1
|
Salehi A, Hosseini SM, Kazemi S. Propolis ameliorates renal, liver, and pancreatic lesions in Wistar rats. Biotechnol Appl Biochem 2024. [PMID: 39318261 DOI: 10.1002/bab.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
This study aimed to evaluate the potential of ethanolic extract of propolis on the secondary lesions of the liver, renal, and pancreatic that were derived by primary colorectal cancer, and comparison of the ethanolic extract of propolis with the vitamin E. The groups included the control, ethanolic extract of propolis, vitamin E, dimethylhydrazine, dimethylhydrazine + ethanolic extract of propolis, and dimethylhydrazine + vitamin E. After 13 weeks of treatment, the blood and tissue samples were taken from all the rats, and alanine transaminase, aspartate transaminase, alkaline phosphatase, uric acid, creatinine, blood urea nitrogen, insulin, amylase, and lipase indices along with the tissue pathological examination of the kidney, liver, and pancreas were evaluated. Ethanolic extract of propolis effectively alleviated the colorectal cancer-induced secondary lesions in the liver by significantly lowering the alanine transaminase significantly. Ethanolic extract of propolis significantly decreased uric acid in rats; and also significantly elevated the pancreatic insulin. In addition, inflammation and cell necrosis indices in all these tissues were significantly reduced when ethanolic extract of propolis was consumed compared to the dimethylhydrazine group. It seemed ethanolic extract of propolis showed high antioxidant, anticancer, and anti-inflammatory potentials, and can be used practically to reduce the side lesions of colorectal cancer.
Collapse
Affiliation(s)
- Alireza Salehi
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Soni D, Anjum Z, Raza K, Verma S. A Review on Picrosides Targeting NFκB and its Proteins for Treatment of Breast Cancer. Cell Biochem Biophys 2024; 82:575-591. [PMID: 38724755 DOI: 10.1007/s12013-024-01281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 08/25/2024]
Abstract
Breast cancer is the most frequently diagnosed disease causing most deaths in women worldwide. Chemotherapy and neo-adjuvant therapy are the standard method of treatment in early stages of breast cancer. However drug resistance in breast cancer limit the use of these methods for treatment. Research focus is now shifted towards identifying natural phytochemicals with lower toxicity. This review illustrates the NF κB interaction with different signaling pathways in normal condition, breast cancer and other cancer and thus represent a potential target for treatment. No reports are available on the action of picrosides on NFκB and its associated proteins for anticancer activity. In the present review, potential interaction of picrosides with NF-κB and its associated proteins is reviewed for anticancer action. Further, an important facet of this review entails the ADMET analysis of Picroside, elucidating key ADMET properties which serves to underscore the crucial characteristics of Picroside as a potential drug for treating breast cancer. Furthermore, in silico analysis of Picrosides was executed in order to get potential binding modes between ligand (Picrosides II) and NFκB.
Collapse
Affiliation(s)
- Deepika Soni
- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Zubina Anjum
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Saurabh Verma
- Indian Council of Medical Research, HRD Division, V. Ramalingaswami Bhawan, Ansari Nagar, New Delhi, India.
| |
Collapse
|
3
|
Sutthi N, Wangkahart E, Panase P, Karirat T, Deeseenthum S, Ma NL, Luang-In V. Dietary Administration Effects of Exopolysaccharide Produced by Bacillus tequilensis PS21 Using Riceberry Broken Rice, and Soybean Meal on Growth Performance, Immunity, and Resistance to Streptococcus agalactiae of Nile tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:3262. [PMID: 37893987 PMCID: PMC10603753 DOI: 10.3390/ani13203262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Overuse of antibiotics in aquaculture has generated bacterial resistance and altered the ecology. Aquacultural disease control requires an environmentally sustainable approach. Bacterial exopolysaccharides (EPSs) as bioimmunostimulants have not been extensively explored in aquaculture. This study investigated EPS produced from 5% w/v riceberry broken rice as a carbon source and 1% w/v soybean meal as a nitrogen source by Bacillus tequilensis PS21 from milk kefir grain for its immunomodulatory, antioxidant activities and resistance to pathogenic Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). The FTIR spectrum of EPS confirmed the characteristic bonds of polysaccharides, while the HPLC chromatogram of EPS displayed only the glucose monomer subunit, indicating its homopolysaccharide feature. This EPS (20 mg/mL) exhibited DPPH scavenging activity of 65.50 ± 0.31%, an FRAP value of 2.07 ± 0.04 mg FeSO4/g DW, and antimicrobial activity (14.17 ± 0.76 mm inhibition zone diameter) against S. agalactiae EW1 using the agar disc diffusion method. Five groups of Nile tilapia were fed diets (T1 (Control) = 0.0, T2 = 0.1, T3 = 0.2, T4 = 1.0, and T5 = 2.0 g EPS/kg diet) for 90 days. Results showed that EPS did not affect growth performances or body composition, but EPS (T4 + T5) significantly stimulated neutrophil levels and serum lysozyme activity. EPS (T5) significantly induced myeloperoxidase activity, catalase activity, and liver superoxide dismutase activity. EPS (T5) also significantly increased the survival of fish at 80.00 ± 5.77% at 14 days post-challenge with S. agalactiae EW1 compared to the control (T1) at 53.33 ± 10.00%. This study presents an efficient method for utilizing agro-industrial biowaste as a prospective source of value-added EPS via a microbial factory to produce a bio-circular green economy model that preserves a healthy environment while also promoting sustainable aquaculture.
