1
|
Lee JS, Noh OK, Park JE. Neonatal Risk Factors for Growth Retardation in Infants With Congenital Heart Disease. J Korean Med Sci 2023; 38:e196. [PMID: 37401493 DOI: 10.3346/jkms.2023.38.e196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND While the association of congenital heart disease (CHD) and growth retardation (GR) is known, data remain limited. This study investigated the incidence of GR and its neonatal risk factors in patients with CHD using nationwide population-based claims data. METHOD The study population was extracted from Korean National Health Insurance Service claims data from January 2002 to December 2020. We included patients diagnosed with CHD under one year of age. GR was defined as an idiopathic growth hormone deficiency or short stature on the claims data. We investigated the neonatal risk factors for GR. RESULTS The number of patients diagnosed with CHD within the first year of birth was 133,739. Of these, 2,921 newborns were diagnosed with GR. The cumulative incidence of GR was 4.8% at 19 years of age for individuals diagnosed with CHD at infancy. In the multivariable analysis, the significant risk factors for GR were preterm birth, small for gestational age, low birth weight, respiratory distress, bronchopulmonary dysplasia, bacterial sepsis, necrotizing enterocolitis, feeding problems and cardiac procedure. CONCLUSION Several neonatal conditions were significant risk factors for GR in CHD patients, and appropriate monitoring and treatment programs are required in CHD neonates with these factors. Considering this study is limited to claims data, further studies are warranted, including genetic and environmental factors affecting GR in CHD patients.
Collapse
Affiliation(s)
- Jue Seong Lee
- Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - O Kyu Noh
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Suwon, Korea.
| | - Jun Eun Park
- Department of Pediatrics, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Marked reduction of proteinuria after removal of a growth hormone-producing pituitary adenoma in a patient with focal segmental glomerulosclerosis: a case report and literature review. CEN Case Rep 2022; 12:164-170. [PMID: 36201148 PMCID: PMC10151435 DOI: 10.1007/s13730-022-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Focal segmental glomerulosclerosis is a rare complication of acromegaly. A 74-year-old man was found to have acromegaly features such as enlargement of the forehead, nose, and hands. Laboratory tests showed a urine protein/creatinine ratio of 3.16 g/gCr and serum creatinine of 1.34 mg/dL. The levels of growth hormone and insulin-like growth factor I were markedly elevated, and the growth hormone level was not suppressed after 75 g oral glucose loading. Magnetic resonance imaging revealed a pituitary tumor with a diameter of 1.2 cm. Renal biopsy confirmed the diagnosis of focal segmental glomerulosclerosis. Transsphenoidal resection of the pituitary tumor led to remission of acromegaly and reduction in proteinuria highlighting the causal link between growth hormone overproduction and proteinuria. Treatment of acromegaly may be effective for acromegaly-associated focal segmental glomerulosclerosis.
Collapse
|
3
|
Moteki H, Ogihara M, Kimura M. <i>S</i>-Allyl-L-cysteine Promotes Cell Proliferation by Stimulating Growth Hormone Receptor/Janus Kinase 2/Phospholipase C Pathways and Promoting Insulin-Like Growth Factor Type-I Secretion in Primary Cultures of Adult Rat Hepatocytes. Biol Pharm Bull 2022; 45:625-634. [DOI: 10.1248/bpb.b21-01071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Masahiko Ogihara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| | - Mitsutoshi Kimura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University
| |
Collapse
|
4
|
Abstract
The functional mass of kidney tissue in an adult is an important determinant of human health. Kidney formation during development is an essential determinant of the final nephron endowment of the adult organ, and no evidence has been reported that mice or humans are able to generate new nephrons after the developmental period. Mechanisms controlling organ growth after development are essential to establish the final adult organ size. The potential for organ growth is maintained in adult life and the size of one kidney may be significantly increased by loss of the contralateral kidney. The mouse has provided a model system for investigators to critically explore genetic, cell biological, and hormonal control of developmental and juvenile kidney growth. This article reviews three basic aspects of kidney size regulation: (1) Mechanisms that control nephron formation and how these are altered by the cessation of nephrogenesis at the end of the developmental period. (2) Applicability of the general model for growth hormone-insulin like growth factor control to kidney growth both pre- and postnatally. (3) Commonalities between mechanisms of juvenile kidney growth and the compensatory growth that is stimulated in adult life by reduction of kidney mass. Understanding the mechanisms that determine set-points for cell numbers and size in the kidney may inform ongoing efforts to generate kidney tissue from stem cells.
Collapse
Affiliation(s)
- Leif Oxburgh
- The Rogosin Institute, New York, NY, United States.
| |
Collapse
|
5
|
Yilmaz MK, Sulu C, Ozkaya HM, Kadioglu A, Ortac M, Kadioglu P. Evaluation of sex hormone profile and semen parameters in acromegalic male patients. J Endocrinol Invest 2021; 44:2799-2808. [PMID: 34050506 DOI: 10.1007/s40618-021-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the changes in semen quality and bioavailable testosterone concentrations in acromegalic male patients according to their disease activity and compare them with patients with non-functional pituitary adenoma (NFA) and healthy controls (HC). METHODS Twenty-four acromegalic patients with active disease, 22 acromegalic patients in remission, 10 HCs, and 10 patients with NFA were included. RESULTS Total and calculated bioavailable testosterone concentrations were lower in patients with pituitary disease. Patients with acromegaly had more severely impaired total testosterone levels and semen parameters in comparison to HCs and patients with NFA. The degree of impairment was more prominent in acromegalic patients with active disease than acromegalic patients in remission. Acromegalic patients in remission had residual impairments in both semen quality and testosterone concentrations. Patients with NFA had the lowest concentrations of calculated bioavailable testosterone, followed by acromegalic patients with active disease and acromegalic patients in remission. Increasing growth hormone (GH) levels were found to be associated with both more severely impaired semen quality and androgen concentrations. CONCLUSION Growth hormone hypersecretion can disturb reproductive biology and thereof semen quality. The reduction in semen quality and androgen levels may not fully recover upon disease control. Clinicians should be aware of the increased risk of impaired semen parameters and reduced total/bioavailable levels in acromegalic patients, especially in the setting of active disease.
Collapse
Affiliation(s)
- M K Yilmaz
- Department of Internal Medicine, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - C Sulu
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - H M Ozkaya
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - A Kadioglu
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Ortac
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - P Kadioglu
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
6
|
Haffner D, Grund A, Leifheit-Nestler M. Renal effects of growth hormone in health and in kidney disease. Pediatr Nephrol 2021; 36:2511-2530. [PMID: 34143299 PMCID: PMC8260426 DOI: 10.1007/s00467-021-05097-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022]
Abstract
Growth hormone (GH) and its mediator insulin-like growth factor-1 (IGF-1) have manifold effects on the kidneys. GH and IGF receptors are abundantly expressed in the kidney, including the glomerular and tubular cells. GH can act either directly on the kidneys or via circulating or paracrine-synthesized IGF-1. The GH/IGF-1 system regulates glomerular hemodynamics, renal gluconeogenesis, tubular sodium and water, phosphate, and calcium handling, as well as renal synthesis of 1,25 (OH)2 vitamin D3 and the antiaging hormone Klotho. The latter also acts as a coreceptor of the phosphaturic hormone fibroblast-growth factor 23 in the proximal tubule. Recombinant human GH (rhGH) is widely used in the treatment of short stature in children, including those with chronic kidney disease (CKD). Animal studies and observations in acromegalic patients demonstrate that GH-excess can have deleterious effects on kidney health, including glomerular hyperfiltration, renal hypertrophy, and glomerulosclerosis. In addition, elevated GH in patients with poorly controlled type 1 diabetes mellitus was thought to induce podocyte injury and thereby contribute to the development of diabetic nephropathy. This manuscript gives an overview of the physiological actions of GH/IGF-1 on the kidneys and the multiple alterations of the GH/IGF-1 system and its consequences in patients with acromegaly, CKD, nephrotic syndrome, and type 1 diabetes mellitus. Finally, the impact of short- and long-term treatment with rhGH/rhIGF-1 on kidney function in patients with kidney diseases will be discussed.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
7
|
Biagetti B, Aulinas A, Casteras A, Pérez-Hoyos S, Simó R. HOMA-IR in acromegaly: a systematic review and meta-analysis. Pituitary 2021; 24:146-158. [PMID: 33085039 DOI: 10.1007/s11102-020-01092-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This review is aimed at examining whether the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) is higher in Caucasian, adult, treatment-naïve patients with acromegaly (ACRO) than in the reference population independently of diabetes presence and to evaluate the impact of treatment [surgery and somatostatin analogues (SSAs)] on its assessment. METHODS We systematically reviewed in PubMed and Web of Science from July 1985 to December 2019, registered with the code number CRD42020148737. The inclusion criteria comprised studies conducted in Caucasian adult treatment-naïve patients with active ACRO in whom HOMA-IR or basal insulin and glucose were reported. Three reviewers screened eligible publications, extracted the outcomes, and assessed the risk of biases. RESULTS Of 118 originally selected studies, 15 met the inclusion criteria. HOMA-IR was higher in ACRO than the reference population, with mean difference and (95% confidence intervals) of 2.04 (0.65-3.44), even in ACRO patients without diabetes, 1.89 (1.06-2.73). HOMA-IR significantly decreased after treatment with either surgery or SSAs - 2.53 (- 3.24- - 1.81) and - 2.30 (- 3.05- - 1.56); respectively. However, the reduction of HOMA-IR due to SSAs did not improve basal glucose. CONCLUSION HOMA-IR in treatment-naïve ACRO patients is higher than in the reference population, even in patients without diabetes. This finding, confirms that insulin resistance is an early event in ACRO. Our results also suggest that HOMA-IR is not an adequate tool for assessing insulin resistance in those patients treated with SSAs.
