1
|
Yamamoto M, Sakai M, Yu Z, Nakanishi M, Yoshii H. Glial Markers of Suicidal Behavior in the Human Brain-A Systematic Review of Postmortem Studies. Int J Mol Sci 2024; 25:5750. [PMID: 38891940 PMCID: PMC11171620 DOI: 10.3390/ijms25115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.
Collapse
Affiliation(s)
- Mana Yamamoto
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
2
|
Jeon P, Mackinley M, Théberge J, Palaniyappan L. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study. Sci Rep 2021; 11:22333. [PMID: 34785674 PMCID: PMC8595701 DOI: 10.1038/s41598-021-01773-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Myo-inositol is mainly found in astroglia and its levels has been shown to be reduced in the anterior cingulate cortex (ACC) of patients with schizophrenia. We investigate the status of astroglial integrity indexed by ACC myo-inositol at the onset and over the first 6 months of treatment of first episode schizophrenia. We employed 7 T magnetic resonance spectroscopy (1H-MRS) and quantified myo-inositol spectra at the dorsal ACC in 31 participants; 21 patients with schizophrenia with median lifetime antipsychotic exposure of less than 3 days, followed up after 6 months of treatment, and 10 healthy subjects scanned twice over the same period. We studied the time by group interaction for myo-inositol after adjusting for gender and age. We report significant reduction in myo-inositol concentration in the ACC in schizophrenia at an early, untreated state of acute illness that becomes insignificant over time, after instituting early intervention. This trajectory indicates that dynamic astroglial changes are likely to operate in the early stages of schizophrenia. MRS myo-inositol may be a critical marker of amelioration of active psychosis in early stages of schizophrenia.
Collapse
Affiliation(s)
- Peter Jeon
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
| | - Michael Mackinley
- Imaging Division, Lawson Health Research Institute, London, Canada
- Robarts Research Institute, Western University, London, Canada
- Department of Neuroscience, Western University, London, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, Canada
- Imaging Division, Lawson Health Research Institute, London, Canada
- Diagnostic Imaging, St. Joseph's Health Care, London, Canada
- Department of Medical Imaging, Western University, London, Canada
- Department of Psychiatry, Western University, London, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Western University, London, Canada.
- Imaging Division, Lawson Health Research Institute, London, Canada.
- Robarts Research Institute, Western University, London, Canada.
- Department of Psychiatry, Western University, London, Canada.
- Robarts Research Institute, UWO, 1151 Richmond Street N., Room 3208, London, ON, N6A 5B7, Canada.
| |
Collapse
|
3
|
A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Transl Psychiatry 2021; 11:554. [PMID: 34716291 PMCID: PMC8556332 DOI: 10.1038/s41398-021-01681-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
While neurodevelopmental abnormalities have been associated with schizophrenia (SCZ), the role of astroglia in disease pathophysiology remains poorly understood. In the present study, we used a human induced pluripotent stem cell (iPSC)-derived astrocyte model to investigate the temporal patterns of astroglia differentiation during developmental stages critical for SCZ using RNA sequencing. The model generated astrocyte-specific gene expression patterns during differentiation that corresponded well to astroglia-specific expression signatures of in vivo cortical fetal development. Using this model we identified SCZ-specific expression dynamics, and found that SCZ-associated differentially expressed genes were significantly enriched in the medial prefrontal cortex, striatum, and temporal lobe, targeting VWA5A and ADAMTS19. In addition, SCZ astrocytes displayed alterations in calcium signaling, and significantly decreased glutamate uptake and metalloproteinase activity relative to controls. These results implicate novel transcriptional dynamics in astrocyte differentiation in SCZ together with functional changes that are potentially important biological components of SCZ pathology.
Collapse
|
4
|
Bustillo JR, Mayer EG, Upston J, Jones T, Garcia C, Sheriff S, Maudsley A, Tohen M, Gasparovic C, Lenroot R. Increased Glutamate Plus Glutamine in the Right Middle Cingulate in Early Schizophrenia but Not in Bipolar Psychosis: A Whole Brain 1H-MRS Study. Front Psychiatry 2021; 12:660850. [PMID: 34163382 PMCID: PMC8215955 DOI: 10.3389/fpsyt.2021.660850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) studies have examined glutamatergic abnormalities in schizophrenia and bipolar-I disorders, mostly in single voxels. Though the critical nodes remain unknown, schizophrenia and bipolar-I involve brain networks with broad abnormalities. To provide insight on the biochemical differences that may underlie these networks, the combined glutamine and glutamate signal (Glx) and other metabolites were examined in patients in early psychosis with whole brain 1H-MRS imaging (1H-MRSI). Data were acquired in young schizophrenia subjects (N = 48), bipolar-I subjects (N = 21) and healthy controls (N = 51). Group contrasts for Glx, as well as for N-acetyl aspartate, choline, myo-inositol and creatine, from all voxels that met spectral quality criteria were analyzed in standardized brain space, followed by cluster-corrected level alpha-value (CCLAV ≤ 0.05) analysis. Schizophrenia subjects had higher Glx in the right middle cingulate gyrus (19 voxels, CCLAV = 0.05) than bipolar-I subjects. Healthy controls had intermediate Glx values, though not significant. Schizophrenia subjects also had higher N-acetyl aspartate (three clusters, left occipital, left frontal, right frontal), choline (two clusters, left and right frontal) and myo-inositol (one cluster, left frontal) than bipolar-I, with healthy controls having intermediate values. These increases were likely accounted for by antipsychotic medication effects in the schizophrenia subgroup for N-acetyl aspartate and choline. Likewise, creatine was increased in two clusters in treated vs. antipsychotic-naïve schizophrenia, supporting a medication effect. Conversely, the increments in Glx in right cingulate were not driven by antipsychotic medication exposure. We conclude that increments in Glx in the cingulate may be critical to the pathophysiology of schizophrenia and are consistent with the NMDA hypo-function model. This model however may be more specific to schizophrenia than to psychosis in general. Postmortem and neuromodulation schizophrenia studies focusing on right cingulate, may provide critical mechanistic and therapeutic advancements, respectively.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Elizabeth G. Mayer
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Joel Upston
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, United States
| | - Thomas Jones
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Crystal Garcia
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Andrew Maudsley
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| | | | - Rhoshel Lenroot
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
5
|
Jiménez-González A, Gómez-Acevedo C, Ochoa-Aguilar A, Chavarría A. The Role of Glia in Addiction: Dopamine as a Modulator of Glial Responses in Addiction. Cell Mol Neurobiol 2021; 42:2109-2120. [PMID: 34057683 DOI: 10.1007/s10571-021-01105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Addiction is a chronic and potentially deadly disease considered a global health problem. Nevertheless, there is still no ideal treatment for its management. The alterations in the reward system are the most known pathophysiological mechanisms. Dopamine is the pivotal neurotransmitter involved in neuronal drug reward mechanisms and its neuronal mechanisms have been intensely investigated in recent years. However, neuroglial interactions and their relation to drug addiction development and maintenance of drug addiction have been understudied. Many reports have found that most neuroglial cells express dopamine receptors and that dopamine activity may induce neuroimmunomodulatory effects. Furthermore, current research has also shown that pro- and anti-inflammatory molecules modulate dopaminergic neuron activity. Thus, studying the immune mechanisms of dopamine associated with drug abuse is vital in researching new pathophysiological mechanisms and new therapeutic targets for addiction management.
Collapse
Affiliation(s)
- Ariadna Jiménez-González
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia Gómez-Acevedo
- Laboratorio de Biomembranas, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abraham Ochoa-Aguilar
- Plan de Estudios Combinados en Medicina, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
6
|
Chwa WJ, Tishler TA, Raymond C, Tran C, Anwar F, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Association between cortical volume and gray-white matter contrast with second generation antipsychotic medication exposure in first episode male schizophrenia patients. Schizophr Res 2020; 222:397-410. [PMID: 32487466 PMCID: PMC7572538 DOI: 10.1016/j.schres.2020.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
This cross-sectional study examines the differences in cortical volume and gray-to-white matter contrast (GWC) in first episode schizophrenia patients (SCZ) compared to healthy control participants (HC) and in SCZ patients as a function of exposure to second generation antipsychotic medication. We hypothesize 1) SCZ exhibit regionally lower cortical volumes relative to HCs, 2) cortical volume will be greater with longer exposure to second generation antipsychotics prior to the MRI scan, and 3) lower GWC with longer exposure to second generation antipsychotics prior to the MRI scan, suggesting more blurring from greater intracortical myelin. To accomplish this, MRI scans from 71 male SCZ patients treated with second generation oral risperidone and 42 male HCs were examined. 3D T1-weighted MPRAGE images collected at 1.5T were used to estimate cortical volume and GWC by sampling signal intensity at 30% within the cortical ribbon. Average cortical volume and GWC were calculated and compared between SCZ and HC. Cortical volume and GWC in SCZ patients were correlated with duration of medication exposure for the time period prior to the scan. First-episode SCZ patients had significantly lower cortical volume compared to HCs in bilateral temporal, superior and rostral frontal, postcentral gyral, and parahippocampal regions. In SCZ patients, greater cortical volume was associated with (log-transformed) duration of second-generation antipsychotic medication exposure in bilateral precuneus, right lingual, and right superior parietal regions. Lower GWC was correlated with longer duration of medication exposure bilaterally in the superior frontal lobes. In summary, second generation antipsychotics may increase cortical volume and decrease GWC in first episode SCZ patients.
Collapse
Affiliation(s)
- Won Jong Chwa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Todd A. Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Catalina Raymond
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Cathy Tran
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Faizan Anwar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - J. Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychology, University of California Los Angeles, Los Angeles, CA
| | - Benjamin M. Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Alterations of Astrocytes in the Context of Schizophrenic Dementia. Front Pharmacol 2020; 10:1612. [PMID: 32116664 PMCID: PMC7020441 DOI: 10.3389/fphar.2019.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The levels of the astrocyte markers (GFAP, S100B) were increased unevenly in patients with schizophrenia. Reactive astrogliosis was found in approximately 70% of patients with schizophrenia. The astrocytes play a major role in etiology and pathogenesis of schizophrenia. Astrocytes produce the components that altered in schizophrenia extracellular matrix system which are involved in inflammation, functioning of interneurons, glio-, and neurotransmitter system, especially glutamate system. Astrocytes activate the interneurons through glutamate release and ATP. Decreased expression of astrocyte glutamate transporters was observed in patients with schizophrenia. Astrocytes influence on N-methyl-d-aspartate (NMDA) receptors via D-serine, an agonist of the glycine-binding site of NMDA receptors, and kynurenic acid, an endogenous antagonist. NMDA receptors, on its turn, control the impulses of dopamine neurons. Therefore following theories of schizophrenia are proposed. They are a) activation of astrocytes for neuroinflammation, b) glutamate and dopamine theory, as astrocyte products control the activity of NMDA receptors, which influence on the dopamine neurons.
