1
|
Keller BN, Snyder AE, Coker CR, Aguilar EA, O’Brien MK, Bingaman SS, Arnold AC, Hajnal A, Silberman Y. Vagus nerve damage increases alcohol intake and preference in a nonpreferring rat line: Relationship to vagal regulation of the hypothalamic-pituitary-adrenal axis. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:488-498. [PMID: 38311347 PMCID: PMC10939901 DOI: 10.1111/acer.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Clinical and preclinical research indicates that gastric weight loss surgeries, such as Roux-en-Y gastric bypass surgery, can induce alcohol use disorder (AUD). While numerous mechanisms have been proposed for these effects, one relatively unexplored potential mechanism is physical damage to the gastric branch of the vagus nerve, which can occur during bypass surgery. Therefore, we hypothesized that direct damage to the gastric branch of the vagus nerve, without altering other aspects of gastric anatomy, could result in increased alcohol intake. METHODS To test this hypothesis, we compared alcohol intake and preference in multiple models in male Sprague-Dawley rats that received selective gastric branch vagotomy (VX) with rats who underwent sham surgery. Because the vagus nerve regulates hypothalamic-pituitary-adrenal (HPA) axis function, and alterations to HPA function are critical to the escalation of non-dependent alcohol intake, we also tested the hypothesis that gastric VX increases HPA function. RESULTS We found that VX increases alcohol intake and preference in the every-other-day, two-bottle choice test and increases preference for 1 g/kg alcohol in the conditioned place preference test. The effects were selective for alcohol, as sucrose intake and preference were not altered by VX. We also found that VX increases corticotropin releasing factor (CRF) mRNA in the paraventricular nucleus of the hypothalamus (PVN), increases putative PVN CRF neuronal action potential firing, and increases corticosterone levels. CONCLUSIONS Overall, these findings suggest that the vagus nerve may play a critical role in regulating HPA axis function via modulation of PVN CRF mRNA expression and putative PVN CRF neuronal activity. Furthermore, disruptions to vagal regulation of HPA axis function may increase alcohol intake and preference.
Collapse
Affiliation(s)
- Bailey N. Keller
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Angela E. Snyder
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Caitlin R. Coker
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Elizabeth A. Aguilar
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Mary K. O’Brien
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Sarah S. Bingaman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Amy C. Arnold
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Andras Hajnal
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| | - Yuval Silberman
- The Pennsylvania State University College of Medicine, Department of Neural and Behavioral Sciences
| |
Collapse
|
2
|
Hendry E, McCallister B, Elman DJ, Freeman R, Borsook D, Elman I. Validity of mental and physical stress models. Neurosci Biobehav Rev 2024; 158:105566. [PMID: 38307304 PMCID: PMC11082879 DOI: 10.1016/j.neubiorev.2024.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Different stress models are employed to enhance our understanding of the underlying mechanisms and explore potential interventions. However, the utility of these models remains a critical concern, as their validities may be limited by the complexity of stress processes. Literature review revealed that both mental and physical stress models possess reasonable construct and criterion validities, respectively reflected in psychometrically assessed stress ratings and in activation of the sympathoadrenal system and the hypothalamic-pituitary-adrenal axis. The findings are less robust, though, in the pharmacological perturbations' domain, including such agents as adenosine or dobutamine. Likewise, stress models' convergent- and discriminant validity vary depending on the stressors' nature. Stress models share similarities, but also have important differences regarding their validities. Specific traits defined by the nature of the stressor stimulus should be taken into consideration when selecting stress models. Doing so can personalize prevention and treatment of stress-related antecedents, its acute processing, and chronic sequelae. Further work is warranted to refine stress models' validity and customize them so they commensurate diverse populations and circumstances.
Collapse
Affiliation(s)
- Erin Hendry
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brady McCallister
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA
| | - Dan J Elman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Borsook
- Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Department of Anesthesiology, Harvard Medical School, Boston, MA, USA.
| | - Igor Elman
- Department of Psychiatry, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
3
|
Figueiredo E, Margaça C, Hernández-Sánchez B, Sánchez-García JC. Teleworking Effects on Mental Health-A Systematic Review and a Research Agenda. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:243. [PMID: 38541245 PMCID: PMC10970114 DOI: 10.3390/ijerph21030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 07/23/2024]
Abstract
Teleworking has become an increasingly adopted modality in organizations. However, changes in working conditions have led to several challenges regarding its impacts on professionals' health. The aim of this study is to provide a systematic review of the literature about the impact of teleworking on workers' mental health. The PRISMA protocol and VOSviewer were used to identify the main trends from the set of 64 articles. The co-occurrence analyzes showed combined relationships between this new type of work and its effects on workers' health, which resulted in four different clusters and a robust knowledge structure. Furthermore, the findings indicate that working from home has a dualistic nature. This study offers a prominent and promising framework regarding the teleworking impact on workers' health research agenda.
Collapse
Affiliation(s)
- Elisabeth Figueiredo
- Department of Social Psychology and Anthropology, Faculty of Psychology, University of Salamanca, Avenida de la Merced, 109, 37005 Salamanca, Spain; (E.F.); (J.C.S.-G.)
| | - Clara Margaça
- Department of Social Psychology and Anthropology, Faculty of Psychology, University of Salamanca, Avenida de la Merced, 109, 37005 Salamanca, Spain; (E.F.); (J.C.S.-G.)
| | | | - José Carlos Sánchez-García
- Department of Social Psychology and Anthropology, Faculty of Psychology, University of Salamanca, Avenida de la Merced, 109, 37005 Salamanca, Spain; (E.F.); (J.C.S.-G.)
| |
Collapse
|
4
|
Olsen CM, Glaeser BL, Szabo A, Raff H, Everson CA. The effects of sleep restriction during abstinence on oxycodone seeking: Sex-dependent moderating effects of behavioral and hypothalamic-pituitary-adrenal axis-related phenotypes. Physiol Behav 2023; 272:114372. [PMID: 37805135 PMCID: PMC10841994 DOI: 10.1016/j.physbeh.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
During opioid use and abstinence, sleep disturbances are common and are thought to exacerbate drug craving. In this study, we tested the hypothesis that sleep restriction during abstinence from oxycodone self-administration would increase drug seeking during extinction and footshock reinstatement tests. We also performed behavioral phenotyping to determine if individual variation in responses to stressors and/or pain are associated with oxycodone seeking during abstinence, as stress, pain and sleep disturbance are often co-occurring phenomena. Sleep restriction during abstinence did not have selective effects on oxycodone seeking for either sex in extinction and footshock reinstatement tests. Some phenotypes were associated with drug seeking; these associations differed by sex and type of drug seeking assessment. In female rats, pain-related phenotypes were related to high levels of drug seeking during the initial extinction session. In male rats, lower anxiety-like behavior in the open field was associated with greater drug seeking, although this effect was lost when correcting for oxycodone intake. Adrenal sensitivity prior to oxycodone exposure was positively associated with footshock reinstatement in females. This work identifies sex-dependent relationships between HPA axis function and opioid seeking, indicating that HPA axis function could be a therapeutic target for the treatment of opioid use disorder, with tailored approaches based on sex. Sleep disturbance during abstinence did not appear to be a major contributing factor to opioid seeking.
Collapse
Affiliation(s)
- Christopher M Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank, Milwaukee, WI 53226, USA.
| | - Breanna L Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Koob GF, Vendruscolo L. Theoretical Frameworks and Mechanistic Aspects of Alcohol Addiction: Alcohol Addiction as a Reward Deficit/Stress Surfeit Disorder. Curr Top Behav Neurosci 2023. [PMID: 37421551 DOI: 10.1007/7854_2023_424] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Alcohol use disorder (AUD) can be defined by a compulsion to seek and take alcohol, the loss of control in limiting intake, and the emergence of a negative emotional state when access to alcohol is prevented. Alcohol use disorder impacts multiple motivational mechanisms and can be conceptualized as a disorder that includes a progression from impulsivity (positive reinforcement) to compulsivity (negative reinforcement). Compulsive drug seeking that is associated with AUD can be derived from multiple neuroadaptations, but the thesis argued herein is that a key component involves the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from the dysregulation of specific neurochemical elements that are involved in reward and stress within basal forebrain structures that involve the ventral striatum and extended amygdala, respectively. Specific neurochemical elements in these structures include decreases in reward neurotransmission (e.g., decreases in dopamine and opioid peptide function in the ventral striatum) and the recruitment of brain stress systems (e.g., corticotropin-releasing factor [CRF]) in the extended amygdala, which contributes to hyperkatifeia and greater alcohol intake that is associated with dependence. Glucocorticoids and mineralocorticoids may play a role in sensitizing the extended amygdala CRF system. Other components of brain stress systems in the extended amygdala that may contribute to the negative motivational state of withdrawal include norepinephrine in the bed nucleus of the stria terminalis, dynorphin in the nucleus accumbens, hypocretin and vasopressin in the central nucleus of the amygdala, and neuroimmune modulation. Decreases in the activity of neuropeptide Y, nociception, endocannabinoids, and oxytocin in the extended amygdala may also contribute to hyperkatifeia that is associated with alcohol withdrawal. Such dysregulation of emotional processing may also significantly contribute to pain that is associated with alcohol withdrawal and negative urgency (i.e., impulsivity that is associated with hyperkatifeia during hyperkatifeia). Thus, an overactive brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of AUD. The combination of the loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement that at least partially drives the compulsivity of AUD.