Collapse
Affiliation(s)
- Betina Biagetti
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Anna Aulinas
- Department of Endocrinology and Nutrition, Hospital de La Santa Creu I Sant Pau and Sant Pau-Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Research Center for Pituitary Diseases, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERERUnidad 747), ISCIII, Barcelona, Spain
- Faculty of Medicine, University of Vic Central University of Catalonia (UVic/UCC), Vic, Spain
| | - Anna Casteras
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Santiago Pérez-Hoyos
- Genetics Microbiology and Statistics Department, Statistics and Bioinformatics Unit, Vall D'Hebron Research Institute, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall D'Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Electrophysiologic Effects of Growth Hormone Post-Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21030918. [PMID: 32019245 PMCID: PMC7037853 DOI: 10.3390/ijms21030918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
Myocardial infarction remains a major health-related problem with significant acute and long-term consequences. Acute coronary occlusion results in marked electrophysiologic alterations that can induce ventricular tachyarrhythmias such as ventricular tachycardia or ventricular fibrillation, often heralding sudden cardiac death. During the infarct-healing stage, hemodynamic and structural changes can lead to left ventricular dilatation and dysfunction, whereas the accompanying fibrosis forms the substrate for re-entrant circuits that can sustain ventricular tachyarrhythmias. A substantial proportion of such patients present clinically with overt heart failure, a common disease-entity associated with high morbidity and mortality. Several lines of evidence point toward a key role of the growth hormone/insulin-like growth factor-1 axis in the pathophysiology of post-infarction structural and electrophysiologic remodeling. Based on this rationale, experimental studies in animal models have demonstrated attenuated dilatation and improved systolic function after growth hormone administration. In addition to ameliorating wall-stress and preserving the peri-infarct myocardium, antiarrhythmic actions were also evident after such treatment, but the precise underlying mechanisms remain poorly understood. The present article summarizes the acute and chronic actions of systemic and local growth hormone administration in the post-infarction setting, placing emphasis on the electrophysiologic effects. Experimental and clinical data are reviewed, and hypotheses on potential mechanisms of action are discussed. Such information may prove useful in formulating new research questions and designing new studies that are expected to increase the translational value of growth hormone therapy after acute myocardial infarction.
Collapse
|
9
|
Zheng J, Cui Z, Lv JC, Duan HZ, Wang SX, Zhang JQ, Zhou FD, Guo XH, Zhao MH. Delayed diagnosis of acromegaly in a patient with focal segmental Glomerulosclerosis: a rare case report and literature review. BMC Nephrol 2019; 20:435. [PMID: 31771524 PMCID: PMC6880637 DOI: 10.1186/s12882-019-1626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Experimental studies have demonstrated that hypersecretion of growth hormone (GH) is associated with development of glomerular sclerosis. However, clinical case of such condition is very rare. Here we presented a case of focal segmental glomerulosclerosis (FSGS) associated with acromegaly. CASE PRESENTATION A 63-year-old man was diagnosed as nephrotic syndrome with minimal change disease for 2 years. Prednisone 1 mg/kg/day for 9 months led to no response. After admission, the second kidney biopsy indicated FSGS (NOS variant). On admission, his acromegalic features were noticed and he complained with a 20-year history of soft tissue swelling of hands and feet. Serum GH and insulin-like growth factor 1 (IGF-1) concentrations were both elevated significantly. An oral glucose tolerance test showed inadequate suppression of serum GH. The presence of a pituitary macroadenoma with a diameter of 1.4 cm by MRI confirmed the diagnosis of acromegaly. Then, the tumor was subtotally removed by trans-sphenoidal surgery. Partial remission of proteinuria was achieved 3 months after surgery and maintained during follow-up, with gradual reduce of corticosteroid. CONCLUSIONS This rare case suggested that the hypersecretion of GH may participate, at least in part, in FSGS development and progression. Early diagnosis and treatment of acromegaly is beneficial.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Zhao Cui
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Hong-Zhou Duan
- Department of Neurosurgery, Peking University First Hospital, Beijing, 100034, China
| | - Su-Xia Wang
- Electron microscopy laboratory, Peking University First Hospital, Beijing, 100034, China
| | - Jun-Qing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Fu-de Zhou
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China
| | - Xiao-Hui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, 100034, China.,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| |
Collapse
|
10
|
Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proc Natl Acad Sci U S A 2018; 115:E11256-E11263. [PMID: 30413626 DOI: 10.1073/pnas.1812135115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.
Collapse
|
11
|
Li R, Hong P, Lan H, Zheng X. Growth Hormone Did Not Activate Its Intracellular Signaling Molecules in Rats' Liver Hepatocytes During Early Life Period. Int J Endocrinol Metab 2018; 16:e61385. [PMID: 30214460 PMCID: PMC6119208 DOI: 10.5812/ijem.61385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/26/2018] [Accepted: 06/02/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although growth hormone (GH) has essential roles in the growth of animals, it has no growth-promoting effect during infancy period. The molecular mechanism underlying lack of growth-promoting effect of GH during infancy period remains unclear. Important signaling pathways are mediated by GH, including Janus kinase 2 (JAK2), extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers, and activators of transcription 5, 3, and 1 (STATs 5, 3 and 1). OBJECTIVES This study explored the underlying molecular mechanisms driving to the lack of growth-promoting effect of GH in the early stage of life by in vivo assessment of intracellular signal response (STAT5/ 3/ 1, JAK2 and ERK1/ 2) to GH at different physiological stages. METHODS In this study, five age groups of rats (1-, 4-day-old, and 1-, 2-, 3-week-old) were selected. The rats were anesthetized using pentobarbital (100 mg/kg) and then received the rat GH (2mg/kg) via inferior vena cava injection. The control rats were injected with normal saline during the same period. The intracellular signal response to GH was assessed by Western blot analysis. RESULTS JAK2 and STAT5 were expressed in 1-day and 4-day-old newborn rats and their expression levels were comparable with the levels of the 1-, 2-, and 3-week-old rats; however, JAK2/STAT5 phosphorylation was not observed in 1-day-old and 4-day-old newborn rats after stimulation with GH in the liver. Similar to JAK2 and STAT5, we did not detect STAT3/1 activation during infancy stages although basic STAT3 and STAT1 were also expressed in hepatocytes from newborn rats. In addition we detected ERK1/2 activation in 4-day-old, 1-, 2-, and 3-week-old rats but not in 1-day-old rats. CONCLUSIONS JAK2, STAT5, STAT3, STAT1, and ERK1/2 were not simultaneously activated by GH in newborn rats; this finding may be one of the underlying mechanism of GH insensitivity in newborn rats.
Collapse
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| |
Collapse
|
12
|
Abstract
The common ultimate pathological feature for all cardiovascular diseases, congestive heart failure (CHF), is now considered as one of the main public health burdens that is associated with grave implications. Neurohormonal systems play a critical role in cardiovascular homeostasis, pathophysiology, and cardiovascular diseases. Hormone treatments such as the newly invented dual-acting drug valsartan/sacubitril are promising candidates for CHF, in addition to the conventional medications encompassing beta receptor blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Clinical trials also indicate that in CHF patients with low insulin-like growth factor-1 or low thyroid hormone levels, supplemental treatment with growth hormone or thyroid hormone seems to be cardioprotective; and in CHF patients with volume overload the vasopressin antagonists can relieve the symptoms superior to loop diuretics. Furthermore, a combination of selective glucocorticoid receptor agonist and mineralocorticoid receptor antagonist may be used in patients with diuretic resistance. Finally, the potential cardiovascular efficacy and safety of incretin-based therapies, testosterone or estrogen supplementation needs to be prudently evaluated in large-scale clinical studies. In this review, we briefly discuss the therapeutic effects of several key hormones in CHF.