Collapse
Affiliation(s)
- Vadim V Tarasov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir N Chubarev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Susanna S Sologova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Polina Mukhortova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitrii Levushkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia.,Federal State Budgetary Institution, Research Institute of Human Morphology, Russian Federation, Moscow, Russia.,GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
8
|
Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Mendonça CR, Albuquerque G, Visco DB, Lacerda DC, Toscano AE. Maternal exposure to busulfan reduces the cell number in the somatosensory cortex associated with delayed somatic and reflex maturation in neonatal rats. J Chem Neuroanat 2019; 103:101710. [PMID: 31706849 DOI: 10.1016/j.jchemneu.2019.101710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 01/31/2023]
Abstract
Busulfan is a bifunctional alkylating agent used for myeloablative conditioning and in the treatment of chronic myeloid leukemia due to its ability to cause DNA damage. However, in rodent experiments, busulfan presented a potential teratogenic and cytotoxic effect. Studies have evaluated the effects of busulfan on fetuses after administration in pregnancy or directly on pups during the lactation period. There are no studies on the effects of busulfan administration during pregnancy on offspring development after birth. We investigated the effects of busulfan on somatic and reflex development and encephalic morphology in young rats after exposure in pregnancy. The pregnant rats were exposed to busulfan (10 mg/kg, intraperitoneal) during the early developmental stage (days 12-14 of the gestational period). After birth, we evaluated the somatic growth, maturation of physical features and reflex-ontogeny during the lactation period. We also assessed the effects of busulfan on encephalic weight and cortical morphometry at 28 days of postnatal life. As a result, busulfan-induced pathological changes included: microcephaly, evaluated by the reduction of cranial axes, delay in reflex maturation and physical features, as well as a decrease in the morphometric parameters of somatosensory and motor cortex. Thus, these results suggest that the administration of a DNA alkylating agent, such as busulfan, during the gestational period can cause damage to the central nervous system in the pups throughout their postnatal development.
Collapse
Affiliation(s)
- Henrique J C B Gouveia
- Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Bárbara J R Costa-de-Santana
- Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Carolina R Mendonça
- Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Glayciele Albuquerque
- Post Graduate Program in Physiotherapy, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Cabral Lacerda
- Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
9
|
Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:379-386. [PMID: 29572659 DOI: 10.1007/s00406-018-0888-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Neuroimaging and post-mortem studies have implicated altered myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal network in schizophrenia, including the prefrontal cortex, Brodmann area (BA) 10. Pyramidal neurons in layer 5 of BA10 are the important link of reciprocal frontal cortical-basal ganglia-thalamic circuits altered in schizophrenia. Previously, we found ultrastructural dystrophic and degenerative alterations of oligodendrocytes in layer 5 of BA10 in schizophrenia. The aim of the study was to estimate the numerical density (Nv) of oligodendrocytes in layer 5 of BA10 in schizophrenia as compared to normal controls. 17 chronic schizophrenia subjects and 22 healthy matched controls were studied in Nissl-stained sections using optical disector method. Group differences were analyzed using ANCOVA followed by post hoc Duncan's test. The Nv of oligodendrocytes was significantly lower (- 32%, p < 0.001) in the schizophrenia group as compared to the control group. Young controls (age < 50 years old) showed significantly higher Nv of oligodendrocytes as compared to elderly controls (age > 50 years old). Young and elderly schizophrenia subgroups did not differ significantly. Both control subgroups have significantly higher Nv of oligodendrocytes as compared to the schizophrenia subgroups. Decreased Nv of oligodendrocytes found in layer 5 of BA10 may be the result of dystrophic and destructive alterations and/or disrupted development of oligodendrocytes in schizophrenia.
Collapse
|
10
|
Fernandez G, Kuruvilla S, Hines CDG, Poignant F, Marr J, Forest T, Briscoe R. Brain findings associated with risperidone in rhesus monkeys: magnetic resonance imaging and pathology perspectives. J Toxicol Pathol 2019; 32:233-243. [PMID: 31719750 PMCID: PMC6831502 DOI: 10.1293/tox.2019-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Brain changes associated with risperidone, a dopamine-2/serotonin-2 receptor antagonist, have been documented in rats and humans, but not in nonhuman primates. This study characterized brain changes associated with risperidone in nonhuman primates. Rhesus monkeys were orally administered risperidone in a dose-escalation paradigm up to a maximum tolerated dose of 0.5 mg/kg/day for 3 weeks, or 3 months followed by a 3-month recovery period. Transient and fully reversible neurological signs consistent with risperidone pharmacology were observed. The results of a magnetic resonance imaging evaluation after 3 months of treatment and at the end of the 3-month recovery period showed no meaningful changes in the brain. There were no risperidone-related brain weight changes or gross findings. Histomorphological evaluation of brain sections stained with hematoxylin and eosin, ionized calcium binding adaptor molecule 1 (Iba1), and luxol fast blue/cresyl violet double staining showed no notable differences between control and risperidone groups. However, evaluation of the brain after glial fibrillary acidic protein (GFAP) immunohistochemical staining revealed increased staining in the cell bodies and processes of astrocytes in the putamen without apparent alterations in numbers or distribution. The increase in GFAP staining was present after 3 weeks and 3 months of treatment, but no increase in staining was observed after the 3-month recovery period, demonstrating the reversibility of this finding. The reversible increase in GFAP expression was likely an adaptive, non-adverse response of astrocytes, associated with the pharmacology of risperidone. These observations are valuable considerations in the nonclinical risk assessment of new drug candidates for psychiatric disorders.
Collapse
Affiliation(s)
- Guillermo Fernandez
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sabu Kuruvilla
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Catherine D G Hines
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Frédéric Poignant
- Safety Assessment and Laboratory Animal Resources, Laboratoires Merck Sharp & Dohme-Chibret, Route de Marsat - Riom, 63963 Clermont-Ferrand cedex 9, France
| | - James Marr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Thomas Forest
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Richard Briscoe
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
11
|
Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine exposure leads to increased expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry 2017; 7:1262. [PMID: 29187753 PMCID: PMC5802494 DOI: 10.1038/s41398-017-0008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/14/2017] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a psychotic disorder with severe and disabling symptoms, such as hallucinations, delusions, blunted affect and social withdrawal. The neuropathology remains elusive, but disturbances in immunity-related processes, neuronal connectivity and myelination have consistently been linked to schizophrenia. Antipsychotic drugs can be efficient in reducing symptoms, acting primarily on the dopamine system, but additional biological targets are likely to exist. Here we have screened for novel mechanisms of action in an animal model, using adult rats exposed to long-acting olanzapine, achieving stable and clinically relevant antipsychotic drug concentrations. By microarray-based examination of global gene expression in the fronto-medial cortex, at the single gene- and gene-set level, we observed downregulation of two neuropeptide-encoding genes, Vgf and Cort (fold change -1,25 and -1,48, respectively) in response to olanzapine exposure. Furthermore, we demonstrated significant upregulation of five out of ~2000 GO predefined gene sets after olanzapine exposure. Strikingly, all were linked to myelination and oligodendrocyte development; "Ensheathment of neurons", "Axon ensheathment", "Myelination", "Myelin sheath" and "Oligodendrocyte development" (FDR-values < 25). Sixteen of the leading edge genes in these gene sets were analysed independently by qPCR, of which 11 genes displayed significant upregulation, including Plp1, Mal, Mag and Cnp (fold change: 1,30, 1,50, 1,30 and 1,15, respectively). Several of the upregulated genes (e.g. MAG, MAL and CNP) have previously been reported as downregulated in post-mortem brain samples from schizophrenia patients. Although caution needs to be taken when extrapolating results from animal studies to humans, the data suggest a role for olanzapine in alleviating myelination-related dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Kari M. Ersland
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silje Skrede
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christine Stansberg
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vidar M. Steen
- 0000 0000 9753 1393grid.412008.fDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, 5021 Norway ,0000 0004 1936 7443grid.7914.bThe Norwegian Centre for Mental Disorders Research (NORMENT) and the K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Randall SR, Warton CMR, Holmes MJ, Cotton MF, Laughton B, van der Kouwe AJW, Meintjes EM. Larger Subcortical Gray Matter Structures and Smaller Corpora Callosa at Age 5 Years in HIV Infected Children on Early ART. Front Neuroanat 2017; 11:95. [PMID: 29163068 PMCID: PMC5673662 DOI: 10.3389/fnana.2017.00095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sub-Saharan Africa is home to 90% of HIV infected (HIV+) children. Since the advent of antiretroviral therapy (ART), HIV/AIDS has transitioned to a chronic condition where central nervous system (CNS) damage may be ongoing. Although, most guidelines recommend early ART to reduce CNS viral reservoirs, the brain may be more vulnerable to potential neurotoxic effects of ART during the rapid development phase in the first years of life. Here we investigate differences in subcortical volumes between 5-year-old HIV+ children who received early ART (before age 18 months) and uninfected children using manual tracing of Magnetic Resonance Images. Participants included 61 Xhosa children (43 HIV+/18 uninfected, mean age = 5.4 ± 0.3 years, 25 male) from the children with HIV early antiretroviral (CHER) trial; 27 children initiated ART before 12 weeks of age (ART-Before12Wks) and 16 after 12 weeks (ART-After12Wks). Structural images were acquired on a 3T Allegra MRI in Cape Town and manually traced using MultiTracer. Volumetric group differences (HIV+ vs. uninfected; ART-Before12Wks vs. ART-After12Wks) were examined for the caudate, nucleus accumbens (NA), putamen (Pu), globus pallidus (GP), and corpus callosum (CC), as well as associations within infected children of structure volumes with age at ART initiation and CD4/CD8 as a proxy for immune health. HIV+ children had significantly larger NA and Pu volumes bilaterally and left GP volumes than controls, whilst CC was smaller. Bilateral Pu was larger in both treatment groups compared to controls, while left GP and bilateral NA were enlarged only in ART-After12Wks children. CC was smaller in both treatment groups compared to controls, and smaller in ART-After12Wks compared to ART-Before12Wks. Within infected children, delayed ART initiation was associated with larger Pu volumes, effects that remained significant when controlling for sex and duration of treatment interruption (left β = 0.447, p = 0.005; right β = 0.325, p = 0.051), and lower CD4/CD8 with larger caudates controlling for sex (left β = -0.471, p = 0.002; right β = -0.440, p = 0.003). Volumetric differences were greater in children who initiated ART after 12 weeks. Results suggest damage is ongoing despite early ART and viral load suppression; however, earlier treatment is neuroprotective.