Collapse
Affiliation(s)
- George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Leandro Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Glucocorticoid-Responsive Tissue Plasminogen Activator (tPA) and Its Inhibitor Plasminogen Activator Inhibitor-1 (PAI-1): Relevance in Stress-Related Psychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054496. [PMID: 36901924 PMCID: PMC10003592 DOI: 10.3390/ijms24054496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Stressful events trigger a set of complex biological responses which follow a bell-shaped pattern. Low-stress conditions have been shown to elicit beneficial effects, notably on synaptic plasticity together with an increase in cognitive processes. In contrast, overly intense stress can have deleterious behavioral effects leading to several stress-related pathologies such as anxiety, depression, substance use, obsessive-compulsive and stressor- and trauma-related disorders (e.g., post-traumatic stress disorder or PTSD in the case of traumatic events). Over a number of years, we have demonstrated that in response to stress, glucocorticoid hormones (GCs) in the hippocampus mediate a molecular shift in the balance between the expression of the tissue plasminogen activator (tPA) and its own inhibitor plasminogen activator inhibitor-1 (PAI-1) proteins. Interestingly, a shift in favor of PAI-1 was responsible for PTSD-like memory induction. In this review, after describing the biological system involving GCs, we highlight the key role of tPA/PAI-1 imbalance observed in preclinical and clinical studies associated with the emergence of stress-related pathological conditions. Thus, tPA/PAI-1 protein levels could be predictive biomarkers of the subsequent onset of stress-related disorders, and pharmacological modulation of their activity could be a potential new therapeutic approach for these debilitating conditions.
Collapse
|
7
|
Smeets T, Ashton SM, Roelands SJ, Quaedflieg CW. Does stress consistently favor habits over goal-directed behaviors? Data from two preregistered exact replication studies. Neurobiol Stress 2023; 23:100528. [PMID: 36861028 PMCID: PMC9969070 DOI: 10.1016/j.ynstr.2023.100528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Instrumental learning is controlled by two distinct parallel systems: goal-directed (action-outcome) and habitual (stimulus-response) processes. Seminal research by Schwabe and Wolf (2009, 2010) has demonstrated that stress renders behavior more habitual by decreasing goal-directed control. More recent studies yielded equivocal evidence for a stress-induced shift towards habitual responding, yet these studies used different paradigms to evaluate instrumental learning or used different stressors. Here, we performed exact replications of the original studies by exposing participants to an acute stressor either before (cf. Schwabe and Wolf, 2009) or directly after (cf. Schwabe and Wolf, 2010) an instrumental learning phase in which they had learned that distinct actions led to distinct, rewarding food outcomes (i.e., instrumental learning). Then, following an outcome devaluation phase in which one of the food outcomes was consumed until participants were satiated, action-outcome associations were tested in extinction. Despite successful instrumental learning and outcome devaluation and increased subjective and physiological stress levels following stress exposure, the stress and no-stress groups in both replication studies responded indifferently to valued and devalued outcomes. That is, non-stressed participants failed to demonstrate goal-directed behavioral control, thereby rendering the critical test of a shift from goal-directed to habitual control in the stress group inapt. Several reasons for these replication failures are discussed, including the rather indiscriminate devaluation of outcomes that may have contributed to indifferent responding during extinction, which emphasize the need to further our understanding of the boundary conditions in research aimed at demonstrating a stress-induced shift towards habitual control.
Collapse
Affiliation(s)
- Tom Smeets
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands,Corresponding author.
| | - Stephanie M. Ashton
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands,Department of Neuropsychology & Neuropharmacology, Maastricht University, the Netherlands
| | - Simone J.A.A. Roelands
- Department of Medical and Clinical Psychology, Center of Research on Psychological disorders and Somatic diseases (CoRPS), Tilburg University, the Netherlands
| | | |
Collapse
|
8
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
10
|
Sahani V, Hurd YL, Bachi K. Neural Underpinnings of Social Stress in Substance Use Disorders. Curr Top Behav Neurosci 2022; 54:483-515. [PMID: 34971448 PMCID: PMC9177516 DOI: 10.1007/7854_2021_272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Drug addiction is a complex brain disorder that is characterized by craving, withdrawal, and relapse, which can be perpetuated by social stress. Stemming from an acute life event, chronic stress, or trauma in a social context, social stress has a major role in the initiation and trajectory of substance use. Preclinical literature shows that early life stress exposure and social isolation facilitate and enhance drug self-administration. Epidemiological evidence links childhood adversity to increased risk for drug use and demonstrates that cumulative stress experiences are predictive of substance use severity in a dose-dependent manner. Stress and drug use induce overlapping brain alterations leading to downregulation or deficits in brain reward circuitry, thereby resulting in greater sensitization to the rewarding properties of drugs. Though stress in the context of addiction has been studied at the neural level, a gap in our understanding of the neural underpinnings of social stress in humans remains. METHODS We conducted a systematic review of in vivo structural and functional neuroimaging studies to evaluate the neural processes associated with social stress in individuals with substance use disorder. Results were considered in relation to participants' history of social stress and with regard to the effects of social stress induced during the neuroimaging paradigm. RESULTS An exhaustive search yielded 21 studies that matched inclusion criteria. Social stress induces broad structural and functional neural effects in individuals with substance use disorder throughout their lifespan and across drug classes. A few patterns emerged across studies: (1) many of the brain regions altered in individuals who were exposed to chronic social stress and during acute stress induction have been implicated in addiction networks (including the prefrontal cortex, insula, hippocampus, and amygdala); (2) individuals with childhood maltreatment and substance use history had decreased gray matter or activation in regions of executive functioning (including the medial prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex), the hippocampal complex, and the supplementary motor area; and (3) during stress-induction paradigms, activation in the anterior cingulate cortex, caudate, and amygdala was most commonly observed. CONCLUSIONS/IMPLICATIONS A distinct overlap is shown between social stress-related circuitry and addiction circuitry, particularly in brain regions implicated in drug-seeking, craving, and relapse. Given the few studies that have thoroughly investigated social stress, the evidence accumulated to date needs to be replicated and extended, particularly using research designs and methods that disentangle the effects of substance use from social stress. Future clinical studies can leverage this information to evaluate the impact of exposure to trauma or adverse life events within substance use research. Expanding knowledge in this emerging field could help clarify neural mechanisms underlying addiction risk and progression to guide causal-experimental inquiry and novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Vyoma Sahani
- Department of Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yasmin L Hurd
- Department of Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keren Bachi
- Department of Psychiatry, Addiction Institute of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Bertagna NB, Favoretto CA, Rodolpho BT, Palombo P, Yokoyama TS, Righi T, Loss CM, Leão RM, Miguel TT, Cruz FC. Maternal Separation Stress Affects Voluntary Ethanol Intake in a Sex Dependent Manner. Front Physiol 2021; 12:775404. [PMID: 34950053 PMCID: PMC8691459 DOI: 10.3389/fphys.2021.775404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) stress is a predictive animal model for evaluating the effects of early stress exposure on alcohol use disorders (AUD). The extended amygdala (AMY) is a complex circuit involved in both stress- and ethanol-related responses. We hypothesized that MS stress may increase ethanol consumption in adulthood, as well as augment neuronal activity in extended AMY, in a sex-dependent manner. We aimed to investigate the influence of MS stress on the ethanol consumption of male and female mice, and the involvement of extended amygdala sub-nuclei in this process. The C57BL/6J pups were subjected to 180min of MS, from postnatal day (PND) 1 to 14. The control group was left undisturbed. On PND 45, mice (n=28) in cages were exposed to a bottle containing 20% ethanol (w/v) for 4h during the dark period of the light-dark cycle, for 3weeks. Afterward, mice underwent ethanol self-administration training in operant chambers under fixed ratio (FR) schedule. Then, subjects were tested under 2h sessions of a progressive-ratio (PR) schedule of reinforcement (the last ratio achieved was considered the breaking point), and at the end, a 4h session of FR schedule (binge-intake). An immunohistochemistry assay for Fos protein was performed in Nucleus Accumbens (NAcc), Bed Nucleus of Stria Terminalis (BNST), and AMY. Our results showed that in the third week of training, the female MS group consumed more ethanol than the respective control group. The MS group presented increased breakpoint parameters. Female control group and male MS group were more resistant to bitter quinine taste. Increased Fos-immunoreactive neurons (Fos-IR) were observed in the central nucleus of AMY, but not in NAcc nor BNST in male maternal-separated mice. Maternal separation stress may influence ethanol intake in adulthood, and it is dependent on the sex and reinforcement protocol.
Collapse
Affiliation(s)
- Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Ben Tagami Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Paola Palombo
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Thais Suemi Yokoyama
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Rodrigo Molini Leão
- Pharmacology Laboratory, Department of Pharmacology, Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tarciso Tadeu Miguel
- Pharmacology Laboratory, Department of Pharmacology, Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Tschetter KE, Callahan LB, Flynn SA, Rahman S, Beresford TP, Ronan PJ. Early life stress and susceptibility to addiction in adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:277-302. [PMID: 34801172 DOI: 10.1016/bs.irn.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Early life stress (ELS) is a risk factor for developing a host of psychiatric disorders. Adolescence is a particularly vulnerable period for the onset of these disorders and substance use disorders (SUDs). Here we discuss ELS and its effects in adolescence, especially SUDs, and their correlates with molecular changes to signaling systems in reward and stress neurocircuits. Using a maternal separation (MS) model of neonatal ELS, we studied a range of behaviors that comprise a "drug-seeking" phenotype. We then investigated potential mechanisms underlying the development of this phenotype. Corticotropin releasing factor (CRF) and serotonin (5-HT) are widely believed to be involved in "stress-induced" disorders, including addiction. Here, we show that ELS leads to the development of a drug-seeking phenotype indicative of increased susceptibility to addiction and concomitant sex-dependent upregulation of CRF and 5-HT system components throughout extended brain reward/stress neurocircuits.
Collapse
Affiliation(s)
- K E Tschetter
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - L B Callahan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S A Flynn
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - T P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - P J Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States.
| |
Collapse
|
13
|
Vollmer KM, Doncheck EM, Grant RI, Winston KT, Romanova EV, Bowen CW, Siegler PN, Green LM, Bobadilla AC, Trujillo-Pisanty I, Kalivas PW, Otis JM. A Novel Assay Allowing Drug Self-Administration, Extinction, and Reinstatement Testing in Head-Restrained Mice. Front Behav Neurosci 2021; 15:744715. [PMID: 34776891 PMCID: PMC8585999 DOI: 10.3389/fnbeh.2021.744715] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Multiphoton microscopy is one of several new technologies providing unprecedented insight into the activity dynamics and function of neural circuits. Unfortunately, some of these technologies require experimentation in head-restrained animals, limiting the behavioral repertoire that can be integrated and studied. This issue is especially evident in drug addiction research, as no laboratories have coupled multiphoton microscopy with simultaneous intravenous drug self-administration, a behavioral paradigm that has predictive validity for treatment outcomes and abuse liability. Here, we describe a new experimental assay wherein head-restrained mice will press an active lever, but not inactive lever, for intravenous delivery of heroin or cocaine. Similar to freely moving animals, we find that lever pressing is suppressed through daily extinction training and subsequently reinstated through the presentation of relapse-provoking triggers (drug-associative cues, the drug itself, and stressors). Finally, we show that head-restrained mice will show similar patterns of behavior for oral delivery of a sucrose reward, a common control used for drug self-administration experiments. Overall, these data demonstrate the feasibility of combining drug self-administration experiments with technologies that require head-restraint, such as multiphoton imaging. The assay described could be replicated by interested labs with readily available materials to aid in identifying the neural underpinnings of substance use disorder.