Collapse
Affiliation(s)
- Lei Lei
- Department of Endocrinology, Aerospace Center Hospital, Peking University Affiliate, Beijing, China
| | - Yuanjie Mao
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
13
|
Dishon L, Avital-Cohen N, Malamud D, Heiblum R, Druyan S, Porter T, Gumułka M, Rozenboim I. In-ovo monochromatic green light photostimulation enhances embryonic somatotropic axis activity. Poult Sci 2017; 96:1884-1890. [DOI: 10.3382/ps/pew489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 12/13/2016] [Indexed: 11/20/2022] Open
|
14
|
Growth Hormone Deficiency Is Associated with Worse Cardiac Function, Physical Performance, and Outcome in Chronic Heart Failure: Insights from the T.O.S.CA. GHD Study. PLoS One 2017; 12:e0170058. [PMID: 28095492 PMCID: PMC5240983 DOI: 10.1371/journal.pone.0170058] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background Although mounting evidence supports the concept that growth hormone (GH) deficiency (GHD) affects cardiovascular function, no study has systematically investigated its prevalence and role in a large cohort of chronic heart failure (CHF) patients. Aim of this study is to assess the prevalence of GHD in mild-to-moderate CHF and to explore clinical and functional correlates of GHD. Methods One-hundred thirty CHF patients underwent GH provocative test with GHRH+arginine and accordingly categorized into GH-deficiency (GHD, n = 88, age = 61.6±1.1 years, 68% men) and GH-sufficiency (GHS, n = 42, age = 63.6±1.5 years, 81% men) cohorts. Both groups received comprehensive cardiovascular examination and underwent Doppler echocardiography, cardiopulmonary exercise testing, and biochemical and hormonal assay. Results GHD was detected in roughly 30% of CHF patients. Compared to GHD, GHS patients showed smaller end-diastolic and end-systolic LV volumes (-28%, p = .008 and -24%, p = .015, respectively), lower LV end-systolic wall stress (-21%, p = .03), higher RV performance (+18% in RV area change, p = .03), lower estimated systolic pulmonary artery pressure (-11%, p = .04), higher peak VO2 (+20%, p = .001) and increased ventilatory efficiency (-12% in VE/VCO2 slope, p = .002). After adjusting for clinical covariates (age, gender, and tertiles of LV ejection fraction, IGF-1, peak VO2, VE/VCO2 slope, and NT-proBNP), logistic multivariate analysis showed that peak VO2 (β = -1.92, SE = 1.67, p = .03), VE/VCO2 slope (β = 2.23, SE = 1.20, p = .02) and NT-proBNP (β = 2.48, SE = 1.02, p = .016), were significantly associated with GHD status. Finally, compared to GHS, GHD cohort showed higher all-cause mortality at median follow-up of 3.5 years (40% vs. 25%, p < .001, respectively), independent of age, sex, NT-proBNP, peak VO2 and LVEF. Conclusions GH deficiency identifies a subgroup of CHF patients characterized by impaired functional capacity, LV remodeling and elevated NT-proBNP levels. GHD is also associated with increased all-cause mortality.
Collapse
|
15
|
Liao S, Vickers MH, Stanley JL, Ponnampalam AP, Baker PN, Perry JK. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology 2016; 157:1175-86. [PMID: 26671184 DOI: 10.1210/en.2015-1718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human placental GH variant (GH-V) is secreted continuously from the syncytiotrophoblast layer of the placenta during pregnancy and is thought to play a key role in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V administration on maternal and fetal growth and metabolic outcomes during pregnancy, we examined the dose-response relationship for GH-V administration in a mouse model of normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V (0.25, 1, 2, or 5 mg/kg · d) by osmotic pump from gestational days 12.5 to 18.5. Fetal linear growth was slightly reduced in the 5 mg/kg dose compared with vehicle and the 0.25 mg/kg groups, respectively, whereas placental weight was not affected. GH-V treatment did not affect maternal body weights or food intake. However, treatment with 5 mg/kg · d significantly increased maternal fasting plasma insulin concentrations with impaired insulin sensitivity observed at day 18.5 as assessed by homeostasis model assessment. At 5 mg/kg · d, there was also an increase in maternal hepatic GH receptor/binding protein (Ghr/Ghbp) and IGF binding protein 3 (Igfbp3) mRNA levels, but GH-V did not alter maternal plasma IGF-1 concentrations or hepatic Igf-1 mRNA expression. Our findings suggest that at higher doses, GH-V treatment can cause hyperinsulinemia and is a likely mediator of the insulin resistance associated with late pregnancy.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Mark H Vickers
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Joanna L Stanley
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Anna P Ponnampalam
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Philip N Baker
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Jo K Perry
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
16
|
Martinez CS, Piazza VG, Díaz ME, Boparai RK, Arum O, Ramírez MC, González L, Becú-Villalobos D, Bartke A, Turyn D, Miquet JG, Sotelo AI. GH/STAT5 signaling during the growth period in livers of mice overexpressing GH. J Mol Endocrinol 2015; 54:171-84. [PMID: 25691498 PMCID: PMC4811361 DOI: 10.1530/jme-14-0262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
GH/STAT5 signaling is desensitized in the liver in adult transgenic mice overexpressing GH; however, these animals present greater body size. To assess whether the STAT5 pathway is active during the growth period in the liver in these animals, and how signaling modulators participate in this process, growing transgenic mice and normal siblings were evaluated. STAT5 does not respond to an acute GH-stimulus, but displays higher basal phosphorylation in the livers of growing GH-overexpressing mice. GH receptor and the positive modulators glucocorticoid receptor and HNF1 display greater abundance in transgenic animals, supporting the activity of STAT5. The negative modulators cytokine-induced suppressor and PTP1B are increased in GH-overexpressing mice. The suppressors SOCS2 and SOCS3 exhibit higher mRNA levels in transgenic mice but lower protein content, indicating that they are being actively degraded. Therefore, STAT5 signaling is increased in the liver in GH-transgenic mice during the growth period, with a balance between positive and negative effectors resulting in accelerated but controlled growth.
Collapse
Affiliation(s)
- Carolina S Martinez
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Verónica G Piazza
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María E Díaz
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Ravneet K Boparai
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Oge Arum
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María C Ramírez
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Lorena González
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Damasia Becú-Villalobos
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Andrzej Bartke
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Daniel Turyn
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Johanna G Miquet
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Ana I Sotelo
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, ArgentinaDepartment of Geriatrics (A.B.)School of Medicine, Southern Illinois University, Springfield, Illinois, USAInstituto de Biología y Medicina Experimental (CONICET)Vuelta de Obligado 2490, Buenos Aires, Argentina
| |
Collapse
|
17
|
Isgaard J, Arcopinto M, Karason K, Cittadini A. GH and the cardiovascular system: an update on a topic at heart. Endocrine 2015; 48:25-35. [PMID: 24972804 PMCID: PMC4328125 DOI: 10.1007/s12020-014-0327-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
In this review, the importance of growth hormone (GH) for the maintenance of normal cardiac function in adult life is discussed. Physiological effects of GH and underlying mechanisms for interactions between GH and insulin-like growth factor I (IGF-I) and the cardiovascular system are covered as well as the cardiac dysfunction caused both by GH excess (acromegaly) and by GH deficiency in adult hypopituitary patients. In both acromegaly and adult GH deficiency, there is also increased cardiovascular morbidity and mortality possibly linked to aberrations in GH status. Finally, the status of the GH/IGF-I system in relation to heart failure and the potential of GH as a therapeutic tool in the treatment of heart failure are reviewed in this article.
Collapse
Affiliation(s)
- Jörgen Isgaard
- Laboratory of Experimental Endocrinology, Department of Internal Medicine, Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 8, 413 45, Göteborg, Sweden,
| | | | | | | |
Collapse
|
18
|
Lan H, Li W, Fu Z, Yang Y, Wu T, Liu Y, Zhang H, Cui H, Li Y, Hong P, Liu J, Zheng X. Differential intracellular signalling properties of the growth hormone receptor induced by the activation of an anti-GHR antibody. Mol Cell Endocrinol 2014; 390:54-64. [PMID: 24755421 DOI: 10.1016/j.mce.2014.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/16/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
Abstract
A series of studies have reported that anti-GHR antibody can function as a GHR agonist and may serve as an attractive tool for studying the mechanisms of GHR activation. However, to date, there is relatively little information about intracellular signalling triggered by anti-GHR antibody. Therefore, in this work, we have developed a panel of monoclonal antibodies to GHBP, among which one Mab, termed CG-172, was selected for further characterisation because of its signalling properties. The results from FACS assays, receptor binding and immunoprecipitation assays and western blotting demonstrated that CG-172 specifically binds to GHR expressed on target cells. Subsequently, epitope mapping studies that used receptor binding analysis showed that CG-172 specifically binds subdomain 1 of GHR ECD. We next examined the resulting signal transduction pathways triggered by this antibody in CHO-GHR638 cells and rat hepatocytes. We found that CG-172 can activate JAK2, AKT, ERK1/2 and STAT1/3 but not STAT5. The phosphorylation kinetics of STAT1/3, AKT and ERK1/2 induced by either GH or CG-172 were analysed in dose-response and time course experiments. Our observations demonstrated that an anti-GHR monoclonal antibody (CG-172) can serve as an attractive tool to study the mechanism(s) of GHR-mediated intracellular signalling pathways and may lead to the production of signal-specific molecules that are capable of inducing different biochemical responses.
Collapse
Affiliation(s)
- Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, PR China
| | - Zhiling Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yanhong Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Tiancheng Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yu Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Hui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Huanzhong Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Yumeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Jingsheng Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Xincheng Street 2888, Changchun 130118, PR China.
| |
Collapse
|
19
|
Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev 2014; 35:234-81. [PMID: 24423979 DOI: 10.1210/er.2013-1071] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.
