions, and thin pseudopods.
Collapse
Affiliation(s)
- Pierpaolo Coni
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Piras
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Piludu
- Department of Biomedical Sciences,
University of Cagliari, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy,Joanna Izabela Lachowicz, Department of
Medical Sciences and Public Health, University of Cagliari, Cittadella
Universitaria, Monserrato, Cagliari 09048, Italy.
| | - Anna Matteddu
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Coni
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Reali
- Azienda Ospedaliero Universitaria di
Cagliari, Terapia Intesiva Neonatale (TIN), P.O. Duilio Casula di Monserrato,
Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences,
University of Cagliari, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red
Sea Research Center (RSRC), Division of Biological and Environ-mental Sciences and
Engineering (BESE), King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia
| | - Gavino Faa
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pichiri
- Department of Medical Sciences and
Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Yan L, Li J, Wang Y, Zhu Q, Zhao X, He C, Zhu C, Ji S, Zhang Y, MuDanLiFu H, Zhang J. Trophoblastic infiltration of tubal pregnancy may have an association with chronic inflammation of the fallopian tube. Int J Gynaecol Obstet 2023. [PMID: 36607245 DOI: 10.1002/ijgo.14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To explore the factors associated with trophoblastic infiltration in ampullary pregnancy from the perspective of clinical and pathologic characteristics. METHODS A single-center, retrospective, clinicopathologic cohort study was conducted in women who were diagnosed with tubal pregnancy and underwent salpingectomy in the International Peace Maternal and Child Health Care Hospital from January 2018 to June 2021. RESULTS A total of 333 eligible women diagnosed with ampullary pregnancy were included in the analysis. Multivariate logistic analysis showed that preoperative β-human chorionic gonadotropin greater than 3000 IU/L (adjusted odds ratio [aOR] 3.77, 95% confidence interval [CI] 2.02-7.03), and vascular remodeling phenomenon (aOR 4.34, 95% CI 2.41-7.83) were positively correlated with the infiltration of extravillous trophoblasts into serosa, while presence of chronic inflammation of the fallopian tube was a negatively corellated factor (aOR 0.49, 95% CI 0.29-0.85). CONCLUSION The depth of trophoblastic infiltration in tubal pregnancy may be related to the presence of chronic inflammation in the fallopian tube. A tubal pregnancy in a tube with chronic salpingitis is more likely to develop into an abortive ectopic pregnancy; whereas in a fallopian tube without chronic inflammation, the risk of it developing into a ruptured ectopic pregnancy increases. Hence, early identification is needed to properly address this dangerous pregnancy situation.
Collapse
Affiliation(s)
- Li Yan
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Juan Li
- Department of Pathology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Wang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chuqing He
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Chenfeng Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Sifan Ji
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - HaLiSai MuDanLiFu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory Embryo Original Diseases, Shanghai, China
| |
Collapse
|
4
|
Kang IH, Baliga UK, Wu Y, Mehrotra S, Yao H, LaRue AC, Mehrotra M. Hematopoietic stem cell-derived functional osteoblasts exhibit therapeutic efficacy in a murine model of osteogenesis imperfecta. Stem Cells 2021; 39:1457-1477. [PMID: 34224636 DOI: 10.1002/stem.3432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022]
Abstract
Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.
Collapse
Affiliation(s)
- In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Uday K Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongren Wu
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hai Yao
- Department of Orthopedics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Clemson-MUSC Joint Bioengineering Program, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
- Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Anwar I, Ashfaq UA, Shokat Z. Therapeutic Potential of Umbilical Cord Stem Cells for Liver Regeneration. Curr Stem Cell Res Ther 2020; 15:219-232. [PMID: 32077830 DOI: 10.2174/1568026620666200220122536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/16/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023]
Abstract
The liver is a vital organ for life and the only internal organ that is capable of natural regeneration. Although the liver has high regeneration capacity, excessive hepatocyte death can lead to liver failure. Various factors can lead to liver damage including drug abuse, some natural products, alcohol, hepatitis, and autoimmunity. Some models for studying liver injury are APAP-based model, Fas ligand (FasL), D-galactosamine/endotoxin (Gal/ET), Concanavalin A, and carbon tetrachloride-based models. The regeneration of the liver can be carried out using umbilical cord blood stem cells which have various advantages over other stem cell types used in liver transplantation. UCB-derived stem cells lack tumorigenicity, have karyotype stability and high immunomodulatory, low risk of graft versus host disease (GVHD), low risk of transmitting somatic mutations or viral infections, and low immunogenicity. They are readily available and their collection is safe and painless. This review focuses on recent development and modern trends in the use of umbilical cord stem cells for the regeneration of liver fibrosis.
Collapse
Affiliation(s)
- Ifrah Anwar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman A Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
6
|
Al-Bakri Z, Ishige-Wada M, Fukuda N, Yoshida-Noro C, Nagoshi N, Okano H, Mugishima H, Matsumoto T. Isolation and characterization of neural crest-like progenitor cells in human umbilical cord blood. Regen Ther 2020; 15:53-63. [PMID: 33426202 PMCID: PMC7770357 DOI: 10.1016/j.reth.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Neural crest (NC)-like stem/progenitor cells provide an attractive cell source for regenerative medicine because of their multipotent property and ease of isolation from adult tissue. Although human umbilical cord blood (HUCB) is known to be a rich source of stem cells, the presence of the NC-like stem/progenitor cells in HUCB remains to be elucidated. In this study, we have isolated NC-like progenitor cells using an antibody to p75 neurotrophin receptor (p75NTR) and examined their phenotype and stem cell function in vitro. Methods To confirm whether p75NTR+ NC-derived cells are present in cord blood, flow cytometric analysis of cord blood derived from P0-Cre/Floxed-EGFP reporter mouse embryos was performed. Freshly isolated HUCB mononuclear cells was subjected to flow cytometry to detect p75NTR+ cells and determined their immunophenotype. HUCB p75NTR+ cells were then collected by immunomagnetic separation and their immunophenotype, clonogenic potential, gene expression profile, and multilineage differentiation potential were examined. Results NC-derived EGFP+ cells co-expressing p75NTR was detected in cord blood of P0-Cre/Floxed-EGFP reporter mice. We found that freshly isolated HUCB mononuclear cells contained 0.23% of p75NTR+ cells. Isolated p75NTR+ cells from HUCB efficiently formed neurospheres and could differentiate into neuronal and glial cell lineages. The p75NTR+ cells expressed a set of NC-associated genes and undifferentiated neural cell marker genes before and after the culture. Conclusions These findings revealed that HUCB contained the p75NTR+ NC-like progenitor cell population which have the self-renewal capacity and the potential to differentiate into both neuronal and glial cell lineages.