Collapse
Affiliation(s)
- Kelsey M Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Elizabeth M Doncheck
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Roger I Grant
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Kion T Winston
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Elizaveta V Romanova
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W Bowen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Preston N Siegler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | | | | | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
14
|
Rigoni D, Avalos MP, Boezio MJ, Guzmán AS, Calfa GD, Perassi EM, Pierotti SM, Bisbal M, Garcia-Keller C, Cancela LM, Bollati F. Stress-induced vulnerability to develop cocaine addiction depends on cofilin modulation. Neurobiol Stress 2021; 15:100349. [PMID: 34169122 PMCID: PMC8209265 DOI: 10.1016/j.ynstr.2021.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Actin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction. We assess whether the neurobiological mechanisms that modulate repeated-cocaine administration also occur in a chronic restraint stress-induced cocaine self-administration model. We also determine if chronic stress induces alterations in dendritic spines through dysregulation of cofilin activity in the NA core. Here, we show that the inhibition of cofilin expression in the NA core using viral short-hairpin RNA is sufficient to prevent the cocaine sensitization induced by chronic stress. The reduced cofilin levels also impede a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor surface expression enhancement and promote the reduction of head diameter in animals pre-exposed to stress after a cocaine challenge in the NA core. Moreover, downregulation of cofilin expression prevents facilitation of the acquisition of cocaine self-administration (SA) in male rats pre-exposed to chronic stress without modifying performance in sucrose SA. These findings reveal a novel, crucial role for cofilin in the neurobiological mechanisms underpinning the comorbidity between stress exposure and addiction-related disorders.
Collapse
Affiliation(s)
- Daiana Rigoni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Maria P. Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Maria J. Boezio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Andrea S. Guzmán
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Gaston D. Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Eduardo M. Perassi
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Silvia M. Pierotti
- Cátedra de Bioestadística I y II (Departamento de Matemática), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Velez Sarfield 161, (5000), Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, Colinas de Vélez Sarsfield (5016) Córdoba, Argentina
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Liliana M. Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Flavia Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| |
Collapse
|
15
|
Rodriquez EJ, Coreas SI, Gallo LC, Isasi CR, Salazar CR, Bandiera FC, Suglia SF, Perreira KM, Hernandez R, Penedo F, Talavera GA, Daviglus ML, Pérez-Stable EJ. Allostatic load, unhealthy behaviors, and depressive symptoms in the Hispanic Community Health Study/Study of Latinos. SSM Popul Health 2021; 16:100917. [PMID: 34660875 PMCID: PMC8502772 DOI: 10.1016/j.ssmph.2021.100917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The Environmental Affordances Model (EAM) proposes that the effects of chronic stress on depression are moderated by unhealthy behaviors and race/ethnicity. The unique social structures and contexts of Hispanics/Latinos in the U.S. may influence such relationships. This study evaluated whether unhealthy behaviors weakened the relationship between allostatic load, a measure of chronic stress, and future elevated depressive symptoms among Hispanic Community Health Study/Study of Latinos participants. METHODS Longitudinal data (2008-2011 and 2014-2017) from 11,623 participants were analyzed. The exposure was allostatic load, an index of twelve established biomarkers categorized using clinically relevant cut points, at Visit 1. Elevated depressive symptoms were operationalized as a score of ≥10 (out of 30) on the CES-D 10 at Visit 2. An index of unhealthy behaviors, with one point each for cigarette smoking, excessive/binge drinking, sedentary behavior, and poor diet quality at Visit 1, was examined as an effect modifier. Multivariable logistic regression, in the overall sample and among Mexicans specifically and adjusted for demographic characteristics and elevated depressive symptoms at Visit 1, was used to model allostatic load, unhealthy behavior index (range: 0-4), and their interaction in relation to elevated depressive symptoms at Visit 2. RESULTS Overall, greater allostatic load was associated with higher odds of elevated depressive symptoms after at least 6 years (aOR = 1.06, 95% CI = 1.01, 1.10). Overall, individuals with greater allostatic load and an unhealthy behavior index = 1, compared to those with an unhealthy behavior index = 0, had lower odds of elevated depressive symptoms at follow-up (aβ = -0.065, 95% CI = -0.12, -0.007). CONCLUSIONS The relationship between chronic stress and depression was partially moderated among Hispanics/Latinos who engaged in unhealthy behavior, which may have reduced their risk of elevated depressive symptoms given more chronic stress.
Collapse
Affiliation(s)
- Erik J. Rodriquez
- Division of Intramural Research; National Heart, Lung, And Blood Institute; 3 Center Drive, Bethesda, MD, 20892-0311, USA
| | - Saida I. Coreas
- Division of Intramural Research; National Heart, Lung, And Blood Institute; 3 Center Drive, Bethesda, MD, 20892-0311, USA
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, 780 Bay Boulevard Suite 200, Chula Vista, CA, 91910, USA
| | - Carmen R. Isasi
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Christian R. Salazar
- UC Irvine Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, 3227 Biological Sciences III, Irvine, CA, 92697, USA
| | - Frank C. Bandiera
- Division of Behavioral and Social Research, National Institute on Aging, 31 Center Drive, Bethesda, MD, 20892-2292, USA
| | - Shakira F. Suglia
- Rollins School of Public Health, Emory University, 201 Dowman Drive, Atlanta, GA, 30322, USA
| | - Krista M. Perreira
- School of Medicine, University of North Carolina, 333 South Columbia Street, Chapel Hill, NC, 27599-7240, USA
| | - Rosalba Hernandez
- School of Social Work, University of Illinois at Urbana-Champaign, 1010 West Nevada Street, Urbana, IL, 61801, USA
| | - Frank Penedo
- Department of Psychology, University of Miami, Flipse Building, 5th Floor, 5665 Ponce de Leon Blvd, Coral Gables, Florida, 33146, USA
| | - Gregory A. Talavera
- Division of Health Promotion and Behavioral Science, Graduate School of Public Health, San Diego State University, 9245 Sky Park Court, Suite 100 / HH 138, San Diego, CA, 92123-4311, USA
| | - Martha L. Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, 1819 West Polk Street Suite 246, Chicago, IL, 60612, USA
| | - Eliseo J. Pérez-Stable
- Division of Intramural Research; National Heart, Lung, And Blood Institute; 3 Center Drive, Bethesda, MD, 20892-0311, USA,Corresponding author. Division of Intramural Research; National Heart, Lung, And Blood Institute; 3 Center Drive, Bethesda, MD, 20892-0311, USA.
| |
Collapse
|
16
|
Chaves T, Fazekas CL, Horváth K, Correia P, Szabó A, Török B, Bánrévi K, Zelena D. Stress Adaptation and the Brainstem with Focus on Corticotropin-Releasing Hormone. Int J Mol Sci 2021; 22:ijms22169090. [PMID: 34445795 PMCID: PMC8396605 DOI: 10.3390/ijms22169090] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Stress adaptation is of utmost importance for the maintenance of homeostasis and, therefore, of life itself. The prevalence of stress-related disorders is increasing, emphasizing the importance of exploratory research on stress adaptation. Two major regulatory pathways exist: the hypothalamic–pituitary–adrenocortical axis and the sympathetic adrenomedullary axis. They act in unison, ensured by the enormous bidirectional connection between their centers, the paraventricular nucleus of the hypothalamus (PVN), and the brainstem monoaminergic cell groups, respectively. PVN and especially their corticotropin-releasing hormone (CRH) producing neurons are considered to be the centrum of stress regulation. However, the brainstem seems to be equally important. Therefore, we aimed to summarize the present knowledge on the role of classical neurotransmitters of the brainstem (GABA, glutamate as well as serotonin, noradrenaline, adrenaline, and dopamine) in stress adaptation. Neuropeptides, including CRH, might be co-localized in the brainstem nuclei. Here we focused on CRH as its role in stress regulation is well-known and widely accepted and other CRH neurons scattered along the brain may also complement the function of the PVN. Although CRH-positive cells are present on some parts of the brainstem, sometimes even in comparable amounts as in the PVN, not much is known about their contribution to stress adaptation. Based on the role of the Barrington’s nucleus in micturition and the inferior olivary complex in the regulation of fine motoric—as the main CRH-containing brainstem areas—we might assume that these areas regulate stress-induced urination and locomotion, respectively. Further studies are necessary for the field.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Adrienn Szabó
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Janos Szentagothai School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Krisztina Bánrévi
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
| | - Dóra Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Experimental Medicine, 1083 Budapest, Hungary; (T.C.); (C.L.F.); (K.H.); (P.C.); (A.S.); (B.T.); (K.B.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
17
|
Day-to-day opioid withdrawal symptoms, psychological distress, and opioid craving in patients with chronic pain prescribed opioid therapy. Drug Alcohol Depend 2021; 225:108787. [PMID: 34091157 DOI: 10.1016/j.drugalcdep.2021.108787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/27/2021] [Accepted: 03/25/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Research has shown that opioid craving is one of the strongest determinants of opioid misuse in patients with chronic pain. To date, however, little is known on the factors that contribute to opioid craving in these patients. It is possible that patients' physical dependence to opioids, manifested by opioid withdrawal symptoms in between daily opioid doses, contribute to opioid craving. Physical dependence symptoms might also lead to psychological distress, which in turn might contribute to opioid craving. The first objective of this study was to examine the day-to-day association between opioid withdrawal symptoms and opioid craving among patients with chronic pain. We also examined whether negative affect and catastrophic thinking mediated this association. METHODS In this longitudinal study, chronic pain patients (n = 79) prescribed short-acting opioids completed daily diaries for 14 consecutive days. Diaries assessed a host of pain, psychological, and opioid-related variables. RESULTS Day-to-day elevations in opioid withdrawal symptoms were associated with heightened opioid craving (p < .001). Results of a multilevel mediation analysis revealed that this association was mediated by patients' daily levels of negative affect and catastrophizing (p < .001). CONCLUSIONS Our study provides valuable new insights into our understanding of factors that may contribute to prescription opioid craving among patients with chronic pain.