Collapse
Affiliation(s)
- Peter Kamenický
- Assistance Publique-Hôpitaux de Paris (P.K., M.L., P.C.), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Le Kremlin Bicêtre F-94275, France; Univ Paris-Sud (P.K., M.L., P.C.), Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre F-94276, France; Inserm Unité 693 (P.K., M.L., P.C.), Le Kremlin Bicêtre F-94276, France; and Department of Clinical and Experimental Sciences (A.G., G.M.), Chair of Endocrinology, University of Brescia, 25125 Brescia, Italy
| | | | | | | | | |
Collapse
|
20
|
Martinez CS, Piazza VG, Ratner LD, Matos MN, González L, Rulli SB, Miquet JG, Sotelo AI. Growth hormone STAT5-mediated signaling and its modulation in mice liver during the growth period. Growth Horm IGF Res 2013; 23:19-28. [PMID: 23245546 DOI: 10.1016/j.ghir.2012.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/31/2022]
Abstract
Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.
Collapse
Affiliation(s)
- Carolina S Martinez
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956, 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:231-45. [DOI: 10.1016/j.cbpa.2012.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
22
|
Hu SY, Tai CC, Li YH, Wu JL. Progranulin compensates for blocked IGF-1 signaling to promote myotube hypertrophy in C2C12 myoblasts via the PI3K/Akt/mTOR pathway. FEBS Lett 2012; 586:3485-92. [PMID: 22967900 DOI: 10.1016/j.febslet.2012.07.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
It is well known that growth hormone (GH)-induced IGF-1 signaling plays a dominant role in postnatal muscle growth. Our previous studies have identified a growth factor, progranulin (PGRN), that is co-induced with IGF-1 upon GH administration. This result prompted us to explore the function of PGRN and its association with IGF-1. In the present study, we demonstrated that, similar to IGF-1, PGRN can promote C2C12 myotube hypertrophy via the PI(3)K/Akt/mTOR pathway. Moreover, PGRN can rescue the muscle atrophy phenotypes in C2C12 myotube when IGF-1 signaling is blocked. This result shows that PGRN can substitute for IGF-1 signaling in the regulation of muscle growth. Our findings provide new insights into IGF-1-modulated complicated networks that regulate muscle growth.
Collapse
Affiliation(s)
- Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | | | | |
Collapse
|
23
|
Buzan EV, Pagès M, Michaux J, Krystufek B. Phylogenetic position of the Ohiya rat (Srilankamys ohiensis) based on mitochondrial and nuclear gene sequence analysis. ZOOL SCR 2011. [DOI: 10.1111/j.1463-6409.2011.00494.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Cardiac functions in children with growth hormone deficiency before and during growth hormone-replacement therapy. Pediatr Cardiol 2011; 32:766-71. [PMID: 21472376 DOI: 10.1007/s00246-011-9969-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/20/2011] [Indexed: 01/20/2023]
Abstract
Childhood growth hormone deficiency (GHD) decreases left-ventricular (LV) mass, but impairment of cardiac function has never been documented. The objective of this study was to assess the cardiac effects of GHD and recombinant human growth hormone (rhGH) treatment using conventional echocardiography and tissue Doppler imaging. Complete two-dimensional, M-mode, pulse-wave Doppler echocardiography and pulse-wave tissue Doppler imaging were performed in 12 children (6 male and 6 female patients) with GHD at baseline and at 5.86 ± 1.61 months after rhGH therapy. Recombinant human growth hormone treatment was associated with a significant increase in LV mass index (63.8 ± 27.1 to 79.3 ± 30.3 g/m(2); P < 0.01) and LV internal dimensions (21.4 ± 2.63 to 24.0 ± 4.13 mm in systole [P = 0.03] and 36.5 ± 3.90 to 39.5 ± 4.94 mm in diastole [P < 0.01]). There were statistical differences of parameters, such as deceleration time of early peak velocity of mitral, isovolumic relaxation time, and myocardial performance index (103 ± 15.4 to 139 ± 21.2 ms [P < 0.01], 55.5 ± 9.24 to 69.2 ± 3.74 ms [P < 0.01], and 37.8 ± 4.46 to 44.9 ± 5.44% [P < 0.01], respectively). Before and during rhGH therapy, there were no significant differences in fractional shortening of the left ventricle, peak mitral, and tricuspid wave velocities with ratios determined using conventional echocardiography and tissue Doppler imaging. In children, GHD affects heart morphology by inducing a decrease in cardiac size, but it does not modify cardiac function. Recombinant human growth hormone treatment increases cardiac mass, deceleration time of early peak velocity of the mitral valve, isovolumic relaxation time, and myocardial performance index, but it does not make a difference in other parameters of conventional echocardiography and tissue Doppler imaging.
Collapse
|
25
|
Effect of growth hormone on steroid content, proliferation and apoptosis in the chicken ovary during sexual maturation. Cell Tissue Res 2011; 345:191-202. [DOI: 10.1007/s00441-011-1187-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/06/2011] [Indexed: 11/30/2022]
|
26
|
Nogami H, Lee MC, Soya H, Hisano S. Regional distribution and ontogeny of the first exon variants of the rat growth hormone receptor mRNA in the brain and the pituitary gland. Growth Horm IGF Res 2011; 21:11-15. [PMID: 21177131 DOI: 10.1016/j.ghir.2010.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/27/2010] [Accepted: 11/19/2010] [Indexed: 11/16/2022]
Abstract
Expression of the first exon variants of the rat growth hormone receptor mRNA was studied in the brain and the pituitary gland. Four of the five different variant mRNA previously identified in the liver were detected in the cerebral cortex by a conventional reverse-transcription polymerase chain reaction, and, unlike the data reported previously, a quantitative analysis revealed that approximately 90% of the total growth hormone receptor mRNA in the cerebral cortex is V1 form. The present results suggest that the V1 was also a dominant transcript in other brain areas and the pituitary gland, not only in adult but also in fetal and postnatal period. The growth hormone receptor expression in the brain was lower during fetal period than in adults, while in the pituitary gland, the expression is markedly higher in fetuses, suggesting a yet unknown role of growth hormone in the development of this organ.
Collapse
Affiliation(s)
- Haruo Nogami
- Laboratry of Neuroendocrinology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | |
Collapse
|
27
|
|
28
|
Smit LS, Meyer DJ, Argetsinger LS, Schwartz J, Carter‐Su C. Molecular Events in Growth Hormone–Receptor Interaction and Signaling. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Agarwal M, Naghi J, Philip K, Phan A, Willix RD, Schwarz ER. Growth hormone and testosterone in heart failure therapy. Expert Opin Pharmacother 2010; 11:1835-44. [PMID: 20486829 DOI: 10.1517/14656566.2010.485615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Heart failure is a progressive disease affecting millions of people worldwide. The disease carries a significantly high morbidity and mortality risk. There are multiple pharmaceutical options to decrease this risk and prolong survival; however, despite optimization of medical management, several patients still await heart transplant, the only definitive cure for heart failure. To slow the progression of disease preventing need for transplantation, improve clinical symptoms, and improve heart failure outcomes, there is a persistent need to discover new therapeutic strategies. Of interest, low growth hormone and testosterone levels have been associated with a worsening degree of heart failure. Many studies have begun to show a clinical improvement in heart failure symptoms when these levels are corrected with hormonal therapy. These findings, although mixed, are promising and indicate that both testosterone and growth hormone therapy should be considered as adjunctive therapy in advanced heart failure patients. AREAS COVERED IN THIS REVIEW This review discusses the physiology of both of these natural hormones, their therapeutic effects in heart failure and data from the published literature on studies using growth hormone or testosterone in patients with chronic heart failure. An extensive search of PubMed was conducted for topics on heart failure, growth hormone, insulin-like growth factor, testosterone, their physiology and pathophysiology, and trials in which they have been used as therapeutic interventions between 1989 and 2009. WHAT THE READER WILL GAIN The reader will gain an understanding of the intricate balance of both of these hormones in the disease state of heart failure. In addition, the trials conducted using these hormones in pharmacotherapy for heart failure are discussed along with proposed theories for interstudy variability. TAKE HOME MESSAGE Testosterone deficiency and growth hormone resistance are positively associated with a poor state of heart failure. Treatment of deficiency improves outcomes in heart failure; however, there is a significant paucity of data with regard to testosterone and heart failure as well as a significant amount of study variability with growth hormone and heart failure.
Collapse
Affiliation(s)
- Megha Agarwal
- Cedars Sinai Medical Center Los Angeles, Cedars Sinai Heart Institute, 8700 Beverly Boulevard, Suite 6215, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
AbstractHormonal growth promoters (growth hormone (GH), β-adrenergic agonists, steroids) which improve growth rate and/or lean: fat ratios in the carcass have received considerable adverse publicity and are either banned or have no licence for their use in countries of the European Community. This has led to the development of a number of techniques, involving the use of antibodies, aimed at regulating metabolic processes involved in determining growth and body composition.A number of these approaches have focused upon the GH axis, for example immunoneutralization of somatostatin (which normally inhibits GH secretion) to improve growth, the use of antibodies to GH which can enhance its effects in vivo and the development of antibodies which mimic the actions of GH. Although immunization against somatostatin has led to increased growth rates in a number of studies other studies have failed to demonstrate such an effect. A precise understanding of the mechanism of action of this approach is required before we can begin to understand why success is not assured. Antibodies which enhance GH action clearly do work reproducibly but the major problem in developing this approach is to produce an inexpensive peptide immunogen (its sequence derived from GH) which can be used to actively immunize animals so that their own antibodies enhance endogenous GH activity. Anti-idiotypic mimics of GH have also been produced which have GH actions in vivo but again this approach is of limited value until appropriate vaccines can be developed.A different approach to the problem of excess fat deposition involves the use of antibodies directed against the plasma membranes of adipocytes in order to elicit their destruction and thereby limit the storage capacity for fat. This technique has been demonstrated in rats, sheep and pigs in both passive and active immunization techniques. Once again, however, this promising approach is limited by the lack of a commercially suitable vaccine. The identification of individual membrane proteins which are antigenic has been achieved and this provides the prospect of producing recombinant DNA-derived vaccines.Whether these new approaches will be perceived as acceptable to the general public remains a serious concern and a potential limitation to their development as many would-be sponsors cut back their support for research in these areas.