Collapse
Affiliation(s)
- Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (N.S.); (E.W.)
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals (FF66-UoE014), School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (N.S.); (E.W.)
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Paiboon Panase
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals (FF66-UoE014), School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| | - Sirirat Deeseenthum
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| |
Collapse
|
4
|
Alyasari NKH, Selman WH. L-carnitine-loaded nanoparticle ameliorates cypermethrin-induced reproductive toxicity in adult male rats. J Adv Pharm Technol Res 2023; 14:147-154. [PMID: 37255872 PMCID: PMC10226707 DOI: 10.4103/japtr.japtr_46_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/01/2023] Open
Abstract
The objective of this investigation was to find out whether L-carnitine-loaded nanoparticle (LCn) could reduce the reproductive toxicity of cypermethrin (CYP), the widely used insecticide in veterinary medicine in male rats. Twenty male Wistar rats that weighed between 210 and 240 g were split into four groups and treated daily for 2 months. The control group was given 0.9% normal saline solution daily. The second group received CYP (3.83 mg/kg b. w. p. o.) daily. The third group was administered with LCn and CYP (50 mg/kg b. wt. p. o. and 3.83 mg/kg b. wt. p. o., respectively) daily, whereas the fourth group received LCn alone (50 mg/kg b. wt. p. o.) daily. On day 60, all rats were sacrificed and samples were collected. CYP-treated animals exhibited inhibition of testicular anti-oxidative stress mechanisms, testicular steroidogenesis enzyme activity (3β-hydroxysteroid dehydrogenase [3β-HSD] and 17β-HSD), and downregulation of steroidogenic acute regulatory (StAR) gene expression. In addition, it decreased testosterone, follicle-stimulating hormone, and LH levels and had detrimental consequences for sperm quality. LCn attenuated CYP-induced reproductive toxicity via the alleviation of testicular oxidative stress status, improvement of steroidogenic enzyme activity, and upregulation of StAR gene expression, which are probably responsible for the concomitant improvement in testicular hormonal levels and improvement in sperm properties. Intriguingly, LCn treatment alone could enhance the functions of the male reproductive system.
Collapse
Affiliation(s)
- Noora Kadhim Hadi Alyasari
- Department of Soil Science and Water Resources, College of Agriculture, University of Al-Qadisiyah, Diwaniyah, Iraq
| | - Wisam Hussein Selman
- Department of Physiology, Pharmacology, and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Diwaniyah, Iraq
| |
Collapse
|
5
|
Pharmacological and Clinical Efficacy of Picrorhiza kurroa and Its Secondary Metabolites: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238316. [PMID: 36500409 PMCID: PMC9738980 DOI: 10.3390/molecules27238316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Traditional remedies for the treatment of various ailments are gaining popularity. Traditionally, one of the most valuable therapeutic herbs has been Picrorhiza kurroa Royle ex Benth. Traditional and folk uses of P. kurroa include chronic constipation, skin-related problems, burning sensation, chronic reoccurring fever, jaundice, heart problems, breathing, digestion, allergy, tuberculosis, blood-related problems, prediabetes and obesity, laxative, cholagogue, and liver stimulatory. Phytoconstituents such as glycosides, alkaloids, cucurbitacins, iridoids, phenolics, and terpenes in P. kurroa have shown promising pharmacological potential. In order to uncover novel compounds that may cure chronic illnesses, such as cardiovascular, diabetes, cancer, respiratory, and hepatoprotective diseases, the screening of P. kurroa is essential. This study comprehensively evaluated the ethnopharmacological efficacy, phytochemistry, pharmacological activity, dose, and toxicity of P. kurroa. This review provides comprehensive insights into this traditional medication for future research and therapeutic application. The purpose of this review article was to determine the pharmacological effects of P. kurroa on a variety of disorders. P. kurroa may be a natural alternative to the standard treatment for eradicating newly evolving diseases. This study is intended as a resource for future fundamental and clinical investigations.
Collapse
|
6
|
López-Mejía A, Ortega-Pérez LG, Magaña-Rodríguez OR, Ayala-Ruiz LA, Piñón-Simental JS, Hernández DG, Rios-Chavez P. Protective effect of Callistemon citrinus on oxidative stress in rats with 1,2-dimethylhydrazine-induced colon cancer. Biomed Pharmacother 2021; 142:112070. [PMID: 34435594 DOI: 10.1016/j.biopha.2021.112070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Callistemon citrinus has terpenes effective in inducing antioxidant enzymes, an important mechanism involved in cancer chemoprevention. This study investigated the chemopreventive efficacy of herbal preparation of C. citrinus leaves against the oxidative stress produced during the colorectal cancer (CRC) in male Wistar rats. The amelioration of toxicity in a model of CRC induced with 1,2-dimethylhydrazine (DMH) was determined by assessing antioxidant enzymes, phase II enzymes activities and lipid peroxidation (LPO) products after 22 weeks of treatment. C. citrinus was administered at a daily oral dose of 250 mg/kg. The activities in proximal, middle and distal colon, liver, kidney and heart were determined. C. citrinus showed a strong antioxidant activity that correlated with the high content of phenolics and terpenoids. DMH treated animals showed a decrease of the enzymes activity in most tissues and the level of reduced glutathione (GSH). Conversely, the levels of lipid peroxidation products were increased. Macroscopic examination revealed the protective effect of C. citrinus in damaged organs caused by DMH. Moreover, histopathological examination of the liver displayed normal structure in the C. citrinus-treated group, unlike the DMH-treated group. C. citrinus supplementation significantly maintained or increased the antioxidant enzyme activities, whereas lipid peroxidation products levels were reduced to values similar to the level of control group. The ability of C. citrinus to induce the antioxidant system reduced the damage of oxidative stress, which makes this plant a good candidate to be used as a prevention agent in treatment of diseases such as colorectal cancer.