Collapse
Affiliation(s)
- Steven R. Randall
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher M. R. Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark F. Cotton
- Children's Infectious Diseases Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Children's Hospital & Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Barbara Laughton
- Children's Infectious Diseases Clinical Research Unit, Department of Paediatrics and Child Health, Tygerberg Children's Hospital & Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre J. W. van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Ernesta M. Meintjes
- MRC/UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Neuroadaptations to antipsychotic drugs: Insights from pre-clinical and human post-mortem studies. Neurosci Biobehav Rev 2017; 76:317-335. [DOI: 10.1016/j.neubiorev.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
|
14
|
Jia Z, Peng W, Chen Z, Sun H, Zhang H, Kuang W, Huang X, Lui S, Gong Q. Magnetization Transfer Imaging of Treatment-resistant Depression. Radiology 2017; 284:521-529. [PMID: 28318404 DOI: 10.1148/radiol.2017160820] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose To detect biophysical abnormalities in patients with postmedication treatment-resistant depression (TRD) with magnetization transfer imaging. Materials and Methods This study was approved by the local ethics committee, and written informed consent was obtained from all participants. Participants included 69 patients with major depressive disorder (MDD) (30 with TRD; 39 with non-TRD) and 41 healthy control subjects. Age and sex were examined with one-way analysis of variance and χ2 tests and were well matched among the three groups. Whole-brain voxel-based analysis was used to compare the magnetization transfer ratio (MTR) between the three groups. Regional MTR values were used to analyze the correlations with symptom severity and illness duration. Results MTR differences were identified in the bilateral precentral gyrus, left cerebellum posterior lobe, left middle occipital lobe, left precuneus, and left temporal lobe among the three groups. Relative to patients with non-TRD, those with TRD had significantly lower MTR in the task-positive network regions, including the bilateral precentral gyrus and left middle occipital lobe, and had lower MTR in the default mode network regions, including the left precuneus and left temporal lobe. Regional MTRs were not associated with symptom severity or illness duration. Conclusion These results suggest that treatment resistance in patients with MDD may be mediated by macromolecular abnormalities in the task-positive and default mode functional networks. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on March 29, 2017.
Collapse
Affiliation(s)
- Zhiyun Jia
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Wei Peng
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Ziqi Chen
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Huaiqiang Sun
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Huawei Zhang
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Weihong Kuang
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Su Lui
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| | - Qiyong Gong
- From the Huaxi MR Research Center, Department of Radiology and Nuclear Medicine (Z.J., W.P., Z.C., H.S., H.Z., X.H., S.L., Q.G.), and Department of Psychiatry (W.K.), West China Hospital of Sichuan University, Chengdu 610041, PR China; and Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, PR China (Z.J., W.P., Z.C.,H.S., H.Z., W.K., X.H., S.L., Q.G.)
| |
Collapse
|
15
|
Abnormal Trajectory of Intracortical Myelination in Schizophrenia Implicates White Matter in Disease Pathophysiology and the Therapeutic Mechanism of Action of Antipsychotics. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:454-462. [PMID: 29735155 DOI: 10.1016/j.bpsc.2017.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Postmortem and imaging studies provide converging evidence that the frontal lobe myelination trajectory is dysregulated in schizophrenia (SZ) and suggest that early in treatment, antipsychotic medications increase intracortical myelin (ICM). We used magnetic resonance imaging to examine whether the ICM trajectory in SZ is dysregulated and altered by antipsychotic treatment. METHODS We examined 93 subjects with SZ (64 men and 29 women) taking second-generation oral antipsychotics with medication exposures of 0-333 months in conjunction with 80 healthy control subjects (52 men and 28 women). Frontal lobe ICM volume was estimated using a novel dual contrast magnetic resonance imaging method that combines two images that track different tissue components. RESULTS When plotted against oral antipsychotic exposure duration, ICM of subjects with SZ was higher as a function of medication exposure during the first year of treatment but declined thereafter. In the age range examined, ICM of subjects with SZ was lower with increased age, while ICM of healthy control subjects was not. CONCLUSIONS In adults with SZ, the relationship between length of exposure to oral second-generation antipsychotics and ICM was positive during the first year of treatment but was negative after this initial period, consistent with suboptimal later adherence after initial adherence. This ICM trajectory resembles clinically observed antipsychotic response trajectory with high rates of remission in the first year followed by progressively lower response rates. The results support postmortem evidence that SZ pathophysiology involves ICM deficits and suggest that correcting these deficits may be an important mechanism of action for antipsychotics.
Collapse
|
16
|
García-Cabezas MÁ, John YJ, Barbas H, Zikopoulos B. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features. Front Neuroanat 2016; 10:107. [PMID: 27847469 PMCID: PMC5088408 DOI: 10.3389/fnana.2016.00107] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following an extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease.
Collapse
Affiliation(s)
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| |
Collapse
|
17
|
Wagstyl K, Ronan L, Whitaker KJ, Goodyer IM, Roberts N, Crow TJ, Fletcher PC. Multiple markers of cortical morphology reveal evidence of supragranular thinning in schizophrenia. Transl Psychiatry 2016; 6:e780. [PMID: 27070408 PMCID: PMC4872401 DOI: 10.1038/tp.2016.43] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/19/2016] [Indexed: 02/05/2023] Open
Abstract
In vivo structural neuroimaging can reliably identify changes to cortical morphology and its regional variation but cannot yet relate these changes to specific cortical layers. We propose, however, that by synthesizing principles of cortical organization, including relative contributions of different layers to sulcal and gyral thickness, regional patterns of variation in thickness of different layers across the cortical sheet and profiles of layer variation across functional hierarchies, it is possible to develop indirect morphological measures as markers of more specific cytoarchitectural changes. We developed four indirect measures sensitive to changes specifically occurring in supragranular cortical layers, and applied these to test the hypothesis that supragranular layers are disproportionately affected in schizophrenia. Our findings from the four different measures converge to indicate a predominance of supragranular thinning in schizophrenia, independent of medication and illness duration. We propose that these indirect measures offer novel ways of identifying layer-specific cortical changes, offering complementary in vivo observations to existing post-mortem studies.
Collapse
Affiliation(s)
- K Wagstyl
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Sir William Hardy Building, Downing Street, Cambridge, CB2 3EB, UK. E-mail:
| | - L Ronan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - K J Whitaker
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - I M Goodyer
- Developmental and Life-course Research Group, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - N Roberts
- Clinical Research Imaging Centre, School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - T J Crow
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - P C Fletcher
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK,Cambridge and Peterborough Foundation Trust, Cambridge, UK
| |
Collapse
|
18
|
Schubert KO, Föcking M, Wynne K, Cotter DR. Proteome and pathway effects of chronic haloperidol treatment in mouse hippocampus. Proteomics 2016; 16:532-8. [PMID: 26607048 DOI: 10.1002/pmic.201500242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/01/2015] [Accepted: 11/19/2015] [Indexed: 11/11/2022]
Abstract
Proteomic exploration of the effects of psychotropic drugs on specific brain areas in rodents has the potential to uncover novel molecular networks and pathways affected by psychotropic medications, and may inform etiologic hypotheses on mental disorders. Haloperidol, a widely used first-generation antipsychotic, has been shown to produce structural and functional changes of the hippocampus, a brain region also implicated in the neuropathology of disorders such as schizophrenia and bipolar disorder. Seven adult male C57BL/6 mice were injected daily intraperitoneally with 0.5 mg/kg of haloperidol, for 28 days. A control group of six animals was injected with vehicle only (saline). Protein levels of postmortem hippocampus homogenate were determined using label-free LC/MS/MS. In the treatment group, 216 differentially expressed hippocampal proteins were identified as compared to controls. Ingenuity pathway analysis implicated oxidative phosphorylation and mitochondrial function as top canonical pathways, and local networks involved in tubulin-mediated cytoskeleton dynamics, clathrin-mediated endocytosis, and extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling. The findings of this study could stimulate further research into the cellular mechanisms associated with haloperidol treatment and the pathophysiology of psychotic disorders, assisting treatment biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002250 (http://proteomecentral.proteomexchange.org/dataset/PXD002250).