Collapse
|
31
|
Lioi SA, Rigalli A, Puche RC. Effect of rhGH on the synthesis and secretion of VLDL to lymph and plasma from the intestine of the female rat. Growth Horm IGF Res 2010; 20:141-148. [PMID: 20044290 DOI: 10.1016/j.ghir.2009.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/23/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
The intravenous administration of rhGH (recombinant human Growth Hormone) to fasting female rats causes an increase in the rate of synthesis and secretion of VLDL (very low density lipoproteins). This phenomenon has three striking characteristics: (1) the demonstration of an unexpected lipogenic effect of rhGH, (2) its rapid occurrence after intravenous injection of the hormone and (3) the apparent dependence on the levels of circulating estrogens, as deduced by the lack of effect of rhGH on males and castrated females. The target tissue for the lipogenic effect was traced to the intestine by means of perfusion experiments of isolated duodenal loops. Impairment of liver blood supply discarded this tissue as the source of VLDL induced by rhGH. After a single dose of rhGH (T(1/2)=16min), the increase in plasma TAG (triacylglycerides) levels followed a positive exponential course that lasted ca. 3h. The same phenomenon (with no significant differences in kinetic parameters) was observed in three other experimental circumstances: fasting intact virgin female rats with impaired hepatic circulation, perfusion of isolated duodenum and sampling of mesenteric lymph. It is assumed that rhGH stimulates the synthesis of TAG and VLDL by the physiological mechanisms already present in enterocytes. Because increased plasma levels of VLDL and GH have been demonstrated in the last week of rat pregnancy, we believe that the reported phenomenon has physiological implications, hypothetically associated with fetal lung maturation. As an hypothesis, we suggest that the effect of growth hormone (of pituitary or placental origin) on the synthesis and secretion of VLDL by enterocytes uses a nongenomic pathway.
Collapse
Affiliation(s)
- Susana A Lioi
- Laboratorio de Biología Osea, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina.
| | | | | |
Collapse
|
32
|
Ohlsson C, Mohan S, Sjögren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev 2009; 30:494-535. [PMID: 19589948 PMCID: PMC2759708 DOI: 10.1210/er.2009-0010] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
Collapse
Affiliation(s)
- Claes Ohlsson
- Division of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Akaza I, Tsuchiya K, Akaza M, Sugiyama T, Izumiyama H, Doi M, Yoshimoto T, Hirata Y. Improvement of congestive heart failure after octreotide and transsphenoidal surgery in a patient with acromegaly. Intern Med 2009; 48:697-700. [PMID: 19420816 DOI: 10.2169/internalmedicine.48.1537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 59-year-old man was admitted because of congestive heart failure. He was suspected to have acromegaly, and magnetic resonance imaging revealed a pituitary macroadenoma. Endocrine examination revealed elevated plasma levels of growth hormone (GH) and insulin-like growth factor (IGF)-1, and an oral glucose tolerance test failed to suppress plasma GH levels, consistent with the diagnosis of GH-producing pituitary tumor. Treatment with octreotide, followed by transsphenoidal surgery resulted in normalization of plasma GH/IGF-1 levels, accompanied by the improvement of cardiac function. Thus, it is suggested that excess GH/IGF-1 axis is involved in the development of acromegaly-related cardiomyopathy in the present case.
Collapse
Affiliation(s)
- Itaru Akaza
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hatzistergos KE, Mitsi AC, Zachariou C, Skyrlas A, Kapatou E, Agelaki MG, Fotopoulos A, Kolettis TM, Malamou-Mitsi V. Randomised comparison of growth hormone versus IGF-1 on early post-myocardial infarction ventricular remodelling in rats. Growth Horm IGF Res 2008; 18:157-165. [PMID: 17889582 DOI: 10.1016/j.ghir.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/23/2007] [Accepted: 08/13/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Growth hormone and insulin-like growth factor-1 participate in post-myocardial infarction healing, but their relative importance is unclear. We compared the treatment effects of these agents on left ventricular remodelling. DESIGN Wistar rats were randomised into a single dose of either growth hormone (0.5microg, n=29), or insulin-like growth factor-1 (0.5microg, n=27), delivered by direct intramyocardial punctures, and were compared with controls (n=30). Five minutes after treatment, myocardial infarction was generated by permanent ligation of the left coronary artery. Twenty-four hours post-ligation, serum levels of catecholamines were measured using radioimmunoassay and infarct size as well as infarct expansion index were calculated. The expression of genes related to extracellular matrix and angiogenesis was measured using polymerase chain reaction. RESULTS Infarct expansion index was lower in growth hormone-treated rats (0.28+/-0.03, p=0.007) and in insulin-like growth factor-1-treated rats (0.35+/-0.03, p=0.044) compared to controls (0.51+/-0.06). Infarct size was significantly (p=0.0076) lower in growth hormone-treated rats (32.2+/-2.0%) and marginally (p=0.094) lower in insulin-like growth factor-1-treated rats (36.2+/-2.3%) compared to controls (42.0+/-2.7%). Survival rates were comparable in the three groups. Epinephrine was lower in the growth hormone group (2.8+/-0.2microg/l) compared to either controls (5.0+/-0.6microg/l, p=0.007), or to insulin-like growth factor-1-treated rats (6.3+/-0.6microg/l, p=0.0001). Collagen I and III expression in the infarct zone was higher in the growth hormone group compared to either the insulin-like growth factor-1 group or to controls. CONCLUSIONS Both growth hormone and insulin-like-growth factor-1 decrease early infarct expansion, but growth hormone results in more favourable extracellular matrix remodelling and sympathetic activation.
Collapse
Affiliation(s)
- K E Hatzistergos
- Department of Pathology, University of Ioannina, 1 Stavrou Niarxou Avenue, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nygren A, Sunnegårdh J, Albertsson-Wikland K, Berggren H, Isgaard J. Relative cardiac expression of growth hormone receptor and insulin-like growth factor-I mRNA in congenital heart disease. J Endocrinol Invest 2008; 31:196-200. [PMID: 18401200 DOI: 10.1007/bf03345590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GH may exert direct growth-promoting and metabolic actions on target tissues, but most of its effects are mediated by circulating (endocrine) or local (auto-/paracrine) IGF-I. The GH/IGF-I system has an important role in cardiac development and in maintaining the structure and function of the heart. A subgroup of children with pronounced heart defects will eventually need transplants, owing to congestive heart failure. Since the symptoms are often severe and may progress while waiting for surgery, it is necessary to develop supportive medical treatment. GH has been proposed as a therapeutic agent in adults with heart failure, but to date studies are lacking on children and more information is necessary. We have examined the expression of IGF-I mRNA and GH-receptor (GH-R) mRNA in children undergoing surgery for congenital heart disease. Eighteen children scheduled for open-heart surgery were included in the study. Right auricular biopsies were taken at the time of venous catheterization preceding cardiac bypass. The specimens were analysed using realtime PCR. We were able to show expression of both IGF-I mRNA and GH-R mRNA in the pediatric heart. The relative expressions were intercorrelated (r=0.75, p<0.001). GH-R mRNA correlated positively to standardized weight (r=0.65, p=0.004), body mass index (BMI) (r=0.59, p=0.01), and standardized BMI (r=0.59, p=0.01). IGF-I mRNA only correlated to BMI (r=0.50, p=0.04). This is the first study displaying cardiac expression of IGF-I mRNA and GH-R mRNA in children with congenital heart disease, although further studies are needed to define a role for GH in the treatment of these patients.