Collapse
|
18
|
The Role of Social Stress in the Development of Inhibitory Control Deficit: A Systematic Review in Preclinical Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094953. [PMID: 34066570 PMCID: PMC8124175 DOI: 10.3390/ijerph18094953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Inhibitory control deficit and impulsivity and compulsivity behaviours are present in different psychopathological disorders such as addiction, obsessive-compulsive disorders and schizophrenia, among others. Social relationships in humans and animals are governed by social organization rules, which modulate inhibitory control and coping strategies against stress. Social stress is associated with compulsive alcohol and drug use, pointing towards a determining factor in an increased vulnerability to inhibitory control deficit. The goal of the present review is to assess the implication of social stress and dominance on the vulnerability to develop impulsive and/or compulsive spectrum disorders, with the aid of the information provided by animal models. A systematic search strategy was carried out on the PubMed and Web of Science databases, and the most relevant information was structured in the text and tables. A total of 34 studies were recruited in the qualitative synthesis. The results show the role of social stress and dominance in increased drug and alcohol use, aggressive and impulsive behaviour. Moreover, the revised studies support the role of Dopaminergic (DA) activity and the alterations in the dopaminergic D1/D2 receptors as key factors in the development of inhibitory control deficit by social stress.
Collapse
|
19
|
Aydin C, Frohmader K, Emery M, Blandino P, Akil H. Chronic stress in adolescence differentially affects cocaine vulnerability in adulthood in a selectively bred rat model of individual differences: role of accumbal dopamine signaling. Stress 2021; 24:251-260. [PMID: 32748678 PMCID: PMC7858685 DOI: 10.1080/10253890.2020.1790520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Stress during adolescence has profound effects on the onset and severity of substance use later in life. However, not everyone with adverse experiences during this period will go on to develop a substance use disorder in adulthood, and the factors that alter susceptibility to substance use remain unknown. Here, we investigated individual differences in response to stress and drugs of abuse using our selectively bred high-responder (bHR) and low-responder (bLR) rats. These animals model extremes of temperamental tendencies and differ dramatically in both stress responsiveness and addiction-related traits. The present study investigated how environmental interventions in the form of a chronic variable stress (CVS) regimen in early adolescence interact with the bHR/bLR phenotype to alter behavioral sensitization to cocaine in adulthood. We also determined whether accumbal dopamine signaling is involved in the interaction of stress history and cocaine by assessing the mRNA levels of dopamine D1 (D1R) and D2 (D2R) receptors. Our results showed that CVS history alone had enduring and phenotype-specific effects on accumbal dopamine signaling. Importantly, adolescent stress had opposing effects in the two lines- decreasing the locomotor response to cocaine challenge in bHRs but increasing this measure in bLRs. Moreover, these opposing effects on cocaine sensitivity following adolescent CVS were accompanied by parallel effects in the accumbal dopamine system, with prior stress and cocaine exposure interacting to decrease D2R mRNA in bHRs but increase it in bLRs. Overall, these findings indicate that environmental challenges encountered in adolescence interact with genetic background to alter vulnerability to cocaine later in life.Lay SummaryStress experienced during adolescence affects the onset and severity of drug dependence later in life. However, not everyone with adverse experiences during this period will go on to develop SUD in adulthood. Using a rat model of innate differences in emotional reactivity, this study shows that the interplay between individual temperament and previous experience of adolescent stress/trauma determines whether an individual will be vulnerable or resilient to develop SUDs later in life. In addition, the present study shows that the dopamine D2 receptor in the brain's reward center, nucleus accumbens, may be implicated in this interplay.
Collapse
Affiliation(s)
- Cigdem Aydin
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Karla Frohmader
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Michael Emery
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Peter Blandino
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Raffetti E, Landgren AJ, Andersson F, Donato F, Lavebratt C, Forsell Y, Galanti MR. Cortisol Concentration as Predictor of Tobacco Initiation in Adolescents: Results From a Population-Based Swedish Cohort. J Adolesc Health 2021; 68:758-764. [PMID: 33039272 DOI: 10.1016/j.jadohealth.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Stress potentiates the smoking reward, decreases the ability to resist smoking, and increases the risk of smoking relapse in adulthood. This study aimed to clarify if salivary cortisol, as an indicator of stress, may be prospectively associated with the onset and phenotype of tobacco use in adolescents. METHODS This study was based on a cohort of Swedish adolescents, among whom saliva specimens were collected from a nested sample. We included adolescents with salivary cortisol measurements and without a history of tobacco use (n = 381, aged 13-14 years). Quartiles of morning and afternoon cortisol concentration and cortisol area under the curve were considered as predictors. We categorized tobacco use according to the product mainly used: cigarette smoking, snus use, or either type of tobacco. For each product use, two outcomes were considered: initiation and duration of use. Poisson regression models were used to calculate rate ratios. RESULTS A quartile increase in morning cortisol levels and cortisol area under the curve was consistently associated with a 1.2- to 1.4-fold increased risk of initiation of cigarette smoking snus use, or any tobacco use. Similar results were obtained examining the dose-response relationship and using the duration of use as outcome. No associations were apparent between afternoon cortisol concentration and any of the outcomes. All associations were similar between sexes. CONCLUSIONS Morning cortisol concentration, an indicator of hypothalamic-pituitary-adrenal axis activation, is prospectively associated with tobacco use in adolescents. Whether this activation indicates the cumulative effect of stressors during the life course remains to be elucidated.
Collapse
Affiliation(s)
- Elena Raffetti
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anton Jonatan Landgren
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Filip Andersson
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Stockholm Region, Stockholm, Sweden
| | - Francesco Donato
- Unit of Hygiene, Epidemiology and Public Health, University of Brescia, Brescia, Italy
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Solna, Sweden
| | - Yvonne Forsell
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Stockholm Region, Stockholm, Sweden
| | - Maria Rosaria Galanti
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Centre for Epidemiology and Community Medicine, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
21
|
Abstract
Learning to respond appropriately to one's surrounding environment is fundamental to survival. Importantly, however, individuals vary in how they respond to cues in the environment and this variation may be a key determinant of psychopathology. The ability of seemingly neutral cues to promote maladaptive behavior is a hallmark of several psychiatric disorders including, substance use disorder, post-traumatic stress disorder, eating disorders and obsessive-compulsive disorder. Thus, it is important to uncover the neural mechanisms by which such cues are able to attain inordinate control and promote psychopathological behavior. Here, we suggest that glucocorticoids play a critical role in this process. Glucocorticoids are primarily recognized as the main hormone secreted in response to stress but are known to exert their effects across the body and the brain, and to affect learning and memory, cognition and reward-related behaviors, among other things. Here we speculate that glucocorticoids act to facilitate a dopamine-dependent form of cue-reward learning that appears to be relevant to a number of psychiatric conditions. Specifically, we propose to utilize the sign-tracker/goal-tracker animal model as a means to capture individual variation in stimulus-reward learning and to isolate the role of glucocorticoid-dopamine interactions in mediating these individual differences. It is hoped that this framework will lead to the discovery of novel mechanisms that contribute to complex neuropsychiatric disorders and their comorbidity.
Collapse
Affiliation(s)
- Sofia A. Lopez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Shelly B. Flagel
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Giacolini T, Conversi D, Alcaro A. The Brain Emotional Systems in Addictions: From Attachment to Dominance/Submission Systems. Front Hum Neurosci 2021; 14:609467. [PMID: 33519403 PMCID: PMC7843379 DOI: 10.3389/fnhum.2020.609467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Human development has become particularly complex during the evolution. In this complexity, adolescence is an extremely important developmental stage. Adolescence is characterized by biological and social changes that create the prerequisites to psychopathological problems, including both substance and non-substance addictive behaviors. Central to the dynamics of the biological changes during adolescence are the synergy between sexual and neurophysiological development, which activates the motivational/emotional systems of Dominance/Submission. The latter are characterized by the interaction between the sexual hormones, the dopaminergic system and the stress axis (HPA). The maturation of these motivational/emotional systems requires the integration with the phylogenetically more recent Attachment/CARE Systems, which primarily have governed the subject's relationships until puberty. The integration of these systems is particularly complex in the human species, due to the evolution of the process of competition related to sexual selection: from a simple fight between two individuals (of the same genus and species) to a struggle for the acquisition of a position in rank and the competition between groups. The latter is an important evolutionary acquisition and believed to be the variable that has most contributed to enhancing the capacity for cooperation in the human species. The interaction between competition and cooperation, and between competition and attachment, characterizes the entire human relational and emotional structure and the unending work of integration to which the BrainMind is involved. The beginning of the integration of the aforementioned motivational/emotional systems is currently identified in the prepubertal period, during the juvenile stage, with the development of the Adrenarche-the so-called Adrenal Puberty. This latter stage is characterized by a low rate of release of androgens, the hormones released by the adrenal cortex, which activate the same behaviors as those observed in the PLAY system. The Adrenarche and the PLAY system are biological and functional prerequisites of adolescence, a period devoted to learning the difficult task of integrating the phylogenetically ancient Dominance/Submission Systems with the newer Attachment/CARE Systems. These systems accompany very different adaptive goals which can easily give rise to mutual conflict and can in turn make the balance of the BrainMind precarious and vulnerable to mental suffering.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
PAI-1 protein is a key molecular effector in the transition from normal to PTSD-like fear memory. Mol Psychiatry 2021; 26:4968-4981. [PMID: 33510345 PMCID: PMC8589667 DOI: 10.1038/s41380-021-01024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Moderate stress increases memory and facilitates adaptation. In contrast, intense stress can induce pathological memories as observed in post-traumatic stress disorders (PTSD). A shift in the balance between the expression of tPA and PAI-1 proteins is responsible for this transition. In conditions of moderate stress, glucocorticoid hormones increase the expression of the tPA protein in the hippocampal brain region which by triggering the Erk1/2MAPK signaling cascade strengthens memory. When stress is particularly intense, very high levels of glucocorticoid hormones then increase the production of PAI-1 protein, which by blocking the activity of tPA induces PTSD-like memories. PAI-1 levels after trauma could be a predictive biomarker of the subsequent appearance of PTSD and pharmacological inhibition of PAI-1 activity a new therapeutic approach to this debilitating condition.