Collapse
Affiliation(s)
- Klaus Oliver Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.,Discipline of Psychiatry, The University of Adelaide, Adelaide, Australia
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kieran Wynne
- Proteomics Resource, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Korgaonkar MS, Grieve SM, Galatzer-Levy I, Fox PT, Etkin A. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 2015; 72:305-15. [PMID: 25651064 PMCID: PMC4791058 DOI: 10.1001/jamapsychiatry.2014.2206] [Citation(s) in RCA: 864] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IMPORTANCE Psychiatric diagnoses are currently distinguished based on sets of specific symptoms. However, genetic and clinical analyses find similarities across a wide variety of diagnoses, suggesting that a common neurobiological substrate may exist across mental illness. OBJECTIVE To conduct a meta-analysis of structural neuroimaging studies across multiple psychiatric diagnoses, followed by parallel analyses of 3 large-scale healthy participant data sets to help interpret structural findings in the meta-analysis. DATA SOURCES PubMed was searched to identify voxel-based morphometry studies through July 2012 comparing psychiatric patients to healthy control individuals for the meta-analysis. The 3 parallel healthy participant data sets included resting-state functional magnetic resonance imaging, a database of activation foci across thousands of neuroimaging experiments, and a data set with structural imaging and cognitive task performance data. DATA EXTRACTION AND SYNTHESIS Studies were included in the meta-analysis if they reported voxel-based morphometry differences between patients with an Axis I diagnosis and control individuals in stereotactic coordinates across the whole brain, did not present predominantly in childhood, and had at least 10 studies contributing to that diagnosis (or across closely related diagnoses). The meta-analysis was conducted on peak voxel coordinates using an activation likelihood estimation approach. MAIN OUTCOMES AND MEASURES We tested for areas of common gray matter volume increase or decrease across Axis I diagnoses, as well as areas differing between diagnoses. Follow-up analyses on other healthy participant data sets tested connectivity related to regions arising from the meta-analysis and the relationship of gray matter volume to cognition. RESULTS Based on the voxel-based morphometry meta-analysis of 193 studies comprising 15 892 individuals across 6 diverse diagnostic groups (schizophrenia, bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety), we found that gray matter loss converged across diagnoses in 3 regions: the dorsal anterior cingulate, right insula, and left insula. By contrast, there were few diagnosis-specific effects, distinguishing only schizophrenia and depression from other diagnoses. In the parallel follow-up analyses of the 3 independent healthy participant data sets, we found that the common gray matter loss regions formed a tightly interconnected network during tasks and at resting and that lower gray matter in this network was associated with poor executive functioning. CONCLUSIONS AND REVELANCE We identified a concordance across psychiatric diagnoses in terms of integrity of an anterior insula/dorsal anterior cingulate-based network, which may relate to executive function deficits observed across diagnoses. This concordance provides an organizing model that emphasizes the importance of shared neural substrates across psychopathology, despite likely diverse etiologies, which is currently not an explicit component of psychiatric nosology.
Collapse
Affiliation(s)
- Madeleine Goodkind
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Simon B. Eickhoff
- Institute for Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany4Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Desmond J. Oathes
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Ying Jiang
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Andrew Chang
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Laura B. Jones-Hagata
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Brissa N. Ortega
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Yevgeniya V. Zaiko
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Erika L. Roach
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| | - Mayuresh S. Korgaonkar
- Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School–Westmead, Sydney, Australia6Sydney Translational Imaging Laboratory, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Stuart M. Grieve
- Brain Dynamics Centre, Westmead Millennium Institute and Sydney Medical School–Westmead, Sydney, Australia6Sydney Translational Imaging Laboratory, Sydney Medical School, University of Sydney, Sydney, Australia
| | | | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio9South Texas Veterans Health Care System, San Antonio10School of Humanities, University of Hong Kong, Hong Kong, China11State Key Laboratory for Brain and Cognitive Scienc
| | - Amit Etkin
- Veterans Affairs Palo Alto Healthcare System and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, California2Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford
| |
Collapse
|
20
|
Prenatal exposure to a novel antipsychotic quetiapine: Impact on neuro‐architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats. Int J Dev Neurosci 2015; 42:59-67. [DOI: 10.1016/j.ijdevneu.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 01/28/2023] Open
|
21
|
Abstract
Glia are starting to be accepted as the equal of neurons. Their impact on intelligence, environmental enrichment, and cerebral dominance forms the basis for understanding the role of glia in stress. Along with neurons, astrocytes, microglia, NG2 cells, and oligodendrocytes all contribute. Glia can even be protective against drug abuse. Glial effects on depression, mood disorders and schizophrenia are reviewed.
Collapse
|
22
|
Hercher C, Chopra V, Beasley CL. Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci 2014; 39:376-85. [PMID: 24936776 PMCID: PMC4214872 DOI: 10.1503/jpn.130277] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brain imaging studies suggest that volume reductions and compromised white matter integrity occur in schizophrenia and bipolar disorder (BD). However, the cellular correlates have not yet been identified. To address this issue we assessed oligodendrocyte, astrocyte and microglial populations in postmortem white matter from schizophrenia, BD and nonpsychiatric control samples. METHODS The density, areal fraction and spatial distribution of glial fibrillary acidic protein (GFAP)-expressing astrocytes and ionized calcium-binding adaptor molecule-1 (IBA-1)-expressing microglia as well as the density, nuclear size and spatial distribution of Nissl-stained oligodendrocytes were quantified in postmortem white matter adjacent to the dorsolateral prefrontal cortex (Brodmann area 9) in schizophrenia, BD and control samples (n = 20). In addition, the oligodendrocyte-associated proteins myelin basic protein and 2,3-cyclic-nucleotide 3-phosphodiesterase (CNPase) were quantified in the same samples by enzyme-linked immunosorbent assay and immunoblotting. RESULTS Oligodendrocyte density (p = 0.012) and CNPase protein levels (p = 0.038) differed between groups, being increased in BD compared with control samples. The GFAP area fraction (p = 0.05) and astrocyte spatial distribution (p = 0.040) also differed between groups, reflecting decreased area fraction and increased cell clustering in both schizophrenia and BD samples. LIMITATIONS Oligodendrocytes were identified using morphological criteria. CONCLUSION This study provides evidence for glial pathology in prefrontal white matter in schizophrenia and BD. Changes in oligodendrocyte and astrocyte populations in white matter in the major psychiatric disorders may reflect disruptions in structural or metabolic support of axons.
Collapse
Affiliation(s)
| | | | - Clare L. Beasley
- Correspondence to: C.L. Beasley, BC Mental Health and Addictions Research Institute, A3 115-938 West 28 Ave., Vancouver BC V5Z 4H4;
| |
Collapse
|
23
|
Catts VS, Wong J, Fillman SG, Fung SJ, Shannon Weickert C. Increased expression of astrocyte markers in schizophrenia: Association with neuroinflammation. Aust N Z J Psychiatry 2014; 48:722-34. [PMID: 24744400 DOI: 10.1177/0004867414531078] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE While schizophrenia may have a progressive component, the evidence for neurodegenerative processes as indicated by reactive astrocytes is inconclusive. We recently identified a subgroup of individuals with schizophrenia with increased expression of inflammatory markers in prefrontal cortex, and hypothesized that this subgroup would also have reactive astrocytes. METHOD We measured glial fibrillary acidic protein (GFAP) mRNA by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) and protein levels by immunoblotting in grey matter homogenate from 37 individuals with schizophrenia and 37 unaffected controls. We examined the morphology of GFAP-positive astrocytes in immunostained sections of middle frontal gyrus. We tested if GFAP expression or astrocyte morphology were altered in people with schizophrenia with increased expression of inflammatory markers. We used RNA-Seq data on a subset of patients and controls (n=20/group) to ascertain whether mRNA transcripts associated with astrogliosis were elevated in the individuals with active neuroinflammation. RESULTS GFAP (mRNA and protein) levels and astrocyte morphology were not significantly different between people with schizophrenia and controls overall. However, individuals with schizophrenia with neuroinflammation had increased expression of GFAP mRNA (t(33)=2.978, p=0.005), hypertrophic astrocyte morphology (χ(2)(2)=6.281, p=0.043), and statistically significant elevated expression of three mRNA transcripts previously associated with astrogliosis. CONCLUSIONS We found clear evidence of astrogliosis in a subset of people with schizophrenia. We suggest that the lack of astrogliosis reported in previous studies may be due to cohort differences in aetiopathology, illness stage, treatment exposure, or a failure to examine subsets of people with schizophrenia.
Collapse
Affiliation(s)
- Vibeke Sørensen Catts
- Schizophrenia Research Institute, Sydney, Australia Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jenny Wong
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Stu Gregory Fillman
- Schizophrenia Research Institute, Sydney, Australia Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Samantha Jane Fung
- Schizophrenia Research Institute, Sydney, Australia Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
24
|
Vernon AC, Crum WR, Lerch JP, Chege W, Natesan S, Modo M, Cooper JD, Williams SCR, Kapur S. Reduced cortical volume and elevated astrocyte density in rats chronically treated with antipsychotic drugs-linking magnetic resonance imaging findings to cellular pathology. Biol Psychiatry 2014; 75:982-90. [PMID: 24143881 DOI: 10.1016/j.biopsych.2013.09.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Increasing evidence suggests that antipsychotic drugs (APD) might affect brain structure directly, particularly the cerebral cortex. However, the precise anatomical loci of these effects and their underlying cellular basis remain unclear. METHODS With ex vivo magnetic resonance imaging in rats treated chronically with APDs, we used automated analysis techniques to map the regions that show maximal impact of chronic (8 weeks) treatment with either haloperidol or olanzapine on the rat cortex. Guided by these imaging findings, we undertook a focused postmortem investigation with stereology. RESULTS We identified decreases in the volume and thickness of the anterior cingulate cortex (ACC) after chronic APD treatment, regardless of the APD administered. Postmortem analysis confirmed these volumetric findings and demonstrated that chronic APD treatment had no effect on the total number of neurons or S100β+ astrocytes in the ACC. In contrast, an increase in the density of these cells was observed. CONCLUSIONS This study demonstrates region-specific structural effects of chronic APD treatment on the rat cortex, primarily but not exclusively localized to the ACC. At least in the rat, these changes are not due to a loss of either neurons or astrocytes and are likely to reflect a loss of neuropil. Although caution needs to be exerted when extrapolating results from animals to patients, this study highlights the power of this approach to link magnetic resonance imaging findings to their histopathological origins.