Collapse
Affiliation(s)
- A Nygren
- Department of Pediatrics, Institute for Health of Women and Children at Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
36
|
El-Kasti MM, Christian HC, Huerta-Ocampo I, Stolbrink M, Gill S, Houston PA, Davies JS, Chilcott J, Hill N, Matthews DR, Carter DA, Wells T. The pregnancy-induced increase in baseline circulating growth hormone in rats is not induced by ghrelin. J Neuroendocrinol 2008; 20:309-22. [PMID: 18208550 DOI: 10.1111/j.1365-2826.2008.01650.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The elevation in baseline circulating growth hormone (GH) that occurs in pregnant rats is thought to arise from increased pituitary GH secretion, but the underlying mechanism remains unclear. Distribution, Fourier and algorithmic analyses confirmed that the pregnancy-induced increase in circulating GH in 3-week pregnant rats was due to a 13-fold increase in baseline circulating GH (P < 0.01), without any significant alteration in the parameters of episodic secretion. Electron microscopy revealed that pregnancy resulted in a reduction in the proportion of mammosomatotrophs (P < 0.01) and an increase in type II lactotrophs (P < 0.05), without any significant change in the somatotroph population. However, the density of the secretory granules in somatotrophs from 3-week pregnant rats was reduced (P < 0.05), and their distribution markedly polarised; the granules being grouped nearest the vasculature. Pituitary GH content was not increased, but steady-state GH mRNA levels declined progressively during pregnancy (P < 0.05). In situ hybridisation revealed that pregnancy was accompanied by a suppression of GH-releasing hormone mRNA expression in the arcuate nuclei (P < 0.05) and enhanced somatostatin mRNA expression in the periventricular nuclei (P < 0.05), an expression pattern normally associated with increased GH feedback. Although gastric ghrelin mRNA expression was elevated by 50% in 3-week pregnant rats (P < 0.01), circulating ghrelin, GH-secretagogue receptor mRNA expression and the GH response to a bolus i.v. injection of exogenous ghrelin were all largely unaffected during pregnancy. Although trace amounts of 'pituitary' GH could be detected in the placenta with radioimmunoassay, significant GH-immunoreactivity could not be observed by immunohistochemistry, indicating that rat placenta itself does not produce 'pituitary' GH. Although not excluding the possibility that the pregnancy-associated elevation in baseline circulating GH could arise from alternative extra-pituitary sources (e.g. the ovary), our data indicate that this phenomenon is most likely to result from a direct alteration of somatotroph function.
Collapse
Affiliation(s)
- M M El-Kasti
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bennett WL, Ji S, Messina JL. Insulin regulation of growth hormone receptor gene expression. Evidence for a transcriptional mechanism of down-regulation in rat hepatoma cells. Mol Cell Endocrinol 2007; 274:53-9. [PMID: 17658679 DOI: 10.1016/j.mce.2007.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 05/28/2007] [Indexed: 11/21/2022]
Abstract
The role of insulin in regulating responsiveness to growth hormone (GH) remains unclear. Continuous insulin treatment reduces GH binding, which suggests that insulin may effect growth hormone receptor (GHR) levels. The present study used rat hepatoma cells to examine the effects of insulin and GH on GHR gene expression. Prolonged insulin treatment (greater than 3h) significantly reduced GHR mRNA, and removal of insulin led to a gradual recovery. This effect of insulin occurred at physiologic concentrations, occurred many hours before the insulin-regulated decrease in GHR protein, and was mediated by reduction of GHR transcription. GH treatment dramatically reduced GHR protein, but caused only a modest reduction in GHR mRNA. These findings indicate that the heterologous reduction of GHR by insulin occurs via transcriptional downregulation, and the homologous reduction of GHR by GH occurs via a different mechanism. Furthermore, with insulin, extended time of exposure may be necessary for appreciable reduction of GHR.
Collapse
Affiliation(s)
- William L Bennett
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | | | |
Collapse
|
38
|
Jiang H, Wang Y, Wu M, Gu Z, Frank SJ, Torres-Diaz R. Growth hormone stimulates hepatic expression of bovine growth hormone receptor messenger ribonucleic acid through signal transducer and activator of transcription 5 activation of a major growth hormone receptor gene promoter. Endocrinology 2007; 148:3307-15. [PMID: 17412814 DOI: 10.1210/en.2006-1738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine whether and how GH regulates hepatic expression of GH receptor (GHR) mRNA in cattle. Ribonuclease protection assays revealed that injection of GH in a slow-release formula increased both hepatic GHR and IGF-I mRNAs 1 wk after the injection. The increases in GHR and IGF-I mRNAs were highly correlated. Western blot analysis showed that the injection also increased liver GHR protein level. In cattle and other mammals, hepatic GHR mRNA is expressed as variants that differ in the 5'-untranslated region due to the use of different promoters in transcription and/or alternative splicing. We found that GH increased the expression of the liver-specific GHR mRNA variant GHR1A without affecting the other two major GHR mRNA variants in the bovine liver, GHR1B and GHR1C. In transient transfection analyses, GH could robustly activate reporter gene expression from a 2.7-kb GHR1A promoter, suggesting that GH augmentation of GHR1A mRNA expression in the liver is at least partially mediated at the transcriptional level. Additional transfection analyses of serially 5'-truncated fragments of this promoter narrowed the GH-responsive sequence element down to a 210-bp region that contained a putative signal transducer and activator of transcription 5 (STAT5) binding site. EMSAs demonstrated that this putative STAT5 binding site was able to bind to STAT5b protein. In cotransfection assays, deletion of this putative STAT5 binding site abolished most of the GH response of the GHR1A promoter. Like 1-wk GH action, 6-h (i.e. short-term) GH action also increased liver expression of GHR1A and total GHR mRNAs in cattle. These observations together suggest that GH directly stimulates the expression of one GHR mRNA variant, GHR1A, through binding STAT5 to its promoter, thereby increasing GHR mRNA and protein expression in the bovine liver.
Collapse
Affiliation(s)
- Honglin Jiang
- Department of Animal and Poultry Sciences, Large Animal Clinical Sciences, 3130 Litton Reaves Hall, Virginia Tech, Blacksburg, Virginia 24061-0306, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Maison P, Tropeano AI, Macquin-Mavier I, Giustina A, Chanson P. Impact of somatostatin analogs on the heart in acromegaly: a metaanalysis. J Clin Endocrinol Metab 2007; 92:1743-7. [PMID: 17311857 DOI: 10.1210/jc.2006-2547] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Acromegaly can be complicated by cardiomyopathy. Treatment with somatostatin analogs has been shown to improve some cardiac parameters, but most published clinical trials involved few patients and were not randomized or controlled. In addition, their results are rather variable. OBJECTIVE The objective of the study was to conduct a metaanalysis aimed at obtaining a more accurate picture of the effect of somatostatin analogs on the heart in patients with acromegaly. DESIGN We systematically reviewed all studies of somatostatin analogs in acromegaly. Eighteen studies were identified in three databases. We conducted a combined analysis of the effects of somatostatin analogs by using the overall effect size to evaluate significance and by computing the weighted mean differences with and without treatment to assess the effect size. RESULTS Somatostatin analog treatment was associated with significant reductions in the heart rate [-5.8 (2.1) beats/min], the left ventricular mass index [-22.3 (6.7) g/m(2)], interventricular septum thickness [-0.3 (0.2) mm], left ventricular posterior wall thickness [-0.8 (0.4) mm], and the ratio of the E-wave and A-wave peak velocities of the mitral flow profile [0.2 (0.1)]. It was also associated with improved exercise tolerance [1.6 (0.4) min]. Trends toward beneficial effects were noted for the left ventricular end-diastolic dimension [-1.5 (2.2) mm] and the left ventricular ejection fraction [3.3% (1.7%)]. Overall effect sizes were not significant for blood pressure, left ventricular end-systolic dimension, or fractional shortening. Bigger improvements were observed in studies with larger falls in IGF-I and/or GH levels and studies of younger patients. CONCLUSION This metaanalysis confirms that somatostatin analog therapy aimed at achieving stringent control of serum GH/IGF-I concentrations in patients with acromegaly is associated with significant positive effects on morphological and functional hemodynamic parameters.
Collapse
Affiliation(s)
- Patrick Maison
- Service de Pharmacologie Clinique, Unité de Recherche Clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, University of Paris 12, F-94010 Créteil, France
| | | | | | | | | |
Collapse
|
40
|
Prins T, Fodor M, Delemarre-van de Waal HA. Pituitary mRNA expression of the growth hormone axis in the 1-year-old intrauterine growth restricted rat. J Neuroendocrinol 2006; 18:611-20. [PMID: 16867182 DOI: 10.1111/j.1365-2826.2006.01451.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the major causes of short stature in childhood. Abnormalities in the growth hormone (GH) axis have frequently been observed in children who are born intrauterine growth restricted and GH treatment is effective to improve final height. However, the way that the GH axis is involved is not fully understood. Previously, when investigating the effect of IUGR on the central somatotrophic axis, a hypothalamic effect was discovered with elevated somatostatin and decreased neuropeptide Y mRNA expression levels, whereas serum GH and insulin-like growth factor I (IGFI) were unaltered. These findings were thought to indicate a hypothalamic alteration of the GH axis due to IUGR, probably to compensate pituitary output, thereby normalising peripheral values of GH and IGFI. Therefore, the present study aimed to evaluate the effect of IUGR on the pituitary GH axis in this rat model. Pups from rats that underwent bilateral uterine artery ligation at day 17 of pregnancy were studied. Pituitary glands were collected from 1-year-old offspring for quantitative measurements of GH, GH-receptor (GH-R), GH-releasing hormone receptor (GHRH-R), somatostatin receptor subtype 2 and 5, IGFI and IGFI receptor mRNA levels using a real-time reverse transcriptase-polymerase chain reaction. In addition, liver GH-R and IGFI mRNA expression levels were measured and a radioimmunoassay was performed to determine serum IGFI levels. In the IUGR rat, levels of pituitary GH, GH-R and GHRH-R relative gene expression (RGE) were increased. No differences were found in the RGE level of all other pituitary growth factors, liver GH-R and IGFI, and serum IGFI concentration between IUGR and control rats. The present data show that intrauterine growth failure leads to changes in the pituitary that might counterbalance the effects found previously in the hypothalamus.