Collapse
Affiliation(s)
- Zena Al-Bakri
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.,The Specialized Bone Marrow Transplantation Center, Baghdad Medical City Complex, Baghdad 10011, Iraq
| | - Mika Ishige-Wada
- Department of Pediatrics, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Noboru Fukuda
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Department of Medicine, Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Chikako Yoshida-Noro
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Department of Applied Molecular Chemistry, Collage of Industrial Technology, Nihon University, Narashino 275-0006, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideo Mugishima
- Department of Pediatrics, Nihon University School of Medicine, Tokyo 173-8610, Japan.,Kawagoe Preventive Medical Center Clinic, Kawagoe 350-1124, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo 173-8610, Japan
| |
Collapse
|
7
|
Harris DT, Israel S. What will Become of the Taxpayer Investment in Public Cord Blood Stem Cell Banking? Curr Stem Cell Res Ther 2019; 14:367-372. [PMID: 30806326 DOI: 10.2174/1574888x14666190222184155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 11/22/2022]
Abstract
Cord Blood (CB) is a unique and readily available source of hematopoietic stem cells for transplantation. CB also contains other types of stem cells, including endothelial stem cells and mesenchymal stem cells, that may prove useful in non-traditional clinical uses. Genetic and molecular analyses have demonstrated that CB stem cells lie somewhere between mature stem cells like those found in Bone Marrow (BM), and fetal stem cells. After 25 years of clinical experience, CB is now used in the same fashion as BM for all typical malignant and genetic diseases treated by bone marrow transplant. Due to the establishment of CB banks in the US and abroad, more than 35,000 CB transplants have been performed over the past 25 years. An average of 700-800 CB transplants are performed annually. In addition, CB is now used more frequently for regenerative medicine and tissue engineering applications. At first glance, it seems that everything could not be better with the public cord blood banks and the use of their samples in the clinic. However, a recent report by the Rand Corp. reviewed the US national cord blood stem cell banking program and detailed many ongoing problems. However, some details were omitted from the report that would shed some light on the causes of many of the problems. This paper will summarize the status of the public cord blood stem cell banking program in the US, detail the problems associated with the program that could jeopardize its existence and suggest possible solutions to resolve these issues.
Collapse
Affiliation(s)
- David T Harris
- AHSC Biorepository Professor of Immunobiology and Medicine University of Arizona and Scientific Director, Celebration Stem Cell Centre Gilbert, AZ, United States
| | - Scott Israel
- Laboratory Director and Quality Control Director Celebration Stem Cell Centre Gilbert, AZ, United States
| |
Collapse
|
8
|
Pan S, Chen YC, Zhao N, Feng X, Yang DD, Wang Y, Jin ZB. A new subset of small stem cells in bovine bone marrow stromal cell populations. J Cell Biochem 2019; 120:13881-13892. [PMID: 30983000 DOI: 10.1002/jcb.28661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Bone marrow stromal cells (BMSCs) are a unique population of multipotent cells that exhibit pluripotent properties to a certain extent and are significantly heterogeneous in terms of the cell population. We isolate a small cell subpopulation from bovine BMSCs, bovine small stem cells (bSSCs), and herein characterize their properties. The bSSCs are smaller in size and express nuclear Oct-4 and other pluripotency markers. In addition, when cultured in suspension conditions, bSSCs form three-dimensional spheres and display a strong capability for self-renewal and differentiation into cells from three germ layers. Notably, bSSCs display neural features with Sox1 and Pax6 expression. Using bSSCs as donor nuclear cells for somatic cell nuclear transfer, we further demonstrate that the developmental potential of cloned embryos in vitro is significantly increased. Our study identifies a new bovine bone marrow stromal cell-derived stem cell subtype that could have broad importance for developmental biology as well as great potential for regenerative medicine.
Collapse
Affiliation(s)
- Shaohui Pan
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Yu-Chen Chen
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Ning Zhao
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Xiang Feng
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Dan-Dan Yang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Yongshen Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| |
Collapse
|
9
|
Differentiation of Bone Marrow Mesenchymal Stem Cells into Neural Lineage Cells Induced by bFGF-Chitosan Controlled Release System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5086297. [PMID: 31032349 PMCID: PMC6457308 DOI: 10.1155/2019/5086297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
Bone marrow mesenchymal stem cells undergo differentiation to different lineages with different efficiencies when induced by different factors. We added a bFGF-chitosan controlled release system (bFGF-CCRS) as an inducer into conditioned medium to facilitate the oriented differentiation of BMSCs into neural lineage cells (eventually mature neurons); furthermore, we synchronized BMSCs to the G0/G1 phase via serum starvation to observe the effect of the inducer on the differentiation direction and efficiency. The nonsynchronized group, chitosan alone (not loaded with bFGF) group, soluble bFGF group, and conditioned medium group served as controls, and we observed the dynamic process of differentiation of BMSCs into neural lineage cells at different time points after the beginning of coculture. We analyzed the binding patterns of bFGF and chitosan and assayed the expression differences of key factors (FGFR1, ERK, and c-fos) and molecular switches (BTG2) that regulate the transformation from cell proliferation to differentiation. We also investigated the potential molecular mechanism of BMSC differentiation into neural lineage cells at a high percentage when induced by bFGF-CCRS.
Collapse
|
10
|
Yeager R, Riggs DW, DeJarnett N, Tollerud DJ, Wilson J, Conklin DJ, O'Toole TE, McCracken J, Lorkiewicz P, Xie Z, Zafar N, Krishnasamy SS, Srivastava S, Finch J, Keith RJ, DeFilippis A, Rai SN, Liu G, Bhatnagar A. Association Between Residential Greenness and Cardiovascular Disease Risk. J Am Heart Assoc 2018; 7:e009117. [PMID: 30561265 PMCID: PMC6405613 DOI: 10.1161/jaha.118.009117] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Exposure to green vegetation has been linked to positive health, but the pathophysiological processes affected by exposure to vegetation remain unclear. To study the relationship between greenness and cardiovascular disease, we examined the association between residential greenness and biomarkers of cardiovascular injury and disease risk in susceptible individuals. Methods and Results In this cross-sectional study of 408 individuals recruited from a preventive cardiology clinic, we measured biomarkers of cardiovascular injury and risk in participant blood and urine. We estimated greenness from satellite-derived normalized difference vegetation index ( NDVI ) in zones with radii of 250 m and 1 km surrounding the participants' residences. We used generalized estimating equations to examine associations between greenness and cardiovascular disease biomarkers. We adjusted for residential clustering, demographic, clinical, and environmental variables. In fully adjusted models, contemporaneous NDVI within 250 m of participant residence was inversely associated with urinary levels of epinephrine (-6.9%; 95% confidence interval, -11.5, -2.0/0.1 NDVI ) and F2-isoprostane (-9.0%; 95% confidence interval, -15.1, -2.5/0.1 NDVI ). We found stronger associations between NDVI and urinary epinephrine in women, those not on β-blockers, and those who had not previously experienced a myocardial infarction. Of the 15 subtypes of circulating angiogenic cells examined, 11 were inversely associated (8.0-15.6% decrease/0.1 NDVI ), whereas 2 were positively associated (37.6-45.8% increase/0.1 NDVI ) with contemporaneous NDVI . Conclusions Independent of age, sex, race, smoking status, neighborhood deprivation, statin use, and roadway exposure, residential greenness is associated with lower levels of sympathetic activation, reduced oxidative stress, and higher angiogenic capacity.
