1
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Quadt L, Csecs J, Bond R, Harrison NA, Critchley HD, Davies KA, Eccles J. Childhood neurodivergent traits, inflammation and chronic disabling fatigue in adolescence: a longitudinal case-control study. BMJ Open 2024; 14:e084203. [PMID: 39038862 DOI: 10.1136/bmjopen-2024-084203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVES To test whether inflammatory processes link the expression of childhood neurodivergent traits to chronic disabling fatigue in adolescence. DESIGN Longitudinal case-control study. SETTING We analysed data from The Avon Longitudinal Study of Parents and Children (ALSPAC). PARTICIPANTS 8115 and 8036 children of the ALSPAC cohort at ages 7 and 9 years, respectively, 4563 of whom also completed self-report measures at age 18 years. PRIMARY AND SECONDARY OUTCOME MEASURES We assessed if children scoring above screening threshold for autism/attention deficit hyperactivity disorder (ADHD) at ages 7 and 9 years had increased risk of chronic disabling fatigue at age 18 years, computing ORs and CIs for effects using binary logistic regression. Mediation analyses were conducted to test if an inflammatory marker (interleukin 6 (IL-6)) at age 9 years linked neurodivergent traits to chronic disabling fatigue at age 18 years. RESULTS Children with neurodivergent traits at ages 7 and 9 years were two times as likely to experience chronic disabling fatigue at age 18 years (likely ADHD OR=2.18 (95% CI=1.33 to 3.56); p=0.002; likely autism OR=1.78 (95% CI=1.17 to 2.72); p=0.004). Levels of IL-6 at age 9 were associated with chronic disabling fatigue at age 18 (OR=1.54 (95% CI=1.13 to 2.11); p=0.006). Inflammation at age 9 years mediated effects of neurodivergent traits on chronic disabling fatigue (indirect effect via IL-6: ADHD b=1.08 (95% CI=1.01 to 1.15); autism b=1.06; (95% CI=1.03 to 1.10)). All effects remained significant when controlling for the presence of depressive symptoms. CONCLUSIONS Our results indicate higher risk of chronic disabling fatigue for children with neurodivergent traits, likely linked to higher levels of inflammation. The implementation of transdiagnostic screening criteria to inform support strategies to counteract risk early in life is recommended.
Collapse
Affiliation(s)
- Lisa Quadt
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | - Jenny Csecs
- Berkshire Healthcare NHS Foundation Trust, Bracknell, Bracknell Forest, UK
| | - Rod Bond
- School of Psychology, University of Sussex, Brighton, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Hugo D Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| | - Kevin A Davies
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Jessica Eccles
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, Brighton, UK
- Sussex Partnership NHS Foundation Trust, Worthing, UK
| |
Collapse
|
3
|
Severance S, Daylor V, Petrucci T, Gensemer C, Patel S, Norris RA. Hypermobile Ehlers-Danlos syndrome and spontaneous CSF leaks: the connective tissue conundrum. Front Neurol 2024; 15:1452409. [PMID: 39087003 PMCID: PMC11289524 DOI: 10.3389/fneur.2024.1452409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Collagen, the most abundant protein in the body, is a key component of the extracellular matrix (ECM), which plays a crucial role in the structure and support of connective tissues. Abnormalities in collagen associated with connective tissue disorders (CTD) can lead to neuroinflammation and weaken the integrity of the blood-brain barrier (BBB), a semi-permeable membrane that separates the brain's extracellular fluid from the bloodstream. This compromise in the BBB can result from disruptions in ECM components, leading to neuroinflammatory responses, neuronal damage, and increased risks of neurological disorders. These changes impact central nervous system homeostasis and may exacerbate neurological conditions linked to CTD, manifesting as cognitive impairment, sensory disturbances, headaches, sleep issues, and psychiatric symptoms. The Ehlers-Danlos syndromes (EDS) are a group of heritable CTDs that result from varying defects in collagen and the ECM. The most prevalent subtype, hypermobile EDS (hEDS), involves clinical manifestations that include joint hypermobility, skin hyperextensibility, autonomic dysfunction, mast cell activation, chronic pain, as well as neurological manifestations like chronic headaches and cerebrospinal fluid (CSF) leaks. Understanding the connections between collagen, CSF, inflammation, and the BBB could provide insights into neurological diseases associated with connective tissue abnormalities and guide future research.
Collapse
Affiliation(s)
- Sydney Severance
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria Daylor
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Taylor Petrucci
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Cortney Gensemer
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Sunil Patel
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Paroli M, Gioia C, Accapezzato D, Caccavale R. Inflammation, Autoimmunity, and Infection in Fibromyalgia: A Narrative Review. Int J Mol Sci 2024; 25:5922. [PMID: 38892110 PMCID: PMC11172859 DOI: 10.3390/ijms25115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Fibromyalgia (FM) is a chronic disease characterized by widespread musculoskeletal pain of unknown etiology. The condition is commonly associated with other symptoms, including fatigue, sleep disturbances, cognitive impairment, and depression. For this reason, FM is also referred to as FM syndrome. The nature of the pain is defined as nociplastic according to the latest international classification and is characterized by altered nervous sensitization both centrally and peripherally. Psychosocial conditions have traditionally been considered critical in the genesis of FM. However, recent studies in animal models and humans have provided new evidence in favor of an inflammatory and/or autoimmune pathogenesis. In support of this hypothesis are epidemiological data of an increased female prevalence, similar to that of autoimmune diseases, and the frequent association with immune-mediated inflammatory disorders. In addition, the observation of an increased incidence of this condition during long COVID revived the hypothesis of an infectious pathogenesis. This narrative review will, therefore, discuss the evidence supporting the immune-mediated pathogenesis of FM in light of the most current data available in the literature.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University di Roma, 00185 Rome, Italy; (C.G.); (D.A.); (R.C.)
| | | | | | | |
Collapse
|
5
|
Hamad AA, Amer BE, Hawas Y, Mabrouk MA, Meshref M. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci 2024; 45:1861-1873. [PMID: 38105307 PMCID: PMC11021265 DOI: 10.1007/s10072-023-07259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Masitinib, originally developed as a tyrosine kinase inhibitor for cancer treatment, has shown potential neuroprotective effects in various neurological disorders by modulating key pathways implicated in neurodegeneration. This scoping review aimed to summarize the current evidence of masitinib's neuroprotective activities from preclinical to clinical studies. METHODS This scoping review was conducted following the guidelines described by Arksey and O'Malley and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The inclusion criteria covered all original studies reporting on the neuroprotective effects of masitinib, including clinical studies, animal studies, and in vitro studies. RESULTS A total of 16 studies met the inclusion criteria and were included in the review. These comprised five randomized controlled trials (RCTs), one post-hoc analysis study, one case report, and nine animal studies. The RCTs focused on Alzheimer's disease (two studies), multiple sclerosis (two studies), and amyotrophic lateral sclerosis (one study). Across all included studies, masitinib consistently demonstrated neuroprotective properties. However, the majority of RCTs reported concerns regarding the safety profile of masitinib. Preclinical studies revealed the neuroprotective mechanisms of masitinib, which include inhibition of certain kinases interfering with cell proliferation and survival, reduction of neuroinflammation, and exhibition of antioxidant activity. CONCLUSION The current evidence suggests a promising therapeutic benefit of masitinib in neurodegenerative diseases. However, further research is necessary to validate and expand upon these findings, particularly regarding the precise mechanisms through which masitinib exerts its therapeutic effects. Future studies should also focus on addressing the safety concerns associated with masitinib use.