Collapse
|
24
|
Abstract
Purpose This study investigates long-term consequences of individual migration experience on later life health, specifically self-rated health and functional difficulty. Design/methodology/approach The study uses multiple community-, household-, and individual-level data sets from the Chitwan Valley Family Study (CVFS) in Nepal. The CVFS selected a systematic probability sample of 151 neighborhoods in Western Chitwan and collected information on all households and individuals residing in the selected sample neighborhoods. This study uses data from multiple surveys featuring detailed migration histories of 1,373 older adults, and information on their health outcomes, households, and communities. Findings Results of the multi-level multivariate analysis show a negative association between number of years of migration experience and self-rated health, and a positive association between migration and functional difficulty. These findings suggest a negative relationship between migration experience and later life health. Research limitations/implications Although we collected health outcome measures after the measurement of explanatory and control measures-a unique strength of this study-we were unable to control for baseline health outcomes. Also, due to the lack of time-varying measures of household socioeconomic status in the survey, this investigation was unable to control for measures associated with the economic prosperity hypothesis. Future research is necessary to develop panel data with appropriately timed measures. Practical implications The findings provide important insights that may help shape individual's and their family's migration decisions. Originality/value This research provides important insight to individuals lured by potential short-term economic prospects in destination places, as well as to scholars and policy makers from migrant-sending settings that are grappling with skyrocketing medical expenses, rapid population aging, and old age security services.
Collapse
|
25
|
Calarco CA, Lobo MK. Depression and substance use disorders: Clinical comorbidity and shared neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:245-309. [PMID: 33648671 DOI: 10.1016/bs.irn.2020.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mood disorders, including major depressive disorder (MDD), are the most prevalent psychiatric illnesses, and pose an incredible burden to society, both in terms of disability and in terms of costs associated with medical care and lost work time. MDD has extremely high rates of comorbidity with substance use disorders (SUD) as many of the same neurobiological circuits and molecular mechanisms regulate the reward pathways disrupted in both conditions. MDD may induce SUDs, SUD may contribute to MDD development, or underlying vulnerabilities and common life experience may confer risk to developing both conditions. In this chapter we explore theories of MDD and SUD comorbidity, the neurobiological underpinnings of depression, overlapping cellular and molecular pathways for both conditions, and current treatment approaches for these comorbid conditions.
Collapse
Affiliation(s)
- Cali A Calarco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
26
|
Seeliger C, Lippold JV, Reuter M. Variation on the CRH Gene Determines the Different Performance of Opioid Addicts and Healthy Controls in the IOWA Gambling Task. Neuropsychobiology 2020; 79:150-160. [PMID: 31805553 DOI: 10.1159/000504227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The hypothalamus-pituitary-adrenal (HPA) axis, the biological substrate of stress reactivity, and related genetic variations play a crucial role in the initiation and maintenance of drug addiction. On the behavioral level, substance abusers are characterized by impulsivity and the inability to pursue long-term goals. The neural substrate of these behaviors is assumed to be related to the ventromedial prefrontal cortex (VMPFC). One of the most established paradigms to assess VMPFC deficiency is the IOWA gambling task (IGT). AIMS The aim of this study was to investigate the interplay between the HPA axis-related genetic variation on corticotropin-releasing hormone (CRH; secreted from the hypothalamus and constituting the starting point of the HPA axis) gene and opioid addiction, with respect to IGT performance. There is some evidence that stress and pathological HPA axis hyperactivity, in the same way as drug addiction, is related to a poorer IGT performance. METHODS In total, 138 long-term opioid addicts (mean age 38.63 years [SD 9.15]) and 160 healthy controls (mean age 22.57 years [SD 5.86]) performed the IGT and were genotyped for 6 SNPs covering the CRH gene and adjacent regions (rs3176921, rs6999780, rs7816410, rs1870393, rs1814583, and rs11996294). The first 5 of these 6 SNPs build a haplotype block spanning 15 kb on the CRH gene. RESULTS We found a significant group difference in the total IGT score, with higher scores in controls than in opioids. Most interestingly, there was a 3-way interaction, group × haplotype × block. Carriers homozygous for the TGTAA-haplotype differed in IGT performance dependent on group. In the control group, carriers homozygous for the TGTAA-haplotype showed a linear learning curve across blocks of trials, which was not observed in participants without this homozygosity. There were diametric effects in opioid addicts. Controlling for age and gender did not change the findings. CONCLUSION This study provides genetic evidence for the interplay between stress, decision-making, and opioid addiction.
Collapse
Affiliation(s)
- Christian Seeliger
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Julia V Lippold
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Bonn, Germany,
| |
Collapse
|
27
|
Spyrka J, Gugula A, Rak A, Tylko G, Hess G, Blasiak A. Early life stress-induced alterations in the activity and morphology of ventral tegmental area neurons in female rats. Neurobiol Stress 2020; 13:100250. [PMID: 33344705 PMCID: PMC7739067 DOI: 10.1016/j.ynstr.2020.100250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/02/2023] Open
Abstract
Childhood maltreatment, which can take the form of physical or psychological abuse, is experienced by more than a quarter of all children. Early life stress has substantial and long-term consequences, including an increased risk of drug abuse and psychiatric disorders in adolescence and adulthood, and this risk is higher in women than in men. The neuronal mechanisms underlying the influence of early life adversities on brain functioning remain poorly understood; therefore, in the current study, we used maternal separation (MS), a rodent model of early-life neglect, to verify its influence on the properties of neurons in the ventral tegmental area (VTA), a brain area critically involved in reward and motivation processing. Using whole-cell patch-clamp recordings in brain slices from adolescent female Sprague-Dawley rats, we found an MS-induced increase in the excitability of putative dopaminergic (DAergic) neurons selectively in the medial part of the VTA. We also showed an enhancement of excitatory synaptic transmission in VTA putative DAergic neurons. MS-induced alterations in electrophysiology were accompanied by an increase in the diameter of dendritic spine heads on lateral VTA DAergic neurons, although the overall dendritic spine density remained unchanged. Finally, we reported MS-related increases in basal plasma ACTH and corticosterone levels. These results show the long-term consequences of early life stress and indicate the possible neuronal mechanisms of behavioral disturbances in individuals who experience early life neglect. Adversity in early life is a predisposing factor for psychiatric disorders. Maternal separation (MS) increases excitability of dopaminergic VTA neurons. Early life stress enhances excitatory synaptic transmission in the VTA. MS changes morphology of dendritic spine heads on VTA dopaminergic neurons. Early life stress increases basal ACTH and corticosterone levels in adulthood.
Collapse
Affiliation(s)
- Jadwiga Spyrka
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Grzegorz Hess
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
28
|
Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. Eur Neuropsychopharmacol 2020; 37:12-28. [PMID: 32624295 DOI: 10.1016/j.euroneuro.2020.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Drug addiction is a multifactorial disorder resulting from the complex interaction between biological, environmental and drug-induced effects. Generally, stress is a well-known risk factor for the development of drug addiction and relapse. While most of the research focuses on risk factors that increase the vulnerability to drugs of abuse, recent studies are focusing on the areas of strength/positive coping approaches that can increase resistance to drugs of abuse. In this review, we concentrate on resilience, seen as a dynamic process, which can allow individuals to positively adapt within the context of a specific risk for psychiatric illness. Here, we discuss the effects of social stress in animal models on drug use, particularly cocaine. In contrast, we suggest social interaction reward when available as an alternative to drug use as an approach contracting negative stress effects and increasing resistance to drug use. Indeed, interventions, which aim at enhancing resilience to stress through the facilitation of social interaction and the enhancement of social support, could be particularly effective in helping people cope with stress and preventing drug use problems or relapse. Finally, understanding the neurobiological mechanisms underlying protective factors such as social interaction reward should provide the basis for future evidence-based interventions targeting substance abuse and stress-related pathologies.