Collapse
Affiliation(s)
- Ray Yeager
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Daniel W. Riggs
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY,Department of Bioinformatics and BiostatisticsUniversity of LouisvilleLouisvilleKY
| | - Natasha DeJarnett
- Center for Public Health PolicyAmerican Public Health AssociationWashington D.C.
| | - David J. Tollerud
- Department of Environmental and Occupational Health SciencesUniversity of LouisvilleLouisvilleKY
| | - Jeffrey Wilson
- Department of GeographyIndiana University ‐ Purdue University IndianapolisIndianapolisIN
| | - Daniel J. Conklin
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Timothy E. O'Toole
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | | | - Pawel Lorkiewicz
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Zhengzhi Xie
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Nagma Zafar
- Department of PediatricsUniversity of LouisvilleLouisvilleKY
| | - Sathya S. Krishnasamy
- Division of Endocrinology, Metabolism & DiabetesUniversity of LouisvilleLouisvilleKY
| | - Sanjay Srivastava
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Jordan Finch
- Envirome InstituteUniversity of LouisvilleLouisvilleKY
| | - Rachel J. Keith
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| | - Andrew DeFilippis
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Division of Cardiovascular MedicineUniversity of LouisvilleLouisvilleKY
| | - Shesh N. Rai
- Department of Bioinformatics and BiostatisticsUniversity of LouisvilleLouisvilleKY,Biostatistics and Bioinformatics Shared FacilityJames Graham Brown Cancer CenterUniversity of LouisvilleLouisvilleKY
| | - Gilbert Liu
- Department of PediatricsUniversity of LouisvilleLouisvilleKY
| | - Aruni Bhatnagar
- Envirome InstituteUniversity of LouisvilleLouisvilleKY,Superfund Research CenterUniversity of LouisvilleLouisvilleKY
| |
Collapse
|
11
|
Wilson KR, Kang IH, Baliga U, Xiong Y, Chatterjee S, Moore E, Parthiban B, Thyagarajan K, Borke JL, Mehrotra S, Kirkwood KL, LaRue AC, Ogawa M, Mehrotra M. Hematopoietic Stem Cells as a Novel Source of Dental Tissue Cells. Sci Rep 2018; 8:8026. [PMID: 29795229 PMCID: PMC5966408 DOI: 10.1038/s41598-018-26258-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/08/2018] [Indexed: 12/19/2022] Open
Abstract
While earlier studies have suggested that cells positive for hematopoietic markers can be found in dental tissues, it has yet to be confirmed. To conclusively demonstrate this, we utilized a unique transgenic model in which all hematopoietic cells are green fluorescent protein+ (GFP+). Pulp, periodontal ligament (PDL) and alveolar bone (AvB) cell culture analysis demonstrated numerous GFP+ cells, which were also CD45+ (indicating hematopoietic origin) and co-expressed markers of cellular populations in pulp (dentin matrix protein-1, dentin sialophosphoprotein, alpha smooth muscle actin [ASMA], osteocalcin), in PDL (periostin, ASMA, vimentin, osteocalcin) and in AvB (Runx-2, bone sialoprotein, alkaline phosphatase, osteocalcin). Transplantation of clonal population derived from a single GFP+ hematopoietic stem cell (HSC), into lethally irradiated recipient mice, demonstrated numerous GFP+ cells within dental tissues of recipient mice, which also stained for markers of cell populations in pulp, PDL and AvB (used above), indicating that transplanted HSCs can differentiate into cells in dental tissues. These hematopoietic-derived cells deposited collagen and can differentiate in osteogenic media, indicating that they are functional. Thus, our studies demonstrate, for the first time, that cells in pulp, PDL and AvB can have a hematopoietic origin, thereby opening new avenues of therapy for dental diseases and injuries.
Collapse
Affiliation(s)
- Katie R Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - In-Hong Kang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Uday Baliga
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Xiong
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Emily Moore
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Beneta Parthiban
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - James L Borke
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Keith L Kirkwood
- Department of Oral Biology, University at Buffalo, The State University of New York, Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14260, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H Johnson VA Medical Center, Charleston, SC, 29425, USA
| | - Makio Ogawa
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meenal Mehrotra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
12
|
Whiteley J, Chow T, Adissu H, Keating A, Rogers IM. Topical Application of Culture-Expanded CD34+ Umbilical Cord Blood Cells from Frozen Units Accelerates Healing of Diabetic Skin Wounds in Mice. Stem Cells Transl Med 2018; 7:591-601. [PMID: 29752867 PMCID: PMC6090513 DOI: 10.1002/sctm.17-0302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/29/2018] [Indexed: 11/11/2022] Open
Abstract
Chronic and nonhealing wounds are constant health issues facing patients with type 2 diabetes. As the incidence of type 2 diabetes mellitus (T2DM) increases, the incidence of chronic wounds and amputations will rise. T2DM is associated with peripheral arterial occlusive disease, which leads to the development of nonhealing skin ulcers after minor trauma. Patients develop severe pain limiting their mobility and ability to work and take care of themselves, thus putting a significant burden on the family and society. CD34+ cells from umbilical cord blood (UCB) grown in fibroblast growth factor-4 (FGF-4), stem cell factor, and Flt3-ligand produced a population of cells that have the ability to proliferate and develop properties enabling them to enhance tissue regeneration. The goal of this study was to assess in vitro cultured CD34+ cells in a setting where they would eventually be rejected so we could isolate paracrine signaling mediated therapeutic effect from the therapeutic effect due to engraftment and differentiation. To achieve this, we used db/db mice as a model for diabetic skin ulcers. Here, we report that in vitro cultured UCB CD34+ cells from frozen units can accelerate wound healing and resulted in the regeneration of full thickness skin. This study demonstrates a new indication for banked UCB units in the area of tissue regeneration. Stem Cells Translational Medicine 2018;7:591-601.