Collapse
Affiliation(s)
| | - William R Crum
- Department of Neuroimaging, Centre for Neuroimaging Sciences
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | - Michel Modo
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry
| | - Jonathan D Cooper
- Department of Neuroscience, Centre for the Cellular Basis of Behaviour, The James Black Centre, King's College London, Institute of Psychiatry
| | | | | |
Collapse
|
25
|
Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev 2014; 42:132-47. [PMID: 24603026 DOI: 10.1016/j.neubiorev.2014.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Abstract
The question of whether BD is primarily a developmental disorder or a progressive, neurodegenerative disorder remains unresolved. Here, we review the morphometric postmortem and neuroimaging literature relevant to the neuropathology of bipolar disorder (BD). We focus on the medial prefrontal cortex (mPFC) network, a key system in the regulation of emotional, behavioral, endocrine, and innate immunological responses to stress. We draw four main conclusions: the mPFC is characterized by (1) a decrease in volume, (2) reductions in neuronal size, and/or changes in neuronal density, (3) reductions in glial cell density, and (4) changes in gene expression. These data suggest the presence of dendritic atrophy of neurons and the loss of oligodendroglial cells in BD, although some data additionally suggest a reduction in the cell counts of specific subpopulations of GABAergic interneurons. Based on the weight of the postmortem and neuroimaging literature discussed herein, we favor a complex hypothesis that BD primarily constitutes a developmental disorder, but that additional, progressive, histopathological processes also are associated with recurrent or chronic illness. Conceivably BD may be best conceptualized as a progressive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan B Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA; Faculty of Community Medicine, University of Tulsa, Tulsa, OK, USA.
| | - Joseph L Price
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA; Janssen Pharmaceuticals of Johnson & Johnson, Inc., Titusville, NJ, USA
| |
Collapse
|
26
|
Bustillo JR, Chen H, Jones T, Lemke N, Abbott C, Qualls C, Canive J, Gasparovic C. Increased glutamine in patients undergoing long-term treatment for schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry 2014; 71:265-72. [PMID: 24402128 PMCID: PMC8185982 DOI: 10.1001/jamapsychiatry.2013.3939] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
IMPORTANCE The N-methyl-d-aspartic acid receptor hypofunction model of schizophrenia predicts a paradoxical increase in synaptic glutamate release. In vivo measurement of glutamatergic neurotransmission in humans is challenging, but glutamine, the principal metabolite of synaptic glutamate, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). Although a few studies have measured glutamate, glutamine, and glutamine to glutamate ratio, it is not clear which of these 1H-MRS indices of glutamatergic neurotransmission is altered in schizophrenia. OBJECTIVE To examine glutamine, glutamate, and glutamine to glutamate ratio in the dorsal anterior cingulate, as well as their relationships with symptoms and cognition in schizophrenia. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional design using 3-T 1H-MRS in participants recruited from university-based psychiatric outpatient clinics who underwent neuroimaging at an affiliated research facility. Participants were 84 patients with a DSM-IV-TR diagnosis of schizophrenia and 81 psychiatrically healthy volunteers, matched in age, sex, ethnicity, and occupational level to the head of household of family of origin. MAIN OUTCOMES AND MEASURES Glutamine, glutamate, and glutamine to glutamate ratio. Also symptoms and cognition. RESULTS Glutamine was increased in the schizophrenia group (P = .01) as well as the glutamine to glutamate ratio (P = .007) but not glutamate (P = .89). Glutamine levels were positively correlated with severity of psychotic symptoms (P = .02). Choline was also increased in schizophrenia (P = .002). CONCLUSIONS AND RELEVANCE Elevated glutamine, which was directly related to psychotic symptoms, is consistent with increased glutamatergic synaptic release in schizophrenia, as predicted by the N-methyl-d-aspartic acid receptor hypofunction model. Further understanding the underlying mechanism of glutamatergic dysfunction in schizophrenia may lead to new pharmacological strategies to treat psychosis.
Collapse
Affiliation(s)
- Juan R. Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque; Department of Neurosciences, University of New Mexico, Albuquerque
| | - Hongji Chen
- Department of Psychiatry, University of New Mexico, Albuquerque
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque
| | - Nicholas Lemke
- Department of Psychiatry, University of New Mexico, Albuquerque
| | | | - Clifford Qualls
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque
| | - Jose Canive
- Department of Psychiatry, University of New Mexico, Albuquerque; Department of Neurosciences, University of New Mexico, Albuquerque; Veterans Administration Health Care System, Albuquerque, New Mexico
| | | |
Collapse
|
27
|
Kuswanto CN, Sum MY, Yang GL, Nowinski WL, McIntyre RS, Sim K. Increased body mass index makes an impact on brain white-matter integrity in adults with remitted first-episode mania. Psychol Med 2014; 44:533-541. [PMID: 23731622 DOI: 10.1017/s0033291713000858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Obesity is increasingly prevalent in bipolar disorder (BD) but data about the impact of elevated body mass index (BMI) on brain white-matter integrity in BD are sparse. Based on extant literature largely from structural magnetic resonance imaging (MRI) studies, we hypothesize that increased BMI is associated with decreased fractional anisotropy (FA) in the frontal, temporal, parietal and occipital brain regions early in the course of BD. METHOD A total of 26 euthymic adults (12 normal weight and 14 overweight/obese) with remitted first-episode mania (FEM) and 28 controls (13 normal weight and 15 overweight/obese) matched for age, handedness and years of education underwent structural MRI and diffusion tensor imaging scans. RESULTS There are significant effects of diagnosis by BMI interactions observed especially in the right parietal lobe (adjusted F(1,48) = 5.02, p = 0.030), occipital lobe (adjusted F(1,48) = 10.30, p = 0.002) and temporal lobe (adjusted F(1,48) = 7.92, p = 0.007). Specifically, decreased FA is found in the right parietal (F(1,48) = 5.864, p = 0.023) and occipital lobes (F(1,48) = 4.397, p = 0.047) within overweight/obese patients compared with normal-weight patients with FEM. Compared with overweight/obese controls, decreased FA is observed in right parietal (F(1,48) = 6.708, p = 0.015), temporal (F(1,48) = 10.751, p = 0.003) and occipital (F(1,48) = 9.531, p = 0.005) regions in overweight/obese patients with FEM. CONCLUSIONS Our findings suggest that increased BMI affects temporo-parietal-occipital brain white-matter integrity in FEM. This highlights the need to further elucidate the relationship between obesity and other neural substrates (including subcortical changes) in BD which may clarify brain circuits subserving the association between obesity and clinical outcomes in BD.
Collapse
Affiliation(s)
- C N Kuswanto
- Research Department, Institute of Mental Health, Singapore
| | - M Y Sum
- Research Department, Institute of Mental Health, Singapore
| | - G L Yang
- Biomedical Imaging Laboratory, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - W L Nowinski
- Biomedical Imaging Laboratory, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | - R S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, ON, Canada
| | - K Sim
- Research Department, Institute of Mental Health, Singapore
| |
Collapse
|
28
|
Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation 2013; 10:43. [PMID: 23547920 PMCID: PMC3626880 DOI: 10.1186/1742-2094-10-43] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022] Open
Abstract
Multiple lines of evidence support the pathogenic role of neuroinflammation in psychiatric illness. While systemic autoimmune diseases are well-documented causes of neuropsychiatric disorders, synaptic autoimmune encephalitides with psychotic symptoms often go under-recognized. Parallel to the link between psychiatric symptoms and autoimmunity in autoimmune diseases, neuroimmunological abnormalities occur in classical psychiatric disorders (for example, major depressive, bipolar, schizophrenia, and obsessive-compulsive disorders). Investigations into the pathophysiology of these conditions traditionally stressed dysregulation of the glutamatergic and monoaminergic systems, but the mechanisms causing these neurotransmitter abnormalities remained elusive. We review the link between autoimmunity and neuropsychiatric disorders, and the human and experimental evidence supporting the pathogenic role of neuroinflammation in selected classical psychiatric disorders. Understanding how psychosocial, genetic, immunological and neurotransmitter systems interact can reveal pathogenic clues and help target new preventive and symptomatic therapies.
Collapse
Affiliation(s)
- Souhel Najjar
- Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
29
|
Castellano O, Arji M, Sancho C, Carro J, Riolobos AS, Molina V, Gómez-Nieto R, de Anchieta de Castro E Horta J, Herrero-Turrión MJ, López DE. Chronic administration of risperidone in a rat model of schizophrenia: a behavioural, morphological and molecular study. Behav Brain Res 2013; 242:178-90. [PMID: 23291154 DOI: 10.1016/j.bbr.2012.12.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 01/04/2023]
Abstract
In the present work we analyzed the effect of the chronic administration of risperidone (2mg/kg over 65 days) on behavioural, morphological and molecular aspects in an experimental model of schizophrenia obtained by bilateral injection of ibotenic acid into the ventral hippocampus of new-born rats. Our results show that during their adult lives the animals with hippocampal lesions exhibit different alterations, mainly at behavioural level and in the gene expression of dopamine D(2) and 5-HT(2A) receptors. However, at morphological level the study performed on the prefrontal cortex did not reveal any alterations in either the thickness or the number of cells immunoreactive for c-Fos, GFAP, CBP or PV. Overall, risperidone administration elicited a trend towards the recovery of the values previously altered by the hippocampal lesion, approaching the values seen in the animals without lesions. It may be concluded that the administration of risperidone in the schizophrenia model employed helps to improve the altered functions, with no significant negative effects.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Antipsychotic Agents/administration & dosage
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Brain/metabolism
- Brain/pathology
- CREB-Binding Protein/metabolism
- Cell Count
- Disease Models, Animal
- Drug Administration Schedule
- Excitatory Amino Acid Agonists/toxicity
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Female
- Gene Expression Regulation/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Grooming/drug effects
- Hippocampus/drug effects
- Hippocampus/physiology
- Ibotenic Acid/toxicity
- Male
- Parvalbumins/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Risperidone/administration & dosage
- Schizophrenia/chemically induced
- Schizophrenia/drug therapy
- Schizophrenia/physiopathology
Collapse
Affiliation(s)
- O Castellano
- Institute for Neuroscience of Castilla y León, Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Effects of antipsychotics on dentate gyrus stem cell proliferation and survival in animal models: a critical update. Neural Plast 2012; 2012:832757. [PMID: 23150836 PMCID: PMC3488410 DOI: 10.1155/2012/832757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is a complex psychiatric disorder. Although a number of different hypotheses have been developed to explain its aetiopathogenesis, we are far from understanding it. There is clinical and experimental evidence indicating that neurodevelopmental factors play a major role. Disturbances in neurodevelopment might result in alterations of neuroanatomy and neurochemistry, leading to the typical symptoms observed in schizophrenia. The present paper will critically address the neurodevelopmental models underlying schizophrenia by discussing the effects of typical and atypical antipsychotics in animal models. We will specifically discuss the vitamin D deficiency model, the poly I:C model, the ketamine model, and the postnatal ventral hippocampal lesion model, all of which reflect core neurodevelopmental issues underlying schizophrenia onset.