Collapse
|
29
|
Ramsay DS, Kaiyala KJ, Woods SC. Individual differences in biological regulation: Predicting vulnerability to drug addiction, obesity, and other dysregulatory disorders. Exp Clin Psychopharmacol 2020; 28:388-403. [PMID: 32338936 PMCID: PMC8389185 DOI: 10.1037/pha0000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Physiological regulation is so fundamental to survival that natural selection has greatly favored the evolution of robust regulatory systems that use both reactive and preemptive responses to mitigate the disruptive impact of biological and environmental challenges on physiological function. In good health, robust regulatory systems provide little insight into the typically hidden complex array of sensor-effector interactions that accomplish successful regulation. Numerous health disorders have been traced to defective regulatory mechanisms, and generations of scientists have worked to discover ways to correct these defects and restore normal physiological function. Despite progress, numerous chronic health disorders remain resistant to treatment, and indeed for some disorders the incidence is increasing. We propose that an individual's susceptibility to acquire certain persistent dysregulatory disorders can be traced to interindividual variation in how that individual's regulatory system responds to challenges. Preexisting reliable individual differences among regulatory systems are typically unrecognized until appropriate regulatory challenges (e.g., exposure to a drug of abuse) lead to dysregulation (e.g., drug addiction). Specific characteristics of an individual's regulatory responsiveness may include etiological factors that participate in the acquisition, escalation and maintenance of health disorders characterized by dysregulation. By appropriately challenging a healthy individual's regulatory systems to identify its underlying characteristics, it is possible to ascertain whether an individual has an elevated risk for acquiring a dysregulated health condition and thereby enable strategies designed to prevent, rather than treat, the condition. This model is applied to drug addiction, and in addition we relate this approach to other dysregulated conditions such as obesity. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Douglas S. Ramsay
- Department of Oral Health Sciences, University of Washington
- Department of Orthodontics, University of Washington
- Department of Pediatric Dentistry, University of Washington
| | - Karl J. Kaiyala
- Department of Oral Health Sciences, University of Washington
| | - Stephen C. Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Medical Center
| |
Collapse
|
30
|
Bhatt D, Hazari A, Yamakawa GR, Salberg S, Sgro M, Shultz SR, Mychasiuk R. Investigating the cumulative effects of Δ9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats. Brain Commun 2020; 2:fcaa042. [PMID: 32954298 PMCID: PMC7425386 DOI: 10.1093/braincomms/fcaa042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity. Also pervasive in adolescents is recreational cannabis use. Δ9-Tetrahydrocannabinol, the main psychoactive component of cannabis, is known to have anti-inflammatory properties and serves as a neuroprotective agent against excitotoxicity. Thus, we investigated the effects of Δ9-tetrahydrocannabinol on recovery when administered either prior to or following repeated mild brain injuries. Male and female Sprague-Dawley rats were randomly assigned to receive Δ9-tetrahydrocannabinol or vehicle either prior to or following the repeated injuries. Rats were then tested on a behavioural test battery designed to measure post-concussive symptomology. The hippocampus, nucleus accumbens and prefrontal cortex were extracted from all animals to examine mRNA expression changes (Bdnf, Cnr1, Comt, GR, Iba-1 and Vegf-2R). We hypothesized that, in both experiments, Δ9-tetrahydrocannabinol administration would provide neuroprotection against mild injury outcomes and confer therapeutic benefit. Δ9-Tetrahydrocannabinol administration following repeated mild traumatic brain injury was beneficial to three of the six behavioural outcomes affected by injury (reducing anxiety and depressive-like behaviours while also mitigating injury-induced deficits in short-term working memory). Δ9-Tetrahydrocannabinol administration following injury also showed beneficial effects on the expression of Cnr1, Comt and Vegf-2R in the hippocampus, nucleus accumbens and prefrontal cortex. There were no notable benefits of Δ9-tetrahydrocannabinol when administered prior to injury, suggesting that Δ9-tetrahydrocannabinol may have potential therapeutic benefit on post-concussive symptomology when administered post-injury, but not pre-injury.
Collapse
Affiliation(s)
- Dhyey Bhatt
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ali Hazari
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Glenn R Yamakawa
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sabrina Salberg
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Richelle Mychasiuk
- Department of Psychology, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
31
|
Favoretto CA, Nunes YC, Macedo GC, Lopes JSR, Quadros IMH. Chronic social defeat stress: Impacts on ethanol-induced stimulation, corticosterone response, and brain monoamine levels. J Psychopharmacol 2020; 34:412-419. [PMID: 31965898 DOI: 10.1177/0269881119900983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chronic exposure to stress may dysregulate the hypothalamic-pituitary-adrenal axis and brain monoamine levels, contributing to the development of ethanol dependence. Exposure to chronic social defeat stress may impact ethanol-related effects, neural, and endocrine functions. AIM This study assessed ethanol-induced locomotor activity, corticosterone responses, and brain monoamine levels in Swiss albino mice 10 days post-exposure to chronic social defeat stress. METHODS During a period of 10 days, male Swiss mice were exposed to daily defeat episodes, followed by housing with an aggressive mouse for 24 h. Control mice were housed in pairs and rotated every 24 h. Ten days post-stress, locomotor behavior was recorded after a challenge with ethanol (2.2 g/kg; intraperitoneal) or saline. After the test, blood and brain samples were collected for determination of plasma corticosterone and brain monoamines across different brain areas through high-performance liquid chromatography. RESULTS Defeated mice failed to show a stimulant locomotor response to ethanol, while controls displayed the expected ethanol-induced stimulation. Ethanol increased plasma corticosterone levels, with lower corticosterone secretion in defeated mice. Brain monoamines were affected by social defeat and ethanol, varying in different brain regions. Social stress reduced levels of dopamine, noradrenaline, and serotonin in the hypothalamus. Defeated mice presented reduced serotonin and dopamine levels in the frontal cortex. In the striatum, ethanol treatment increased dopamine levels in controls, but failed to do so in defeated mice. CONCLUSIONS Our results suggest that chronic exposure to social defeat blunted ethanol-induced locomotor stimulation, and reduced ethanol-induced corticosterone secretion. Social stress promoted differential reductions in brain monoamine levels in the hypothalamus and frontal cortex and blunted ethanol-induced dopamine increases in the striatum.
Collapse
Affiliation(s)
- Cristiane A Favoretto
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Yasmin C Nunes
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovana C Macedo
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | |
Collapse
|
32
|
Fredriksson I, Applebey SV, Minier-Toribio A, Shekara A, Bossert JM, Shaham Y. Effect of the dopamine stabilizer (-)-OSU6162 on potentiated incubation of opioid craving after electric barrier-induced voluntary abstinence. Neuropsychopharmacology 2020; 45:770-779. [PMID: 31905372 PMCID: PMC7075949 DOI: 10.1038/s41386-020-0602-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023]
Abstract
In the classical incubation of drug craving rat model, drug seeking is assessed after homecage forced abstinence. However, human abstinence is often voluntary because negative consequences of drug seeking outweigh the desire for the drug. Here, we developed a rat model of incubation of opioid craving after electric barrier-induced voluntary abstinence and determined whether the dopamine stabilizer (-)-OSU6162 would decrease this new form of incubation. We trained male and female rats to self-administer oxycodone (0.1 mg/kg/infusion, 6 h/day) for 14 days. We then exposed them to either homecage forced abstinence or voluntary abstinence induced by an electric barrier of increasing intensity near the drug-paired lever. On abstinence days 1, 15, or 30, we tested the rats for oxycodone seeking without shock and drug. We also examined the effect of (-)-OSU6162 (7.5 and 15 mg/kg) on oxycodone seeking on abstinence day 1 or after 15 days of either voluntary or forced abstinence. Independent of sex, the time-dependent increase in oxycodone seeking after cessation of opioid self-administration (incubation of opioid craving) was stronger after voluntary abstinence than after forced abstinence. In males, (-)-OSU6162 decreased incubated (day 15) but not non-incubated (day 1) oxycodone seeking after either voluntary or forced abstinence. In females, (-)-OSU6162 modestly decreased incubated oxycodone seeking after voluntary but not forced abstinence. Results suggest that voluntary abstinence induced by negative consequences of drug seeking can paradoxically potentiate opioid craving and relapse. We propose the dopamine stabilizer (-)-OSU6162 may serve as an adjunct pharmacological treatment to prevent relapse in male opioid users.
Collapse
Affiliation(s)
- Ida Fredriksson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA.
| | | | | | | | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA.
| |
Collapse
|
33
|
Health risk behaviours and allostatic load: A systematic review. Neurosci Biobehav Rev 2020; 108:694-711. [DOI: 10.1016/j.neubiorev.2019.12.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/26/2022]
|
34
|
Anderson EM, McFadden LM, Matuszewich L. Interaction of stress and stimulants in female rats: Role of chronic stress on later reactivity to methamphetamine. Behav Brain Res 2019; 376:112176. [PMID: 31449910 PMCID: PMC6783376 DOI: 10.1016/j.bbr.2019.112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Previous research in humans and animals suggests that prior exposure to stress alters responsivity to drugs of abuse, including psychostimulants. Male rats show an augmented striatal dopamine response to methamphetamine following exposure to chronic unpredictable stress (CUS). Compared to males, female rats have been shown to be highly sensitive to the effects of stimulants and stress independently, however few studies have examined the interaction between stress and stimulants in female rats. Therefore, the current study investigated whether prior exposure to chronic stress potentiated the behavioral and neurochemical responses to an acute injection of methamphetamine in female rats. Adult female Sprague-Dawley rats were either exposed to CUS or left undisturbed (control) and then two weeks later received an injection of 1.0 or 7.5 mg/kg methamphetamine. Based on open field findings, a subsequent group of rats were exposed to CUS or left undisturbed and then two weeks later received 7.5 mg/kg methamphetamine and either dopamine efflux in the dorsal striatum or nucleus accumbens was measured or methamphetamine and amphetamine levels were measured in the brain and plasma. Female rats exposed to CUS traveled greater distances in the open field immediately following an injection of 7.5 mg/kg, but not 1.0 mg/kg, of methamphetamine and then showed high levels or stereotypy similar to control rats. Animals exposed to CUS had significantly greater increases in dorsal striatum dopamine following an acute injection of 7.5 mg/kg methamphetamine compared to control rats, but not in the nucleus accumbens. These differences were not due to group differences in levels of methamphetamine or amphetamine in the brain or plasma. The current findings demonstrate stress-augmented neurochemical responses to a dose of methamphetamine, similar to that self-administered, which increases understanding of the cross-sensitization between stress and methamphetamine in females.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa M McFadden
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Leslie Matuszewich
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
35
|
Alam N, Chaudhary K. Repeated restraint stress potentiates methylphenidate and modafinil-induced behavioral sensitization in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:785-795. [PMID: 31853616 DOI: 10.1007/s00210-019-01790-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
Stress increases the susceptibility of drug abuse and drugs of abuse impair behavioral tolerance. It has been shown that stress exposure enhances the sensitivity to the reinforcing properties of drugs, augments locomotor sensitization effects of drugs of abuse and impairs behavioral tolerance. Previously, it has been shown that long-term administration of psychostimulants (Methylphenidate and Modafinil) induced locomotor sensitization effect that was more pronounced after 13 days of drug administration and was greater at high dose. The present study is designed to investigate the relationship between restraint stress and psychostimulants (Methylphenidate and Modafinil) that induced sensitization. Methylphenidate (10 mg/kg/day twice a day), modafinil (75 mg/kg/day once daily), and saline (0.9% NaCl; 1 ml/kg/day) were administered orally to treated and control animals. Rats were exposed to immobilization stress for 30 days (until locomotor sensitization produced) to monitor any change in drug-induced behavioral sensitization. The motor activity was compared daily by using familiar environment of home cage and weekly by novel environment of open field. The results show that the methylphenidate and modafinil-induced locomotor sensitization is enhanced and impaired behavioral tolerance in repeated restrained rats. It shows that the psychostimulants like methylphenidate and modafinil produce greater locomotor sensitization in stressful environment, suggesting addictive effects of stress and psychostimulants (methylphenidate/modafinil) on dopaminergic neurotransmission. These finding may be helpful to develop potential pharmacotherapies for the patients with co-occurring depression and substance abuse/dependence disorder.