Collapse
Affiliation(s)
- Alejandro López-Mejía
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México
| | - Luis Gerardo Ortega-Pérez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México
| | - Oliver Rafid Magaña-Rodríguez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México
| | - Luis Alberto Ayala-Ruiz
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México
| | - Jonathan Saúl Piñón-Simental
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México
| | - Daniel Godínez Hernández
- Instituto Químico-Biológicas Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-2, Cd Universitaria, Morelia, Michoacán, México
| | - Patricia Rios-Chavez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo. Cd. Universitaria, C.P 58030 Morelia, Michoacán, México.
| |
Collapse
|
7
|
Exopolysaccharides from Lactobacillus acidophilus modulates the antioxidant status of 1,2-dimethyl hydrazine-induced colon cancer rat model. 3 Biotech 2021; 11:225. [PMID: 33968570 DOI: 10.1007/s13205-021-02784-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
The aim of the current study is to ascertain the anticancer activity of exopolysaccharides (EPS) from probiotic Lactobacillus acidophilus in the 1, 2-dimethyl hydrazine (DMH)-induced colon cancer rat model and to determine the antioxidant status. Rats were divided into five groups of six animals each. Group I served as control, group II served as cancer control (DMH alone administered), group III as standard drug control (5-FU along with DMH) and group IV and V received EPS in two doses (200 mg/kg body weight and 400 mg/kg body weight along with DMH). EPS administration was found to reduce the number of polyps formed (Group IV-8.25 ± 1.258 and Group V-8.50 ± 1.732 vs Group II-14.50 ± 2.380) and to increase the levels of antioxidant enzymes viz. Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and antioxidants like vitamin C (Vit. C), reduced glutathione (GSH) which was found to be reduced in colon cancer control rats. The status of lipid peroxidation (LPO) was also evaluated. All the values which were affected by the supplementation of DMH were brought to near normal levels by the treatment with EPS. The well-preserved histology of colon and the biochemical evaluation also show that EPS could be a potential agent for the prevention and treatment of colon cancer.
Collapse
|
8
|
Irshad N, Khan AU, Alamgeer, Khan SUD, Iqbal MS. Antihypertensive potential of selected pyrimidine derivatives: Explanation of underlying mechanistic pathways. Biomed Pharmacother 2021; 139:111567. [PMID: 33848773 DOI: 10.1016/j.biopha.2021.111567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022] Open
Abstract
This study was designed to determine the effectiveness of 5-(3-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-5), 5-(4-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-8), 5-(3-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-9) and 5-(4-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-10) against hypertension. In deoxycorticosterone acetate-salt rats, SR-5, SR-8, SR-9, and SR-10 reduced blood pressure and normalized renal functions. In isolated rat aortic rings, SR-5, SR-8, SR-9, and SR-10 relaxed phenylephrine (PE) and K+-induced contractions. The vasodilator effect was endothelium-independent. Test compounds caused a rightward shift of Ca++ and PE concentration-response curves with a reduction of maximum response. SR-5, SR-8, SR-9, and SR-10 inhibited PE peak contractions in a Ca++ free medium. In guinea-pig atria, SR5, SR-8, SR-9, and SR-10 caused a mild-to-moderate inhibition of force and rate of contractions. In the aorta and heart tissues, the test compounds enhanced glutathione-s-transferase, reduced glutathione and catalase levels, improved cellular architecture, and decreased lipid peroxidation and expression of inflammatory markers: cyclooxygenase 2, tumor necrosis factor alpha, phosphorylated c-Jun N-terminal kinase, and phosphorylated-nuclear factor kappa B, evidenced in the immunohistochemistry, enzyme-linked immunosorbent assay, western blot molecular investigations and a decreased mRNA expression of calcium channel in RT-PCR analysis. SR-5, SR-8, SR-9, and SR-10 increased the urinary output in rats and inhibited the human platelet aggregation. This study revealed that SR-5, SR-8, SR-9, and SR-10 possess BP lowering, reno-protective, vasodilatory (mediated via Ca++ antagonist, antioxidant and anti-inflammatory pathways), partial cardio-suppressant, diuretic, and antiplatelet effects, demonstrating their therapeutic potential in hypertension management.
