1
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
2
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04257-7. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
3
|
Rowland H, Moxon S, Corbett N, Hanson K, Fisher K, Kellett K, Hooper N. Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition. Neuronal Signal 2023; 7:NS20230016. [PMID: 37808160 PMCID: PMC10550784 DOI: 10.1042/ns20230016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023] Open
Abstract
Alzheimer's disease (AD) is characterised by the aggregation and deposition of amyloid-β (Aβ) peptides in the human brain. In age-related late-onset AD, deficient degradation and clearance, rather than enhanced production, of Aβ contributes to disease pathology. In the present study, we assessed the contribution of the two key Aβ-degrading zinc metalloproteases, insulin-degrading enzyme (IDE) and neprilysin (NEP), to Aβ degradation in human induced pluripotent stem cell (iPSC)-derived cortical neurons. Using an Aβ fluorescence polarisation assay, inhibition of IDE but not of NEP, blocked the degradation of Aβ by human neurons. When the neurons were grown in a 3D extracellular matrix to visualise Aβ deposition, inhibition of IDE but not NEP, increased the number of Aβ deposits. The resulting Aβ deposits were stained with the conformation-dependent, anti-amyloid antibodies A11 and OC that recognise Aβ aggregates in the human AD brain. Inhibition of the Aβ-forming β-secretase prevented the formation of the IDE-inhibited Aβ deposits. These data indicate that inhibition of IDE in live human neurons grown in a 3D matrix increased the deposition of Aβ derived from the proteolytic cleavage of the amyloid precursor protein. This work has implications for strategies aimed at enhancing IDE activity to promote Aβ degradation in AD.
Collapse
Affiliation(s)
- Helen A. Rowland
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Samuel R. Moxon
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Nicola J. Corbett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Kelsey Hanson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, Manchester, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
4
|
Omar EM, Elatrebi S, Soliman NAH, Omar AM, Allam EA. Effect of icariin in a rat model of colchicine-induced cognitive deficit: role of β -amyloid proteolytic enzymes. Nutr Neurosci 2023; 26:1172-1182. [PMID: 36342068 DOI: 10.1080/1028415x.2022.2140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACTThe deposition of β-amyloid plaques, either due to their over-production or insufficient clearance, is an important pathological process in cognitive impairment and dementia. Icariin (ICA), a flavonoid compound extracted from Epimedium, has recently gained attention for numerous age-related diseases, such as neurodegenerative diseases. We aimed to explore the possible neuro-protective effect of ICA supplementation in colchicine-induced cognitive deficit rat model and exploring its effect on the β-amyloid proteolytic enzymes. The study included four groups (10 rats each): normal control, untreated colchicine, colchicine + 10 mg/kg ICA, and colchicine + 30 mg/ kg ICA. Results revealed that intra-cerebro-ventricular colchicine injection produced neuronal morphological damage, β amyloid deposition, and evident cognitive impairment in the behavioral assessment. Icariin supplementation in the two doses for 21 days attenuated neuronal death, reduced the β amyloid levels, and improved memory consolidation. This was associated with modulation of the proteolytic enzymes (Neprilysin, Matrix Metalloproteinase-2, and insulin-degrading enzyme) concluding that β-amyloid enzymatic degradation may be the possible therapeutic target for ICA.
Collapse
Affiliation(s)
- Eman M Omar
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Soha Elatrebi
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nada A H Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira M Omar
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Weng XF, Liu SW, Li M, Zhang Y, Zhang YC, Liu CF, Zhu JT, Hu H. Relationship between sarcopenic obesity and cognitive function in patients with mild to moderate Alzheimer's disease. Psychogeriatrics 2023; 23:944-953. [PMID: 37652079 DOI: 10.1111/psyg.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Previous research has linked sarcopenic obesity (SO) to cognitive function; however, the relationship between cognitive performance and SO Alzheimer's disease (AD) patients remains unclear. This study aimed to investigate their relationship in AD patients. METHODS One hundred and twenty mild to moderate AD patients and 56 normal controls were recruited. According to sarcopenia or obesity status, AD patients were classified into subgroups: normal, obesity, sarcopenia, and SO. Body composition, demographics, and sarcopenia parameters were assessed. Cognitive performance was evaluated using neuropsychological scales. RESULTS Among the 176 participants, the prevalence of SO in the moderate AD group was higher than in the normal control group. The moderate AD group had the lowest appendicular skeletal muscle mass index (ASMI) and the highest percentage of body fat (PBF). Hypertension and diabetes were more prevalent in the SO group than in the normal group among the subgroups. The sarcopenia and SO groups exhibited worse global cognitive function compared to the normal and obesity groups. Partial correlation analysis revealed that ASMI, PBF, and visceral fat area were associated with multiple cognitive domains scores. In logistic regression analysis, after adjusting for confounders, obesity was not found to be associated with AD. However, sarcopenia (odds ratio (OR) = 5.35, 95% CI: 1.27-22.46) and SO (OR = 5.84, 95% CI: 1.26-27.11) were identified as independent risk factors for AD. CONCLUSIONS SO was associated with cognitive dysfunction in AD patients. Moreover, the impact of SO on cognitive decline was greater than that of sarcopenia. Early identification and intervention for SO may have a positive effect on the occurrence and progression of AD.
Collapse
Affiliation(s)
- Xiao-Fen Weng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Geriatric Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shan-Wen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Zhang
- School of Life Sciences and Technology, Changchun University of Science and Technology, Changchun, China
| | - Ying-Chun Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Tao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer's disease. Redox Biol 2023; 66:102848. [PMID: 37597424 PMCID: PMC10462892 DOI: 10.1016/j.redox.2023.102848] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) peptides and dysfunction of mitochondrion, which result in neuronal apoptosis and ultimately cognitive impairment. Inhibiting Aβ generation and repairing mitochondrial damage are prominent strategies in AD therapeutic treatment. Luteolin, a flavonoid compound, exhibits anti-inflammatory neuroprotective properties in AD mice. However, it is still unclear whether luteolin has any effect on Aβ pathology and mitochondrial dysfunction. In this study, the beneficial effect and underlying mechanism of luteolin were investigated in triple transgenic AD (3 × Tg-AD) mice and primary neurons. Our study showed that luteolin supplement significantly ameliorated memory and cognitive impairment of AD mice and exerted neuroprotection by inhibiting Aβ generation, repairing mitochondrial damage and reducing neuronal apoptosis. Further research revealed that luteolin could directly bind with peroxisome proliferator-activated receptor gama (PPARγ) to promote its expression and function. In the culture of hippocampus-derived primary neurons, addition of PPARγ antagonist GW9662 or knockdown of PPARγ with its siRNA could eliminate the effect of luteolin on AD pathologies. In summary, this work revealed for the first time that luteolin effectively improved cognitive deficits of 3 × Tg-AD mice and inhibited Aβ-induced oxidative stress, mitochondrial dysfunction and neuronal apoptosis via PPARγ-dependent mechanism. Hence, luteolin has the potential to serve as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Zhijun He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yingqi Cao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
7
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
8
|
Su Q, Huang J, Chen X, Wang Y, Shao M, Yan H, Chen C, Ren H, Zhang F, Ni Y, Jose PA, Zhong J, Yang J. Long-Term High-Fat Diet Decreases Renal Insulin-Degrading Enzyme Expression and Function by Inhibiting the PPARγ Pathway. Mol Nutr Food Res 2023; 67:e2200589. [PMID: 36726048 PMCID: PMC10085830 DOI: 10.1002/mnfr.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/29/2022] [Indexed: 02/03/2023]
Abstract
SCOPE Long-term high-fat diet (HFD) causes insulin resistance, which is a primary etiological factor in the development of obesity and type 2 diabetes mellitus. Impaired insulin clearance is not only a consequence but also a cause of insulin resistance. The kidney is a major site of insulin clearance, where the insulin-degrading enzyme (IDE) plays a vital role in the proximal tubule. Thus, the study investigates the role of renal IDE in the regulation of insulin resistance in HFD-induced obese mice. METHODS AND RESULTS Twenty four-weeks of HFD in C57BL/6 mice causes insulin resistance and impaires insulin clearance, accompanied by a decrease in renal IDE expression and activity. Palmitic acid decreases IDE mRNA and protein expressions in HK-2 cells. RNA-Seq analysis found that the PPAR pathway is involved. 24-weeks of HFD decreases renal PPARγ, but not PPARα or PPARβ/δ mRNA expression. The inhibition of IDE expression by palmitic acid is prevented by the PPARγ agonist rosiglitazone. The amount of PPARγ bound to the promoters of IDE is decreased in palmitic acid-treated cells. Rosiglitazone improves insulin clearance and insulin resistance and increases renal IDE expression in HFD fed-mice. CONCLUSION Long-term HFD decreases renal IDE expression and activity, and causes insulin resistance, which involves PPARγ.