Collapse
Affiliation(s)
- Nausheen Alam
- Department of Pharmacology Faculty of Pharmacy, Federal Urdu University, Karachi, Pakistan.
| | - Kulsoom Chaudhary
- Department of Pharmacology Faculty of Pharmacy, Federal Urdu University, Karachi, Pakistan
| |
Collapse
|
36
|
Bouarab C, Thompson B, Polter AM. VTA GABA Neurons at the Interface of Stress and Reward. Front Neural Circuits 2019; 13:78. [PMID: 31866835 PMCID: PMC6906177 DOI: 10.3389/fncir.2019.00078] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 01/20/2023] Open
Abstract
The ventral tegmental area (VTA) is best known for its robust dopaminergic projections to forebrain regions and their critical role in regulating reward, motivation, cognition, and aversion. However, the VTA is not only made of dopamine (DA) cells, as approximately 30% of cells in the VTA are GABA neurons. These neurons play a dual role, as VTA GABA neurons provide both local inhibition of VTA DA neurons and long-range inhibition of several distal brain regions. VTA GABA neurons have increasingly been recognized as potent mediators of reward and aversion in their own right, as well as potential targets for the treatment of addiction, depression, and other stress-linked disorders. In this review article, we dissect the circuit architecture, physiology, and behavioral roles of VTA GABA neurons and suggest critical gaps to be addressed.
Collapse
Affiliation(s)
- Chloé Bouarab
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Brittney Thompson
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Abigail M Polter
- Department of Pharmacology and Physiology, Institute for Neuroscience, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
37
|
Bakhti-Suroosh A, Nesil T, Lynch WJ. Tamoxifen Blocks the Development of Motivational Features of an Addiction-Like Phenotype in Female Rats. Front Behav Neurosci 2019; 13:253. [PMID: 31780909 PMCID: PMC6856674 DOI: 10.3389/fnbeh.2019.00253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Women become addicted sooner after initiating cocaine use as compared to men. Preclinical studies reveal a similar vulnerability in females, with findings from ovariectomized rats suggesting that estradiol mediates the enhanced vulnerability. However, since ovariectomy depletes not only estradiol, but all ovarian hormones, its role in a physiological context is not clear. Thus, the goal of this study was to determine the role of estradiol in the development of an addiction-like phenotype in ovary-intact females treated chronically with the selective estrogen receptor (ER) modulator tamoxifen. We hypothesized that tamoxifen, by antagonizing ERs, would block the development of an addiction-like phenotype as defined by an enhanced motivation for cocaine (assessed under a progressive-ratio schedule), and a heightened vulnerability to relapse (assessed under an extinction/cue-induced reinstatement procedure). Effects were examined following extended access cocaine self-administration (24-h/day; 4-discrete trials/h; 1.5 mg/kg/infusion) and 14-days of abstinence, conditions optimized for inducing an addiction-like phenotype. As predicted, motivation for cocaine was increased following extended-access self-administration and protracted abstinence in the vehicle (sesame oil) and no-injection control groups, but not in the tamoxifen group indicating that ER signaling is critical for the development of this feature of an addiction-like phenotype. Surprisingly, the increase in motivation for cocaine following abstinence was also attenuated in the vehicle group as compared to no-injection controls suggesting that oil/injections also affected its development. Contrary to our hypothesis, tamoxifen did not decrease vulnerability to relapse as this group responded at similar levels during initial extinction sessions and cue-induced reinstatement testing as compared to controls. Tamoxifen did, however, impair extinction learning as this group took longer to extinguish as compared to controls. Taken together, these findings indicate that estradiol is critical for the extinction of drug-associated cues and the development of motivational features of addiction.
Collapse
Affiliation(s)
- Anousheh Bakhti-Suroosh
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
38
|
Wakeford AGP, Morin EL, Bramlett SN, Howell BR, McCormack KM, Meyer JS, Nader MA, Sanchez MM, Howell LL. Effects of early life stress on cocaine self-administration in post-pubertal male and female rhesus macaques. Psychopharmacology (Berl) 2019; 236:2785-2796. [PMID: 31115612 DOI: 10.1007/s00213-019-05254-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE Early life stress (ELS), including childhood maltreatment, is a predictive factor for the emergence of cocaine use disorders (CUDs) in adolescence. OBJECTIVE Accordingly, we examined whether post-pubertal male and female rhesus macaques that experienced infant maltreatment (maltreated, n = 7) showed greater vulnerability to cocaine self-administration in comparison with controls (controls, n = 7). METHODS Infant emotional reactivity was measured to assess differences in behavioral distress between maltreated and control animals as a result of early life caregiving. Animals were then surgically implanted with indwelling intravenous catheters and trained to self-administer cocaine (0.001-0.3 mg/kg/infusion) under fixed-ratio schedules of reinforcement. Days to acquisition, and sensitivity to (measured by the EDMax dose of cocaine) and magnitude (measured by response rates) of the reinforcing effects of cocaine were examined in both groups. RESULTS Maltreated animals demonstrated significantly higher rates of distress (e.g., screams) in comparison with control animals. When given access to cocaine, control males required significantly more days to progress through terminal performance criteria compared with females and acquired cocaine self-administration slower than the other three experimental groups. The dose that resulted in peak response rates did not differ between groups or sex. Under 5-week, limited-access conditions, males from both groups had significantly higher rates of responding compared with females. CONCLUSIONS In control monkeys, these data support sex differences in cocaine self-administration, with females being more sensitive than males. These findings also suggest that ELS may confer enhanced sensitivity to the reinforcing effects of cocaine, especially in males.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.
| | - Elyse L Morin
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Sara N Bramlett
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Brittany R Howell
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.,Institute of Child Development, University of Minnesota, 51 E River Rd, Minneapolis, MN, 55455, USA
| | - Kai M McCormack
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychology, Spelman College, 350 Spelman Lane, Box 209, Atlanta, GA, 30345, USA
| | - Jerrold S Meyer
- Department of Psychological & Brain Sciences, University of Massachusetts, 441 Tobin Hall, Amherst, MA, 01003, USA
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mar M Sanchez
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA
| | - Leonard L Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, 12 Executive Park Dr NE #200, Atlanta, GA, 30329, USA.,Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd NE, Atlanta, GA, 30329, USA
| |
Collapse
|
39
|
Hemby SE, McIntosh S, Leon F, Cutler SJ, McCurdy CR. Abuse liability and therapeutic potential of the Mitragyna speciosa (kratom) alkaloids mitragynine and 7-hydroxymitragynine. Addict Biol 2019; 24:874-885. [PMID: 29949228 DOI: 10.1111/adb.12639] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
Kratom, derived from the plant Mitragyna speciosa, is receiving increased attention as an alternative to traditional opiates and as a replacement therapy for opiate dependence. Mitragynine (MG) and 7-hydroxymitragynine (7-HMG) are major psychoactive constituents of kratom. While MG and 7-HMG share behavioral and analgesic properties with morphine, their reinforcing effects have not been examined to date. 7-HMG, but not MG, substituted for morphine self-administration in a dose-dependent manner in the rat self-administration paradigm. Following the substitution procedure, re-assessment of morphine self-administration revealed a significant increase following 7-HMG and a significant decrease following MG substitution. In a separate cohort, 7-HMG, but not MG, engendered and maintained intravenous self-administration in a dose-dependent manner. The effects of pretreatment with nalxonaxine (NLXZ), a μ1 opiate receptor antagonist, and naltrindole (NTI), a δ opiate receptor antagonist, on 7-HMG and morphine self-administration were also examined. Both NLXZ and NTI reduced 7-HMG self-administration, whereas only NLXZ decreased morphine intake. The present results are the first to demonstrate that 7-HMG is readily self-administered, and the reinforcing effects of 7-HMG are mediated in part by μ and δ opiate receptors. In addition, prior exposure to 7-HMG increased subsequent morphine intake whereas prior exposure to MG decreased morphine intake. The present findings indicate that MG does not have abuse potential and reduces morphine intake, desired characteristics of candidate pharmacotherapies for opiate addiction and withdrawal, whereas 7-HMG should be considered a kratom constituent with high abuse potential that may also increase the intake of other opiates.
Collapse
Affiliation(s)
- Scott E. Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy; High Point University; High Point NC USA
| | - Scot McIntosh
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy; High Point University; High Point NC USA
| | - Francisco Leon
- Department of Medicinal Chemistry, College of Pharmacy; University of Florida; Gainesville FL USA
| | | | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy; University of Florida; Gainesville FL USA
| |
Collapse
|
40
|
Webb Hooper M. Racial/Ethnic Differences in Physiological Stress and Relapse among Treatment Seeking Tobacco Smokers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3090. [PMID: 31450707 PMCID: PMC6747351 DOI: 10.3390/ijerph16173090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 11/16/2022]
Abstract
Stress is robustly associated with tobacco smoking and relapse. African Americans experience greater difficulty quitting compared to whites, yet no studies have examined race differences in physiological stress biomarkers during a quit attempt. This pilot study compared cortisol levels among treatment-seeking African American and white smokers, and relapse rates. Adult smokers (N = 115; n = 72 African American, n = 43 White) received eight sessions of group cognitive behavioral therapy plus transdermal nicotine patches. Assessments included demographics, salivary cortisol (collected at session 1, the end-of-therapy [EOT], and one-month post-therapy), and carbon monoxide-verified smoking relapse. Overall, cortisol levels declined over the course of the day at baseline, the EOT, and the one-month follow-up. African Americans exhibited lower cortisol levels compared to Whites at baseline and the EOT, but not at the one-month follow-up. In addition, African American smokers exhibited flatter slopes compared to Whites at each time point. Relapse rates were greater among African Americans at the EOT and one-month follow-up. The attenuated cortisol pattern observed in African Americans may indicate hypothalamic-pituitary-adrenal axis (HPA) exhaustion and aid our understanding of tobacco-related disparities. There is a need to focus on stress mechanisms and specific intervention approaches in order to eliminate racial/ethnic differences.