Collapse
Affiliation(s)
- Nadeem Irshad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Univeristy, Riyadh, Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
9
|
Jisha N, Vysakh A, Vijeesh V, Latha MS. Ethyl acetate fraction of Muntingia calabura L. exerts anti-colorectal cancer potential via regulating apoptotic and inflammatory pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113064. [PMID: 32505842 DOI: 10.1016/j.jep.2020.113064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Muntingia calabura L. is a plant with traditional pharmacological relevance. The various plant parts are used by tribal communities for treating gastric ulcers, prostate gland swellings, headache, cold etc. Hence, an attempt was made to evaluate the anti-colorectal cancer potential of ethyl acetate fraction of M. calabura (EFMC). MATERIALS AND METHODS HR LC-MS analysis was carried out for the identification of compounds present in EFMC. 1,2 Dimethylhydrazine (DMH) induced animal model was used for the evaluation of anti-CRC potential of EFMC. Antioxidant enzyme status, oxidative stress marker status, hepatic and renal function marker level were determined. Evaluation of mRNA level expression of inflammatory and apoptotic genes, hematological and histopathological examinations were also carried out to figure out the extent of colorectal cancer (CRC) and the beneficial role offered by EFMC. RESULTS HR LC-MS analysis of EFMC revealed the presence of ten pharmacologically active compounds. EFMC treatment made the altered levels of antioxidant enzymes, oxidative stress markers, liver and renal function markers to retain near to its normal range. The hematological and histopathological evaluations also confirmed the anti-CRC effects exhibited by EFMC. EFMC offered a regulatory control over the inflammatory and apoptotic genes thereby mitigating the damaging effects of CRC. CONCLUSION The present study depicted the presence of therapeutically active compounds exhibiting strong antioxidant, anti-inflammatory and anticancer potential. The beneficial role offered by these compounds could be responsible for the amelioration of DMH induced CRC. Hence, EFMC can be used as an anti-CRC agent in human subjects.
Collapse
Affiliation(s)
- Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala, India.
| |
Collapse
|
10
|
Jisha N, Vysakh A, Vijeesh V, Anand PS, Latha MS. Methanolic Extract of Muntingia Calabura L. Mitigates 1,2-Dimethyl Hydrazine Induced Colon Carcinogenesis in Wistar Rats. Nutr Cancer 2020; 73:2363-2375. [PMID: 32972250 DOI: 10.1080/01635581.2020.1823438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the efficacy of methanolic extract of Muntingia calabura L. leaves (MEMC) in ameliorating oxidative stress and inflammation associated with 1,2-dimethyl hydrazine (DMH) induced colon cancer. METHODS The antioxidant enzymes, oxidative stress markers, liver and renal toxicity markers were evaluated. Histopathological examination of colon tissues was carried out with the aid of alcian blue stain and Hematoxylin and Eosin stain. RESULTS MEMC supplementation at doses of 100 and 200 mg/kg body weight of rats causes the antioxidant enzymic levels to retain near to its normal range. Meanwhile the oxidative stress markers, which showed an elevation from its normal level upon DMH administration, gets significantly reduced on MEMC treatment. Histopathological observation also revealed that the severity of colorectal cancer was reduced by the supplementation of MEMC. CONCLUSION The findings from the present study showed that MEMC can exert a potential role to ameliorate the oxidative stress and inflammation associated with colorectal cancer.
Collapse
Affiliation(s)
- Ninan Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A Vysakh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - V Vijeesh
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - P S Anand
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Latha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
11
|
Rehman MU, Rashid S, Arafah A, Qamar W, Alsaffar RM, Ahmad A, Almatroudi NM, Alqahtani SMA, Rashid SM, Ahmad SB. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. BIOLOGY 2020; 9:E302. [PMID: 32967203 PMCID: PMC7565681 DOI: 10.3390/biology9090302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Colon cancer is the most common cancer in men and women globally, killing millions of people annually. Though there widespread development has been made in the management of colorectal cancer, still there is an urgent need to find novel targets for its effective treatment. Piperine is an alkaloid found in black pepper having anticancer, anti-inflammatory activities, safe and nutritive for human consumption. Nuclear factor-erythroid 2-kelch-like ECH-associated protein 1(Nrf-2/Keap-1)/Heme-oxygenase1 (HO-1) signaling pathway plays a vital part in shielding cells from intracellular oxidative stress and inflammation. A potential cross-talk between the Nrf-2 and NF-κB pathways is recognized during cancerous growth and expansion. We studied this pathway extensively in the present study to discover novel targets in the prevention of chemically induced colon cancer with piperine to simulate human colon cancer pathology. Animals were divided into four groups. Groups1 and 2 were used as a negative control and positive control where 1,2-Dimethylhydrazine, DMH was administered in group 2, while group 3 and 4 were prevention groups where piperine at two different doses was given two weeks prior to DMH and continued until end of experiment. We found that piperine inhibited NF-κB by the activation of Nrf-2, blocking downstream inflammatory mediators/cytokines (TNF-α, IL-6, IL-1β, Cox-2, PGE-2, iNOS, NO, MPO), triggering an antioxidant response machinery (HO-1, NQO-1, GSH, GR, GPx, CAT, SOD), scavenging ROS, and decreasing lipid peroxidation. Histological findings further validated our molecular findings. It also downregulates CEA, MDF and ACF, markers of precancerous lesions in colon, alleviates infiltration of mast cells and depletes the mucous layer. Our results indicate that piperine may be an effective molecule for the prophylactic treatment of colon carcinogenesis by targeting the NF-κB/Nrf-2/Keap-1/HO-1 pathway as a progressive strategy in the preclusion and effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia or (S.R.); (R.M.A.)