Collapse
Affiliation(s)
- Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Huang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yijie Wang
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjia Yan
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Deng S, Yi P, Xu M, Yi Q, Feng J. Dysfunctional gene splicing in glucose metabolism may contribute to Alzheimer's disease. Chin Med J (Engl) 2023; 136:666-675. [PMID: 35830275 PMCID: PMC10129079 DOI: 10.1097/cm9.0000000000002214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT The glucose metabolism is crucial for sustained brain activity as it provides energy and is a carbon source for multiple biomacromolecules; glucose metabolism decreases dramatically in Alzheimer's disease (AD) and may be a fundamental cause for its development. Recent studies reveal that the alternative splicing events of certain genes effectively regulate several processes in glucose metabolism including insulin receptor, insulin-degrading enzyme, pyruvate kinase M, receptor for advanced glycation endproducts, and others, thereby, influencing glucose uptake, glycolysis, and advanced glycation end-products-mediated signaling pathways. Indeed, the discovery of aberrant alternative splicing that changes the proteomic diversity and protein activity in glucose metabolism has been pivotal in our understanding of AD development. In this review, we summarize the alternative splicing events of the glucose metabolism-related genes in AD pathology and highlight the crucial regulatory roles of splicing factors in the alternative splicing process. We also discuss the emerging therapeutic approaches for targeting splicing factors for AD treatment.
Collapse
Affiliation(s)
- Shengfeng Deng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Peng Yi
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingliang Xu
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Affiliated Xinhui Hospital, Southern Medical University (People's Hospital of Xinhui District), Jiangmen, Guangdong 529100, China
| |
Collapse
|
10
|
Banerjee S, Manisha C, Bharathi J J, Kumar AP, Justin A, Ramanathan M. Structural dynamics and catalytic modulations of Aβ regulating enzymes as future outlook for Alzheimer's. Biochem Biophys Res Commun 2022; 631:1-8. [PMID: 36162324 DOI: 10.1016/j.bbrc.2022.09.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
Abstract
Aβ cascade hypothesis being considered most evident event in AD pathology and even today it holds good. Dysregulation of catalytic events of Aβ regulating enzymes can possibly cause faulty Aβ trafficking; inequity of Aβ formation and clearance resulting in misfolded protein accumulation, neurodegeneration and cognitive impairment. Many novel approaches have been made on this pathway to discover new molecules, unfortunately couldn't reach the terminal phases of clinical trials. Over decades, studies have been more focused on enzyme chemistry and explored the relationship between structural features and catalytic function of Aβ regulating enzymes. However, the modulations of catalytic mechanisms of those enzymes have not been imposed so far to reduce the Aβ load. Hence, in this review, we have critically detailed the knowledge of basic structural dynamics and possible catalytic modulations of enzymes responsible for Aβ formation and clearance that will impart new perspectives in drug discovery process.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Jeyaram Bharathi J
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643 001, India.
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, 641 004, India
| |
Collapse
|
11
|
Merino B, Casanueva-Álvarez E, Quesada I, González-Casimiro CM, Fernández-Díaz CM, Postigo-Casado T, Leissring MA, Kaestner KH, Perdomo G, Cózar-Castellano I. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia 2022; 65:1375-1389. [PMID: 35652923 PMCID: PMC9283140 DOI: 10.1007/s00125-022-05729-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is characterised by hyperglucagonaemia and perturbed function of pancreatic glucagon-secreting alpha cells but the molecular mechanisms contributing to these phenotypes are poorly understood. Insulin-degrading enzyme (IDE) is present within all islet cells, mostly in alpha cells, in both mice and humans. Furthermore, IDE can degrade glucagon as well as insulin, suggesting that IDE may play an important role in alpha cell function in vivo. METHODS We have generated and characterised a novel mouse model with alpha cell-specific deletion of Ide, the A-IDE-KO mouse line. Glucose metabolism and glucagon secretion in vivo was characterised; isolated islets were tested for glucagon and insulin secretion; alpha cell mass, alpha cell proliferation and α-synuclein levels were determined in pancreas sections by immunostaining. RESULTS Targeted deletion of Ide exclusively in alpha cells triggers hyperglucagonaemia and alpha cell hyperplasia, resulting in elevated constitutive glucagon secretion. The hyperglucagonaemia is attributable in part to dysregulation of glucagon secretion, specifically an impaired ability of IDE-deficient alpha cells to suppress glucagon release in the presence of high glucose or insulin. IDE deficiency also leads to α-synuclein aggregation in alpha cells, which may contribute to impaired glucagon secretion via cytoskeletal dysfunction. We showed further that IDE deficiency triggers impairments in cilia formation, inducing alpha cell hyperplasia and possibly also contributing to dysregulated glucagon secretion and hyperglucagonaemia. CONCLUSIONS/INTERPRETATION We propose that loss of IDE function in alpha cells contributes to hyperglucagonaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Merino
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Elena Casanueva-Álvarez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Iván Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Carlos M González-Casimiro
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | | | - Tamara Postigo-Casado
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Germán Perdomo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain
| | - Irene Cózar-Castellano
- Unidad de Excelencia Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
12
|
The Monkey Head Mushroom and Memory Enhancement in Alzheimer’s Disease. Cells 2022; 11:cells11152284. [PMID: 35892581 PMCID: PMC9331832 DOI: 10.3390/cells11152284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.
Collapse
|
13
|
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Front Immunol 2022; 13:856376. [PMID: 35558075 PMCID: PMC9086828 DOI: 10.3389/fimmu.2022.856376] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, characterized by progressive neuron degeneration or loss due to excessive accumulation of β-amyloid (Aβ) peptides, formation of neurofibrillary tangles (NFTs), and hyperphosphorylated tau. The treatment of AD has been only partially successful as the majority of the pharmacotherapies on the market may alleviate some of the symptoms. In the occurrence of AD, increasing attention has been paid to neurodegeneration, while the resident glial cells, like microglia are also observed. Microglia, a kind of crucial glial cells associated with the innate immune response, functions as double-edge sword role in CNS. They exert a beneficial or detrimental influence on the adjacent neurons through secretion of both pro-inflammatory cytokines as well as neurotrophic factors. In addition, their endocytosis of debris and toxic protein like Aβ and tau ensures homeostasis of the neuronal microenvironment. In this review, we will systematically summarize recent research regarding the roles of microglia in AD pathology and latest microglia-associated therapeutic targets mainly including pro-inflammatory genes, anti-inflammatory genes and phagocytosis at length, some of which are contradictory and controversial and warrant to further be investigated.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells 2022; 11:1228. [PMID: 35406791 PMCID: PMC8998118 DOI: 10.3390/cells11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rebecca Deprez-Poulain
- INSERM U1177 Drugs and Molecules for Living Systems, Institut Pasteur de Lille, European Genomic Institute for Diabetes, University of Lille, F-59000 Lille, France; (L.L.); (F.L.); (B.D.)