Collapse
Affiliation(s)
| | | | - Yousef Hawas
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Alaa Mabrouk
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Baranoglu Kilinc Y, Torun IE, Kilinc E. D2 dopamine receptor-mediated mechanisms of dopaminergic system modulation in in vivo and in vitro experimental models of migraine. Eur J Neurosci 2024; 59:1177-1193. [PMID: 37539658 DOI: 10.1111/ejn.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The dopaminergic system is implicated in the pathophysiology of migraine. However, the underlying mechanisms remain unclear. We explored the effects and mechanisms of dopaminergic system modulation in the in vivo and in vitro rat models of migraine. Dopaminergic agonist apomorphine, D2 receptor antagonists metoclopramide and haloperidol and 5-HT3 receptor antagonist ondansetron alone and together were tested in nitroglycerin-induced migraine model, in vivo. Likewise, the combinations of drugs were also tested on basal calcitonin gene-related peptide (CGRP) release in vitro hemiskull preparations. Mechanical allodynia was tested by von Frey filaments. CGRP concentrations in trigeminovascular structures and in vitro superfusates and c-Fos levels in the brainstem were determined by enzyme-linked immunosorbent assay. Meningeal mast cells were evaluated with toluidine blue staining. Apomorphine further enhanced nitroglycerin-induced mechanical allodynia, brainstem c-fos expression, trigeminal ganglion and brainstem CGRP concentrations and meningeal mast cell degranulation, in vivo. Haloperidol completely antagonised all apomorphine-induced effects and also alleviated changes induced by nitroglycerin without apomorphine. Metoclopramide and ondansetron partially attenuated apomorphine- or nitroglycerin-induced effects. A combination of haloperidol and ondansetron decreased basal CGRP release, in vitro, whereas the other administrations were ineffective. Apomorphine-mediated dopaminergic activation exacerbated nitroglycerin-stimulated nociceptive reactions by further enhancing c-fos expression, CGRP release and mast cell degranulation in strategical structures associated with migraine pain. Metoclopramide partially attenuated the effects of apomorphine, most likely because it is also a 5-HT3 receptor antagonist. Haloperidol with pure D2 receptor antagonism feature appears to be more effective than metoclopramide in reducing migraine-related parameters in dopaminergic activation- and/or NTG-induced migraine-like conditions.
Collapse
Affiliation(s)
| | - Ibrahim Ethem Torun
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Turkey
| | - Erkan Kilinc
- Department of Physiology, Medical School, University of Bolu Abant Izzet Baysal, Bolu, Turkey
| |
Collapse
|
7
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
Larriva-Sahd J, Martínez-Cabrera G, Lozano-Flores C, Concha L, Varela-Echavarría A. The neurovascular unit of capillary blood vessels in the rat nervous system. A rapid-Golgi electron microscopy study. J Comp Neurol 2023; 532:e25559. [PMID: 38009706 DOI: 10.1002/cne.25559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/28/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
We describe a pericapillary organ in the rat forebrain and cerebellar cortex. It consists of a series of tripartite synapses with synaptic extensions enveloped by astrocytic endfeet that are linked to the capillary wall by synaptic extensions. Reciprocal specializations of the pericyte-capillary blood vessel (CBV) with such specialized synapses suggest a mechanoreceptor role. In Golgi-impregnated and 3D reconstructions of the cerebral cortex and thalamus, a series of TSs appear to be sequentially ordered in a common dendrite, paralleled by synaptic outgrowths termed golf club synaptic extensions (GCE) opposed to a longitudinal crest (LC) from the capillary basal lamina (BL). Our results show that, in the cerebellar cortex, afferent fibers and interneurons display microanatomical structures that strongly suggest an interaction with the capillary wall. Afferent mossy fiber (MF) rosettes and ascending granule cell axons and their dendrites define the pericapillary passage interactions that are entangled by endfeet. The presence of mRNA of the mechanosensitive channel Piezo1 in the MF rosettes, together with the surrounding end-feet and the capillary wall form mechanosensory units. The ubiquity of such units to modulate synaptic transmission is also supported by Piezo1 mRNA expressing pyramidal isocortical and thalamic neurons. This scenario suggests that ascending impulses to the cerebellar and cortical targets are presynaptically modulated by the reciprocal interaction with the mechanosensory pericapillary organ that ultimately modulates the vasomotor response.
Collapse
Affiliation(s)
- Jorge Larriva-Sahd
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Gema Martínez-Cabrera
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Lozano-Flores
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Luis Concha
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| | - Alfredo Varela-Echavarría
- Campus Juriquilla, Instituto de Neurobiología Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
10
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
11
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Monocyte subsets, T cell activation profiles, and stroke in men and women: The Multi-Ethnic Study of Atherosclerosis and Cardiovascular Health Study. Atherosclerosis 2022; 351:18-25. [PMID: 35605368 PMCID: PMC9548392 DOI: 10.1016/j.atherosclerosis.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Despite mechanistic data implicating unresolving inflammation in stroke pathogenesis, data regarding circulating immune cell phenotypes - key determinants of inflammation propagation versus resolution - and incident stroke are lacking. Therefore, we aimed to comprehensively define associations of circulating immune phenotypes and activation profiles with incident stroke. METHODS We investigated circulating leukocyte phenotypes and activation profiles with incident adjudicated stroke in 2104 diverse adults from the Multi-Ethnic Study of Atherosclerosis (MESA) followed over a median of 16.6 years. Cryopreserved cells from the MESA baseline examination were thawed and myeloid and lymphoid lineage cell subsets were measured using polychromatic flow cytometry and intracellular cytokine activation staining. We analyzed multivariable-adjusted associations of cell phenotypes, as a proportion of parent cell subsets, with incident stroke (overall) and ischemic stroke using Cox regression models. RESULTS We observed associations of intermediate monocytes, early-activated CD4+ T cells, and both CD4+ and CD8+ T cells producing interleukin-4 after cytokine stimulation (Th2 and Tc2, respectively) with higher risk for incident stroke; effect sizes ranged from 35% to 62% relative increases in risk for stroke. Meanwhile, differentiated and memory T cell phenotypes were associated with lower risk for incident stroke. In sex-stratified analyses, positive and negative associations were especially strong among men but null among women. CONCLUSIONS Circulating IL-4 producing T cells and intermediate monocytes were significantly associated with incident stroke over nearly two decades of follow-up. These associations were stronger among men and not among women. Further translational studies are warranted to define more precise targets for prognosis and intervention.
Collapse
|
14
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
15
|
Costa AC, Santos JMO, Gil da Costa RM, Medeiros R. Impact of immune cells on the hallmarks of cancer: A literature review. Crit Rev Oncol Hematol 2021; 168:103541. [PMID: 34801696 DOI: 10.1016/j.critrevonc.2021.103541] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells (TIICs) are critical players in the tumor microenvironment, modulating cancer cell functions. TIICs are highly heterogenic and plastic and may either suppress cancers or provide support for tumor growth. A wide range of studies have shed light on how tumor-associated macrophages, dendritic cells, neutrophils, mast cells, natural killer cells and lymphocytes contribute for the establishment of several hallmarks of cancer and became the basis for successful immunotherapies. Many of those TIICs play pivotal roles in several hallmarks of cancer. This review contributes to elucidate the multifaceted roles of immune cells in cancer development, highlighting molecular components that constitute promising therapeutic targets. Additional studies are needed to clarify the relation between TIICs and hallmarks such as enabling replicative immortality, evading growth suppressors, sustaining proliferative signaling, resisting cell death and genome instability and mutation, to further explore their therapeutic potential and improve the outcomes of cancer patients.