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Wajhul Qamar
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (W.Q.); (S.M.A.A.)
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia or (S.R.); (R.M.A.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Nada M. Almatroudi
- Department of Clinical Pharmacy, College of Pharmacy Girls Campus, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Saeed M. A. Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (W.Q.); (S.M.A.A.)
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| |
Collapse
|
12
|
S. Saeedan A, Ganaie MA, Latief Jan B, Madhkali H, Nazam Ansa M, Rehman NU, Rashid S, U. Rehman M. Brucine Prevents DMH Induced Colon Carcinogenesis in Wistar Rats. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.319.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Shebbo S, El Joumaa M, Kawach R, Borjac J. Hepatoprotective effect of Matricaria chamomilla aqueous extract against 1,2-Dimethylhydrazine-induced carcinogenic hepatic damage in mice. Heliyon 2020; 6:e04082. [PMID: 32509999 PMCID: PMC7265058 DOI: 10.1016/j.heliyon.2020.e04082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Dimethylhydrazine (DMH) is a potent colonic and hepatic carcinogen that is metabolized into oxyradicals causing liver injury and DNA mutations. Matricaria chamomilla is a well-documented medicinal herb that possesses anti-inflammatory, antioxidant and antitumor activities and is commonly used to treat diverse ailments. The present study aimed to reveal the hepatoprotective effects of Matricaria chamomilla aqueous extract during an intermediate stage of colorectal cancer (CRC) in mice. Male Balb/c mice were divided into six groups: group A served as control, group B received chamomile extract (150 mg/Kg b.w.) orally for 12 weeks, and groups C-F received weekly intraperitoneal injections of DMH (20 mg/Kg b.w.) once a week for 12 weeks. In addition to DMH, groups D and F received chamomile during the initiation and post-initiation stages, respectively. Blood and liver samples were collected for biochemical and molecular analyses. The results showed that DMH induced hepatic injury in mice as shown by significant increase in serum aspartate aminotransferase and alanine aminotransferase. The changes in biochemical parameters were accompanied by activation of the Wnt signaling pathway leading to increased hepatocytes proliferation as well as inflammation evidenced by high levels of pro-inflammatory enzymes cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). The results also showed potential hepatoprotective effects of chamomile extract against DMH-induced liver injury, proliferation and inflammation. Chamomile restored the biochemical and molecular parameters and this improvement was more pronounced in mice pretreated with the extract. In conclusion, chamomile extract may exert its hepatoprotective activities against DMH probably due to the antioxidant, antiproliferative and anti-inflammatory properties of its flavonoids.
Collapse
Affiliation(s)
- Salima Shebbo
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Manal El Joumaa
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Rawan Kawach
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Jamilah Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
14
|
Barsain BL, Yadav SK. Picrorhiza kurrooa Royle ex Benth., an Endangered Himalayan Elixir- Medicinal Importance and Exploration of Biotechnological Approaches in Picroside Production. CURRENT TRADITIONAL MEDICINE 2019. [DOI: 10.2174/2215083805666190625144322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the history of P. kurrooa Royle ex Benth., popularly known as “Kutki
or Kadu” dates back to the Vedic era, it has only been about 69 years since research has focussed
on exploring its pharmacological properties. It is a small perennial medicinal herb
that belongs to the Scrophulariaceae family. Found primarily in the north-western alpine
Himalayan region at the altitudes of 3000-4300 meters (amsl), the plant has immense
therapeutic and medicinal properties. Uniquely gifted, the plant holds its reputation in the
modern system of medicine in the treatment of liver disorders. The species has earned an
endangered status lately due to various issues like unawareness on its conservation,
harvesting methods, and cultivation besides others. Therefore, various new scientific
methods are being developed for its propagation and conservation. This article provides an
overview of the therapeutic properties, various mode of propagation as well as the molecular
aspects of P. kurrooa. Also, the metabolic engineering strategies to modulate its secondary
metabolite picrosides are also discussed.