Collapse
Affiliation(s)
- Jennifer Whiteley
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Theresa Chow
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto
| | - Hibret Adissu
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Armand Keating
- Krembil Research Institute, Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, Cell Therapy Program, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto.,Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lang H, Nishimoto E, Xing Y, Brown LN, Noble KV, Barth JL, LaRue AC, Ando K, Schulte BA. Contributions of Mouse and Human Hematopoietic Cells to Remodeling of the Adult Auditory Nerve After Neuron Loss. Mol Ther 2016; 24:2000-2011. [PMID: 27600399 PMCID: PMC5154482 DOI: 10.1038/mt.2016.174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - Eishi Nishimoto
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amanda C LaRue
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Research Services, Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine, Division of Hematopoiesis, Tokai University School of Medicine, Tokyo, Japan
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
14
|
Li Y, Adomat H, Guns ET, Hojabrpour P, Duronio V, Curran TA, Jalili RB, Jia W, Delwar Z, Zhang Y, Elizei SS, Ghahary A. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol 2016; 231:1350-63. [PMID: 26529564 DOI: 10.1002/jcp.25239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022]
Abstract
It has long been realized that hematopoietic cells may have the capacity to trans-differentiate into non-lymphohematopoietic cells under specific conditions. However, the mechanisms and the factors for hematopoietic cell trans-differentiation remain unknown. In an in vitro culture system, we found that using a conditioned medium from proliferating fibroblasts can induce a subset of hematopoietic cells to become adherent fibroblast-like cells (FLCs). FLCs are not fibroblasts nor other mesenchymal stromal cells, based on their expression of type-1 collagen, and other stromal cell marker genes. To identify the active factors in the conditioned medium, we cultured fibroblasts in a serum-free medium and collected it for further purification. Using the fractions from filter devices of different molecular weight cut-offs, and ammonium sulfate precipitation collected from the medium, we found the active fraction is a protein. We then purified this fraction by using fast protein liquid chromatography (FPLC) and identified it by mass spectrometer as macrophage colony-stimulating factor (M-CSF). The mechanisms of M-CSF-inducing trans-differentiation of hematopoietic cells seem to involve a tyrosine kinase signalling pathway and its known receptor. The FLCs express a number of stem cell markers including SSEA-1 and -3, OCT3/4, NANOG, and SOX2. Spontaneous and induced differentiation experiments confirmed that FLCs can be further differentiated into cell types of three germ layers. These data indicate that hematopoietic cells can be induced by M-CSF to dedifferentiate to multipotent stem cells. This study also provides a simple method to generate multipotent stem cells for clinical applications.
Collapse
Affiliation(s)
- Yunyuan Li
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hans Adomat
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Payman Hojabrpour
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Duronio
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry-Ann Curran
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Reza Baradar Jalili
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zahid Delwar
- Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yun Zhang
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanam Salimi Elizei
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aziz Ghahary
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Sato N, Fricke C, McGuckin C, Forraz N, Degoul O, Atzeni G, Sakurai H. Cord blood processing by a novel filtration system. Cell Prolif 2015; 48:671-81. [PMID: 26456086 PMCID: PMC6496033 DOI: 10.1111/cpr.12217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022] Open
Abstract
Objectives Availability of cord blood (CB) processing has been limited by the need for electrically aided centrifugal techniques, which often produce only low final cell product yield. Here, we describe development and characterization of a novel filter device aimed at allowing CB processing, using gentle gravity‐led flow. Materials and methods CB was processed with a novel filter device (CellEffic CB, consisting of non‐woven fabric), without any centrifugation. Cells were harvested by flushing the filter with either HES or physiological saline solution (SALINE). Differential cell counts and viability analysis, combined with Fluorescence‐Activated Cell Sorting (FACS) (total nucleated cells [TNC], mononuclear cells [MNC], CD45+ CD34+ cells, hematopoietic precursor cells [HPCs]) and clonogenic assay, were employed for analysis of CB pre‐ and post‐processing, and after freeze/thawing. Results Processing using the novel filter yielded high quality RBC depletion while maintaining good recovery of TNC, MNC, CD34+, HPCs and colony forming unit (CFU) output. The filter performed equally well using HES or SALINE. Gravity‐led flow provided gentle cell movement and protection of the stem cell compartment. Post‐thaw CFU output was maintained particularly, an important indicator for CB banking. Conclusions Geographical limitations of CB transplantation and banking have required a non‐electrical, non‐centrifugal solution. This novel filter CellEffic CB device revealed rapid yet gentle cell processing while maintaining the stem/progenitor cell compartment required for both haematological and regenerative medicine therapies.
Collapse
Affiliation(s)
- N Sato
- Medical Devices Division, Kaneka Corporation, Osaka, 530-8288, Japan
| | - C Fricke
- Kaneka Pharma Europe N.V. German Branch, DE-65760, Eschborn, Germany
| | - C McGuckin
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - N Forraz
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - O Degoul
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - G Atzeni
- CTI-BIOTECH, Cell Therapy Research Institute, 69330, MEYZIEU-LYON, France
| | - H Sakurai
- Kaneka Pharma Europe N.V. German Branch, DE-65760, Eschborn, Germany
| |
Collapse
|
16
|
Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant 2015; 24:471-85. [PMID: 25706819 DOI: 10.3727/096368915x686931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a complicated disease with varying causes and outcomes. It has created significant burden to both affected families and societies, not to mention the quality of life of the patients themselves. There is no cure for the disease; therefore, development of effective therapeutic strategies is in great demand. Recent advances in regenerative medicine suggest that the transplantation of stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, induced pluripotent stem cells, umbilical cord blood cells, and human embryonic germ cells, focusing on the root of the problem, may provide the possibility of developing a complete cure in treating CP. However, safety is the first factor to be considered because some stem cells may cause tumorigenesis. Additionally, more preclinical and clinical studies are needed to determine the type of cells, route of delivery, cell dose, timing of transplantation, and combinatorial strategies to achieve an optimal outcome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant 2015; 23:493-6. [PMID: 24816446 DOI: 10.3727/096368914x678300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Whiteley J, Bielecki R, Li M, Chua S, Ward MR, Yamanaka N, Stewart DJ, Casper RF, Rogers IM. An expanded population of CD34+ cells from frozen banked umbilical cord blood demonstrate tissue repair mechanisms of mesenchymal stromal cells and circulating angiogenic cells in an ischemic hind limb model. Stem Cell Rev Rep 2014; 10:338-50. [PMID: 24443055 DOI: 10.1007/s12015-014-9496-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peripheral vascular disease affects ~20 % of the population over 50 years of age and is a complication of type 2 diabetes. Cell therapy studies revealed that cells from older or diabetic donors have a reduced capacity to induce tissue repair compared to healthy and younger cells. This fact greatly impedes the use of autologous cells for treatment. Umbilical cord blood CD34+ cells are a source of angiogenic cells but unlike bone marrow CD34+ angiogenic cells, achieving clinically significant cell numbers has been difficult without in vitro expansion. We report here that culturing CD34+/CD45+ blood cells from frozen umbilical cord blood units in a medium supplemented with FGF4, SCF and FLT3-ligand produced a population of cells that remain CD34+/CD45+ but have an increased capacity for tissue healing. The cultured CD34+ cells were compared directly to non-cultured CD34+ cells in a mouse model of ischemia. Cultured CD34+ cells demonstrated strong paracrine signaling as well as the capacity to differentiate into endothelial cells, smooth muscle and striated muscle. We observed an improvement in blood flow and a significant reduction in foot necrosis. A second study was completed to assess the safety of the cells. No adverse effects were associated with the injection of the cultured cells. Our method described here for culturing umbilical cord blood cells resulted in cells with a strong paracrine effect that induces substantial tissue repair in a murine model of hind limb ischemia and evidence of engraftment and differentiation of the cultured cells into new vasculature and muscle.