| | | |
Collapse
|
15
|
Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Pharm Res 2022; 39:611-629. [PMID: 35378698 DOI: 10.1007/s11095-022-03237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE This review aims to provide a precise perceptive of the insulin-degrading enzyme (IDE) and its relationship to type 2 diabetes (T2D), Alzheimer's disease (AD), obesity, and cardiovascular diseases. The purpose of the current study was to provide clear idea of treating prevalent diseases such as T2D, and AD by molecular pharmacological therapeutics rather than conventional medicinal therapy. METHODS To achieve the aims, molecular docking was performed using several softwares such as LIGPLOT+, Python, and Protein-Ligand Interaction Profiler with corresponding tools. RESULTS The IDE is a large zinc-metalloprotease that breakdown numerous pathophysiologically important extracellular substrates, comprising amyloid β-protein (Aβ) and insulin. Recent studies demonstrated that dysregulation of IDE leads to develop AD and T2D. Specifically, IDE regulates circulating insulin in a variety of organs via a degradation-dependent clearance mechanism. IDE is unique because it was subjected to allosteric activation and mediated via an oligomer structure. CONCLUSION In this review, we summarised the factors that modulate insulin reformation by IDE and interaction of IDE and some recent reports on IDE inhibitors against AD and T2D. We also highlighted the latest signs of progress of the function of IDE and challenges in advancing IDE- targetted therapies against T2D and AD.
Collapse
Affiliation(s)
- Md Shofiul Azam
- Department of Chemical and Food Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Wahiduzzaman
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Md Reyad-Ul-Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, 250021, Shandong, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mukta Roy
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
16
|
He Z, Li X, Wang Z, Tu S, Feng J, Du X, Ni J, Li N, Liu Q. Esculentoside A alleviates cognitive deficits and amyloid pathology through peroxisome proliferator-activated receptor γ-dependent mechanism in an Alzheimer's disease model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153956. [PMID: 35151213 DOI: 10.1016/j.phymed.2022.153956] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized clinically by cognitive deficits and pathologically by amyloid-β (Aβ) deposition and tau aggregation, as well as the brain atrophy. Esculentoside A (EsA), a neuroprotective saponin, is isolated from Phytolacca esculenta and shows potent health-promoting effects in a variety of experimental models. However, there are minimal reports on the effects of EsA on triple transgenic AD mice. PURPOSE The current research aimed at investigating the protective effects and underlying mechanisms of EsA on the mitigation of cognitive deficits and pathology in triple transgenic AD mice. METHODS Triple transgenic AD mice (3 × Tg-AD) of 8 months old received intraperitoneal treatment of 5 or 10 mg/kg EsA for 8 consecutive weeks. Morris water maze test and open field test were made to evaluate the cognitive function and degree of anxiety of the mice. Liquid chromatography with tandem mass spectrometry analysis was performed to characterize and to quantify EsA in the blood and brain of mice. Immunofluorescence assay and Western blot were adopted to measure the levels of peroxisome proliferator-activated receptor gamma (PPARγ) and key proteins in Aβ pathology, ER stress- and apoptosis-associated pathways. The combination of EsA with PPARγ were theoretically calculated by molecular docking programs and experimentally confirmed by the bio-layer interferometry technology. RESULTS Supplemental EsA could improve the cognitive deficits of 3 × Tg-AD mice. EsA penetrated the brain-blood barrier to exert a strong effect on AD mice, evidenced as decreasing Aβ generation, reducing the degrees of oxidative and ER stress, and mitigating neuronal apoptosis through the increase of PPARγ expression. In the culture of primary neurons, addition of PPARγ inhibitor GW9662 eliminated the effects of EsA on AD pathologies. Direct combination of EsA with PPARγ were demonstrated by molecular docking programs and bio-layer interferometry technology. CONCLUSIONS For the first time, these outcomes revealed that EsA could penetrate the brain-blood barrier to exert a strong effect on ameliorating cognitive deficits in 3 × Tg-AD mice and exert neuroprotective effects toward AD pathology via PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiale Feng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
17
|
Insulin-Degrading Enzyme Is a Non Proteasomal Target of Carfilzomib and Affects the 20S Proteasome Inhibition by the Drug. Biomolecules 2022; 12:biom12020315. [PMID: 35204815 PMCID: PMC8869475 DOI: 10.3390/biom12020315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Carfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the β5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn2+ peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro. The drug behaves as a modulator of IDE activity, displaying an inhibitory effect over 10-fold lower than for the 20S. Notably, the interaction of IDE with the 20S enhances in vitro the inhibitory power of carfilzomib on proteasome, so that the IDE-20S complex is an even better target of carfilzomib than the 20S alone. Furthermore, IDE gene silencing after delivery of antisense oligonucleotides (siRNA) significantly reduced carfilzomib cytotoxicity in rMC1 cells, a validated model of Muller glia, suggesting that, in cells, the inhibitory activity of this drug on cell proliferation is somewhat linked to IDE and, possibly, also to its interaction with proteasome.
Collapse
|
18
|
Ghoula M, Janel N, Camproux AC, Moroy G. Exploring the Structural Rearrangements of the Human Insulin-Degrading Enzyme through Molecular Dynamics Simulations. Int J Mol Sci 2022; 23:ijms23031746. [PMID: 35163673 PMCID: PMC8836115 DOI: 10.3390/ijms23031746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that degrades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential therapeutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer’s disease. IDE catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded. However, the molecular mechanism of the IDE function and peptide recognition, as well as its conformation changes, remains elusive. Our study elucidates IDE structural changes and explains how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to witness IDE conformational dynamics switching from a closed to an open state. The description of IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover, the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of different approaches to study IDE with different substrates and inhibitors, while taking into account the conformational states resolved in our study.
Collapse
Affiliation(s)
- Mariem Ghoula
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université de Paris, F-75013 Paris, France;
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
- Correspondence: (A.-C.C.); (G.M.); Tel.: +33-1-57-27-83-77 (A.-C.C.); +33-1-57-27-83-85 (G.M.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
- Correspondence: (A.-C.C.); (G.M.); Tel.: +33-1-57-27-83-77 (A.-C.C.); +33-1-57-27-83-85 (G.M.)
| |
Collapse
|
19
|
Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 2022; 197:114945. [DOI: 10.1016/j.bcp.2022.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
|
20
|
Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson Diseases. Molecules 2022; 27:molecules27030951. [PMID: 35164216 PMCID: PMC8839962 DOI: 10.3390/molecules27030951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.
Collapse
|
21
|
Obayemi MJ, Akintayo CO, Oniyide AA, Aturamu A, Badejogbin OC, Atuma CL, Saidi AO, Mahmud H, Olaniyi KS. Protective role of melatonin against adipose-hepatic metabolic comorbidities in experimentally induced obese rat model. PLoS One 2021; 16:e0260546. [PMID: 34879109 PMCID: PMC8654266 DOI: 10.1371/journal.pone.0260546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Background Adipose and hepatic metabolic dysfunctions are critical comorbidities that
also aggravate insulin resistance in obese individuals. Melatonin is a
low-cost agent and previous studies suggest that its use may promote
metabolic health. However, its effects on some comorbidities associated with
obesity are unknown. Herein, we investigated the hypothesis that melatonin
supplementation would attenuate adipose-hepatic metabolic dysfunction in
high fat diet (HFD)-induced obesity in male Wistar rats. Materials and methods Twenty-four adult male Wistar rats (n = 6/group) were used: Control group
received vehicle (normal saline), obese group received 40% high fat diet,
melatonin-treated group received 4 mg/kg of melatonin, and obese plus
melatonin group received 40% HFD and melatonin. The treatment lasted for 12
weeks. Results HFD caused increased food intake, body weight, insulin level, insulin
resistance and plasma and liver lipid but decreased adipose lipid. In
addition, HFD also increased plasma, adipose and liver malondialdehyde,
IL-6, uric acid and decreased Glucose-6-phosphate dehydrogenase,
glutathione, nitric oxide and circulating obestatin concentration. However,
these deleterious effects except food intake were attenuated when
supplemented with melatonin. Conclusion Taken together, the present results indicate that HFD exposure causes
adipose-hepatic metabolic disturbance in obese animals, which are
accompanied by oxidative stress and inflammation. In addition, the present
results suggest that melatonin supplementation attenuates adipose-hepatic
metabolic dysfunction, accompanying obesity by suppression of oxidative
stress/inflammation-dependent mechanism and increasing circulating
obestatin.