Collapse
|
31
|
Bartzokis G, Lu PH, Raven EP, Amar CP, Detore NR, Couvrette AJ, Mintz J, Ventura J, Casaus LR, Luo JS, Subotnik KL, Nuechterlein KH. Impact on intracortical myelination trajectory of long acting injection versus oral risperidone in first-episode schizophrenia. Schizophr Res 2012; 140:122-8. [PMID: 22809684 PMCID: PMC3567927 DOI: 10.1016/j.schres.2012.06.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022]
Abstract
CONTEXT Imaging and post-mortem studies suggest that frontal lobe intracortical myelination is dysregulated in schizophrenia (SZ). Prior MRI studies suggested that early in the treatment of SZ, antipsychotic medications initially increase frontal lobe intracortical myelin (ICM) volume, which subsequently declines prematurely in chronic stages of the disease. Insofar as the trajectory of ICM decline in chronic SZ is due to medication non-adherence or pharmacokinetics, it may be modifiable by long acting injection (LAI) formulations. OBJECTIVES Assess the effect of risperidone formulation on the ICM trajectory during a six-month randomized trial of LAI (RLAI) versus oral (RisO) in first-episode SZ subjects. DESIGN Two groups of SZ subjects (RLAI, N=9; and RisO, N=13) matched on pre-randomization oral medication exposure were prospectively examined at baseline and 6 months later, along with 12 healthy controls (HCs). Frontal lobe ICM volume was assessed using inversion recovery (IR) and proton density (PD) MRI images. Medication adherence was tracked. MAIN OUTCOME MEASURE ICM volume change scores were adjusted for the change in the HCs. RESULTS ICM volume increased significantly (p=.005) in RLAI and non-significantly (p=.39) in the RisO groups compared with that of the healthy controls. A differential between-group treatment effect was at a trend level (p=.093). SZ subjects receiving RLAI had better medication adherence and more ICM increases (chi-square p<.05). CONCLUSIONS The results suggest that RLAI may promote ICM development in first-episode SZ patients. Better adherence and/or pharmacokinetics provided by LAI may modify the ICM trajectory. In vivo MRI myelination measures can help clarify pharmacotherapeutic mechanisms of action.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Erika P. Raven
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Chetan P. Amar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Nicole R. Detore
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alexander J. Couvrette
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laurie R. Casaus
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John S. Luo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Department of Psychology, UCLA, Los Angeles, California
| |
Collapse
|
32
|
Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62:2137-53. [PMID: 22306524 PMCID: PMC3586811 DOI: 10.1016/j.neuropharm.2012.01.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Current psychiatric diagnostic schema segregate symptom clusters into discrete entities, however, large proportions of patients suffer from comorbid conditions that fit neither diagnostic nor therapeutic schema. Similarly, psychotropic treatments ranging from lithium and antipsychotics to serotonin reuptake inhibitors (SSRIs) and acetylcholinesterase inhibitors have been shown to be efficacious in a wide spectrum of psychiatric disorders ranging from autism, schizophrenia (SZ), depression, and bipolar disorder (BD) to Alzheimer's disease (AD). This apparent lack of specificity suggests that psychiatric symptoms as well as treatments may share aspects of pathophysiology and mechanisms of action that defy current symptom-based diagnostic and neuron-based therapeutic schema. A myelin-centered model of human brain function can help integrate these incongruities and provide novel insights into disease etiologies and treatment mechanisms. Available data are integrated herein to suggest that widely used psychotropic treatments ranging from antipsychotics and antidepressants to lithium and electroconvulsive therapy share complex signaling pathways such as Akt and glycogen synthase kinase-3 (GSK3) that affect myelination, its plasticity, and repair. These signaling pathways respond to neurotransmitters, neurotrophins, hormones, and nutrition, underlie intricate neuroglial communications, and may substantially contribute to the mechanisms of action and wide spectra of efficacy of current therapeutics by promoting myelination. Imaging and genetic technologies make it possible to safely and non-invasively test these hypotheses directly in humans and can help guide clinical trial efforts designed to correct myelination abnormalities. Such efforts may provide insights into novel avenues for treatment and prevention of some of the most prevalent and devastating human diseases.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Moehle MS, Luduena RF, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Regional differences in expression of β-tubulin isoforms in schizophrenia. Schizophr Res 2012; 135:181-6. [PMID: 22264600 PMCID: PMC3774314 DOI: 10.1016/j.schres.2011.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/28/2023]
Abstract
A growing body of evidence suggests that abnormal elements of the cytoskeleton may be associated with the pathophysiology of schizophrenia. Isoforms of a major cytoskeleton protein, β-tubulin, were recently demonstrated to have distinct roles in neuronal differentiation and cell viability. For these reasons, we tested the hypothesis that there are differences in the expression of β-tubulin isoforms (βI-βIV) in the brain in schizophrenia, using western blot analysis in an elderly group of subjects with this illness and a control group. We found that βI-tubulin protein expression was decreased in the anterior cingulate cortex and increased in the dorsolateral prefrontal cortex, but not changed in superior temporal gyrus or hippocampus in schizophrenia. Our data supports the growing body of evidence suggesting abnormalities of the cytoskeleton in schizophrenia.
Collapse
Affiliation(s)
- Mark S. Moehle
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States,Neuroscience Graduate Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Richard F. Luduena
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States,Corresponding author at. Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham School of Medicine, Civitan International Research Center, Room 576A, 1530 3rd Avenue South, Birmingham, AL 35294, United States. Tel.: +1 205 996 6285; fax: +1 205 975 4879. (R.E. McCullumsmith)
| |
Collapse
|
34
|
Orikabe L, Yamasue H, Inoue H, Takayanagi Y, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y, Kasai K. Reduced amygdala and hippocampal volumes in patients with methamphetamine psychosis. Schizophr Res 2011; 132:183-9. [PMID: 21784619 DOI: 10.1016/j.schres.2011.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 01/08/2023]
Abstract
The similarity between psychotic symptoms in patients with schizophrenia such as hallucinations and delusions and those caused by administration of methamphetamine has been accepted. While the etiology of schizophrenia remains unclear, methamphetamine induced psychosis, which is obviously occurred by methamphetamine administration, had been widely considered as a human pharmaceutical model of exogenous psychosis. Although volume reductions in medial temporal lobe structure in patients with schizophrenia have repeatedly been reported, those in patients with methamphetamine psychosis have not yet been clarified. Magnetic resonance images (MRI) were obtained from 20 patients with methamphetamine psychosis and 20 age, sex, parental socio-economic background, and IQ matched healthy controls. A reliable manual tracing methodology was employed to measure the gray matter volume of the amygdala and the hippocampus from MRIs. Significant gray matter volume reductions of both the amygdala and hippocampus were found bilaterally in the subjects with methamphetamine psychosis compared with the controls. The degree of volume reduction was significantly greater in the amygdala than in hippocampus. While the total gray, white matter and intracranial volumes were also significantly smaller-than-normal in the patients; the regional gray matter volume reductions in these medial temporal structures remained statistically significant even after these global brain volumes being controlled. The prominent volume reduction in amygdala rather than that in hippocampus could be relatively specific characteristics of methamphetamine psychosis, since previous studies have shown significant volume reductions less frequently in amygdala than in hippocampus of the other psychosis such as schizophrenia.
Collapse
Affiliation(s)
- Lina Orikabe
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bartzokis G, Lu PH, Amar CP, Raven EP, Detore NR, Altshuler LL, Mintz J, Ventura J, Casaus LR, Luo JS, Subotnik KL, Nuechterlein KH. Long acting injection versus oral risperidone in first-episode schizophrenia: differential impact on white matter myelination trajectory. Schizophr Res 2011; 132:35-41. [PMID: 21767934 PMCID: PMC3172389 DOI: 10.1016/j.schres.2011.06.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022]
Abstract
CONTEXT Imaging and post-mortem studies provide converging evidence that subjects with schizophrenia (SZ) have a dysregulated trajectory of frontal lobe myelination. Prior MRI studies suggested that early in treatment of SZ, antipsychotic medications initially increase frontal lobe white matter (WM) volume, which subsequently declines prematurely in chronic stages of the disease. Insofar as the trajectory of WM decline associated with chronic disease may be due to medication non-adherence, it may be modifiable by long acting injection (LAI) formulations. OBJECTIVES Examine the impact of antipsychotic formulation on the myelination trajectory during a randomized six-month trial of LAI risperidone (RLAI) versus oral risperidone (RisO) in first-episode SZ subjects. DESIGN Two groups of SZ subjects (RLAI, N=11; and RisO, N=13) that were matched in pre-randomization oral medication exposure and 14 healthy controls (HCs) were prospectively examined. Frontal lobe WM volume was estimated using inversion recovery (IR) MRI images. A brief neuropsychological battery that focused on reaction times was performed at the end of the study. MAIN OUTCOME MEASURE WM volume change scores. RESULTS WM volume remained stable in the RLAI and decreased significantly in the RisO groups resulting in a significant differential treatment effect, while the HC had a WM change intermediate and not significantly different from the two SZ groups. WM increase was associated with faster reaction times in tests involving frontal lobe function. CONCLUSIONS The results suggest that RLAI may improve the trajectory of myelination in first-episode patients and have a beneficial impact on cognitive performance. Better adherence provided by LAI may underlie the modified trajectory of myelin development. In vivo MRI biomarkers of myelination can help clarify mechanisms of action of treatment interventions.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol 2011; 14:1075-89. [PMID: 21205433 DOI: 10.1017/s146114571000146x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite extensive research in the last decades, the pathophysiology of bipolar disorder (BD) remains unclear. Access to post-mortem brain tissue of subjects who had BD offers an opportunity to investigate neurobiology and this approach has led to some progress, particularly, due to the availability of more sophisticated molecular and cellular biological methodologies and well characterized brain collections over the past decade. Here we review the findings of morphometric post-mortem studies in BD and interpret them in the context of a potential physiopathological mechanism involving oxidative stress and apoptosis. A review of the literature was conducted to identify post-mortem studies that investigated cellular changes such as number, density and size of neurons and glia, in brains of subjects with BD. We found decreased density of neurons and glia and decreased size of neurons in frontal and subcortical areas of the brain. Based on recent studies that found evidence of increased apoptosis and oxidative stress in BD, we hypothesize that the cell abnormalities described are due to an increase in the apoptotic process that can be triggered, through its intrinsic pathway, by the existence of an exacerbated production of reactive oxygen species and oxidative damage in the disease.