Collapse
Affiliation(s)
- Alexandra C Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Department of Morphology, Federal University of Maranhão (UFMA), and UFMA University Hospital (HUUFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| |
Collapse
|
16
|
Bailey CP, Wang R, Figueroa M, Zhang S, Wang L, Chandra J. Computational immune infiltration analysis of pediatric high-grade gliomas (pHGGs) reveals differences in immunosuppression and prognosis by tumor location. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021; 1. [PMID: 34723252 DOI: 10.1002/cso2.1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Immunotherapy for cancer has moved from pre-clinical hypothesis to successful clinical application in the past 15 years. However, not all cancers have shown response rates in clinical trials for these new agents, high-grade gliomas in particular have proved exceedingly refractory to immunotherapy. In adult patients, there has been much investigation into these failures, and researchers have concluded that an immunosuppressive microenvironment combined with low mutational burden render adult glioblastomas "immune cold". Pediatric cancer patients develop gliomas at a higher rate per malignancy than adults, and their brain tumors bear even fewer mutations. These tumors can also develop in more diverse locations in the brain, beyond the cerebral hemispheres seen in adults, including in the brainstem where critical motor functions are controlled. While adult brain tumor immune infiltration has been extensively profiled from surgical resections, this is not possible for brainstem tumors which can only be sampled at autopsy. Given these limitations, there is a dearth of information on immune cells and their therapeutic and prognostic impact in pediatric high-grade gliomas (pHGGs), including hemispheric tumors in addition to brainstem. In this report we use computational methods to examine immune infiltrate in pHGGs and discover distinct immune patterns between hemispheric and brainstem tumors. In hemispheric tumors, we find positive prognostic associations for regulatory T-cells, memory B-cells, eosinophils, and dendritic cells, but not in brainstem tumors. These differences suggest that immunotherapeutic approaches must be cognizant of pHGG tumor location and tailored for optimum efficacy.
Collapse
Affiliation(s)
- Cavan P Bailey
- University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ruiping Wang
- University of Texas MD Anderson Cancer Center MD Anderson Cancer Center, Department of Genomic Medicine, Houston, TX, USA
| | - Mary Figueroa
- University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Shaojun Zhang
- University of Texas MD Anderson Cancer Center MD Anderson Cancer Center, Department of Genomic Medicine, Houston, TX, USA
| | - Linghua Wang
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,University of Texas MD Anderson Cancer Center MD Anderson Cancer Center, Department of Genomic Medicine, Houston, TX, USA
| | - Joya Chandra
- University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.,University of Texas MD Anderson Cancer Center, Department of Epigenetics and Molecular Carcinogenesis, Houston, TX, USA.,University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
17
|
Qin B, Peng Y, Zhong C, Cai Y, Zhou S, Chen H, Zhuang J, Zeng H, Xu C, Xu H, Li J, Ying G, Gu C, Chen G, Wang L. Mast Cells Mediate Inflammatory Injury and Aggravate Neurological Impairment in Experimental Subarachnoid Hemorrhage Through Microglial PAR-2 Pathway. Front Cell Neurosci 2021; 15:710481. [PMID: 34646122 PMCID: PMC8503547 DOI: 10.3389/fncel.2021.710481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with high mortality and disability. Aberrant neuroinflammation has been identified as a critical factor accounting for the poor prognosis of SAH patients. Mast cells (MCs), the sentinel cells of the immune system, play a critical in the early immune reactions and participate in multiple pathophysiological process. However, the exact role of MCs on the pathophysiological process after SAH has not been fully understood. The current study was conducted to determine the role of MCs and MC stabilization in the context of SAH. Mouse SAH model was established by endovascular perforation process. Mice received saline or cromolyn (MC stabilizer) or compound 48/80 (MCs degranulator). Post-SAH evaluation included neurobehavioral test, western blot, immunofluorescence, and toluidine blue staining. We demonstrated that SAH induced MCs activation/degranulation. Administration of MC stabilizer cromolyn conferred a better neurologic outcome and decreased brain edema when compared with SAH+vehicle group. Furthermore, cromolyn significantly inhibited neuroinflammatory response and alleviated neuronal damage after SAH. However, pharmacological activation of MCs with compound 48/80 dramatically aggravated SAH-induced brain injury and exacerbated neurologic outcomes. Notably, pharmacological inhibition of microglial PAR-2 significantly reversed MCs-induced inflammatory response and neurological impairment. Additionally, the effect of MCs-derived tryptase in mediating neuroinflammation was also abolished by the microglial PAR-2 blockage in vitro. Taken together, MCs yielded inflammatory injury through activating microglia-related neuroinflammation after SAH. These data shed light on the notion that MCs might be a novel and promising therapeutic target for SAH.
Collapse
Affiliation(s)
- Bing Qin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjun Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hangzhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Kovacs M, Alamón C, Maciel C, Varela V, Ibarburu S, Tarragó L, King PH, Si Y, Kwon Y, Hermine O, Barbeito L, Trias E. The pathogenic role of c-Kit+ mast cells in the spinal motor neuron-vascular niche in ALS. Acta Neuropathol Commun 2021; 9:136. [PMID: 34389060 PMCID: PMC8361844 DOI: 10.1186/s40478-021-01241-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Degeneration of motor neurons, glial cell reactivity, and vascular alterations in the CNS are important neuropathological features of amyotrophic lateral sclerosis (ALS). Immune cells trafficking from the blood also infiltrate the affected CNS parenchyma and contribute to neuroinflammation. Mast cells (MCs) are hematopoietic-derived immune cells whose precursors differentiate upon migration into tissues. Upon activation, MCs undergo degranulation with the ability to increase vascular permeability, orchestrate neuroinflammation and modulate the neuroimmune response. However, the prevalence, pathological significance, and pharmacology of MCs in the CNS of ALS patients remain largely unknown. In autopsy ALS spinal cords, we identified for the first time that MCs express c-Kit together with chymase, tryptase, and Cox-2 and display granular or degranulating morphology, as compared with scarce MCs in control cords. In ALS, MCs were mainly found in the niche between spinal motor neuron somas and nearby microvascular elements, and they displayed remarkable pathological abnormalities. Similarly, MCs accumulated in the motor neuron-vascular niche of ALS murine models, in the vicinity of astrocytes and motor neurons expressing the c-Kit ligand stem cell factor (SCF), suggesting an SCF/c-Kit-dependent mechanism of MC differentiation from precursors. Mechanistically, we provide evidence that fully differentiated MCs in cell cultures can be generated from the murine ALS spinal cord tissue, further supporting the presence of c-Kit+ MC precursors. Moreover, intravenous administration of bone marrow-derived c-Kit+ MC precursors infiltrated the spinal cord in ALS mice but not in controls, consistent with aberrant trafficking through a defective microvasculature. Pharmacological inhibition of c-Kit with masitinib in ALS mice reduced the MC number and the influx of MC precursors from the periphery. Our results suggest a previously unknown pathogenic mechanism triggered by MCs in the ALS motor neuron-vascular niche that might be targeted pharmacologically.