Collapse
Affiliation(s)
- Bharati Lalhal Barsain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (HP), India
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (HP), India
| |
Collapse
|
15
|
Seif MM, Madboli AN, Marrez DA, Aboulthana WM. Hepato-Renal protective Effects of Egyptian Purslane Extract against Experimental Cadmium Toxicity in Rats with Special Emphasis on the Functional and Histopathological Changes. Toxicol Rep 2019; 6:625-631. [PMID: 31367527 PMCID: PMC6650623 DOI: 10.1016/j.toxrep.2019.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 01/01/2023] Open
Abstract
The study was designed to clarify the hapato-nephroprotective effects of purslane ethanolic extract (PEE) against cadmium toxicity. Cadmium (Cd) is a toxic heavy metal. Cd occurs as environmental and food/ feed contamination causing public and animals health hazards. Liver and kidney are the main target organs for acute and chronic cadmium toxicity. Portulaca oleracea is rich in several vitamins, minerals, antioxidant components, and omega-3 fatty acids mainly α-linolenic acid and eicosapentaenoic acid. Results showed significant elevation of the liver and kidney functions, lipid profile and lipid peroxidation. In contrast to the antioxidants enzymatic were greatly decreased. The hepatic and renal tissues showed severe degeneration and necrosis accompanied by severe congestion and multifocal hemorrhages in Cd intoxicated rats. All parameters and tissues showed no changes in rates-treated with both Cd and purslane extract as compared with the control rats. The administration of PEE provided a significantly protection against Cd-induced hepato-nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed M. Seif
- Department of Toxicology and Food Contaminants, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Abdel-Naser Madboli
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Diaa A. Marrez
- Department of Toxicology and Food Contaminants, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| | - Wael M.K. Aboulthana
- Department of Biochemistry, National Research Centre, 33 Elbohoth St., Dokki, Giza, Egypt
| |
Collapse
|
16
|
de Almeida Bianchini Campos RC, Martins EMF, de Andrade Pires B, do Carmo Gouveia Peluzio M, da Rocha Campos AN, Ramos AM, de Castro Leite Júnior BR, de Oliveira Martins AD, da Silva RR, Martins ML. In vitro and in vivo resistance of Lactobacillus rhamnosus GG carried by a mixed pineapple (Ananas comosus L. Merril) and jussara (Euterpe edulis Martius) juice to the gastrointestinal tract. Food Res Int 2019; 116:1247-1257. [DOI: 10.1016/j.foodres.2018.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
17
|
"Picrosides" from Picrorhiza kurroa as potential anti-carcinogenic agents. Biomed Pharmacother 2018; 109:1680-1687. [PMID: 30551422 DOI: 10.1016/j.biopha.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/30/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
The steady rise in life expectancy, modern life style and changing environmental conditions are responsible for increasing incidence of cancer. A number of chemical drugs have been used for cancer treatment; however the induction of genotoxic, carcinogenic and teratogenic effects limits their use. Alternatively, plant phytochemicals have been proven effective chemopreventive agents. This review illustrates the use of "picrosides" derived from Picrorhiza kurroa for the treatment of cancer. We have detailed the anti-oxidant and anti-inflammatory action of picrosides as the key mechanism in reducing oncogenesis. Action of picrosides on detoxifying enzymes, cell cyle regulation and induction of signal transducers inhibiting apoptosis has also been reviewed. The present review highlights the use of picrosides as an important therapeutic agent against different types of cancer.
Collapse
|
18
|
Baskaran R, Priya LB, Sathish Kumar V, Padma VV. Tinospora cordifolia extract prevents cadmium-induced oxidative stress and hepatotoxicity in experimental rats. J Ayurveda Integr Med 2018; 9:252-257. [PMID: 30316725 PMCID: PMC6314239 DOI: 10.1016/j.jaim.2017.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/11/2017] [Accepted: 07/18/2017] [Indexed: 12/30/2022] Open
Abstract
Background Cadmium (Cd) pollution is of serious concern due to its toxic effects in both humans and animals. The study investigates the protective effect of Tinospora cordifolia stem methanolic extract (TCME) on Cd induced hepatotoxicity. Objective(s) The objective of the study was to explore the hepatoprotective effects of T. cordifolia extract. Materials and methods Rats were administered orally with Cd (5 mg/kg) and TCME (100 mg/kg) for 28 days. At the end of the treatment period, serum and liver tissues homogenates were subjected to biochemical analysis. Results Cd treated rats showed increased activities of the serum marker enzymes of liver damage such as AST and ALT along with increased levels of LPO and protein carbonyl content in liver tissues. Cd treatment also leads to decreased activities of endogenous antioxidants (SOD, CAT, GSH, GPx and GST), membrane ATPases (Na+K+ATPase, Ca2+ATPase and Mg2+K+ATPase) and the tissue glycoprotein levels (hexose, fucose, hexosamine and sialic acid). Histological analysis revealed vacuolar degeneration of hepatocytes with focal necrosis upon Cd administration. TCME co-treatment restored the biochemical and histological alterations caused by Cd intoxication to near normal levels. Conclusion The results of the present investigation reveal the hepatoprotective nature of T.cordifolia against Cd induced hepatotoxicity.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Lohanathan Bharathi Priya
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - V Sathish Kumar
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Viswanadha Vijaya Padma
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
19
|
Bhardwaj JK, Kumari P, Saraf P, Yadav AS. Antiapoptotic effects of vitamins C and E against cypermethrin-induced oxidative stress and spermatogonial germ cell apoptosis. J Biochem Mol Toxicol 2018; 32:e22174. [DOI: 10.1002/jbt.22174] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory; Department of Zoology; Kurukshetra University; Kurukshetra 136 119 India
| | - Priya Kumari
- Reproductive Physiology Laboratory; Department of Zoology; Kurukshetra University; Kurukshetra 136 119 India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory; Department of Zoology; Kurukshetra University; Kurukshetra 136 119 India
| | - Abhay Singh Yadav
- Reproductive Physiology Laboratory; Department of Zoology; Kurukshetra University; Kurukshetra 136 119 India
| |
Collapse
|
20
|
Panchal SS, Ghatak SB, Jha AB, Onattu R. Reduction of liver tumerogenic effect of N-nitrosodiethylamine by treatment with ɣ-oryzanol in Balb/C mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:86-98. [PMID: 28888159 DOI: 10.1016/j.etap.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In recent years, naturally occurring phytochemicals with antioxidant capacity have generated surmount interest in their therapeutic usage against a wide range of pathological and toxicological conditions. The present study was designed to evaluate potential of ɣ-oryzanol (OZ), a bio-active natural antioxidant against hepatocellular carcinoma effect of the carcinogen N-nitrosodiethylamine in Balb/c mice. OZ inhibited the proliferation of Hep-3B cell line in concentration dependent manner. Administration of OZ to N-nitrosodiethylamine induced Balb/c mice for 16 and 32 weeks showed reduction in levels of liver injury markers, restored the levels of liver tumor markers, suppressed the hepatic nodular incidence and multiplicity, and favorably modulated the liver antioxidant status in a time dependent manner. Histologically, no obvious signs of neoplasia in the liver tissues were observed in OZ supplemented rats with N-nitrosodiethylamine induced liver tumerogenesis. OZ was found to be effective for reduction of N-nitrosodiethylamine induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shital S Panchal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India.