Collapse
Affiliation(s)
- Mary J. Obayemi
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Christopher O. Akintayo
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Adesola A. Oniyide
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Ayodeji Aturamu
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Olabimpe C. Badejogbin
- Department of Physiology, Benjamin Carson School of Medicine, Babcock
University, Ilishan-Remo, Nigeria
| | - Chukwubueze L. Atuma
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Azeezat O. Saidi
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Hadiza Mahmud
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
| | - Kehinde S. Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe
Babalola University, Ado-Ekiti, Nigeria
- * E-mail: ,
| |
Collapse
|
22
|
Wang Y, Wei S, Zhou R, Shang S, Dang L, Gao L, Chen C, Huo K, Wang J, Wang J, Qu Q. The Relationships Between Lipid Accumulation Product Levels and Cognitive Decline Over 4 Years in a Rural Area of Xi'an, China. Front Aging Neurosci 2021; 13:761886. [PMID: 34867288 PMCID: PMC8640205 DOI: 10.3389/fnagi.2021.761886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Aims: The relationships between blood lipid levels and obesity and cognitive impairment have not been fully determined. Considering that the lipid accumulation product (LAP) is a composite index of blood lipid levels and obesity, we investigated the relationships between LAP levels at baseline and cognitive decline over 4 years. Methods: A total of 983 subjects (≥40 years) from a longitudinal cohort in a village of Xi’an, China, who completed the baseline survey were followed-up for 4 years. All participants underwent face-to-face interviews and cognitive assessments at baseline and at the 4-year follow-up. The Mini-Mental State Examination (MMSE) was used to assess cognitive function, and an MMSE score dropping ≥ 2 points from baseline was defined as cognitive decline. The relationships between LAP and cognitive decline were analyzed by linear regression models. Results: During the 4-year follow-up, 172 patients exhibited cognitive decline (17.5%). Univariate analysis showed that the rate of change in MMSE score was significantly different between the low-LAP group and the high-LAP group (t = −2.26, p = 0.024). Multiple linear regression indicated that a high LAP was positively associated with cognitive decline (β = 0.564, p = 0.012). Stratified multivariate analysis showed that LAP was positively associated with cognitive decline in the normal blood pressure female subgroup (β = 1.29, p = 0.002) but not in the high blood pressure group or the male group. Conclusions: High LAP is associated with cognitive decline in females with normal blood pressure but not in those with high blood pressure or males. This indicates that the relationships between blood lipid levels and obesity and cognitive impairment may be affected by blood pressure and sex.
Collapse
Affiliation(s)
- Yanyu Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong Zhou
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Leissring MA. Insulin-Degrading Enzyme: Paradoxes and Possibilities. Cells 2021; 10:cells10092445. [PMID: 34572094 PMCID: PMC8472535 DOI: 10.3390/cells10092445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
More than seven decades have passed since the discovery of a proteolytic activity within crude tissue extracts that would become known as insulin-degrading enzyme (IDE). Certainly much has been learned about this atypical zinc-metallopeptidase; at the same time, however, many quite fundamental gaps in our understanding remain. Herein, I outline what I consider to be among the most critical unresolved questions within the field, many presenting as intriguing paradoxes. For instance, where does IDE, a predominantly cytosolic protein with no signal peptide or clearly identified secretion mechanism, interact with insulin and other extracellular substrates? Where precisely is IDE localized within the cell, and what are its functional roles in these compartments? How does IDE, a bowl-shaped protein that completely encapsulates its substrates, manage to avoid getting “clogged” and thus rendered inactive virtually immediately? Although these paradoxes are by definition unresolved, I offer herein my personal insights and informed speculations based on two decades working on the biology and pharmacology of IDE and suggest specific experimental strategies for addressing these conundrums. I also offer what I believe to be especially fruitful avenues for investigation made possible by the development of new technologies and IDE-specific reagents. It is my hope that these thoughts will contribute to continued progress elucidating the physiology and pathophysiology of this important peptidase.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA
| |
Collapse
|
24
|
Xu Y, Dong Y, Wang C, Jiang Q, Chu H, Tian Y. Lovastatin attenuates sevoflurane-induced cognitive disorder in aged rats via reducing Aβ accumulation. Neurochem Int 2021; 148:105078. [PMID: 34048842 DOI: 10.1016/j.neuint.2021.105078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/01/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
As a general anesthetic widely used in surgical, sevoflurane has been shown to cause cognitive and memory deficits in the elderly. It's important to find out agents that can counteract sevoflurane-induced cognitive dysfunction. This study is aimed to investigate the effect of lovastatin on sevoflurane-induced cognitive impairment in aged rats and reveal the potential mechanisms. BV-2 cells, rat hippocampal neurons or male aged rats were exposed to 2% sevoflurane for 5 h. The cells were pretreated with 10 μM lovastatin. The rats were intraperitoneally injected with 5 mg/kg/day lovastatin for three days. The results showed that lovastatin enhanced exosomal IDE secretion from sevoflurane-exposed BV-2 cells and promoted Aβ degradation. Lovastatin treatment also inhibited the increased expressions of β-secretase 1 (BACE1) and γ-secretase in hippocampal neurons under sevoflurane exposure in vitro. In animal experiments, the discrimination index in novel object recognition test and percentage of spontaneous alternation in Y-maze test were significantly elevated after lovastatin administration. In addition, Aβ plaque area and contents of soluble Aβ1-40 and Aβ1-42 in the hippocampal tissues were decreased upon lovastatin treatment. Furthermore, lovastatin reversed sevoflurane-induced Aβ accumulation via up-regulating IDE expression, and down-regulating amyloid precursor protein (APP)-related protein expression (β-C-terminal fragment (CTF), BACE1 and γ-secretase). In conclusion, lovastatin alleviates sevoflurane-induced cognitive deficient in aged rats via promoting Aβ degradation and reducing Aβ production. Lovastatin may be beneficial in preventing anesthetic-induced cognitive impairment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunxia Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Cong Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Qian Jiang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Haichao Chu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yue Tian
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
25
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
26
|
Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int J Mol Sci 2021; 22:ijms22052235. [PMID: 33668109 PMCID: PMC7956289 DOI: 10.3390/ijms22052235] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| | - Carlos M. González-Casimiro
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Caitlin N. Suire
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| |
Collapse
|
27
|
Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines 2021; 9:biomedicines9010086. [PMID: 33477364 PMCID: PMC7830943 DOI: 10.3390/biomedicines9010086] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity. In this review, we discuss current knowledge about IDE’s function as a regulator of insulin secretion and hepatic insulin sensitivity, both evaluating the classical view of IDE as an insulin protease and also exploring evidence for several non-proteolytic functions. Insulin proteostasis and insulin sensitivity have both been highlighted as targets controlling blood sugar levels in type 2 diabetes, so a clearer understanding the physiological functions of IDE in pancreas and liver could led to the development of novel therapeutics for the treatment of this disease.
Collapse
|
28
|
Suire CN, Brizuela MK, Leissring MA. Quantitative, High-Throughput Assays for Proteolytic Degradation of Amylin. Methods Protoc 2020; 3:mps3040081. [PMID: 33255272 PMCID: PMC7711817 DOI: 10.3390/mps3040081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Amylin is a pancreatic peptide hormone that regulates glucose homeostasis but also aggregates to form islet amyloid in type-2 diabetes. Given its role in both health and disease, there is renewed interest in proteolytic degradation of amylin by insulin-degrading enzyme (IDE) and other proteases. Here, we describe the development and detailed characterization of three novel assays for amylin degradation, two based on a fluoresceinated and biotinylated form of rodent amylin (fluorescein-rodent amylin-biotin, FrAB), which can be used for any amylin protease, and another based on an internally quenched fluorogenic substrate (FRET-based amylin, FRAM), which is more specific for IDE. The FrAB-based substrate can be used in a readily implemented fluorescence-based protocol or in a fluorescence polarization (FP)-based protocol that is more amenable to high-throughput screening (HTS), whereas the FRAM substrate has the advantage of permitting continuous monitoring of proteolytic activity. All three assays yield highly quantitative data and are resistant to DMSO, and the FRAM and FP-based FrAB assay are ideally suited to HTS applications.