Collapse
Affiliation(s)
- Monica Webb Hooper
- Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Chen M, Zhang X, Hao W. H3K4 dimethylation at FosB promoter in the striatum of chronic stressed rats promotes morphine-induced conditioned place preference. PLoS One 2019; 14:e0221506. [PMID: 31442272 PMCID: PMC6707596 DOI: 10.1371/journal.pone.0221506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/07/2019] [Indexed: 12/03/2022] Open
Abstract
Expression of FosB gene in striatum is essential in addiction establishment. Activated glucocorticoid receptors (GRs) induce FosB gene expression in response to stressor. Therefore, elevation of FosB expression in striatum serves as one mechanism by which stress increases risk for addiction. In this study, adult male Sprague-Dawley rats were used to investigate whether chronic stress result in histone modifications at FosB gene promoter in striatum and how these histone modifications affect FosB expression and the establishment of addiction behavior after administration of drugs of abuse. Animals were randomly assigned to three groups: Electric foot shock (EFS) group received 7-day EFS to induce chronic stress; electric foot shock plus mifepristone (EFS + Mif) group were injected with mifepristone, a nonspecific GRs antagonist, before EFS; control group did not receive any EFS. All groups then received 2-day conditioned place preference (CPP) training with morphine (5 mg/kg body weight) to test vulnerability to drug addiction. Before and after morphine administration, FosB mRNA in striatum was quantified by real-time RT-PCR. Levels of histone H3/H4 acetylation and histone H3K4 dimethylation at FosB promoter in striatum after morphine administration were measured by using chromatin immunoprecipitation (ChIP) plus real-time PCR. EFS group had stronger place preference to morphine and had significantly higher level of FosB mRNA in striatum than the other two groups. H3K4 dimethylation was 2.6-fold higher in EFS group than control group, while no statistical difference in H3/H4 acetylation. Mifepristone administration before EFS decreased histone H3K4 dimethylation and FosB mRNA in striatum, and also diminished morphine-induced conditioned place preference. Altogether, increased level of H3K4 dimethylation at FosB promoter in striatum is partially dependent on the activation of GR and responsible for the elevated level of morphine-induced FosB mRNA in chronic stressed animals.
Collapse
Affiliation(s)
- Minghui Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute on Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute on Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
| | - Wei Hao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute on Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
42
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
43
|
Elman I, Borsook D. The failing cascade: Comorbid post traumatic stress- and opioid use disorders. Neurosci Biobehav Rev 2019; 103:374-383. [DOI: 10.1016/j.neubiorev.2019.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
|
44
|
Rodriquez EJ, Sabado-Liwag M, Pérez-Stable EJ, Lee A, Haan MN, Gregorich SE, Jackson JS, Nápoles AM. Allostatic Load, Unhealthy Behaviors, and Depressive Symptoms by Birthplace Among Older Adults in the Sacramento Area Latino Study on Aging (SALSA). J Aging Health 2019; 32:851-860. [PMID: 31230509 DOI: 10.1177/0898264319857995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective: To assess whether unhealthy behaviors moderated the relationship between allostatic load (AL) and future significant depressive symptoms (SDSs) among 1,789 older Latinos. Method: Longitudinal data included baseline AL, three unhealthy behaviors (UBs), and 2-year follow-up SDS. Multivariable logistic regression analyses, stratified by birthplace (U.S. vs. foreign born), modeled the effects of AL, UB count (range = 0-3), and their interaction on follow-up SDS. Results: Compared with U.S.-born, foreign-born participants engaged in fewer UBs (0.52 vs. 0.60 behaviors, p = .01) and had higher baseline SDS (31% vs. 20%, p < .001). Among foreign-born participants, the effect of AL on future SDS (adjusted odds ratios [aORs]; 95% confidence interval [CI]) significantly increased across UB counts of 0 to 3: 1.06 [0.83, 1.35], 1.46 [1.14, 1.87], 2.00 [1.18, 3.41], and 2.75 [1.18, 6.44], respectively. Discussion: Among foreign-born Latinos, these results were most pronounced for women and adults above age 80, which may represent higher risk groups requiring more intensive screening for depression.
Collapse
Affiliation(s)
| | | | | | - Anne Lee
- University of California, San Francisco, USA
| | - Mary N Haan
- University of California, San Francisco, USA
| | | | | | - Anna M Nápoles
- National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| |
Collapse
|
45
|
Reasons for substance use continuation and discontinuation during pregnancy: A qualitative study. Women Birth 2019; 32:e57-e64. [DOI: 10.1016/j.wombi.2018.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023]
|
46
|
Jeanneteau F, Borie A, Chao MV, Garabedian MJ. Bridging the Gap between Brain-Derived Neurotrophic Factor and Glucocorticoid Effects on Brain Networks. Neuroendocrinology 2019; 109:277-284. [PMID: 30572337 DOI: 10.1159/000496392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
Behavioral choices made by the brain during stress depend on glucocorticoid and brain-derived neurotrophic factor (BDNF) signaling pathways acting in synchrony in the mesolimbic (reward) and corticolimbic (emotion) neural networks. Deregulated expression of BDNF and glucocorticoid receptors in brain valuation areas may compromise the integration of signals. Glucocorticoid receptor phosphorylation upon BDNF signaling in neurons represents one mechanism underlying the integration of BDNF and glucocorticoid signals that when off balance may lay the foundation of maladaptations to stress. Here, we propose that BDNF signaling conditions glucocorticoid responses impacting neural plasticity in the mesocorticolimbic system. This provides a novel molecular framework for understanding how brain networks use BDNF and glucocorticoid signaling contingencies to forge receptive neuronal fields in temporal domains defined by behavioral experience, and in mood disorders.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France,
| | - Amélie Borie
- Institut de Genomique Fonctionnelle, Inserm, CNRS, University of Montpellier, Montpellier, France
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, New York, USA
| | | |
Collapse
|
47
|
Mukhara D, Banks ML, Neigh GN. Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Front Behav Neurosci 2018; 12:309. [PMID: 30622460 PMCID: PMC6308626 DOI: 10.3389/fnbeh.2018.00309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew L. Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N. Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
48
|
al'Absi M, Nakajima M, Lemieux A. Impact of early life adversity on the stress biobehavioral response during nicotine withdrawal. Psychoneuroendocrinology 2018; 98:108-118. [PMID: 30130691 PMCID: PMC6613643 DOI: 10.1016/j.psyneuen.2018.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/30/2018] [Accepted: 08/12/2018] [Indexed: 01/08/2023]
Abstract
Exposure to early life adversity (ELA) is associated with increased subsequent risk for addiction and relapse. We examined changes in psychobiological responses to stress in dependent smokers and nonsmoking controls and evaluated how history of early adversity may exacerbate acute changes during nicotine withdrawal and acute stress. Smokers were randomly assigned to one of two conditions; 24 h withdrawal (66 smokers) from smoking and all nicotine-containing products or smoking ad libitum (46 smokers) prior to an acute laboratory stress induction session; and 44 nonsmokers provided normal referencing. The laboratory session included a baseline rest, stress and recovery periods. Plasma and saliva samples for the measurement stress hormones and cardiovascular and self-report mood measures were collected multiple times during the session. Multivariate analysis confirmed that all groups showed stress-related increases in negative mood, cardiovascular measures and stress hormones, particularly smokers in the withdrawal condition. Individuals with high ELA showed greater adrenocorticotropic hormone (ACTH), but lower plasma and salivary cortisol levels, than those with low ELA. Cortisol differences were abolished during tobacco withdrawal. These findings demonstrate that ELA moderates the effects of withdrawal on stress-related biobehavioral changes.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA.
| | - Motohiro Nakajima
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA
| | - Andrine Lemieux
- Department of Family Medicine and Biobehavioral Health University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
49
|
Single aggressive and non-aggressive social interactions elicit distinct behavioral patterns to the context in mice. Behav Processes 2018; 157:601-609. [DOI: 10.1016/j.beproc.2018.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
|
50
|
Enman NM, Reyes BAS, Shi Y, Valentino RJ, Van Bockstaele EJ. Sex differences in morphine-induced trafficking of mu-opioid and corticotropin-releasing factor receptors in locus coeruleus neurons. Brain Res 2018; 1706:75-85. [PMID: 30391476 DOI: 10.1016/j.brainres.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system is a key nucleus in which endogenous opioid and stress systems intersect to regulate the stress response. LC neurons of male rats become sensitized to stress following chronic morphine administration. Whether sex dictates this pattern of opioid-induced plasticity has not been demonstrated. Delineating the neurobiological adaptations produced by chronic opioids will enhance our understanding of stress vulnerability in opioid-dependent individuals, and may reveal how stress negatively impacts addiction recovery. In the present study, the effect of chronic morphine on the subcellular distribution of mu-opioid (MOR) and CRF receptors (CRFR) was investigated in the LC of male and female rats using immunoelectron microscopy. Results showed that placebo-treated females exhibited higher MOR and CRFR cytoplasmic distribution ratio when compared to placebo-treated males. Chronic morphine exposure induced a shift in the distribution of MOR immunogold-silver particles from the plasma membrane to the cytoplasm selectively in male LC neurons. Interestingly, chronic morphine exposure induced CRFR recruitment to the plasma membrane of both male and female LC neurons. These findings provide a potential mechanism by which chronic opioid administration increases stress vulnerability in males and females via an increase in surface availability of CRFR in LC neurons. However, our results also support the notion that cellular adaptations to chronic opioids differ across the sexes as redistribution of MOR following morphine exposure was only observed in male LC neurons.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Yufan Shi
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| |
Collapse
|