Collapse
Affiliation(s)
| | | | - Cecilia Maciel
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | | | - Sofía Ibarburu
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Lucas Tarragó
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35295, USA
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35295, USA
| | - Yuri Kwon
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer; AB Science; Department of Hematology, Necker Hospital, Paris, France
- Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | - Luis Barbeito
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Emiliano Trias
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay.
| |
Collapse
|
19
|
Belpomme D, Carlo GL, Irigaray P, Carpenter DO, Hardell L, Kundi M, Belyaev I, Havas M, Adlkofer F, Heuser G, Miller AB, Caccamo D, De Luca C, von Klitzing L, Pall ML, Bandara P, Stein Y, Sage C, Soffritti M, Davis D, Moskowitz JM, Mortazavi SMJ, Herbert MR, Moshammer H, Ledoigt G, Turner R, Tweedale A, Muñoz-Calero P, Udasin I, Koppel T, Burgio E, Vorst AV. The Critical Importance of Molecular Biomarkers and Imaging in the Study of Electrohypersensitivity. A Scientific Consensus International Report. Int J Mol Sci 2021; 22:7321. [PMID: 34298941 PMCID: PMC8304862 DOI: 10.3390/ijms22147321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical research aiming at objectively identifying and characterizing diseases via clinical observations and biological and radiological findings is a critical initial research step when establishing objective diagnostic criteria and treatments. Failure to first define such diagnostic criteria may lead research on pathogenesis and etiology to serious confounding biases and erroneous medical interpretations. This is particularly the case for electrohypersensitivity (EHS) and more particularly for the so-called "provocation tests", which do not investigate the causal origin of EHS but rather the EHS-associated particular environmental intolerance state with hypersensitivity to man-made electromagnetic fields (EMF). However, because those tests depend on multiple EMF-associated physical and biological parameters and have been conducted in patients without having first defined EHS objectively and/or endpoints adequately, they cannot presently be considered to be valid pathogenesis research methodologies. Consequently, the negative results obtained by these tests do not preclude a role of EMF exposure as a symptomatic trigger in EHS patients. Moreover, there is no proof that EHS symptoms or EHS itself are caused by psychosomatic or nocebo effects. This international consensus report pleads for the acknowledgement of EHS as a distinct neuropathological disorder and for its inclusion in the WHO International Classification of Diseases.
Collapse
Affiliation(s)
- Dominique Belpomme
- Association for Research Against Cancer (ARTAC), 57/59 rue de la Convention, 75015 Paris, France;
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - George L. Carlo
- The Science and Public Policy Institute, Washington, DC 20006, USA;
| | - Philippe Irigaray
- Association for Research Against Cancer (ARTAC), 57/59 rue de la Convention, 75015 Paris, France;
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - David O. Carpenter
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Institute for Health and the Environment, University at Albany, Albany, NY 12222, USA
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Lennart Hardell
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- The Environment and Cancer Research Foundation, SE-702 17 Örebro, Sweden
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (H.M.)
| | - Igor Belyaev
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Biomedical Research Center, Slovak Academy of Science, 845 05 Bratislava, Slovakia
| | - Magda Havas
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- Trent School of the Environment, Trent University, 1600 West Bank Drive, Peterborough, ON K9J 0G2, Canada
| | - Franz Adlkofer
- Verum-Foundation for Behaviour and Environment c/o Regus Center Josephspitalstrasse 15/IV, 80331 München, Germany;
| | - Gunnar Heuser
- Formerly UCLA Medical Center, Department of Medicine, P.O. Box 5066, El Dorado Hills, Los Angeles, CA 95762, USA;
| | - Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5S, Canada;
| | - Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences and Morpho Functional Imaging, Polyclinic Hospital University, 98122 Messina, Italy;
| | - Chiara De Luca
- Department of Registration & Quality Management, Medical & Regulatory Affairs Manager, MEDENA AG, 8910 Affoltern am Albis, Switzerland;
| | - Lebrecht von Klitzing
- Medical Physicist, Institute of Environmental and Medical Physic, D-36466 Wiesenthal, Germany;
| | - Martin L. Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA;
| | - Priyanka Bandara
- Oceania Radiofrequency Scientific Advisory Association (ORSAA), P.O. Box 152, Scarborough, QLD 4020, Australia;
| | - Yael Stein
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91905, Israel;
- Hadassah Medical Center, Department of Anesthesiology, Critical Care and Pain Medicine, Jerusalem 91905, Israel
| | - Cindy Sage
- Sage Associates, Montecito, Santa Barbara, CA 93108, USA;
| | - Morando Soffritti
- Istituto Ramazzini, via Libia 13/A, 40138 Bologna, Italy;
- Collegium Ramazzini, Castello di Bentivoglio, via Saliceto, 3, 40010 Bentivoglio, Italy
| | - Devra Davis
- Environmental Health Trust, P.O. Box 58, Teton Village, WY 83025, USA;
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, CA 94720, USA;
| | - S. M. J. Mortazavi
- Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran;
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Martha R. Herbert
- A.A. Martinos Centre for Biomedical Imaging, Department of Neurology, MGH, Harvard Medical School, MGH/MIT/Harvard 149 Thirteenth Street, Charlestown, MA 02129, USA;
| | - Hanns Moshammer
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, 1090 Vienna, Austria; (M.K.); (H.M.)
- Department of Hygiene, Karakalpak Medical University, Nukus 230100, Uzbekistan
| | - Gerard Ledoigt
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - Robert Turner
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA;
- Clinical Pediatrics and Neurology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Anthony Tweedale
- Rebutting Industry Science with Knowledge (R.I.S.K.) Consultancy, Blv. Edmond Machtens 101/34, B-1080 Brussels, Belgium;
| | - Pilar Muñoz-Calero
- Foundation Alborada, Finca el Olivar, Carretera M-600, Km. 32,400, 28690 Brunete, Spain;
| | - Iris Udasin
- EOHSI Clinical Center, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA;
| | - Tarmo Koppel
- AI Institute, University of South Carolina, Columbia, SC 29208, USA;
| | - Ernesto Burgio
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
| | - André Vander Vorst
- European Cancer and Environment Research Institute (ECERI), 1000 Brussels, Belgium; (D.O.C.); (L.H.); (I.B.); (M.H.); (G.L.); (E.B.); (A.V.V.)
- European Microwave Association, Rue Louis de Geer 6, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Boeri L, Perottoni S, Izzo L, Giordano C, Albani D. Microbiota-Host Immunity Communication in Neurodegenerative Disorders: Bioengineering Challenges for In Vitro Modeling. Adv Healthc Mater 2021; 10:e2002043. [PMID: 33661580 PMCID: PMC11468246 DOI: 10.1002/adhm.202002043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Human microbiota communicates with its host by secreting signaling metabolites, enzymes, or structural components. Its homeostasis strongly influences the modulation of human tissue barriers and immune system. Dysbiosis-induced peripheral immunity response can propagate bacterial and pro-inflammatory signals to the whole body, including the brain. This immune-mediated communication may contribute to several neurodegenerative disorders, as Alzheimer's disease. In fact, neurodegeneration is associated with dysbiosis and neuroinflammation. The interplay between the microbial communities and the brain is complex and bidirectional, and a great deal of interest is emerging to define the exact mechanisms. This review focuses on microbiota-immunity-central nervous system (CNS) communication and shows how gut and oral microbiota populations trigger immune cells, propagating inflammation from the periphery to the cerebral parenchyma, thus contributing to the onset and progression of neurodegeneration. Moreover, an overview of the technological challenges with in vitro modeling of the microbiota-immunity-CNS axis, offering interesting technological hints about the most advanced solutions and current technologies is provided.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSvia Mario Negri 2Milan20156Italy
| |
Collapse
|
21
|
Zhang T, Huang L, Peng J, Zhang JH, Zhang H. LJ529 attenuates mast cell-related inflammation via A 3R-PKCε-ALDH2 pathway after subarachnoid hemorrhage in rats. Exp Neurol 2021; 340:113686. [PMID: 33713658 DOI: 10.1016/j.expneurol.2021.113686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Mast cells (MCs) has been recognized as an effector of inflammation or a trigger of inflammatory factors during stroke. LJ529 was reported to attenuate inflammation through a Gi protein-coupled Adenosine A3 receptor (A3R) after ischemia. Here, we aim to study the protective effect and its mechanism of LJ529 in subarachnoid hemorrhage (SAH) rat model for mast cell-related inflammation. METHODS 155 Sprague-Dawley adult male rats were used in experiments. Endovascular perforation was used for SAH model. Intraperitoneal LJ529 was performed 1 h after SAH. Neurological scores were measured 24 h after SAH. Rotarod and morris water maze tests were evaluated for 21 days after SAH. Mast cell degranulation was assessed with Toluidine blue staining and Chymase/Typtase protein expressions. Mast cell-related inflammation was evaluated using IL-6, TNF-α and MCP-1 protein expressions. MRS1523, inhibitor of GPR18 and ε-V1-2, inhibitor of PKCε were respectively given intraperitoneally (i.p.) 1 h and 30 min before SAH for mechanism studies. Pathway related proteins were investigated with western blot and immunofluorescence staining. RESULTS Expression of A3R, PKCε increased after SAH. LJ529 treatment attenuated mast cell degranulation and inflammation. Meanwhile, both short-term and long-term neurological functions were improved after LJ529 treatment. Administration of LJ529 resulted in increased expressions of A3R, PKCε, ALDH2 proteins and decreased expressions of Chymase, Typtase, IL-6, TNF-α and MCP-1 proteins. MRS1523 abolished the treatment effects of LJ529 on neurobehavior and protein levels. ε-V1-2 also reversed the outcomes of LJ529 administration through reduction in protein expressions downstream of PKCε. CONCLUSIONS LJ529 attenuated mast cell-related inflammation through inhibiting degranulation via A3R-PKCε-ALDH2 pathway after SAH. LJ529 may serve as a potential treatment strategy to relieve post-SAH brain injury.