Collapse
Affiliation(s)
- Jennifer Whiteley
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Rm. 5-1015A 25 Orde St, Toronto, M5G 1X5, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Endothelial progenitor cells (EPCs) are primitive endothelial precursors which are known to functionally contribute to the pathogenesis of disease. To date a number of distinct subtypes of these cells have been described, with differing maturation status, cellular phenotype, and function. Although there is much debate on which subtype constitutes the true EPC population, all subtypes have endothelial characteristics and contribute to neovascularisation. Vasculogenesis, the process by which EPCs contribute to blood vessel formation, can be dysregulated in disease with overabundant vasculogenesis in the context of solid tumours, leading to tumour growth and metastasis, and conversely insufficient vasculogenesis can be present in an ischemic environment. Importantly, it is widely known that transcription factors tightly regulate cellular phenotype and function by controlling the expression of particular target genes and in turn regulating specific signalling pathways. This suggests that transcriptional regulators may be potential therapeutic targets to control EPC function. Herein, we discuss the observed EPC subtypes described in the literature and review recent studies describing the role of a number of transcriptional families in the regulation of EPC phenotype and function in normal and pathological conditions.
Collapse
|
20
|
Mixed effects of long-term frozen storage on cord tissue stem cells. Cytotherapy 2014; 16:1313-21. [DOI: 10.1016/j.jcyt.2014.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
|
21
|
Tam V, Rogers I, Chan D, Leung VYL, Cheung KMC. A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. J Orthop Res 2014; 32:819-25. [PMID: 24578095 DOI: 10.1002/jor.22605] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/03/2014] [Indexed: 02/04/2023]
Abstract
A major hurdle of cellular therapy for biological treatment of intervertebral disk (IVD) degeneration is the delivery method where current delivery methods are limited to intradiscal injection which can potentially cause further degeneration. Recent studies indicated that multipotential stem cells (MPSCs) from human umbilical cord blood home to injured sites and induce local therapeutic changes, thereby potentially addressing the drawbacks of direct delivery. We tested the effects of these cells on injured IVD using a mouse model of puncture-induced degeneration via two delivery methods. Caudal IVD underwent needle puncture, and MPSCs were injected indirectly (intravenously), or directly (intradiscally) into the nucleus pulposus. IVD were harvested for histological, gene and protein analysis after 14 weeks. Our finding showed limited homing ability of the MPSCs. However, regardless of delivery method, no engraftment or expansion of MPSCs was observed at the injured site. Contrasting to direct injection, intravenous injection neither improved the degeneration status, nor preserve disk height, however, both delivery methods increased glycosaminoglycan (GAG) protein and Acan gene expression relative to controls, suggesting possible paracrine effects. Identifying the mechanisms by which MPSCs act on endogenous IVD cells would provide insights into the potential of these cells to treat IVD injuries and degeneration.
Collapse
Affiliation(s)
- Vivian Tam
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
22
|
Stem Cell Banking for Regenerative and Personalized Medicine. Biomedicines 2014; 2:50-79. [PMID: 28548060 PMCID: PMC5423479 DOI: 10.3390/biomedicines2010050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source.
Collapse
|
23
|
Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2013; 2:830-8. [PMID: 24101670 DOI: 10.5966/sctm.2013-0071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.
Collapse
Affiliation(s)
- Patricia Flores-Guzmán
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | | | | |
Collapse
|
24
|
Characterization of myelomonocytoid progenitor cells with mesenchymal differentiation potential obtained by outgrowth from pancreas explants. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:429868. [PMID: 22953065 PMCID: PMC3431127 DOI: 10.1155/2012/429868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 01/16/2023]
Abstract
Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b(+) and CD45(+)), and some stromal-related markers (CD44(+) and CD29(+)), but not mesenchymal stem cell (MSC)-defining markers (CD90(-) and CD105(-)) nor endothelial (CD31(-)) or stem cell-associated markers (CD133(-) and stem cell antigen-1; Sca-1(-)). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC) for more than 1 year. Cells spontaneously formed sphere clusters "pancreatospheres" which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs).
Collapse
|
25
|
Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS, Kim TH, Mohana Kumar B, Ock SA, Rho GJ. In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 2012; 83:249-59. [DOI: 10.1016/j.diff.2012.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 01/09/2023]
|
26
|
Ponce-Regalado MD, Ortuño-Sahagún D, Zarate CB, Gudiño-Cabrera G. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. Hum Cell 2012; 25:51-60. [PMID: 22529032 DOI: 10.1007/s13577-012-0044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Apdo. Postal 52-126, 45021, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
27
|
Neural stem cells for spinal cord repair. Cell Tissue Res 2012; 349:349-62. [DOI: 10.1007/s00441-012-1363-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
|
28
|
|
29
|
Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 2012; 30:187-96. [PMID: 22083974 PMCID: PMC3560295 DOI: 10.1002/stem.780] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adult mesenchymal progenitor cells have enormous potential for use in regenerative medicine. However, the true identity of the progenitors in vivo and their progeny has not been precisely defined. We hypothesize that cells expressing a smooth muscle α-actin promoter (αSMA)-directed Cre transgene represent mesenchymal progenitors of adult bone tissue. By combining complementary colors in combination with transgenes activating at mature stages of the lineage, we characterized the phenotype and confirmed the ability of isolated αSMA(+) cells to progress from a progenitor to fully mature state. In vivo lineage tracing experiments using a new bone formation model confirmed the osteogenic phenotype of αSMA(+) cells. In vitro analysis of the in vivo-labeled SMA9(+) cells supported their differentiation potential into mesenchymal lineages. Using a fracture-healing model, αSMA9(+) cells served as a pool of fibrocartilage and skeletal progenitors. Confirmation of the transition of αSMA9(+) progenitor cells to mature osteoblasts during fracture healing was assessed by activation of bone-specific Col2.3emd transgene. Our findings provide a novel in vivo identification of defined population of mesenchymal progenitor cells with active role in bone remodeling and regeneration.
Collapse
Affiliation(s)
- Danka Grcevic
- Department of Physiology and Immunology, University School of Medicine, Zagreb, Croatia
| | - Slavica Pejda
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
- University School of Dental Medicine, Split Croatia
| | - Brya G. Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Dario Repic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
- University School of Dental Medicine, Split Croatia
| | - Liping Wang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Haitao Li
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Mark S. Kronenberg
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xi Jiang
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Peter Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Douglas J. Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - David W. Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
30
|
Badowski MS, Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for transplantation and regenerative medicine. Methods Mol Biol 2012; 879:279-90. [PMID: 22610565 DOI: 10.1007/978-1-61779-815-3_16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collection and banking of umbilical cord blood can provide a virtually unlimited source of ethnically diverse stem cell donors. It can be used in place of bone marrow or peripheral blood stem cells for hematologic transplants as well as in a variety of regenerative medicine applications. In this study, we review the latest developments in cord blood banking. We have banked over 300,000 collections at our facility, which were processed by either Ficoll or AXP methodologies. An average 95-99% processing efficiency was obtained. Processed samples can be frozen in either cryovials or bags and banked in the vapor phase of a liquid nitrogen dewar for prolonged periods of time. In conclusion, it is possible to simply and reproducibly harvest, process, and bank cord blood samples using currently available technology.