Collapse
Affiliation(s)
- Caitlin N. Suire
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Monica K. Brizuela
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697, USA; (C.N.S.); (M.K.B.)
- Correspondence:
| |
Collapse
|
29
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
30
|
McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and Treatment of Alzheimer's Disease: Biological Mechanisms of Exercise. J Alzheimers Dis 2020; 69:311-338. [PMID: 31104021 DOI: 10.3233/jad-180958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. With an aging population and no disease modifying treatments available, AD is quickly becoming a global pandemic. A substantial body of research indicates that lifestyle behaviors contribute to the development of AD, and that it may be worthwhile to approach AD like other chronic diseases such as cardiovascular disease, in which prevention is paramount. Exercise is an important lifestyle behavior that may influence the course and pathology of AD, but the biological mechanisms underpinning these effects remain unclear. This review focuses on how exercise can modify four possible mechanisms which are involved with the pathology of AD: oxidative stress, inflammation, peripheral organ and metabolic health, and direct interaction with AD pathology. Exercise is just one of many lifestyle behaviors that may assist in preventing AD, but understanding the systemic and neurobiological mechanisms by which exercise affects AD could help guide the development of novel pharmaceutical agents and non-pharmacological personalized lifestyle interventions for at-risk populations.
Collapse
Affiliation(s)
- Hugo McGurran
- Research Master's Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Nicholas T Bott
- Neurotrack Technologies Inc., Redwood City, CA, USA.,Clinical Excellence Research Center, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Psychology, PGSP-Stanford Consortium, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
31
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Metformin Ameliorates A β Pathology by Insulin-Degrading Enzyme in a Transgenic Mouse Model of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2315106. [PMID: 32377293 PMCID: PMC7191377 DOI: 10.1155/2020/2315106] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The accumulation of amyloid beta (Aβ) is the main pathology of AD. Metformin, a well-known antidiabetic drug, has been reported to have AD-protective effect. However, the mechanism is still unclear. In this study, we tried to figure out whether metformin could activate insulin-degrading enzyme (IDE) to ameliorate Aβ-induced pathology. Morris water maze and Y-maze results indicated that metformin could improve the learning and memory ability in APPswe/PS1dE9 (APP/PS1) transgenic mice. 18F-FDG PET-CT result showed that metformin could ameliorate the neural dysfunction in APP/PS1 transgenic mice. PCR analysis showed that metformin could effectively improve the mRNA expression level of nerve and synapse-related genes (Syp, Ngf, and Bdnf) in the brain. Metformin decreased oxidative stress (malondialdehyde and superoxide dismutase) and neuroinflammation (IL-1β and IL-6) in APP/PS1 mice. In addition, metformin obviously reduced the Aβ level in the brain of APP/PS1 mice. Metformin did not affect the enzyme activities and mRNA expression levels of Aβ-related secretases (ADAM10, BACE1, and PS1). Meanwhile, metformin also did not affect the mRNA expression levels of Aβ-related transporters (LRP1 and RAGE). Metformin increased the protein levels of p-AMPK and IDE in the brain of APP/PS1 mice, which might be the key mechanism of metformin on AD. In conclusion, the well-known antidiabetic drug, metformin, could be a promising drug for AD treatment.
Collapse
|
33
|
Association between Lower Extremity Skeletal Muscle Mass and Impaired Cognitive Function in Type 2 Diabetes. Sci Rep 2020; 10:2956. [PMID: 32076075 PMCID: PMC7031513 DOI: 10.1038/s41598-020-59914-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 01/28/2023] Open
Abstract
Lower extremity skeletal muscle mass (LESM) in Type 2 Diabetes (T2D) has been linked to adverse clinical events, but it is not known whether it is associated with cognitive difficulties. We conducted a cross-sectional study on 1,235 people (mean age 61.4 ± 8.0 years) with T2D under primary and secondary care in Singapore. Bioelectrical impedance analyses (BIA) measures of upper extremity skeletal muscle mass (UESM), LESM and appendicular skeletal muscle index (SMI) were related to the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) measures of cognition, in multiple linear regression. In multivariable models, tertile 1 LESM (b = −2.62 (−3.92 to −1.32)) and tertile 2 LESM (b = −1.73 (−2.73 to −0.73)), referenced to tertile 3) were significantly associated with decreased RBANS total score. Significant associations of LESM with cognitive domain performances were observed for tertile 1 (b = −3.75 (−5.98 to −1.52)) and tertile 2 (b = −1.98 (−3.69 to −0.27)) with immediate memory, and for tertile 1 (b = −3.05 (−4.86 to −1.24)) and tertile 2 (b = −1.87 (−3.25 to −0.48)) with delayed memory, and for tertile 1 (b = −2.99 (−5.30 to −0.68)) with visuospatial/constructional ability. Tertile 1 SMI (b = −1.94 (−3.79 to −0.08) and tertile 2 SMI (b = −1.75 (−3.14 to −0.37)) were also associated with delayed memory. There were no associations between UESM with cognitive performance. Lower LESM may be a useful marker of possible co-occuring cognitive dysfunction.
Collapse
|
34
|
Luchsinger JA, Palta P, Rippon B, Sherwood G, Soto L, Ceballos F, Laing K, Igwe K, Tomljanovic Z, He H, Razlighi Q, Teresi J, Moreno H, Brickman AM. Pre-Diabetes, but not Type 2 Diabetes, Is Related to Brain Amyloid in Late Middle-Age. J Alzheimers Dis 2020; 75:1241-1252. [PMID: 32390636 PMCID: PMC7659021 DOI: 10.3233/jad-200232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Type 2 diabetes is a dementia risk factor, but its relation to Alzheimer's disease (AD), the most common cause of dementia, is unclear. OBJECTIVE Our primary objective was to examine the association of pre-diabetes and type 2 diabetes with brain amyloid-β (Aβ), the putative main culprit of AD. Our secondary objective was to examine the association of pre-diabetes and type 2 diabetes with neurodegeneration, cerebrovascular disease (CVD), and memory performance. METHODS We conducted a cross-sectional study of 350 late middle-aged Hispanics without dementia in New York City. We classified diabetes status as normal glucose tolerance (NGT), pre-diabetes, and type 2 diabetes following American Diabetes Association criteria. Brain Aβ was ascertained as global Aβ standardized value uptake ratio using PET with 18F-Florbetaben. Neurodegeneration was operationalized as cortical thickness in regions affected by AD using MRI. CVD was operationalized as white matter hyperintensity volume (WMH) on MRI, and memory as performance with the selective reminding test (SRT). RESULTS Mean age was 64.15±3.34 years, 72.00% were women, and 35.43% were APOEɛ4 carriers. Pre-diabetes, but not type 2 diabetes, was associated with higher Aβ compared with NGT. Type 2 diabetes treatment was related to lower Aβ. Type 2 diabetes was related to lower cortical thickness, higher WMH, and lower SRT score. CONCLUSION Pre-diabetes, but not type 2 diabetes, is associated with higher brain Aβ in late middle age, and this observation could be explained by the relation of diabetes treatment with lower brain Aβ. Whether type 2 diabetes treatment lowers brain Aβ requires further study.