Collapse
Affiliation(s)
- Tongyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Huang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Song Y, Yuan H, Chen T, Lu M, Lei S, Han X. An Shen Ding Zhi Ling Alleviates Symptoms of Attention Deficit Hyperactivity Disorder via Anti-Inflammatory Effects in Spontaneous Hypertensive Rats. Front Pharmacol 2021; 11:617581. [PMID: 33536923 PMCID: PMC7847841 DOI: 10.3389/fphar.2020.617581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 01/21/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a childhood-onset chronic neurobehavioral disorder, with multiple genetic and environmental risk factors. Chronic inflammation may be critical for the progression of ADHD. An Shen Ding Zhi Ling (ASDZL) decoction, a traditional Chinese medicine prescription, is clinically used in ADHD treatment. In this study, we investigated the effects and underlying anti-inflammatory mechanisms of ASDZL in young spontaneously hypertensive rats (SHRs), a widely used model of ADHD. SHRs were divided into the SHR model group (vehicle), atomoxetine group (4.56 mg/kg/day) and ASDZL group (21.25 g/kg/day), and orally administered for four weeks. Wistar Kyoto rats were used as controls (vehicle). We found that ASDZL significantly controlled hyperactivity and impulsivity, and improved spatial memory of SHRs in the open field test and Morris water maze test. ASDZL reduced the pro-inflammatory factors interleukin (IL)-1β, IL-4, IL-6, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 and increased anti-inflammatory factor IL-10 in SHRs, and decreased the activation of microglia, astrocytes and mast cells in the prefrontal cortex (PFC) and hippocampus. Furthermore, the results indicated that ASDZL inhibited the neuroinflammatory response by protecting the integrity of the blood-brain barrier and suppressing the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways of SHRs. In conclusion, these findings revealed that ASDZL attenuated ADHD symptoms in SHRs by reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuchen Song
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Manqi Lu
- College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Gansu, China
| | - Shuang Lei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmin Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Grigorev IP, Korzhevskii DE. Mast Cells in the Vertebrate Brain:
Localization and Functions. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
26
|
Huang Y, Chen S, Luo Y, Han Z. Crosstalk between Inflammation and the BBB in Stroke. Curr Neuropharmacol 2020; 18:1227-1236. [PMID: 32562523 PMCID: PMC7770647 DOI: 10.2174/1570159x18666200620230321] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB), which is located at the interface between the central nervous system (CNS) and the circulatory system, is instrumental in establishing and maintaining the microenvironmental homeostasis of the CNS. BBB disruption following stroke promotes inflammation by enabling leukocytes, T cells and other immune cells to migrate via both the paracellular and transcellular routes across the BBB and to infiltrate the CNS parenchyma. Leukocytes promote the removal of necrotic tissues and neuronal recovery, but they also aggravate BBB injury and exacerbate stroke outcomes, especially after late reperfusion. Moreover, the swelling of astrocyte endfeet is thought to contribute to the ‘no-reflow’ phenomenon observed after cerebral ischemia, that is, blood flow cannot return to capillaries after recanalization of large blood vessels. Pericyte recruitment and subsequent coverage of endothelial cells (ECs) alleviate BBB disruption, which causes the transmigration of inflammatory cells across the BBB to be a dynamic process. Furthermore, interneurons and perivascular microglia also make contacts with ECs, astrocytes and pericytes to establish the neurovascular unit. BBB-derived factors after cerebral ischemia triggered microglial activation. During the later stage of injury, microglia remain associated with brain ECs and contribute to repair mechanisms, including postinjury angiogenesis, by acquiring a protective phenotype, which possibly occurs through the release of microglia-derived soluble factors. Taken together, we reviewed dynamic and bidirectional crosstalk between inflammation and the BBB during stroke and revealed targeted interventions based on the crosstalk between inflammation and the BBB, which will provide novel insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Shengpan Chen
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical
University, Beijing, China,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
27
|
Pinke KH, Zorzella-Pezavento SFG, Lara VS, Sartori A. Should mast cells be considered therapeutic targets in multiple sclerosis? Neural Regen Res 2020; 15:1995-2007. [PMID: 32394947 PMCID: PMC7716037 DOI: 10.4103/1673-5374.282238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells are immune cells of the myeloid lineage that are found throughout the body, including the central nervous system. They perform many functions associated with innate and specific immunity, angiogenesis, and vascular homeostasis. Moreover, they have been implicated in a series of pathologies (e.g., hypersensitivity reactions, tumors, and inflammatory disorders). In this review, we propose that this cell could be a relevant therapeutic target in multiple sclerosis, which is a central nervous system degenerative disease. To support this proposition, we describe the general biological properties of mast cells, their contribution to innate and specific immunity, and the participation of mast cells in the various stages of multiple sclerosis and experimental autoimmune encephalomyelitis development. The final part of this review is dedicated to an overview of the available mast cells immunomodulatory drugs and their activity on multiple sclerosis and experimental autoimmune encephalomyelitis, including our own experience related to the effect of ketotifen fumarate on experimental autoimmune encephalomyelitis evolution.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Vanessa Soares Lara
- Bauru School of Dentistry, Department of Surgery, Stomatology, Pathology and Radiology, University of São Paulo, Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
28
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Raikwar SP, Zaheer SA, Iyer SS, Govindarajan R, Nattanmai Chandrasekaran P, Burton C, James D, Zaheer A. Acute Traumatic Brain Injury-Induced Neuroinflammatory Response and Neurovascular Disorders in the Brain. Neurotox Res 2020; 39:359-368. [PMID: 32955722 PMCID: PMC7502806 DOI: 10.1007/s12640-020-00288-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-β) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-β, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Smita A Zaheer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | | | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,The Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA. .,Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
| |
Collapse
|
29
|
Shelestak J, Singhal N, Frankle L, Tomor R, Sternbach S, McDonough J, Freeman E, Clements R. Increased blood-brain barrier hyperpermeability coincides with mast cell activation early under cuprizone administration. PLoS One 2020; 15:e0234001. [PMID: 32511268 PMCID: PMC7279587 DOI: 10.1371/journal.pone.0234001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
The cuprizone induced animal model of demyelination is characterized by demyelination in many regions of the brain with high levels of demyelination in the corpus callosum as well as changes in neuronal function by 4–6 weeks of exposure. The model is used as a tool to study demyelination and subsequent degeneration as well as therapeutic interventions on these effects. Historically, the cuprizone model has been shown to contain no alterations to blood-brain barrier integrity, a key feature in many diseases that affect the central nervous system. Cuprizone is generally administered for 4–6 weeks to obtain maximal demyelination and degeneration. However, emerging evidence has shown that the effects of cuprizone on the brain may occur earlier than measurable gross demyelination. This study sought to investigate changes to blood-brain barrier permeability early in cuprizone administration. Results showed an increase in blood-brain barrier permeability and changes in tight junction protein expression as early as 3 days after beginning cuprizone treatment. These changes preceded glial morphological activation and demyelination known to occur during cuprizone administration. Increases in mast cell presence and activity were measured alongside the increased permeability implicating mast cells as a potential source for the blood-brain barrier disruption. These results provide further evidence of blood-brain barrier alterations in the cuprizone model and a target of therapeutic intervention in the prevention of cuprizone-induced pathology. Understanding how mast cells become activated under cuprizone and if they contribute to blood-brain barrier alterations may give further insight into how and when the blood-brain barrier is affected in CNS diseases. In summary, cuprizone administration causes an increase in blood-brain barrier permeability and this permeability coincides with mast cell activation.