Collapse
|
31
|
Ohishi M, Ono W, Ono N, Khatri R, Marzia M, Baker EK, Root SH, Wilson TLS, Iwamoto Y, Kronenberg HM, Aguila HL, Purton LE, Schipani E. A novel population of cells expressing both hematopoietic and mesenchymal markers is present in the normal adult bone marrow and is augmented in a murine model of marrow fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:811-8. [PMID: 22155108 DOI: 10.1016/j.ajpath.2011.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023]
Abstract
Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP(+)) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP(+)CD45(+) cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis.
Collapse
Affiliation(s)
- Masanobu Ohishi
- Endocrine Unit, the Department of Medicine, Faculty of Medical Sciences, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kanematsu D, Shofuda T, Yamamoto A, Ban C, Ueda T, Yamasaki M, Kanemura Y. Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta. Differentiation 2011; 82:77-88. [PMID: 21684674 DOI: 10.1016/j.diff.2011.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 05/06/2011] [Accepted: 05/26/2011] [Indexed: 12/22/2022]
Abstract
The clinical promise of cell-based therapies is generally recognized, and has driven an intense search for good cell sources. In this study, we isolated plastic-adherent cells from human term decidua vera, called decidua-derived-mesenchymal cells (DMCs), and compared their properties with those of bone marrow-derived-mesenchymal stem cells (BM-MSCs). The DMCs strongly expressed the mesenchymal cell marker vimentin, but not cytokeratin 19 or HLA-G, and had a high proliferative potential. That is, they exhibited a typical fibroblast-like morphology for over 30 population doublings. Cells phenotypically identical to the DMCs were identified in the decidua vera, and genotyping confirmed that the DMCs were derived from the maternal components of the fetal adnexa. Flow cytometry analysis showed that the expression pattern of CD antigens on the DMCs was almost identical to that on BM-MSCs, but some DMCs expressed the CD45 antigen, and over 50% of them also expressed anti-fibroblast antigen. In vitro, the DMCs showed good differentiation into chondrocytes and moderate differentiation into adipocytes, but scant evidence of osteogenesis, compared with the BM-MSCs. Gene expression analysis showed that, compared with BM-MSCs, the DMCs expressed higher levels of TWIST2 and RUNX2 (which are associated with early mesenchymal development and/or proliferative capacity), several matrix metalloproteinases (MMP1, 3, 10, and 12), and cytokines (BMP2 and TGFB2), and lower levels of MSX2, interleukin 26, and HGF. Although DMCs did not show the full multipotency of BM-MSCs, their higher proliferative ability indicates that their cultivation would require less maintenance. Furthermore, the use of DMCs avoids the ethical concerns associated with the use of embryonic tissues, because they are derived from the maternal portion of the placenta, which is otherwise discarded. Thus, the unique properties of DMCs give them several advantages for clinical use, making them an interesting and attractive alternative to MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Daisuke Kanematsu
- Department of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
34
|
Arien-Zakay H, Lazarovici P, Nagler A. Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol 2011; 23:291-303. [PMID: 20837341 DOI: 10.1016/j.beha.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative medicine is the process of creating functional tissue with the aid of stem cells, to repair loss of organ function. Possible targets for regenerative medicine include orthopaedic, cardiac, hepatic, pancreatic and central nervous system (CNS) applications. Umbilical cord blood (CB) has established itself as a legitimate source for haematopoietic stem cell transplantation. It is also considered an accessible and less immunogenic source for mesenchymal, unrestricted somatic and for other stem cells with pluri/multipotent properties. The latter are capable of differentiating into a wide variety of cell types including bone, cartilage, cardiomyocytes and neural. They also possess protective abilities that may contribute to tissue repair even if in vitro differentiation is excluded. In view of the absence of treatment for many devastating diseases, the elucidation of non-haematopoietic applications for CB will facilitate the development of pioneering relevant cell therapy approaches. This review focusses on current studies using human CB-derived cells for regenerative medicine.
Collapse
|
35
|
Arien-Zakay H, Lecht S, Nagler A, Lazarovici P. Human umbilical cord blood stem cells: rational for use as a neuroprotectant in ischemic brain disease. Int J Mol Sci 2010; 11:3513-28. [PMID: 20957109 PMCID: PMC2956109 DOI: 10.3390/ijms11093513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 01/19/2023] Open
Abstract
The use of stem cells for reparative medicine was first proposed more than three decades ago. Hematopoietic stem cells from bone marrow, peripheral blood and human umbilical cord blood (CB) have gained major use for treatment of hematological indications. CB, however, is also a source of cells capable of differentiating into various non-hematopoietic cell types, including neural cells. Several animal model reports have shown that CB cells may be used for treatment of neurological injuries. This review summarizes the information available on the origin of CB-derived neuronal cells and the mechanisms proposed to explain their action. The potential use of stem/progenitor cells for treatment of ischemic brain injuries is discussed. Issues that remain to be resolved at the present stage of preclinical trials are addressed.
Collapse
Affiliation(s)
- Hadar Arien-Zakay
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
- Division of Hematology and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel; E-Mail: (A.N.)
| | - Shimon Lecht
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel; E-Mail: (A.N.)
| | - Philip Lazarovici
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; E-Mails: (H.A.-Z.); (S.L.)
- * Author to whom correspondence should be addressed: E-Mail: ; Tel.: 972-2-6758-729; Fax: 972-2-6757-490
| |
Collapse
|
36
|
Abstract
Following the identification of bone marrow multipotent cells that could adhere to plastic and differentiate along numerous mesenchymal lineages in vitro, a considerable effort has been invested in characterizing and expanding these cells, which are now called "mesenchymal stem cells" (MSCs), in vitro. Over the years, numerous lines of evidence have been provided in support of their plasticity, their extraordinary immunomodulatory properties, their potential use for tissue engineering purposes, as well as their ability to be recruited to sites of injury, where they might contribute a "natural in vivo system for tissue repair." Moreover, some studies have attempted the characterization of their cell-surface specific antigens and of their anatomical location in vivo. Lastly, it has been shown that similar cells could be also isolated from organs other than the bone marrow. Despite this impressive body of investigations, numerous questions related to the developmental origin of these cells, their proposed pluripotency, and their role in bone modeling and remodeling and tissue repair in vivo are still largely unanswered. In addition, both a systematic phenotypic in vivo characterization of the MSC population and the development of a reproducible and faithful in vivo assay that would test the ability of MSCs to self-renew, proliferate, and differentiate in vivo are just beginning. This brief review summarizes the current knowledge in the field of study of MSCs and the outstanding questions.