Collapse
MESH Headings
- Adaptation, Physiological
- Analysis of Variance
- Animals
- Body Weight/physiology
- Disease Models, Animal
- Female
- Fetal Growth Retardation/genetics
- Fetal Growth Retardation/physiopathology
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/metabolism
- Male
- Pituitary Gland/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- RNA, Messenger/metabolism
- Rats
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Sex Factors
Collapse
Affiliation(s)
- T Prins
- Department of Paediatrics, VU University Medical Centre, Institute for Clinical and Experimental Neuroscience (ICEN), Amsterdam, the Netherlands.
| | | | | |
Collapse
|
41
|
Maher JM, Cheng X, Tanaka Y, Scheffer GL, Klaassen CD. Hormonal regulation of renal multidrug resistance-associated proteins 3 and 4 (Mrp3 and Mrp4) in mice. Biochem Pharmacol 2006; 71:1470-8. [PMID: 16529719 DOI: 10.1016/j.bcp.2006.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/03/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
Multidrug resistance-associated proteins 3 and 4 (Mrp3 and Mrp4) are expressed at much higher levels in female than male kidney. Sex steroids and sex-specific growth hormone (GH) secretion patterns often mediate gender-predominant gene expression. Thus, three models were used to investigate potential endocrine regulation of Mrp3 and Mrp4: (1) gonadectomized (GNX) mice with 17beta-estradiol (E2) or 5alpha-dihydroxytestosterone (DHT) replacement; (2) hypophysectomized (HPX) mice receiving E2, DHT, or simulated male-pattern (MP) or female-pattern (FP) GH secretion; (3) lit/lit mice, which have a spontaneous mutation in the growth-hormone releasing-hormone (GHRH) receptor, with simulated MP- or FP-GH secretion. GNX and HPX decreased Mrp3 mRNA levels compared with intact females. In both respective models E2 administration increased Mrp3 expression in GNX and HPX mice. DHT markedly repressed Mrp3 from GNX+placebo levels, however, this was not observed in the HPX model. In lit/lit mice, Mrp3 expression was lower than in wild-type controls, and MP-GH and FP-GH simulation slightly increased Mrp3 expression. Whereas GNX increased Mrp4 in males to female levels, HPX actually increased Mrp4 expression in both genders +375% and +66%, respectively. In both models DHT markedly repressed Mrp4. Furthermore, Mrp4 was higher in lit/lit than wild-type male mice, and simulation of MP-GH secretion suppressed female-predominant Mrp4 expression. In conclusion, these data indicate that E2 contributes to higher Mrp3 mRNA expression in females, yet a role for androgens in Mrp3 repression cannot be discounted. In contrast, Mrp4 mRNA is higher in females due to repression by both DHT and MP-GH secretion in males.
Collapse
Affiliation(s)
- J M Maher
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | | | | | |
Collapse
|
42
|
Montessuit C, Palma T, Viglino C, Pellieux C, Lerch R. Effects of insulin-like growth factor-I on the maturation of metabolism in neonatal rat cardiomyocytes. Pflugers Arch 2006; 452:380-6. [PMID: 16586094 DOI: 10.1007/s00424-006-0059-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 02/15/2006] [Accepted: 02/28/2006] [Indexed: 01/05/2023]
Abstract
Myocardial metabolism shifts during the perinatal period from predominant utilization of glucose towards oxidation of fatty acids. Expression of enzymes of the fatty acid oxidation (FAO) pathway is under the control of the nuclear receptor/transcription factor peroxisome proliferator-activated receptor alpha (PPARalpha). Insulin-like Growth Factor-I (IGF-I) plays an important role in the post-natal growth and differentiation of the heart. We determined the influence of IGF-I on the maturation of myocardial metabolism. In neonatal rat cardiac myocytes, expression of the FAO enzymes MCAD and M-CPT I was induced by treatment with the specific PPARalpha agonist WY-14643. Concomitant treatment with IGF-I enhanced the expression of both FAO enzymes. By comparison, treatment with FGF-2, which is required for myocyte differentiation of cardiac precursors, did not increase WY-14643-induced expression of FAO enzymes. Despite stimulation of FAO enzyme expression, IGF-I did not further enhance WY-14643-stimulated palmitate oxidation. In contrast, IGF-I relieved WY-14643-mediated inhibition of glucose uptake and promoted storage of fatty acids into cellular neutral lipids. In conclusion, IGF-I promotes a more mature pattern of FAO gene expression but, because of insulin-like metabolic effects, does not concomitantly enhance oxidation of fatty acids.
Collapse
Affiliation(s)
- Christophe Montessuit
- Department of Internal Medicine, Division of Cardiology, Geneva University Hospitals, 24 Micheli-du-Crest, 1211, Geneva 14, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Cooney RN, Shumate M. The Inhibitory Effects of Interleukin‐1 on Growth Hormone Action During Catabolic Illness. INTERLEUKINS 2006; 74:317-40. [PMID: 17027521 DOI: 10.1016/s0083-6729(06)74013-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) induces the expression of the anabolic genes responsible for growth, metabolism, and differentiation. Normally, GH stimulates the synthesis of circulating insulin-like growth factor-I (IGF-I) by liver, which upregulates protein synthesis in many tissues. The development of GH resistance during catabolic illness or inflammation contributes to loss of body protein, resulting in multiple complications that prolong recovery and cause death. In septic patients, increased levels of proinflammatory cytokines and GH resistance are commonly observed together. Numerous studies have provided evidence that the inhibitory effects of cytokines on skeletal muscle protein synthesis during sepsis and inflammation are mediated indirectly by changes in the GH/IGF-I system. Interleukin (IL)-1, a member of the family of proinflammatory cytokines, interacts with most cell types and is an important mediator of the inflammatory response. Infusion of a specific IL-1 receptor antagonist (IL-1Ra) ameliorates protein catabolism and GH resistance during systemic infection. This suggests that IL-1 is an important mediator of GH resistance during systemic infection or inflammation. Consequently, a better understanding of the interaction between GH, IL-1, and the regulation of protein metabolism is of great importance for the care of the patient.
Collapse
Affiliation(s)
- Robert N Cooney
- Department of Surgery, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
44
|
Tivesten A, Isgaard J. Cardiovascular and Respiratory Systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:149-66. [PMID: 16370139 DOI: 10.1007/0-387-26274-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Asa Tivesten
- Research Center for Endocrinology and Metabolism, Department of Internal Medicine, Sahlgrenska Academy at the University of Göteborg, Sweden
| | | |
Collapse
|
45
|
Miquet JG, Sotelo AI, Bartke A, Turyn D. Desensitization of the JAK2/STAT5 GH signaling pathway associated with increased CIS protein content in liver of pregnant mice. Am J Physiol Endocrinol Metab 2005; 289:E600-7. [PMID: 15899943 DOI: 10.1152/ajpendo.00085.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic exposure to growth hormone (GH) was related to the desensitization of the JAK2/STAT5 signaling pathway in liver, as demonstrated in cells, female rats, and transgenic mice overexpressing GH. The cytokine-induced suppressor (CIS) is considered a major mediator of this desensitization. Pregnancy is accompanied by an increment in GH circulating levels, which were reported to be associated with hepatic GH resistance, although the molecular mechanisms involved in this resistance are not clearly elucidated. We thus evaluated the JAK2/STAT5b signaling pathway and its regulation by the suppressors of cytokine signaling (SOCS)/CIS family and the JAK2-interacting protein SH2-Bbeta in pregnant mouse liver, a model with physiological prolonged exposure to high GH levels. Basal tyrosyl phosphorylation levels of JAK2 and STAT5b in pregnant mice were similar to values obtained for virgin animals, in spite of the important increment of GH they exhibit. Moreover, these signaling mediators were not phosphorylated upon GH stimulation in pregnant mice. A 3.3-fold increase of CIS protein content was found for pregnant mice, whereas the abundance of the other SOCS proteins analyzed and SH2-Bbeta did not significantly change compared with virgin animals. The desensitization of the JAK2/STAT5b GH signaling pathway observed in pregnant mice would then be mainly related to increased CIS levels rather than to the other regulatory proteins examined.
Collapse
Affiliation(s)
- Johanna G Miquet
- Instituto de Química y Fisicoquímica Biológicas, University of Buenos Aires-Consejo Nacional de Investigaciones Cientificar y Techicas (CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
46
|
Brüel A, Oxlund H, Nyengaard JR. The total length of myocytes and capillaries, and total number of myocyte nuclei in the rat heart are time-dependently increased by growth hormone. Growth Horm IGF Res 2005; 15:256-264. [PMID: 15979915 DOI: 10.1016/j.ghir.2005.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/21/2005] [Accepted: 04/21/2005] [Indexed: 11/27/2022]
Abstract
Growth hormone (GH) can increase size and dimensions of rat hearts. The aim was to study how GH administration influences the growth of cardiac myocytes and capillaries in relation to time. Three-month-old female rats were divided into 10 groups (n=3), and injected with either GH (5mg/kg/day) or vehicle for 5, 10, 20, 40, or 80 days. From the left ventricle (LV) histological sections were made and stereological methods applied. Linear regression showed that GH time-dependently increased: LV volume (r=0.96, P<0.001), total volume of myocytes (r=0.96, P<0.001) and capillaries (r=0.64, P<0.05), total length of myocytes (r=0.90, P<0.001) and capillaries (r=0.78, P<0.001), and total number of myocyte nuclei (r=0.85, P<0.001). In conclusion, during 80 days of GH treatment the total volume and length of myocytes and capillaries, and total number of myocyte nuclei increased in a linear way. The results indicate that GH is a potent mediator of myocardial growth.