Collapse
Affiliation(s)
- John Shelestak
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
- * E-mail:
| | - Naveen Singhal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Lana Frankle
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Riely Tomor
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah Sternbach
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Jennifer McDonough
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Ernest Freeman
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| | - Robert Clements
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
30
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist 2020; 26:134-155. [PMID: 31092147 PMCID: PMC7274851 DOI: 10.1177/1073858419848293] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Arshdeep S. Dhaliwal
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shireen Mentor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keerthivaas Premkumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Daniyal Saeed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Haris Zahoor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
31
|
The Mast Cell Is an Early Activator of Lipopolysaccharide-Induced Neuroinflammation and Blood-Brain Barrier Dysfunction in the Hippocampus. Mediators Inflamm 2020; 2020:8098439. [PMID: 32184702 PMCID: PMC7060448 DOI: 10.1155/2020/8098439] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation contributes to or even causes central nervous system (CNS) diseases, and its regulation is thus crucial for brain disorders. Mast cells (MCs) and microglia, two resident immune cells in the brain, together with astrocytes, play critical roles in the progression of neuroinflammation-related diseases. MCs have been demonstrated as one of the fastest responders, and they release prestored and newly synthesized mediators including histamine, β-tryptase, and heparin. However, temporal changes in MC activation in this inflammation process remain unclear. This study demonstrated that MC activation began at 2 h and peaked at 4 h after lipopolysaccharide (LPS) administration. The number of activated MCs remained elevated until 24 h after LPS administration. In addition, the levels of histamine and β-tryptase in the hippocampus markedly and rapidly increased within 6 h and remained higher than the baseline level within 24 h after LPS challenge. Furthermore, mast cell-deficient KitW-sh/W-sh mice were used to investigate the effects of MCs on microglial and astrocytic activation and blood-brain barrier (BBB) permeability at 4 h after LPS stimulation. Notably, LPS-induced proinflammatory cytokine secretion, microglial activation, and BBB damage were inhibited in KitW-sh/W-sh mice. However, no detectable astrocytic changes were found in WT and KitW-sh/W-sh mice at 4 h after LPS stimulation. Our findings indicate that MC activation precedes CNS inflammation and suggest that MCs are among the earliest participants in the neuroinflammation-initiating events.
Collapse
|
32
|
Weinstock LB, Walters AS, Brook JB, Kaleem Z, Afrin LB, Molderings GJ. Restless legs syndrome is associated with mast cell activation syndrome. J Clin Sleep Med 2020; 16:401-408. [PMID: 31994488 DOI: 10.5664/jcsm.8216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
STUDY OBJECTIVES Mast cell activation syndrome (MCAS) is an inflammatory and allergic disorder. We determined the prevalence of restless legs syndrome (RLS) in MCAS because each common syndrome may be inflammatory in nature and associated with dysautonomia. METHODS Individuals with MCAS were evaluated for RLS by two standard questionnaires. Prevalence comparisons included spouse control patients and two prevalence publications. MCAS diagnosis required mast cell (MC) symptoms in ≥ 2 organs plus ≥ 1 elevated MC mediators, improvement with MC therapy, and/or increased intestinal MC density. Clinical variables were studied. RESULTS There were 174 patients with MCAS (146 female, 28 male, mean age 44.8 years) and 85 spouse control patients (12 female, 73 male, mean age 50.9 years). Patients with MCAS as a whole had a higher prevalence of RLS (40.8%) than spouse control (12.9%) (P < .0001) Male patients with MCAS had a higher prevalence of RLS (32.1%) than male controls (12.3%, odds ratio [OR] 3.4, confidence interval [CI] 1.2-9.7, P = .025), American men (8.4%, OR 5.2, CI 2.2-12.0, P < .001), and French men (5.8%, OR 7.7, CI 3.4-17.1, P < .001). Female patients with MCAS also had a higher prevalence of RLS (42.5%) than female controls (16.7%) but this did not reach statistical significance perhaps because of the sample size of the female controls. However, female patients with MCAS had a statistically higher prevalence of RLS than American women (10.0%, OR 6.7, CI 4.5-9.7, P < .0001) and French women (10.8%, OR 6.1, CI 4.4-8.6, P < .0001). CONCLUSIONS RLS appears to be associated with MCAS. Effects of mast cell mediators, inflammation, immune mechanisms, dysautonomia, or hypoxia may theoretically activate RLS in MCAS.
Collapse
Affiliation(s)
- Leonard B Weinstock
- Washington University School of Medicine, Specialists in Gastroenterology, LLC, St. Louis, Missouri
| | - Arthur S Walters
- Division of Sleep Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Zahid Kaleem
- Specialists in Gastroenterology, LLC, St. Louis, Missouri
| | | | | |
Collapse
|
33
|
Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, Mimura LAN, de Oliveira LRC, Ishikawa LLW, Fernandes AAH, Lara VS, Sartori A. Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy? Neurotherapeutics 2020; 17:218-234. [PMID: 31463682 PMCID: PMC7007452 DOI: 10.1007/s13311-019-00775-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG35-55 and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to in vitro stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil.
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Luiza Ayumi Nishiyama Mimura
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Ragozo Cardoso de Oliveira
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| |
Collapse
|
34
|
Theoharides TC, Kavalioti M. Effect of stress on learning and motivation-relevance to autism spectrum disorder. Int J Immunopathol Pharmacol 2019; 33:2058738419856760. [PMID: 31220952 PMCID: PMC6589959 DOI: 10.1177/2058738419856760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Learning and motivation are critical in the development of children, and to their acquisition of knowledge and skills. A case in point is autism spectrum disorder (ASD), a neurodevelopmental condition characterized by impaired social interactions and communication, as well as by stereotypic movements. Maternal stress has been strongly associated with increased risk of developing ASD. Children experience multiple stressors such as separation anxiety, fear of the unknown, physical and/or emotional trauma, bullying, as well as environmental exposures. Stress is well known to affect learning and motivation. However, patients with ASD have aggrevated tresponses to stress, especially fear response. There is extensive literature connecting the amygdala to social behavior and to pathophysiologic responses to stress. The amygdala regulate the responses to stress, and anatomical changes in amygdala have been reported in ASD. In particular, corticotropin-releasing hormone (CRH), which is secreted under stress, is high in children with ASD and stimulates both mast cells and microglia, thus providing possible targets for therapy. Factors and/or circumstances that could interfere with the neurodevelopmental pathways involved in learning and motivation are clearly important and should be recognized early.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- 1 Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,2 Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,3 Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Maria Kavalioti
- 4 Biomedical Science Program, University of Greenwich, London, UK.,5 BrainGate, Thessaloniki, Greece
| |
Collapse
|
35
|
Abstract
Mast cells are first responders to intracerebral hemorrhage. They release potent mediators that can disrupt the blood-brain barrier promoting injury, vasogenic edema formation, and hematoma exacerbation. Also, mast cells recruit other inflammatory cells that maintain and amplify brain damage. Given their early role in the cascade of events in intracerebral hemorrhage, mast cells may offer an alternative target for antichemotactic interventions.