Collapse
Affiliation(s)
- Jose A. Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
- Department of Epidemiology, Joseph P. Mailman School of Public Health, CUIMC, New York, NY
| | - Priya Palta
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
- Department of Epidemiology, Joseph P. Mailman School of Public Health, CUIMC, New York, NY
| | - Brady Rippon
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
| | - Greysi Sherwood
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
| | - Luisa Soto
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
| | - Fernando Ceballos
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center (CUIMC), New York, NY
| | - Krystal Laing
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
| | - Kay Igwe
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
| | - Zeljko Tomljanovic
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
| | - Hengda He
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
| | - Qolamreza Razlighi
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, CUIMC, New York, NY
- Gertrude H. Sergievsky Center, CUIMC, New York, NY
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Jeanne Teresi
- Research Division, Hebrew Home in Riverdale, Bronx, NY
| | - Herman Moreno
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Adam M. Brickman
- Department of Neurology, College of Physicians and Surgeons, CUIMC, New York, NY
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, CUIMC, New York, NY
- Gertrude H. Sergievsky Center, CUIMC, New York, NY
| |
Collapse
|
35
|
Meneses MJ, Borges DO, Dias TR, Martins FO, Oliveira PF, Macedo MP, Alves MG. Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality. Mol Cell Endocrinol 2019; 486:11-17. [PMID: 30807788 DOI: 10.1016/j.mce.2019.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease responsible for degrading and inactivating several bioactive peptides, including insulin. Individuals without this enzyme or with a loss-of-function mutation in the gene that codifies it, present hyperinsulinemia. In addition, impairment of IDE-mediated insulin clearance is associated with the development of metabolic diseases, namely prediabetes. Although insulin regulates male fertility, the role of IDE on male reproductive function remains unknown. We proposed to study the influence of IDE in the reproductive potential of males. As insulin mediates key events for the normal occurrence of spermatogenesis, we hypothesized that IDE functioning might be linked with sperm quality. We used C57BL/6N mice that were divided in three groups according to its genotype: wild type (WT), heterozygous and knockout (KO) male mice for Ide. Spermatozoa were collected from the cauda of epididymis and sperm parameters were evaluated. Testicular tissue morphology was assessed through hematoxylin and eosin stain. Mitochondrial complex protein levels and lipid peroxidation were also evaluated in the testicular tissue. Our results show that KO mice present a 50% decrease in testes weight compared to WT mice as well as a decrease in seminiferous tubules diameter. Moreover, KO mice present impaired sperm quality, namely a decrease in both sperm viability and morphology. These results provide evidence that IDE plays an important role in determining the reproductive potential of males.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diego O Borges
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tânia R Dias
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima O Martins
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; I3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - M Paula Macedo
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Portuguese Diabetes Association, Education and Research Center (APDP-ERC), Lisbon, Portugal; Department of Medical Sciences, University of Aveiro, Portugal.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
36
|
Zong W, Zeng X, Chen S, Chen L, Zhou L, Wang X, Gao Q, Zeng G, Hu K, Ouyang D. Ginsenoside compound K attenuates cognitive deficits in vascular dementia rats by reducing the Aβ deposition. J Pharmacol Sci 2019; 139:223-230. [PMID: 30799178 DOI: 10.1016/j.jphs.2019.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside compound K (CK) is the main metabolite of protopanaxadiol-type ginsenosides and has been demonstrated to exert neuroprotective and cognition-enhancing effects. The effects of CK on cognitive function in vascular dementia (VD) has not been elucidated. Therefore, the present study aims to elucidate the effects of CK on memory function as well as its potential mechanism in VD rats. Sprague-Dawley rats were subjected to Chronic Cerebral Hypoperfusion (CCH) by permanent bilateral common carotid artery occlusion (2VO). CCH induced neuronal damage and aggravated the aggregation of Amyloid-β1-42 peptides (Aβ1-42), which plays a critical role in the neurotoxicity and cognitive impairment. CK treatment attenuated CCH-induced Aβ1-42 deposition and ameliorated cognition impairment. Furthermore, CK enhanced the activity of the pSer9-Glycogen synthase kinase 3β (pSer9-GSK3β) and the insulin degrading enzyme (IDE), which mainly involved the production and clearance of Aβ1-42. Moreover, CK treatment enhanced the activity of protein kinase B (PKB/Akt), a key kinase in phosphatidylinositol 3 kinase (PI3K)/Akt pathway that can regulate the activity of GSK-3β and IDE. In short, our findings provide the first evidence that CK might attenuate cognitive deficits and Aβ1-42 deposition in the hippocampus via enhancing the expression of pSer9-GSK-3β and IDE.
Collapse
Affiliation(s)
- Wenjing Zong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Siyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Xintong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Qing Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, 410331, People's Republic of China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, People's Republic of China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, 410000, People's Republic of China.
| |
Collapse
|
37
|
Bossak-Ahmad K, Mital M, Płonka D, Drew SC, Bal W. Oligopeptides Generated by Neprilysin Degradation of β-Amyloid Have the Highest Cu(II) Affinity in the Whole Aβ Family. Inorg Chem 2018; 58:932-943. [PMID: 30582328 DOI: 10.1021/acs.inorgchem.8b03051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The catabolism of β-amyloid (Aβ) is carried out by numerous endopeptidases including neprilysin, which hydrolyzes peptide bonds preceding positions 4, 10, and 12 to yield Aβ4-9 and a minor Aβ12- x species. Alternative processing of the amyloid precursor protein by β-secretase also generates the Aβ11- x species. All these peptides contain a Xxx-Yyy-His sequence, also known as an ATCUN or NTS motif, making them strong chelators of Cu(II) ions. We synthesized the corresponding peptides, Phe-Arg-His-Asp-Ser-Gly-OH (Aβ4-9), Glu-Val-His-His-Gln-Lys-am (Aβ11-16), Val-His-His-Gln-Lys-am (Aβ12-16), and pGlu-Val-His-His-Gln-Lys-am (pAβ11-16), and investigated their Cu(II) binding properties using potentiometry, and UV-vis, circular dichroism, and electron paramagnetic resonance spectroscopies. We found that the three peptides with unmodified N-termini formed square-planar Cu(II) complexes at pH 7.4 with analogous geometries but significantly varied Kd values of 6.6 fM (Aβ4-9), 9.5 fM (Aβ12-16), and 1.8 pM (Aβ11-16). Cyclization of the N-terminal Glu11 residue to the pyroglutamate species pAβ11-16 dramatically reduced the affinity (5.8 nM). The Cu(II) affinities of Aβ4-9 and Aβ12-16 are the highest among the Cu(II) complexes of Aβ peptides. Using fluorescence spectroscopy, we demonstrated that the Cu(II) exchange between the Phe-Arg-His and Val-His-His motifs is very slow, on the order of days. These results are discussed in terms of the relevance of Aβ4-9, a major Cu(II) binding Aβ fragment generated by neprilysin, as a possible Cu(II) carrier in the brain.