| | - Somsuvra B Ghatak
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India; US Pharma Lab, 1300 Airport Road, North Brunswick, NJ 08902, USA
| | - Abhishek B Jha
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| | - Raoul Onattu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
21
|
Martinello F, Kannen V, Franco JJ, Gasparotto B, Sakita JY, Sugohara A, Garcia SB, Uyemura SA. Chemopreventive effects of a Tamarindus indica fruit extract against colon carcinogenesis depends on the dietary cholesterol levels in hamsters. Food Chem Toxicol 2017; 107:261-269. [PMID: 28687269 DOI: 10.1016/j.fct.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Tamarind has significant antioxidant potential. We showed that tamarind protects hypercholesterolemic hamsters from atherosclerosis. Hypercholesterolemia might increase the risk of colon cancer. We investigated whether tamarind extract modulates the risk of colon cancer in hypercholesterolemic hamsters. Hamsters (n = 64) were given tamarind and a hypercholesterolemic diet for 8 weeks. The groups were the control, tamarind treatment, hypercholesterolemic, and hypercholesterolemic treated with tamarind groups. Half of each group was exposed to the carcinogen dimethylhydrazine (DMH) at the 8th week. All hamsters were euthanatized at the 10th week. In carcinogen-exposed hypercholesterolemic hamsters, tamarind did not alter the cholesterol or triglyceride serum levels, but it reduced biomarkers of liver damage (alanine transaminase [ALT], and aspartate aminotransferase [AST]). Tamarind decreased DNA damage in hepatocytes, as demonstrated by analysis with an anti-γH2A.X antibody. In liver and serum samples, we found that this fruit extract reduced lipid peroxidation (thiobarbituric acid reactive substances [TBARS]) and increased endogenous antioxidant mechanisms (glutathione peroxidase [GPx] and superoxide dismutase [SOD]). However, tamarind did not alter either lipid peroxidation or antioxidant defenses in the colon, which contrasts with DMH exposure. Moreover, tamarind significantly increased the stool content of cholesterol. Although tamarind reduced the risk of colon cancer in hypercholesterolemic hamsters that were carcinogenically exposed to DMH by 63.8% (Metallothionein), it was still ∼51% higher than for animals fed a regular diet. Staining colon samples with an anti-γH2A.X antibody confirmed these findings. We suggest that tamarind has chemoprotective activity against the development of colon carcinogenesis, although a hypercholesterolemic diet might impair this protection.
Collapse
Affiliation(s)
- Flavia Martinello
- Department Clinical Analysis, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - João José Franco
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Bianca Gasparotto
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana Yumi Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Atushi Sugohara
- Department of Animal Science, São Paulo State University, Jaboticabal, Brazil
| | | | - Sergio Akira Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
22
|
Ganesan K, Jayachandran M, Xu B. A critical review on hepatoprotective effects of bioactive food components. Crit Rev Food Sci Nutr 2017; 58:1165-1229. [DOI: 10.1080/10408398.2016.1244154] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kumar Ganesan
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Muthukumaran Jayachandran
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Program of Food Science and Technology, Beijing Normal University–Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
23
|
Sekar V, Anandasadagopan SK, Ganapasam S. Genistein regulates tumor microenvironment and exhibits anticancer effect in dimethyl hydrazine-induced experimental colon carcinogenesis. Biofactors 2016; 42:623-637. [PMID: 27255553 DOI: 10.1002/biof.1298] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023]
Abstract
Colon cancer is one of the leading causes of cancer mortality, worldwide. Cancer stem cells are attractive targets for therapeutic interventions since their abnormal growth may trigger tumor initiation, progression, and recurrence. Colon cancer in rats were induced with 1, 2-dimethyl hydrazine (DMH) and treated with genistein, an isoflavone rich in the soy food products, which also possesses various biological activities. Genistein treatment regulates enzymatic and non-enzymatic anti-oxidants in the DMH-induced colonic tissue microenvironment. Alcian blue staining in colonic tissue reveals that mucin secretion was found to be depleted in DMH-induced group of animals. The alterations were normalized in the genistein-treated groups. Also, the mast cell population and collagen deposition were reduced as compared to induced group. Genistein treatment reduces the prognostic marker Argyrophilic nuclear organizer region (AgNOR) and proliferating cell nucleolar antigen (PCNA) in DMH-induced group of rats. DMH administration induces oxidative stress, whereas genistein activates nuclear factor-erythroid 2 related factor 2 (Nrf-2) and its downstream target hemoxygenase-1 (HO-1). Colonic stem cell marker protein CD133, CD44, and β-catenin expressions were found to be increased in DMH-induced group of animals as compared to control group of rats. Genistein treatment suppressed the expression of these stem cell markers suggesting rapid dysfunctional activation and proliferation of colonic stem cell-induced by DMH. The results of this study indicate that genistein administration in rats restored the colonic niche that was damaged by DMH and inhibits colon cancer progression. © 2016 BioFactors, 42(6):623-637, 2016.