Collapse
Affiliation(s)
- Mustafa Yehya
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA
| | - Michel T Torbey
- Cerebrovascular and Neurocritical Care Division, Department of Neurology, Wexner Medical Center, The Ohio State University, 333 W. 10th Ave, Graves Hall, Rm. 3172, Columbus, OH, 43210, USA. .,Department of Neurosurgery, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
36
|
He Y, Zhou Y, Ma W, Wang J. An integrated transcriptomic analysis of autism spectrum disorder. Sci Rep 2019; 9:11818. [PMID: 31413321 PMCID: PMC6694127 DOI: 10.1038/s41598-019-48160-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is not a single disease but a set of disorders. To find clues of ASD pathogenesis in transcriptomic data, we performed an integrated transcriptomic analysis of ASD. After screening based on several standards in Gene Expression Omnibus (GEO) database, we obtained 11 series of transcriptomic data of different human tissues of ASD patients and healthy controls. Multidimensional scaling analysis revealed that datasets from the same tissue had bigger similarity than from different tissues. Functional enrichment analysis demonstrated that differential expressed genes were significantly enriched in inflammation/immune response, mitochondrion-related function and oxidative phosphorylation. Interestingly, genes enriched in inflammation/immune response were up-regulated in the brain tissues and down-regulated in the blood. In addition, drug prediction provided several compounds which might reverse gene expression profiles of ASD patients. And we also replicated the methods and criteria of transcriptomic analysis with datasets of ASD animal models and healthy controls, the results from animal models consolidated the results of transcriptomic analysis of ASD human tissues. In general, the results of our study may provide researchers a new sight of understanding the etiology of ASD and clinicians the possibilities of developing medical therapies.
Collapse
Affiliation(s)
- Yi He
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Autism Research Center of Peking University Health Science Center, Beijing, 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Wei Ma
- The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Juan Wang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Autism Research Center of Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
37
|
Theoharides TC, Tsilioni I, Bawazeer M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front Cell Neurosci 2019; 13:353. [PMID: 31427928 PMCID: PMC6687840 DOI: 10.3389/fncel.2019.00353] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023] Open
Abstract
Fibromyalgia Syndrome (FMS) is a disorder of chronic, generalized muscular pain, accompanied by sleep disturbances, fatigue and cognitive dysfunction. There is no definitive pathogenesis except for altered central pain pathways. We previously reported increased serum levels of the neuropeptides substance P (SP) and its structural analogue hemokinin-1 (HK-1) together with the pro-inflammatory cytokines IL-6 and TNF in FMS patients as compared to sedentary controls. We hypothesize that thalamic mast cells contribute to inflammation and pain, by releasing neuro-sensitizing molecules that include histamine, IL-1β, IL-6 and TNF, as well as calcitonin-gene related peptide (CGRP), HK-1 and SP. These molecules could either stimulate thalamic nociceptive neurons directly, or via stimulation of microglia in the diencephalon. As a result, inhibiting mast cell stimulation could be used as a novel approach for reducing pain and the symptoms of FMS.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Internal Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Psychiatry, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Mona Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, United States.,Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Theoharides TC, Kavalioti M, Tsilioni I. Mast Cells, Stress, Fear and Autism Spectrum Disorder. Int J Mol Sci 2019; 20:E3611. [PMID: 31344805 PMCID: PMC6696098 DOI: 10.3390/ijms20153611] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental condition characterized by impaired communication and obsessive behavior that affects 1 in 59 children. ASD is expected to affect 1 in about 40 children by 2020, but there is still no distinct pathogenesis or effective treatments. Prenatal stress has been associated with higher risk of developing ASD in the offspring. Moreover, children with ASD cannot handle anxiety and respond disproportionately even to otherwise benign triggers. Stress and environmental stimuli trigger the unique immune cells, mast cells, which could then trigger microglia leading to abnormal synaptic pruning and dysfunctional neuronal connectivity. This process could alter the "fear threshold" in the amygdala and lead to an exaggerated "fight-or-flight" reaction. The combination of corticotropin-releasing hormone (CRH), secreted under stress, together with environmental stimuli could be major contributors to the pathogenesis of ASD. Recognizing these associations and preventing stimulation of mast cells and/or microglia could greatly benefit ASD patients.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA.
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA.
| | - Maria Kavalioti
- Graduate Program in Education, Lesley University, Cambridge, MA 02138, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
39
|
Theoharides TC, Tsilioni I, Ren H. Recent advances in our understanding of mast cell activation - or should it be mast cell mediator disorders? Expert Rev Clin Immunol 2019; 15:639-656. [PMID: 30884251 PMCID: PMC7003574 DOI: 10.1080/1744666x.2019.1596800] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of patients present with multiple symptoms affecting many organs including the brain due to multiple mediators released by mast cells. These unique tissue immune cells are critical for allergic reactions triggered by immunoglobulin E (IgE), but are also stimulated (not activated) by immune, drug, environmental, food, infectious, and stress triggers, leading to secretion of multiple mediators often without histamine and tryptase. The presentation, diagnosis, and management of the spectrum of mast cell disorders are very confusing. As a result, neuropsychiatric symptoms have been left out, and diagnostic criteria made stricter excluding most patients. Areas covered: A literature search was performed on papers published between January 1990 and November 2018 using MEDLINE. Terms used were activation, antihistamines, atopy, autism, brain fog, heparin, KIT mutation, IgE, inflammation, IL-6, IL-31, IL-37, luteolin, mast cells, mastocytosis, mediators, mycotoxins, release, secretion, tetramethoxyluteolin, and tryptase. Expert opinion: Conditions associated with elevated serum or urine levels of any mast cell mediator, in the absence of comorbidities that could explain elevated levels, should be considered 'Mast Cell Mediator Disorders (MCMD).' Emphasis should be placed on the identification of unique mast cell mediators, and development of drugs or supplements that inhibit their release.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA
| | - Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Huali Ren
- Department of Otolaryngology, Beijing Electric Power Hospital, Beijing, China
| |
Collapse
|
40
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
41
|
Jones MK, Nair A, Gupta M. Mast Cells in Neurodegenerative Disease. Front Cell Neurosci 2019; 13:171. [PMID: 31133804 PMCID: PMC6524694 DOI: 10.3389/fncel.2019.00171] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide, yet there are currently no effective treatments. Because risk of neurodegenerative disease substantially increases with age, greater life expectancy with a concomitant aging population means more individuals will be affected in the coming decades. Thus, there is an urgent need for understanding the mechanisms driving neurodegenerative diseases in order to develop improved treatment strategies. Inflammation in the nervous system, termed “neuroinflammation,” has become increasingly recognized as being associated with neurodegenerative diseases. Early attention focused primarily on morphological changes in astrocytes and microglia; however, brain and CNS resident mast cells are now receiving attention as a result of being “first responders” to injury. Mast cells also exert profound effects on their microenvironment and neighboring cells including behavior and/or activation of astrocytes, microglia, and neurons, which, in turn, are implicated in neuroinflammation, neurogenesis and neurodegeneration. Mast cells also affect disruption/permeability of the blood brain barrier enabling toxin and immune cell entry exacerbating an inflammatory microenvironment. Here, we discuss the roles of mast cells in neuroinflammation and neurodegeneration with a focus on development and progression of four prominent neurodegenerative diseases: Alzheimer’s Disease, Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Huntington’s Disease.