Collapse
Affiliation(s)
- Masanobu Ohishi
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
The effect of umbilical cord blood cells on outcomes after experimental traumatic spinal cord injury. Spine (Phila Pa 1976) 2010; 35:1520-6. [PMID: 20581748 DOI: 10.1097/brs.0b013e3181c3e963] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A cytokine expression profile of umbilical cord blood (UCB) derived multipotential stem cells (MPSC) was produced. We then transplanted MPSCs into a rat model of spinal cord injury (SCI) and assessed neurologic function as well as spinal cord histology. OBJECTIVE To determine if MPSCs transplanted into a rat model of acute SCI would lead to a beneficial neurologic effect. SUMMARY OF BACKGROUND DATA Conditioned medium from UCB contains factors that could promote healing of endogenous neural tissues. Previously, our laboratory has demonstrated that UCB hematopoietic cells can develop into MPSCs capable of differentiating into multiple cell types including oligodendrocyte-like cells. METHODS We cultured MPSCs from UCB cells using fibroblast growth factor 4, stem cell factor and fms-like tyrosine kinase receptor-3 ligand supplemented serum-free medium. Using a cytokine antibody array, we produced a cytokines expression profile of MPSCs. We then transplanted MPSCs into an immunosuppressed rat model of SCI and assessed neurologic function weekly for 6 weeks by the Basso, Beattie, and Bresnahan locomotor test. The spinal cords were examined histologically and lesion areas quantified. RESULTS We detected elevated levels of cytokines and growth factors with known neuroprotective, angiogenic, and anti-inflammatory effects in the MPSC conditioned media. The SCI rats treated with MPSCs showed a significant improvement in Basso, Beattie, and Bresnahan scores after 6 weeks compared with the group that received vehicle only. Immunohistochemistry revealed transplanted human cells were present in the injured spinal cord after 1 week, but were no longer present by 6 weeks. There was a trend for the lesion size in treated rats to be smaller than that of the control group. CONCLUSION We conclude that UCB MPSCs improve neurologic function of rats with acute SCI, possibly by the release of factors that reduce secondary injury.
Collapse
|
38
|
Sordi V, Melzi R, Mercalli A, Formicola R, Doglioni C, Tiboni F, Ferrari G, Nano R, Chwalek K, Lammert E, Bonifacio E, Borg D, Piemonti L. Mesenchymal cells appearing in pancreatic tissue culture are bone marrow-derived stem cells with the capacity to improve transplanted islet function. Stem Cells 2010; 28:140-51. [PMID: 19924826 DOI: 10.1002/stem.259] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adherent fibroblast-like cells have been reported to appear in cultures of human endocrine or exocrine pancreatic tissue during attempts to differentiate human beta cells from pancreatic precursors. A thorough characterization of these mesenchymal cells has not yet been completed, and there are no conclusive data about their origin.We demonstrated that the human mesenchymal cells outgrowing from cultured human pancreatic endocrine or exocrine tissue are pancreatic mesenchymal stem cells (pMSC) that propagate from contaminating pMSC. The origin of pMSC is partly extrapancreatic both in humans and mice, and by using green fluorescent protein (GFP(+)) bone marrow transplantation in the mouse model, we were able to demonstrate that these cells derive from the CD45(+) component of bone marrow. The pMSC express negligible levels of islet-specific genes both in basal conditions and after serum deprivation or exogenous growth factor exposure, and might not represent optimal candidates for generation of physiologically competent beta-cells. On the other hand, when cotransplanted with a minimal pancreatic islet mass, pMSC facilitate the restoration of normoglycemia and the neovascularization of the graft. These results suggest that pMSCs could exert an indirect role of "helper" cells in tissue repair processes.
Collapse
Affiliation(s)
- Valeria Sordi
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Embryonic stem (ES) cell therapies are often promoted as the optimal stem cell source for regenerative medicine applications because of their ability to develop into any tissue in the body. Unfortunately, ES cell applications are currently limited by ethical, political, biological and regulatory hurdles. However, multipotent non-ES cells are available in large numbers in umbilical cord blood (CB). CB stem cells are capable of giving rise to hematopoietic, epithelial, endothelial and neural tissues both in vitro and in vivo. Thus, CB stem cells are amenable to treat a wide variety of diseases including cardiovascular, ophthalmic, orthopaedic, neurological and endocrine diseases. In addition, the recent use of CB in several regenerative medicine clinical studies has demonstrated its pluripotent nature. Here we review the latest developments in the use of CB in regenerative medicine. Examples of these usages include cerebral palsy and type I diabetes. The numbers of individuals affected with each of these diseases are estimated at 10 000 infants diagnosed with cerebral palsy annually and 15 000 youths diagnosed with type 1 diabetes annually. A summary of the initial results from such clinical studies using autologous cord blood stem cells will be presented.
Collapse
Affiliation(s)
- David T Harris
- Department of Immunobiology, The University of Arizona, and Scientific Director, Cord Blood Registry, 1656 E. Mabel, MRB 221, PO Box 245221, Tucson, AZ 85724,, USA.
| |
Collapse
|
40
|
Wong CJ, Casper RF, Rogers IM. Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Exp Cell Res 2010; 316:927-39. [PMID: 20096686 DOI: 10.1016/j.yexcr.2010.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 12/26/2022]
Abstract
We have previously reported the existence of a subpopulation of cells from human umbilical cord blood capable of differentiating into oligodendrocytes, Schwann cells, bone, muscle, and endothelial cells despite their origins as CD45-positive cells. These stem cells (called FSFl cells) arise only after a period in vitro in medium containing FGF4, SCF, and Flt-3 ligand (FSFl medium) during which they express the pluripotency genes Oct4 and Nanog. The objective of this study was to determine if the novel expression of these pluripotency genes coupled with the newly acquired ability of these cells to differentiate into all three germ layers was the result of epigenetic changes to these cells after reprogramming in FSFl medium. We confirm that CD45-derived FSFl cells express Oct4 protein at levels similar to that observed among undifferentiated embryonic stem cells, during which time acetylated histones H3 and H4 display increased binding at the promoter region of Oct4. Changes to binding of acetylated histones at Oct4 when these cells are in a differentiated state (either prior to FSFl culture or after in vitro differentiation into neural cells) and when they are undifferentiated suggest that this is one way by which these cells acquire their pluripotency. While DNA hypermethylation at this gene region as well as the continued H3 and H4 acetylation at the CD45 promoter region among FSFl cells indicate this is only a partial reprogramming event, this is a significant step toward non-transgene reprogramming of somatic cells.
Collapse
Affiliation(s)
- Christine J Wong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, Canada ON M5T 3H7
| | | | | |
Collapse
|
41
|
Yamanaka N, Wong CJ, Gertsenstein M, Casper RF, Nagy A, Rogers IM. Bone marrow transplantation results in human donor blood cells acquiring and displaying mouse recipient class I MHC and CD45 antigens on their surface. PLoS One 2009; 4:e8489. [PMID: 20046883 PMCID: PMC2796175 DOI: 10.1371/journal.pone.0008489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022] Open
Abstract
Background Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100% of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cells and that trogocytosis is evident in non-blood cells in chimera mice.