Collapse
Affiliation(s)
- Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Mariusz Mital
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Simon C Drew
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , 02-106 Warsaw , Poland
| |
Collapse
|
38
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
39
|
Lai R, Tang WJ, Li H. Catalytic Mechanism of Amyloid-β Peptide Degradation by Insulin Degrading Enzyme: Insights from Quantum Mechanics and Molecular Mechanics Style Møller-Plesset Second Order Perturbation Theory Calculation. J Chem Inf Model 2018; 58:1926-1934. [PMID: 30133282 PMCID: PMC6670292 DOI: 10.1021/acs.jcim.8b00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin degrading enzyme (IDE), a metalloprotease that degrades amyloid-β (Aβ) peptides and insulin, is associated with Alzheimer's disease and diabetes. The mechanism of IDE catalyzed degrading of Aβ peptides, which is of fundamental importance in the design of therapeutic methods for Alzheimer's disease, has not been fully understood. In this work, combined quantum mechanics and molecular mechanics (QM/MM) style Møller-Plesset second order perturbation theory (MP2) geometry optimization calculations are performed to investigate the catalytic mechanism of the Aβ40 Phe19-Phe20 peptide bond cleavage by human IDE. The analyses using QM/MM MP2 optimization suggest that a neutral water molecule is at the active site of the enzyme-substrate (ES) complex. The water molecule is in hydrogen bonding with the nearby anionic Glu111 of IDE but not directly bound to the catalytic Zn ion. This is confirmed by QM/MM DFTB3 molecular dynamics simulation. Our studies also reveal that the hydrolysis of the Aβ40 Phe19-Phe20 peptide bond by IDE consists of four key steps. The neutral water is first activated by moving toward and binding to the Zn ion. A gem-diol intermediate is then formed by the activated neutral water molecule attacking the C atom of the Phe19-Phe20 peptide bond. The next is the protonation of the N atom of Phe19-Phe20 peptide bond to form an intermediate with an elongated C-N bond. The final step is the breaking of the Phe19-Phe20 C-N bond. The final step is the rate-determining step with a calculated Gibbs free energy of activation of 17.34 kcal/mol, in good agreement with the experimental value 16.7 kcal/mol. This mechanism provides the basis for the design of biochemical methods to modulate the activity of IDE in humans.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0304 , United States
| | - Wei-Jen Tang
- Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Hui Li
- Department of Chemistry, Nebraska Center for Materials and Nanoscience, and Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0304 , United States
| |
Collapse
|
40
|
Kazkayasi I, Burul-Bozkurt N, Ismail MAM, Merino-Serrais P, Pekiner C, Cedazo-Minguez A, Uma S. Insulin deprivation decreases insulin degrading enzyme levels in primary cultured cortical neurons and in the cerebral cortex of rats with streptozotocin-induced diabetes. Pharmacol Rep 2018; 70:677-683. [PMID: 29940507 DOI: 10.1016/j.pharep.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/21/2017] [Accepted: 01/30/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Inci Kazkayasi
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Nihan Burul-Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Muhammad-Al-Mustafa Ismail
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Huddinge, Sweden
| | - Paula Merino-Serrais
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Huddinge, Sweden
| | - Can Pekiner
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Angel Cedazo-Minguez
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division for Neurogeriatrics, Huddinge, Sweden
| | - Serdar Uma
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
41
|
Stefanidis L, Fusco ND, Cooper SE, Smith-Carpenter JE, Alper BJ. Molecular Determinants of Substrate Specificity in Human Insulin-Degrading Enzyme. Biochemistry 2018; 57:4903-4914. [PMID: 30004674 DOI: 10.1021/acs.biochem.8b00474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin-degrading enzyme (IDE) is a 110 kDa chambered zinc metalloendopeptidase that degrades insulin, amyloid β, and other intermediate-sized aggregation prone peptides that adopt β-structures. Structural studies of IDE in complex with multiple physiological substrates have suggested a role for hydrophobic and aromatic residues of the IDE active site in substrate binding and catalysis. Here, we examine functional requirements for conserved hydrophobic and aromatic IDE active site residues that are positioned within 4.5 Å of IDE-bound insulin B chain and amyloid β peptides in the reported crystal structures for the respective enzyme-substrate complexes. Charge, size, hydrophobicity, aromaticity, and other functional group requirements for substrate binding IDE active site residues were examined through mutational analysis of the recombinant human enzyme and enzyme kinetic studies conducted using native and fluorogenic derivatives of human insulin and amyloid β peptides. A functional requirement for IDE active site residues F115, A140, F141, Y150, W199, F202, F820, and Y831 was established, and specific contributions of residue charge, size, and hydrophobicity to substrate binding, specificity, and proteolysis were demonstrated. IDE mutant alleles that exhibited enhanced or diminished proteolytic activity toward insulin or amyloid β peptides and derivative substrates were identified.
Collapse
Affiliation(s)
- Lazaros Stefanidis
- Department of Chemistry , Sacred Heart University , Fairfield , Connecticut 06825 , United States
| | - Nicholas D Fusco
- Department of Chemistry , Sacred Heart University , Fairfield , Connecticut 06825 , United States
| | - Samantha E Cooper
- Department of Chemistry and Biochemistry , Fairfield University , Fairfield , Connecticut 06824 , United States
| | - Jillian E Smith-Carpenter
- Department of Chemistry and Biochemistry , Fairfield University , Fairfield , Connecticut 06824 , United States
| | - Benjamin J Alper
- Department of Chemistry , Sacred Heart University , Fairfield , Connecticut 06825 , United States
| |
Collapse
|
42
|
Matsuura K, Otani M, Takano M, Kadoyama K, Matsuyama S. Proteomic Analysis of Hippocampus and Cortex in Streptozotocin-Induced Diabetic Model Mice Showing Dementia. J Diabetes Res 2018; 2018:8953015. [PMID: 29850612 PMCID: PMC5907478 DOI: 10.1155/2018/8953015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
AIM Diabetes with its associated hyperglycemia induces various type of peripheral damage and also impairs the central nervous system (CNS). This study is aimed at clarifying the precise mechanism of diabetes-induced dementia as an impairment of CNS. METHODS The proteomic analysis of the hippocampus and cortex in streptozotocin- (STZ-) treated mouse diabetic model showing dementia was performed using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (n = 3/group). RESULTS Significant changes in the expression of 32 proteins and 7 phosphoproteins were observed in the hippocampus and cortex. These identified proteins and phosphoproteins could be functionally classified as cytoskeletal protein, oxidoreductase, protein deubiquitination, energy metabolism, GTPase activation, heme binding, hydrolase, iron storage, neurotransmitter release, protease inhibitor, transcription, glycolysis, antiapoptosis, calcium ion binding, heme metabolic process, protein degradation, vesicular transport, and unknown in the hippocampus or cortex. Additionally, Western blotting validated the changes in translationally controlled tumor protein, ATP-specific succinyl-CoA synthetase beta subunit, and gamma-enolase isoform 1. CONCLUSIONS These findings showed that STZ-induced diabetes changed the expression of proteins and phosphoproteins in the hippocampus and cortex. We propose that alterations in expression levels of these proteins play an important role in diabetes-induced dementia.
Collapse
Affiliation(s)
- Kenji Matsuura
- Faculty of Pharmacy, Osaka-Ohtani University, Tondabayashi 584-8540, Japan
| | - Mieko Otani
- Department of Life Sciences Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Masaoki Takano
- Department of Life Sciences Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Keiichi Kadoyama
- Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji 670-8524, Japan
| | - Shogo Matsuyama
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
43
|
Zhang Z, Liang WG, Bailey LJ, Tan YZ, Wei H, Wang A, Farcasanu M, Woods VA, McCord LA, Lee D, Shang W, Deprez-Poulain R, Deprez B, Liu DR, Koide A, Koide S, Kossiakoff AA, Li S, Carragher B, Potter CS, Tang WJ. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. eLife 2018; 7:33572. [PMID: 29596046 PMCID: PMC5910022 DOI: 10.7554/elife.33572] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/28/2018] [Indexed: 11/29/2022] Open
Abstract
Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.