Collapse
Affiliation(s)
- Michael K Jones
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Archana Nair
- Department of Ophthalmology, New York University, New York, NY, United States
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
42
|
Presta I, Vismara M, Novellino F, Donato A, Zaffino P, Scali E, Pirrone KC, Spadea MF, Malara N, Donato G. Innate Immunity Cells and the Neurovascular Unit. Int J Mol Sci 2018; 19:E3856. [PMID: 30513991 PMCID: PMC6321635 DOI: 10.3390/ijms19123856] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Marco Vismara
- Department of Cell Biotechnologies and Hematology, University "La Sapienza" of Rome, 00185 Rome, Italy.
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100 Catanzaro, Italy.
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Paolo Zaffino
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Elisabetta Scali
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Krizia Caterina Pirrone
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Maria Francesca Spadea
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Giuseppe Donato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
43
|
Yang HW, Liu XY, Shen ZF, Yao W, Gong XB, Huang HX, Ding GH. An investigation of the distribution and location of mast cells affected by the stiffness of substrates as a mechanical niche. Int J Biol Sci 2018; 14:1142-1152. [PMID: 29989093 PMCID: PMC6036734 DOI: 10.7150/ijbs.26738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
The distribution and location of mast cells are closely related to their physiological and pathological functions, such as allergic responses, immunity, and fibrosis, and are used in acupuncture. In this study, the distribution of mast cells in vivo was observed, and mechanical clues for understanding their distribution based on mechanical niches were explored. By toluidine blue staining and immunohistochemical staining, we examined the distribution and location of mast cells in rat skin and found that mast cells are distributed in a spatially nonuniform manner, preferring to locate at regions in the tissue and extracellular matrix with stiffness changes. In vitro experiments for studying the distribution of rat basophilic leukemia (RBL-2H3) mast cell line on poly-di-methyl-siloxane (PDMS) substrates with stiffness variations were performed. It was found that RBL-2H3 cells migrate and tend to remain in the areas with stiffness variations. The present research suggests that changing the stiffness of local tissues may stimulate mast cell recruitment, which may be the method by which some traditional Chinese medicine treatments, such as acupuncture. On the basis of the origin of mast cells and our experimental results, we predict that mast cells exist in tissues that contain permeable capillaries and prefer regions with stiffness changes. We discussed this prediction using examples of specific tissues from some cases.
Collapse
Affiliation(s)
- Hong-Wei Yang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xin-Yue Liu
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou-Feng Shen
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Wei Yao
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Xiao-Bo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Xiong Huang
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Guang-Hong Ding
- Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Afsordeh K, Sadeghi Y, Amini A, Namvarpour Z, Abdollahifar MA, Abbaszadeh HA, Aliaghaei A. Alterations of neuroimmune cell density and pro-inflammatory cytokines in response to thimerosal in prefrontal lobe of male rats. Drug Chem Toxicol 2018; 42:176-186. [DOI: 10.1080/01480545.2018.1465949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kobra Afsordeh
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abass Aliaghaei
- Department of Biology and Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
46
|
Emerging Roles of Immune Cells in Postoperative Cognitive Dysfunction. Mediators Inflamm 2018; 2018:6215350. [PMID: 29670465 PMCID: PMC5835271 DOI: 10.1155/2018/6215350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/25/2017] [Indexed: 02/03/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD), a long-lasting cognitive decline after surgery, is currently a major clinical problem with no clear pathophysiological mechanism or effective therapy. Accumulating evidence suggests that neuroinflammation plays a critical role in POCD. After surgery, alarmins are leaked from the injury sites and proinflammatory cytokines are increased in the peripheral circulation. Neurons in the hippocampus, which is responsible for learning and memory, can be damaged by cytokines transmitted to the brain parenchyma. Microglia, bone marrow-derived macrophages, mast cells, and T cells in the central nervous system (CNS) can be activated to secrete more cytokines, further aggravating neuroinflammation after surgery. Conversely, blocking the inflammation network between these immune cells and related cytokines alleviates POCD in experimental animals. Thus, a deeper understanding of the roles of immune cells and the crosstalk between them in POCD may uncover promising therapeutic targets for POCD treatment and prevention. Here, we reviewed several major immune cells and discussed their functional roles in POCD.
Collapse
|
47
|
Elieh-Ali-Komi D, Cao Y. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Clin Rev Allergy Immunol 2018; 52:436-445. [PMID: 28025778 DOI: 10.1007/s12016-016-8595-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder of the central nervous system (CNS), characterized by recurrent episodes of inflammatory demyelination and consequent axonal deterioration. The hallmark of the disease is the demyelinated plaque, a hypocellular area characterized by formation of astrocytic scars and infiltration of mononuclear cells. Recent studies have revealed that both innate and adaptive immune cells contribute to the pathogenesis of MS and its experimental autoimmune encephalomyelitis (EAE) model. Here, we review the current understanding of the role of mast cells in the pathogenesis of MS and EAE. Mast cells may act at the early stage that promote demyelination through interactions among mast cells, neurons, and other immune cells to mediate neuroinflammation. Studies from EAE model suggest that mast cells regulate adaptive autoimmune responses, present myelin antigens to T cells, disrupt the blood-brain barrier, and permit the entry of inflammatory cells and mediators into the CNS. Depletion or limiting mast cells could be a new promising therapeutic target for MS and EAE.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Immunology Research Center, Department of Immunology, and Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yonghao Cao
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China. .,Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
48
|
Affiliation(s)
- Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, Via S. Costanzo, 06126 Perugia, Italy. Tel.: ; Fax: ; E-mail:
| |
Collapse
|
49
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S, Zaheer A. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Front Neurosci 2017; 11:703. [PMID: 29302258 PMCID: PMC5733004 DOI: 10.3389/fnins.2017.00703] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Govindhasamy P. Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Mohammad E. Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Sudhanshu P. Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Shankar S. Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| | - Sachin M. Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Swathi Beladakere-Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veteran's Hospital, United States Department of Veterans Affairs, Columbia, MO, United States
| |
Collapse
|
50
|
Skaper SD. Impact of Inflammation on the Blood-Neural Barrier and Blood-Nerve Interface: From Review to Therapeutic Preview. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 137:29-45. [PMID: 29132542 DOI: 10.1016/bs.irn.2017.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A number of nervous system disorders are characterized by a state of inflammation (neuroinflammation) in which members of the innate immune system, most notably mast cells and microglia-acting as single entities and in unison-produce inflammatory molecules that play major roles. A neuroinflammatory environment can weaken not only blood-nerve and blood-brain barrier (BBB) integrity but also that of the blood-spinal cord barrier. Mast cells, with their distribution in peripheral nerves and the central nervous system, are positioned to influence blood-nerve barrier characteristics. Being close also to the perivasculature and on the brain side of the BBB, the mast cell is well positioned to disrupt BBB function. Interestingly, tissue damage and/or stress activates homeostatic mechanisms/molecules expressed by mast cells and microglia, and includes N-acylethanolamines. Among the latter, N-palmitoylethanolamine has distinguished itself as a key component in supporting homeostasis of the organism against external stressors capable of provoking inflammation. This review will discuss the pathobiology of neuroinflammation with emphasis on mast cells and microglia, their roles in BBB health, and novel therapeutic opportunities, including nanoscale delivery for targeting these immune cells with a view to maintain the BBB.
Collapse
|