Collapse
Affiliation(s)
- Annemarie Brüel
- Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, 8000 Aarhus, Denmark.
| | | | | |
Collapse
|
47
|
Demers C, McKelvie RS. Growth hormone therapy in heart failure: a novel therapy worthy of further consideration? Expert Opin Investig Drugs 2005; 14:1009-18. [PMID: 16050793 DOI: 10.1517/13543784.14.8.1009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the improvements in survival with angiotensin-converting enzyme inhibitors and beta-blockers, the clinical events for patients with heart failure remain elevated. New therapies for heart failure are required to improve the functional capacity, quality of life and prognosis. Growth hormone exerts both direct and indirect effects on cardiac structure and function. Experimental models of heart failure and small studies have demonstrated significant improvements in cardiac function, haemodynamical parameters, functional capacity and quality of life. The results from randomised controlled studies have been mixed with others showing benefit and some that do not. The randomised studies showing benefit consistently used growth hormone every other day. Further studies are needed to assess the potential role of this adjuvant therapy in patients with heart failure.
Collapse
|
48
|
Frenckner B, Eklöf AC, Eriksson H, Masironi B, Sahlin L. Insulinlike growth factor I gene expression is increased in the fetal lung after tracheal ligation. J Pediatr Surg 2005; 40:457-63. [PMID: 15793718 DOI: 10.1016/j.jpedsurg.2004.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE The mortality and morbidity in congenital diaphragmatic hernia are mainly caused by pulmonary hypoplasia. To improve clinical results, further methods inducing lung growth may have to be used. The aim of this report was to evaluate the expression of insulinlike growth factor I (IGF-I), estrogen receptor alpha, estrogen receptor beta, growth hormone receptor, and thioredoxin in a rat model of hypoplastic, hyperplastic, and normal fetal lungs to improve understanding of lung growth. METHODS Hypoplastic diaphragmatic hernia lungs were created by giving nitrofen by gavage to pregnant rats on day 9.5. Hyperplastic lungs were achieved by intrauterine tracheal ligation of rat fetuses on day 19. All lungs were harvested on gestational day 21. Total nucleic acids were extracted by proteinase K digestion and extraction in phenol/chloroform. The total nucleic acids mixture was hybridized with radioactively labeled RNA probes, and the radioactivity of the hybrids was compared with the respective standard curve of known amounts of in vitro synthesized mRNA. Immunohistochemistry staining was performed for IGF-I. RESULTS The IGF-I mRNA was significantly (P < .01) higher in hyperplastic lungs compared with control and hypoplastic lungs. The latter 2 did not differ. No difference was found between the other mRNA levels in the study groups. CONCLUSIONS IGF-I is involved in the accelerated lung growth seen after intrauterine tracheal ligation.
Collapse
MESH Headings
- Abnormalities, Drug-Induced/genetics
- Abnormalities, Drug-Induced/metabolism
- Abnormalities, Drug-Induced/pathology
- Animals
- Disease Models, Animal
- Estrogen Receptor alpha/biosynthesis
- Estrogen Receptor alpha/genetics
- Estrogen Receptor beta/biosynthesis
- Estrogen Receptor beta/genetics
- Female
- Fetal Proteins/biosynthesis
- Fetal Proteins/genetics
- Gene Expression Regulation, Developmental
- Gestational Age
- Hernia, Diaphragmatic/embryology
- Hernia, Diaphragmatic/genetics
- Hernia, Diaphragmatic/metabolism
- Hyperplasia
- Insulin-Like Growth Factor I/biosynthesis
- Insulin-Like Growth Factor I/genetics
- Ligation
- Lung/abnormalities
- Lung/embryology
- Lung/metabolism
- Lung/pathology
- Phenyl Ethers/toxicity
- Pregnancy
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Somatotropin/biosynthesis
- Receptors, Somatotropin/genetics
- Thioredoxins/biosynthesis
- Thioredoxins/genetics
- Trachea/embryology
- Trachea/surgery
Collapse
Affiliation(s)
- Björn Frenckner
- Division of Pediatric Surgery, Astrid Lindgren Children's Hospital, Q3:03, SE-171 76, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Jayasankar V, Bish LT, Pirolli TJ, Berry MF, Burdick J, Woo YJ. Local myocardial overexpression of growth hormone attenuates postinfarction remodeling and preserves cardiac function. Ann Thorac Surg 2004; 77:2122-9; discussion 2129. [PMID: 15172279 DOI: 10.1016/j.athoracsur.2003.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2003] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ventricular remodeling with chamber dilation and wall thinning is seen in postinfarction heart failure. Growth hormone induces myocardial hypertrophy when oversecreted. We hypothesized that localized myocardial hypertrophy induced by gene transfer of growth hormone could inhibit remodeling and preserve cardiac function after myocardial infarction. METHODS Rats underwent direct intramyocardial injection of adenovirus encoding either human growth hormone (n = 9) or empty null vector as control (n = 9) 3 weeks after ligation of the left anterior descending coronary artery. Analysis of the following was performed 3 weeks after delivery: hemodynamics, ventricular geometry, cardiomyocyte fiber size, and serum growth hormone levels. RESULTS The growth hormone group had significantly better systolic cardiac function as measured by maximum left ventricular pressure (73.6 +/- 6.9 mm Hg versus control 63.7 +/- 7.8 mm Hg, p < 0.05) and maximum dP/dt (2845 +/- 453 mm Hg/s versus 1949 +/- 605 mm Hg/s, p < 0.005), and diastolic function as measured by minimum dP/dt (-2520 +/- 402 mm Hg/s versus -1500 +/- 774 mm Hg/s, p < 0.01). Ventricular geometry was preserved in the growth hormone group (ventricular diameter 12.2 +/- 0.7 mm versus control 13.1 +/- 0.4 mm, p < 0.05; borderzone wall thickness 2.0 +/- 0.2 mm versus 1.5 +/- 0.1 mm, p < 0.001), and was associated with cardiomyocyte hypertrophy (6.09 +/- 0.63 microm versus 4.66 +/- 0.55 microm, p < 0.005). Local myocardial expression of growth hormone was confirmed, whereas serum levels were undetectable after 3 weeks. CONCLUSIONS Local myocardial overexpression of growth hormone after myocardial infarction resulted in cardiomyocyte hypertrophy, attenuated ventricular remodeling, and improved systolic and diastolic cardiac function. The induction of localized myocardial hypertrophy presents a novel therapeutic approach for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Vasant Jayasankar
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ma J, Graves J, Bradbury JA, Zhao Y, Swope DL, King L, Qu W, Clark J, Myers P, Walker V, Lindzey J, Korach KS, Zeldin DC. Regulation of mouse renal CYP2J5 expression by sex hormones. Mol Pharmacol 2004; 65:730-43. [PMID: 14978252 DOI: 10.1124/mol.65.3.730] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mouse CYP2J5 is abundant in kidney and active in the metabolism of arachidonic acid to epoxyeicosatrienoic acids. Western blots of microsomes prepared from mouse kidneys demonstrate that after puberty, CYP2J5 protein is present at higher levels in male mice than in female mice. Northern analysis reveals that CYP2J5 transcripts are more abundant in adult male versus female kidneys, indicating that gender differences in renal CYP2J5 expression are regulated at a pretranslational level. Castration of male mice results in decreased renal CYP2J5 expression, and treatment of castrated male mice or female mice with 5alpha-dihydrotestosterone increases expression to levels that approximate those in intact male mice. In contrast, treatment of ovariectomized female mice or castrated male mice with 17beta-estradiol causes a further reduction in CYP2J5 expression. Growth hormone-deficient (lit/lit) mice respond similarly to castration and 5alpha-dihydrotestosterone treatment, indicating that the androgen effects are not mediated by alterations in the growth hormone secretory pattern. Mice that lack a functional androgen receptor (Tfm hemizygous) have reduced levels of renal CYP2J5 and do not respond to 5alpha-dihydrotestosterone treatment. Similarly, wild-type male mice treated with flutamide, an androgen antagonist, exhibit reduced renal CYP2J5 levels. Female estrogen receptor-alpha knockout (alphaERKO) mice, which are known to have elevated circulating testosterone levels, have significantly increased renal CYP2J5 expression compared with wild-type female mice, and these differences are abrogated by ovariectomy or treatment with flutamide. Based on these data, we conclude that the renal expression of CYP2J5 is up-regulated by androgen and down-regulated by estrogen.
Collapse
Affiliation(s)
- Jixiang Ma
- Division of Intramural Research, National Institutes of Health/NIEHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|