Collapse
Affiliation(s)
- Zhening Zhang
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
| | - Wenguang G Liang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Yong Zi Tan
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
| | - Andrew Wang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Mara Farcasanu
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - Virgil A Woods
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Lauren A McCord
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| | - David Lee
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Weifeng Shang
- BioCAT, Argonne National Laboratory, Illinois, United States
| | | | - Benoit Deprez
- Univ. Lille, INSERM, Institut Pasteur de Lille, Lille, France
| | - David R Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Akiko Koide
- Perlmutter Cancer Center, New York University School of Medicine, New York, United States.,New York University Langone Medical Center, New York University School of Medicine, New York, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Shohei Koide
- Perlmutter Cancer Center, New York University School of Medicine, New York, United States.,New York University Langone Medical Center, New York University School of Medicine, New York, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Sheng Li
- Department of Medicine, University of California, San Diego, La Jolla, United States
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Wei-Jen Tang
- Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States
| |
Collapse
|
44
|
Pan Y, Xu J, Chen C, Chen F, Jin P, Zhu K, Hu CW, You M, Chen M, Hu F. Royal Jelly Reduces Cholesterol Levels, Ameliorates Aβ Pathology and Enhances Neuronal Metabolic Activities in a Rabbit Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:50. [PMID: 29556189 PMCID: PMC5845009 DOI: 10.3389/fnagi.2018.00050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by aggregation of amyloid β (Aβ) and neuronal loss. One of the risk factors for AD is high cholesterol levels, which are known to promote Aβ deposition. Previous studies have shown that royal jelly (RJ), a product of worker bees, has potential neuroprotective effects and can attenuate Aβ toxicity. However, little is known about how RJ regulates Aβ formation and its effects on cholesterol levels and neuronal metabolic activities. Here, we investigated whether RJ can reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in an AD rabbit model induced by 2% cholesterol diet plus copper drinking water. Our results suggest that RJ significantly reduced the levels of plasma total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C), and decreased the level of Aβ in rabbit brains. RJ was also shown to markedly ameliorate amyloid deposition in AD rabbits from Aβ immunohistochemistry and thioflavin-T staining. Furthermore, our study suggests that RJ can reduce the expression levels of β-site APP cleaving enzyme-1 (BACE1) and receptor for advanced glycation end products (RAGE), and increase the expression levels of low density lipoprotein receptor-related protein 1 (LRP-1) and insulin degrading enzyme (IDE). In addition, we found that RJ remarkably increased the number of neurons, enhanced antioxidant capacities, inhibited activated-capase-3 protein expression, and enhanced neuronal metabolic activities by increasing N-acetyl aspartate (NAA) and glutamate and by reducing choline and myo-inositol in AD rabbits. Taken together, our data demonstrated that RJ could reduce cholesterol levels, regulate Aβ levels and enhance neuronal metabolic activities in AD rabbits, providing preclinical evidence that RJ treatment has the potential to protect neurons and prevent AD.
Collapse
Affiliation(s)
- Yongming Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqin Xu
- Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng Chen
- Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Jin
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keyan Zhu
- Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyue W Hu
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Mengmeng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Minli Chen
- Comparative Medical Research Center, Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
The Cyanthin Diterpenoid and Sesterterpene Constituents of Hericium erinaceus Mycelium Ameliorate Alzheimer's Disease-Related Pathologies in APP/PS1 Transgenic Mice. Int J Mol Sci 2018; 19:ijms19020598. [PMID: 29463001 PMCID: PMC5855820 DOI: 10.3390/ijms19020598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022] Open
Abstract
Hericium erinaceus was used in traditional Chinese medicine for physiologically beneficial medicines. Recently, it has become a candidate in causing positive brain health-related activities. We previously reported that Hericium erinaceus mycelium ameliorates Alzheimer’s disease (AD)-related pathologies. To reveal the role of the cyanthin diterpenoid and sesterterpene constituents on this effects, erinacine A and S were isolated and their effects on attenuating AD-related pathology in APPswe/PS1dE9 transgenic mice were investigated. A 30 day short-term administration of erinacine A and S were performed to explore the effect of each erinacine on AD-related pathology including amyloid β production and degradation, plaque formation, plaque growth, glial activation and neurogenesis deterioration. Our results indicated the benefit effects of both erinacine A and S in cerebrum of APPswe/PS1dE9 mice, including: (1) attenuating cerebral plaque loading by inhibiting plaque growth; (2) diminishing the activation of glial cells; (3) raising the level of insulin degrading enzyme; and (4) promoting hippocampal neurogenesis. Moreover, erinacine A reduced the level of insoluble amyloid β and C-terminal fragment of amyloid precursor protein which was not mediated by erinacine S. We further performed a long term administration of erinacine A and found that erinacine A recovered the impairment in the tasks including burrowing, nesting, and Morris water maze. Our data pointed out that although both erinacine A and S reduce AD pathology via reducing amyloid deposition and promoting neurogenesis, erinacine A can also inhibit amyloid β production and is worth to be further developed for AD therapeutic use.
Collapse
|
46
|
Virgili J, Lebbadi M, Tremblay C, St-Amour I, Pierrisnard C, Faucher-Genest A, Emond V, Julien C, Calon F. Characterization of a 3xTg-AD mouse model of Alzheimer's disease with the senescence accelerated mouse prone 8 (SAMP8) background. Synapse 2018; 72. [DOI: 10.1002/syn.22025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jessica Virgili
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Meryem Lebbadi
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Caroline Pierrisnard
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Audrey Faucher-Genest
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Carl Julien
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| | - Frédéric Calon
- Faculté de Pharmacie; Université Laval; Quebec Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec; Université Laval; Québec Canada
| |
Collapse
|
47
|
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-Degrading Enzyme in the Fight against Alzheimer's Disease. Trends Pharmacol Sci 2017; 39:49-58. [PMID: 29132916 DOI: 10.1016/j.tips.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
After decades of research and clinical trials there is still no cure for Alzheimer's disease (AD). While impaired clearance of amyloid beta (Aβ) peptides is considered as one of the major causes of AD, it was recently complemented by a potential role of other toxic amyloidogenic species. Insulin-degrading enzyme (IDE) is the proteolytic culprit of various β-forming peptides, both extracellular and intracellular. On the basis of demonstrated allosteric activation of IDE against Aβ, it is possible to propose a new strategy for the targeted IDE-based cleansing of different toxic aggregation-prone peptides. Consequently, specific allosteric activation of IDE coupled with state-of-the-art compound delivery and CRISP-Cas9 technique of transgene insertion can be instrumental in the fight against AD and related neurodegenerative maladies.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579.
| |
Collapse
|
48
|
Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 2017. [PMID: 28635330 DOI: 10.1080/10409238.2017.1337707] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as β-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.
Collapse
Affiliation(s)
- Grazia R Tundo
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Diego Sbardella
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Chiara Ciaccio
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Giuseppe Grasso
- d Department of Chemistry , University of Catania , Catania , Italy.,e CNR IBB , Catania , Italy
| | - Magda Gioia
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Andrea Coletta
- f Department of Chemistry , University of Aarhus , Aarhus , Denmark
| | | | - Donato Di Pierro
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | | | - Peter Van Endert
- h Université Paris Descartes, INSERM, U1151, CNRS , Paris , France
| | - Stefano Marini
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Massimo Coletta
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| |
Collapse
|
49
|
de Matos AM, de Macedo MP, Rauter AP. Bridging Type 2 Diabetes and Alzheimer's Disease: Assembling the Puzzle Pieces in the Quest for the Molecules With Therapeutic and Preventive Potential. Med Res Rev 2017; 38:261-324. [PMID: 28422298 DOI: 10.1002/med.21440] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two age-related amyloid diseases that affect millions of people worldwide. Broadly supported by epidemiological data, the higher incidence of AD among type 2 diabetic patients led to the recognition of T2D as a tangible risk factor for the development of AD. Indeed, there is now growing evidence on brain structural and functional abnormalities arising from brain insulin resistance and deficiency, ultimately highlighting the need for new approaches capable of preventing the development of AD in type 2 diabetic patients. This review provides an update on overlapping pathophysiological mechanisms and pathways in T2D and AD, such as amyloidogenic events, oxidative stress, endothelial dysfunction, aberrant enzymatic activity, and even shared genetic background. These events will be presented as puzzle pieces put together, thus establishing potential therapeutic targets for drug discovery and development against T2D and diabetes-induced cognitive decline-a heavyweight contributor to the increasing incidence of dementia in developed countries. Hoping to pave the way in this direction, we will present some of the most promising and well-studied drug leads with potential against both pathologies, including their respective bioactivity reports, mechanisms of action, and structure-activity relationships.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal.,CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Maria Paula de Macedo
- CEDOC Chronic Diseases, Nova Medical School, Rua Câmara Pestana n 6, 6-A, Ed. CEDOC II, 1150-082, Lisbon, Portugal
| | - Amélia Pilar Rauter
- Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
50
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|