Collapse
Affiliation(s)
- Nobuko Yamanaka
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christine J. Wong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marina Gertsenstein
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert F. Casper
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| | - Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ian M. Rogers
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
42
|
Betts DH, Kalionis B. Viable iPSC mice: a step closer to therapeutic applications in humans? Mol Hum Reprod 2009; 16:57-62. [DOI: 10.1093/molehr/gap101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
43
|
Tropepe V, Alton K, Sachewsky N, Cheng V, Kuo C, Morshead CM. Neurogenic Potential of Isolated Precursor Cells from Early Post-Gastrula Somitic Tissue. Stem Cells Dev 2009; 18:1533-42. [DOI: 10.1089/scd.2008.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincent Tropepe
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Kaylee Alton
- Division of Anatomy, Department of Surgery, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Nadia Sachewsky
- Division of Anatomy, Department of Surgery, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Vincent Cheng
- Division of Anatomy, Department of Surgery, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Claire Kuo
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Cindi M. Morshead
- Division of Anatomy, Department of Surgery, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Buchheiser A, Liedtke S, Looijenga LH, Kögler G. Cord blood for tissue regeneration. J Cell Biochem 2009; 108:762-8. [DOI: 10.1002/jcb.22320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Arends B, Vankelecom H, Vander Borght S, Roskams T, Penning LC, Rothuizen J, Spee B. The dog liver contains a "side population" of cells with hepatic progenitor-like characteristics. Stem Cells Dev 2009; 18:343-50. [PMID: 18680393 DOI: 10.1089/scd.2008.0022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to isolate and characterize potential progenitor cells from healthy dog livers. Stem/progenitor cells can be prospectively isolated from a diversity of tissues using their ability to efficiently pump out the dye Hoechst33342, thereby portraying a side population (SP) in dual-wavelength flow cytometry. We here describe the detection of a SP in dog liver, constituting approximately 3 % of the nonparenchymal-enriched cell fractions. A subpopulation of the SP (approximately 30 %) was immunonegative for the panhematopoietic marker CD45, and consisted predominantly of small, mononuclear, keratin 7-immunoreactive cells; characteristics suggestive of a liver progenitor cell phenotype. Both the CD45- and CD45+ SP showed upregulated expression of progenitor/cholangiocyte marker genes, but also low-level expression of hepatocyte markers, suggesting the presence of progenitor cells committed to the hepatic lineage in both SP fractions. Our findings demonstrate that healthy canine liver contains a small population of cells with progenitor-like characteristics that can be isolated on the basis of efficient Hoechst33342 expulsion.
Collapse
Affiliation(s)
- Brigitte Arends
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochem Biophys Res Commun 2009; 379:217-21. [DOI: 10.1016/j.bbrc.2008.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
|
47
|
Khoo CP, Pozzilli P, Alison MR. Endothelial progenitor cells and their potential therapeutic applications. Regen Med 2009; 3:863-76. [PMID: 18947309 DOI: 10.2217/17460751.3.6.863] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endothelial progenitor cells (EPCs) are derived from the bone marrow (BM) and peripheral blood (PB), contributing to tissue repair in various pathological conditions via the formation of new blood vessels, that is, neovascularization. EPCs can be mobilized into the circulation in response to growth factors and cytokines released following stimuli such as vascular trauma, wounding and cancer. EPCs are involved in vasculogenesis during embryogenesis, but are now recognized to have a significant bearing upon disease outcome through their contribution to neovascularization in a variety of pathological states in adulthood. EPCs exist in very small numbers, especially in circulating blood in adults where they only account for 0.01% of all cells. We discuss the contribution and potential therapeutic applications of EPCs in disease, also noting the prognostic value of PB EPC numbers, especially in heart disease and cancer.
Collapse
Affiliation(s)
- Cheen P Khoo
- ICMS, Centre for Diabetes & Metabolic Medicine (DMM), Barts & The London School of Medicine & Dentistry, Queen Mary University of London, 4 Newark Street, London E12AT, UK.
| | | | | |
Collapse
|
48
|
Geraerts M, Verfaillie CM. Adult stem and progenitor cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 114:1-21. [PMID: 19373451 DOI: 10.1007/10_2008_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.
Collapse
Affiliation(s)
- Martine Geraerts
- Interdepartementaal Stamcelinstituut Leuven (SCIL), Katholieke Universiteit Leuven, Herestraat 49 bus 804, 3000, Leuven, Belgium,
| | | |
Collapse
|
49
|
Rogers IM, Yamanaka N, Casper RF. A simplified procedure for hematopoietic stem cell amplification using a serum-free, feeder cell-free culture system. Biol Blood Marrow Transplant 2008; 14:927-37. [PMID: 18640577 DOI: 10.1016/j.bbmt.2008.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 06/02/2008] [Indexed: 01/07/2023]
Abstract
Umbilical cord blood (UCB) is increasingly being used as a donor source of hematopoietic stem cells (HSCs) to treat blood malignancies. The main limitation to the widespread use of UCB is the low number of HSCs per unit. To compensate, a strategy of in vitro stem cell amplification has been attempted in different research laboratories. The major hurdle blocking success is the creation of culture conditions that support the growth of hematopoietic stem cells without their differentiation. We have designed a simple culture system for stem and progenitor cell expansion that resulted in an increased number of hematopoietic stem cells that maintain their ability to home to the bone marrow and to permanently engraft.
Collapse
Affiliation(s)
- Ian M Rogers
- Department of Obstetrics & Gynaecology, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
50
|
Strizzi L, Mancino M, Bianco C, Raafat A, Gonzales M, Booth BW, Watanabe K, Nagaoka T, Mack DL, Howard B, Callahan R, Smith GH, Salomon DS. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J Cell Physiol 2008; 216:824-34. [PMID: 18425773 DOI: 10.1002/jcp.21462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Netrin-1 has been shown to regulate the function of the EGF-like protein Cripto-1 (Cr-1) and affect mammary gland development. Since Cr-1 is a target gene of Nanog and Oct4, we investigated the relationship between Netrin-1 and Cr-1, Nanog and Oct4 during different stages of development in the mouse mammary gland. Results from histological analysis show that exogenous Netrin-1 was able to induce formation of alveolar-like structures within the mammary gland terminal end buds of virgin transgenic Cripto-1 mice and enhance mammary gland alveologenesis in early pregnant FVB/N mice. Results from immunostaining and Western blot analysis show that Netrin-1, Nanog and Oct4 are expressed in the mouse embryonic mammary anlage epithelium while Cripto-1 is predominantly expressed outside this structure in the surrounding mesenchyme. We find that in lactating mammary glands of postnatal FVB/N mice, Netrin-1 expression is highest while Cripto-1 and Nanog levels are lowest indicating that Netrin-1 may perform a role in the mammary gland during lactation. HC-11 mouse mammary epithelial cells stimulated with lactogenic hormones and exogenous soluble Netrin-1 showed increased beta-casein expression as compared to control thus supporting the potential role for Netrin-1 during functional differentiation of mouse mammary epithelial cells. Finally, mouse ES cells treated with exogenous soluble Netrin-1 showed reduced levels of Nanog and Cripto-1 and higher levels of beta-III tubulin during differentiation. These results suggest that Netrin-1 may facilitate functional differentiation of mammary epithelial cells and possibly affect the expression of Nanog and/or Cripto-1 in multipotent cells that may reside in the mammary gland.
Collapse
Affiliation(s)
- Luigi Strizzi
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|