Collapse
|
37
|
Stephenson DT, O'Neill SM, Narayan S, Tiwari A, Arnold E, Samaroo HD, Du F, Ring RH, Campbell B, Pletcher M, Vaidya VA, Morton D. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Mol Autism 2011; 2:7. [PMID: 21575186 PMCID: PMC3135520 DOI: 10.1186/2040-2392-2-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 05/16/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. METHODS Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). RESULTS In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and NeuroD immunoreactive cells in the subgranular zone of the dentate gyrus, and a marked reduction in the number of 5-bromo-2'-deoxyuridine (BrdU) positive progenitors. Furthermore, a significant and profound reduction in BDNF mRNA was seen in the BTBR dentate gyrus. No significant differences were seen in the expression of AchE, mossy fiber synapses or immunoreactivities of microtubule-associated protein MAP2, parvalbumin and glutamate decarboxylase GAD65 or GAD67 isoforms. CONCLUSIONS We documented modest and selective alterations in glia, neurons and synapses in BTBR forebrain, along with reduced neurogenesis in the adult hippocampus. Of all markers examined, the most distinctive changes were seen in the neurodevelopmental proteins NG2, PSA-NCAM, NeuroD and DCX. Our results are consistent with aberrant development of the nervous system in BTBR mice, and may reveal novel substrates to link callosal abnormalities and autistic behaviors. The changes that we observed in the BTBR mice suggest potential novel therapeutic strategies for intervention in autism spectrum disorders.
Collapse
Affiliation(s)
- Diane T Stephenson
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Sharon M O'Neill
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Sapna Narayan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005 India
| | - Aadhya Tiwari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005 India
| | - Elizabeth Arnold
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Harry D Samaroo
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Fu Du
- FD Neurotechnologies, Inc, Ellicott City, MD 21041, USA
| | - Robert H Ring
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Brian Campbell
- Neuroscience Biology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Mathew Pletcher
- Compound Safety Prediction Group, Pfizer Global Research & Development, Groton, CT 06340, USA
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005 India
| | - Daniel Morton
- Toxicologic Pathology, Pfizer Global Research and Development, 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| |
Collapse
|
38
|
Guerreiro-Diniz C, de Melo Paz RB, Hamad MHS, Filho CS, Martins AAV, Neves HB, de Souza Cunha ED, Alves GC, de Sousa LA, Dias IA, Trévia N, de Sousa AA, Passos A, Lins N, Torres Neto JB, da Costa Vasconcelos PF, Picanço-Diniz CW. Hippocampus and dentate gyrus of the Cebus monkey: Architectonic and stereological study. J Chem Neuroanat 2010; 40:148-59. [DOI: 10.1016/j.jchemneu.2010.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 01/26/2023]
|
39
|
Abstract
BACKGROUND People with schizophrenia are often found to have smaller brains and larger brain ventricles than normal, but the role of antipsychotic medication remains unclear. METHOD We conducted a systematic review of magnetic resonance imaging (MRI) studies. We included longitudinal studies of brain changes in patients taking antipsychotic drugs and we examined studies of antipsychotic-naive patients for comparison purposes. RESULTS Fourteen out of 26 longitudinal studies showed a decline in global brain or grey-matter volume or an increase in ventricular or cerebrospinal fluid (CSF) volume during the course of drug treatment, including the largest studies conducted. The frontal lobe was most consistently affected, but overall changes were diffuse. One large study found different degrees of volume loss with different antipsychotics, and another found that volume changes were associated with taking medication compared with taking none. Analyses of linear associations between drug exposure and brain volume changes produced mixed results. Five out of 21 studies of patients who were drug naive, or had only minimal prior treatment, showed some differences from controls in volumes of interest. No global differences were reported in three studies of drug-naive patients with long-term illness. Studies of high-risk groups have not demonstrated differences from controls in global or lobar brain volumes. CONCLUSIONS Some evidence points towards the possibility that antipsychotic drugs reduce the volume of brain matter and increase ventricular or fluid volume. Antipsychotics may contribute to the genesis of some of the abnormalities usually attributed to schizophrenia.
Collapse
Affiliation(s)
- J Moncrieff
- Department of Mental Health Sciences, University College London, UK.
| | | |
Collapse
|
40
|
Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 2010; 35:1943-51. [PMID: 20463658 PMCID: PMC3055632 DOI: 10.1038/npp.2010.68] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.
Collapse
|
41
|
Altshuler LL, Abulseoud OA, Foland-Ross L, Bartzokis G, Chang S, Mintz J, Hellemann G, Vinters HV. Amygdala astrocyte reduction in subjects with major depressive disorder but not bipolar disorder. Bipolar Disord 2010; 12:541-9. [PMID: 20712756 DOI: 10.1111/j.1399-5618.2010.00838.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Several magnetic resonance imaging studies have found changes in amygdala volumes in adults with mood disorders. The cellular basis for these changes has not been explored in detail. Specifically, it is not known whether differences in the density and/or volume of neurons or glial cells contribute to tissue volume changes seen on magnetic resonance images. METHODS Postmortem amygdala samples were obtained from the Stanley Foundation Neuropathology Consortium from subjects diagnosed with bipolar disorder (n = 10), major depressive disorder (n = 11), and schizophrenia (n = 9), and from normal controls (n = 14). Samples were first stained with glial fibrillary acidic protein (GFAP) and counter-stained with hematoxylin to ascertain neuron and glia (astrocyte) densities. RESULTS No significant differences in neuronal densities were found between groups. However, a reduction in the density of GFAP immunoreactive astrocytes was observed in the amygdala of subjects with major depressive disorder compared to the bipolar disorder, schizophrenia, and normal control postmortem samples. CONCLUSIONS A decrease in density of GFAP immunoreactive astrocytes in the amygdala of depressed subjects is consistent with prior histologic reports and might contribute to amygdala volume reductions reported in several in vivo neuroimaging studies.
Collapse
Affiliation(s)
- Lori L Altshuler
- VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6968, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Selemon LD, Begović A, Williams GV, Castner SA. Reversal of neuronal and cognitive consequences of amphetamine sensitization following chronic treatment with a D1 antagonist. Pharmacol Biochem Behav 2010; 96:325-32. [PMID: 20600252 DOI: 10.1016/j.pbb.2010.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/28/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Neuroplasticity is a key factor in restoration of brain function following neuropathology associated with disease or drug exposure. Here we examined the potential for chronic treatment with the selective D1 receptor antagonist SCH39166 to reverse the profound and enduring cognitive impairment associated with amphetamine (AMPH) sensitization in the nonhuman primate and to stimulate re-growth of atrophied pyramidal dendrites in the dorsolateral prefrontal cortex of these animals. Four rhesus monkeys with sustained cognitive impairment (>1year following AMPH sensitization) were treated for up to 8months with SCH39166. Cognitive testing was performed before, during, and for up to 1(1/2) year following treatment. Significant improvement in working memory performance was observed only after cessation of the D1 antagonist treatment but then was sustained for the duration of the post-treatment testing period. Postmortem quantitative assessment of Golgi-impregnated pyramidal neurons in BA9 showed that apical dendritic length and trunk spine density were increased in D1 antagonist treated monkeys relative to AMPH-sensitized and AMPH-naïve monkeys. These findings, which suggest that the deleterious consequences of AMPH sensitization can be reversed by modulation of D1 receptor signaling, have implications for treating the underlying neural basis of cognitive deficits in both schizophrenia and substance abuse.
Collapse
Affiliation(s)
- Lynn D Selemon
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-600, RJ, Brazil
| | | | | | | |
Collapse
|
43
|
Marcuzzo S, Dutra MF, Stigger F, do Nascimento PS, Ilha J, Kalil-Gaspar PI, Achaval M. Different effects of anoxia and hind-limb immobilization on sensorimotor development and cell numbers in the somatosensory cortex in rats. Brain Dev 2010; 32:323-31. [PMID: 19467580 DOI: 10.1016/j.braindev.2009.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/10/2009] [Accepted: 04/25/2009] [Indexed: 12/19/2022]
Abstract
Cerebral palsy (CP) is a group of movement and posture disorders attributed to insults in the developing brain. In rats, CP-like motor deficits can be induced by early hind-limb sensorimotor restriction (SR; from postnatal days P2 to P28), associated or otherwise with perinatal anoxia (PA; on P0 and P1). In this study, we address the question of whether PA, early SR or a combination of both produces alterations to sensorimotor development. Developmental milestones (surface righting, cliff aversion, stability on an inclined surface, proprioceptive placing, auditory startle, eye opening) were assessed daily from P3 to P14. Motor skills (horizontal ladder and beam walking) were evaluated weekly (from P31 to P52). In addition, on P52, the thickness of the somatosensory (S1) and cerebellar cortices, and corpus callosum were measured, and the neuronal and glial cell numbers in S1 were counted. SR (with or without PA) significantly delayed the stability on an inclined surface and hastened the appearance of the placing reflex and impaired motor skills. No significant differences were found in the thickness measurements between the groups. Quantitative histology of S1 showed that PA, either alone or associated with SR, increased the number of glial cells, while SR alone reduced neuronal cell numbers. Finally, the combination of PA and SR increased the size of neuronal somata. We conclude that SR impairs the achievement of developmental milestones and motor skills. Moreover, both SR and PA induce histological alterations in the S1 cortex, which may contribute to sensorimotor deficits.
Collapse
Affiliation(s)
- Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Beasley CL, Honavar M, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the superior temporal white matter in schizophrenia, major depressive disorder and bipolar disorder. Schizophr Res 2009; 115:156-62. [PMID: 19833481 DOI: 10.1016/j.schres.2009.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/17/2009] [Accepted: 09/22/2009] [Indexed: 11/28/2022]
Abstract
Evidence from brain imaging studies indicates that white matter volume, density and fractional anisotropy may be altered in individuals with schizophrenia and bipolar disorder. However, the molecular correlates of these deficits remain unknown. In this study we performed a cytoarchitectural assessment of the white matter adjacent to the planum temporale (PT), an auditory association region located within the superior temporal gyrus, in subjects with schizophrenia, bipolar disorder, major depressive disorder and controls (15 subjects per group). Using two-dimensional measures, we recorded the cell density, distribution and size of all neurons and glial nuclei within this region. Glial density was lower in the schizophrenia group, relative to the control group. Neuronal density, neuronal size, and glial nuclear size did not differ between groups. No significant differences in neuronal clustering were observed in the patient groups. Further studies are required to examine whether the observed decrease in glial density within the superior temporal white matter in schizophrenia reflects a deficit in any individual glial cell population.
Collapse
Affiliation(s)
- Clare L Beasley
- Department of Neuropathology, Institute of Psychiatry, DeCrespigny Park, London SE5 8AF, UK.
| | | | | | | |
Collapse
|
45
|
Liu Q, Li B, Zhu HY, Wang YQ, Yu J, Wu GC. Clomipramine treatment reversed the glial pathology in a chronic unpredictable stress-induced rat model of depression. Eur Neuropsychopharmacol 2009; 19:796-805. [PMID: 19616923 DOI: 10.1016/j.euroneuro.2009.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/26/2009] [Accepted: 06/09/2009] [Indexed: 01/17/2023]
Abstract
Growing evidence indicates that glia pathology contributes to the pathophysiology and possibly the etiology of depression. The study investigates changes in behaviors and glial fibrillary associated protein (GFAP) in the rat hippocampus after chronic unpredictable stress (CUS), a rat model of depression. Furthermore, we studied the effects of clomipramine, one of tricyclic antidepressants (TCAs), known to modulate serotonin and norepinephrine uptake, on CUS-induced depressive-like behaviors and GFAP levels. Rats exposed to CUS showed behavioral deficits in physical state, open field test and forced swimming test and exhibited a significant decrease in GFAP expression in the hippocampus. Interestingly, the behavioral and GFAP expression changes induced by CUS were reversed by chronic treatment with the antidepressant clomipramine. The beneficial effects of clomipramine treatment on CUS-induced depressive-like behavior and GFAP expression provide further validation of our hypothesis that glial dysfunction contributes to the pathophysiology of depression and that glial elements may represent viable targets for new antidepressant drug development.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institutes of Brain Science, Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
46
|
Fornito A, Yücel M, Dean B, Wood SJ, Pantelis C. Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophr Bull 2009; 35:973-93. [PMID: 18436528 PMCID: PMC2728810 DOI: 10.1093/schbul/sbn025] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The anterior cingulate cortex (ACC) is a functionally heterogeneous region involved in diverse cognitive and emotional processes that support goal-directed behaviour. Structural magnetic resonance imaging (MRI) and neuropathological findings over the past two decades have converged to suggest abnormalities in the region may represent a neurobiological basis for many of the clinical manifestations of schizophrenia. However, while each approach offers complimentary information that can provide clues regarding underlying patholophysiological processes, the findings from these 2 fields are seldom integrated. In this article, we review structural neuroimaging and neuropathological studies of the ACC, focusing on the unique information they provide. The available imaging data suggest grey matter reductions in the ACC precede psychosis onset in some categories of high-risk individuals, show sub-regional specificity, and may progress with illness duration. The available post-mortem findings indicate these imaging-related changes are accompanied by reductions in neuronal, synaptic, and dendritic density, as well as increased afferent input, suggesting the grey matter differences observed with MRI arise from alterations in both neuronal and non-neuronal tissue compartments. We discuss the potential mechanisms that might facilitate integration of these findings and consider strategies for future research.
Collapse
Affiliation(s)
- Alex Fornito
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,ORYGEN Research Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Brian Dean
- The Rebecca L Cooper Research Laboratories, The Mental Health Research Institute, Parkville, Victoria, Australia,Departments of Pathology and Psychiatry, The University of Melbourne, Victoria, Australia,Department of Psychological Medicine, Monash University, Victoria, Australia
| | - Stephen J. Wood
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia,Howard Florey Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Bartzokis G, Lu PH, Stewart SB, Oluwadara B, Lucas AJ, Pantages J, Pratt E, Sherin JE, Altshuler LL, Mintz J, Gitlin MJ, Subotnik KL, Nuechterlein KH. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res 2009; 113:322-31. [PMID: 19616412 PMCID: PMC2862048 DOI: 10.1016/j.schres.2009.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
Abstract
CONTEXT Imaging and post-mortem studies provide converging evidence that patients with schizophrenia have a dysregulated developmental trajectory of frontal lobe myelination. The hypothesis that typical and atypical medications may differentially impact brain myelination in adults with schizophrenia was previously assessed with inversion recovery (IR) images. Increased white matter (WM) volume suggestive of increased myelination was detected in the patient group treated with an atypical antipsychotic compared to a typical one. OBJECTIVE In a follow-up reanalysis of MRI images from the original study, we used a novel method to assess whether the difference in WM volumes could be caused by a differential effect of medications on the intracortical myelination process. DESIGN, SETTING, AND PARTICIPANTS Two different male cohorts of healthy controls ranging in age from 18-35 years were compared to cohorts of subjects with schizophrenia who were treated with either oral risperidone (Ris) or fluphenazine decanoate (Fd). MAIN OUTCOME MEASURE A novel MRI method that combines the distinct tissue contrasts provided by IR and proton density (PD) images was used to estimate intracortical myelin (ICM) volume. RESULTS When compared with their pooled healthy control comparison group, the two groups of schizophrenic patients differed in the frontal lobe ICM measure with the Ris group having significantly higher volume. CONCLUSIONS The data suggest that in adults with schizophrenia antipsychotic treatment choice may be specifically and differentially impacting later-myelinating intracortical circuitry. In vivo MRI can be used to dissect subtle differences in brain tissue characteristics and thus help clarify the effect of pharmacologic treatments on developmental and pathologic processes.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6968, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Stephanie B. Stewart
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Bolanle Oluwadara
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Andrew J. Lucas
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Joanna Pantages
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Erika Pratt
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jonathan E. Sherin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Lori L. Altshuler
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California.,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- University of Texas Health Science Center at San Antonio, Department of Epidemiology and Biostatistics, San Antonio, Texas
| | - Michael J. Gitlin
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
48
|
Selemon LD, Begović A, Rakic P. Selective reduction of neuron number and volume of the mediodorsal nucleus of the thalamus in macaques following irradiation at early gestational ages. J Comp Neurol 2009; 515:454-64. [PMID: 19459221 PMCID: PMC2716797 DOI: 10.1002/cne.22078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons in the macaque brain arise from progenitors located near the cerebral ventricles in a temporally segregated manner such that lethal doses of ionizing irradiation, if administered over a discrete time interval, can deplete individual nuclei selectively. A previous study showed that neuron number in the dorsal lateral geniculate nucleus is reduced following early gestational exposure to x-irradiation (Algan and Rakic [1997] J. Comp. Neurol. 12:335-352). Here we examine whether similarly timed irradiation decreases neuron number in three associational thalamic nuclei: mediodorsal (MD), anterior, and pulvinar. Ten macaques were exposed to multiple doses of x-rays (total exposure (175-350 cGy) in early gestation (E33-E42) or midgestation (E70-E90); eight nonirradiated macaques were controls. Only the early-irradiated monkeys, not the midgestationally irradiated animals, exhibited deficits in whole-thalamic neuron (-15%) and glia numbers (-21%) compared with controls. Reduction of neuron number (-26%) and volume (-29%) was particularly pronounced in MD. In contrast, cell number and volume were not significantly decreased in the anterior or pulvinar nuclei following early gestational irradiation. Thus, reduced thalamic neuron number was associated specifically with irradiation in early gestation. Persistence of the thalamic neuronal deficit in adult animals indicates that prenatally deleted neurons had not been replenished during maturation or in adulthood. The selective reduction of MD neuron number also supports the protomap hypothesis that neurons of each thalamic nucleus originate sequentially from separate lines of neuronal stem cells (Rakic [1977a] J. Comp. Neurol. 176:23-52). The early gestationally irradiated macaque is discussed as a potentially useful model for studying the neurodevelopmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8001, USA.
| | | | | |
Collapse
|
49
|
Progressive brain structural changes mapped as psychosis develops in 'at risk' individuals. Schizophr Res 2009; 108:85-92. [PMID: 19138834 PMCID: PMC2670732 DOI: 10.1016/j.schres.2008.11.026] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Schizophrenia and related psychoses are associated with brain structural abnormalities. Recent findings in 'at risk' populations have identified progressive changes in various brain regions preceding illness onset, while changes especially in prefrontal and superior temporal regions have been demonstrated in first-episode schizophrenia patients. However, the timing of the cortical changes and their regional extent, relative to the emergence of psychosis, has not been clarified. We followed individuals at high-risk for psychosis to determine whether structural changes in the cerebral cortex occur with the onset of psychosis. We hypothesized that progressive volume loss occurs in prefrontal regions during the transition to psychosis. METHODS 35 individuals at ultra-high risk (UHR) for developing psychosis, of whom 12 experienced psychotic onset by 1-year follow-up ('converters'), participated in a longitudinal structural MRI study. Baseline and follow-up T1-weighted MR images were acquired and longitudinal brain surface contractions were assessed using Cortical Pattern Matching. RESULTS Significantly greater brain contraction was found in the right prefrontal region in the 'converters' compared with UHR cases who did not develop psychosis ('non-converters'). CONCLUSIONS These findings show cortical volume loss is associated with the onset of psychosis, indicating ongoing pathological processes during the transition stage to illness. The prefrontal volume loss is in line with structural and functional abnormalities in schizophrenia, suggesting a critical role for this change in the development of psychosis.
Collapse
|
50
|
Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study. Neuroimage 2009; 46:31-8. [PMID: 19457373 DOI: 10.1016/j.neuroimage.2009.01.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/05/2008] [Accepted: 01/22/2009] [Indexed: 11/20/2022] Open
Abstract
The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.
Collapse
|