Collapse
Affiliation(s)
- Vasudevan Sekar
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - Suresh Kumar Anandasadagopan
- Biological sciences, Biochemistry Laboratory, Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | - Sudhandiran Ganapasam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
- Centre for Stem Cell Research in the Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600 025, India
| |
Collapse
|
24
|
Abstract
The potential of Picroliv, a herbal extract against acute cadmium (Cd) intoxication, was evaluated in male rats. Biochemical and histopathological profile in rats pretreated with Picroliv (12 mg/kg, oral) followed by a single dose of Cd as cadmium chloride (CdCl2) (3 mg/kg, ip) revealed marked suppression of oxidative stress in liver and testes. The Cd-induced enhanced levels of lipid peroxidation, membrane fluidity and reduced levels of nonprotein sulphydryls and Na+K+ATPase were significantly restored to near normal by Picroliv pretreatment. In addition, the Cd-induced serum levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, gamma glutamyl transpeptidase and lactate dehydrogenase were restored to near basal levels. Hepatic and testicular histopathological damage was also minimized. The results strongly suggest definite hepatoand testicular protection by Picroliv. The antioxidant potential of the herbal extract in the major part, and not its chelating property, seems to be responsible for its ameliorative action.
Collapse
Affiliation(s)
- N Yadav
- Industrial Toxicology Research Centre, Lucknow, India
| | | | | | | |
Collapse
|
25
|
Gokuladhas K, Jayakumar S, Rajan B, Elamaran R, Pramila CS, Gopikrishnan M, Tamilarasi S, Devaki T. Exploring the Potential Role of Chemopreventive Agent, Hesperetin Conjugated Pegylated Gold Nanoparticles in Diethylnitrosamine-Induced Hepatocellular Carcinoma in Male Wistar Albino Rats. Indian J Clin Biochem 2016; 31:171-84. [PMID: 27069325 PMCID: PMC4820423 DOI: 10.1007/s12291-015-0520-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023]
Abstract
Liver cancer is the fifth most common cancer and is still one of the leading causes of death world wide, due to food additives, alcohol, fungal toxins, air, toxic industrial chemicals, and water pollutants. Chemopreventive drugs play a potential role in liver cancer treatment. Obviously in the production of anticancer drugs, the factors like poor solubility, bioavailability, biocompatibility, limited chemical stability, large amount of dose etc., plays a major role. Against this backdrop, the idea of designing the chemopreventive nature of bio flavanoid hesperetin (HP) drug conjugated with pegylated gold nanoparticles to increasing the solubility, improve bioavailability and enhance the targeting capabilities of the drug during diethylnitrosamine (DEN) induced liver cancer in male wistar albino rats. The dose fixation studies and the toxicity of pure HP and HP conjugated gold nanoparticles (Au-mPEG(5000)-S-HP) were analysed. After concluded the dose fixation and toxicity studies the experimental design were segregated in six groups for the anticancer analysis of DEN induced HCC for 16 weeks. After the experimental period the body weight, relative liver weight, number of nodules and size of nodules, the levels of tumor markers like CEA, AFP and the level of lipid peroxidation, lipid hydroperoxides and the activities of antioxidant enzymes were assessed. The administration of DEN to rats resulted in increased relative liver weight and serum marker enzymes aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, and gamma glutamyl transpeptidase. The levels of lipid peroxides elevated (in both serum and tissue) with subsequent decrease in the final body weight and tissue antioxidants like superoxide dismutase, catalase, reduced glutathione, glutathione peroxidise, and glutathione reductase. HP supplementation (20 mg/kg b.wt) significantly attenuated these alterations, thereby showing potent anticancer effect in liver cancer and the HP loaded gold nanoparticels (Au-mPEG(5000)-S-HP) treated animals shows the better treatment than the pure HP due to the solubility of drug, bioavailability and the target drug delivery of the biodegradable polymer. Histological observations were also carried out, which added supports to the chemopreventive action of the pure HP and HP loaded gold nanoparticles (Au-mPEG(5000)-S-HP) against DEN induction during liver cancer progression. These findings suggest that HP loaded gold nanoparticels (Au-mPEG(5000)-S-HP) shows better efficacy than the pure HP against lipid peroxidation, hepatic cell damage and protects the antioxidant system in DEN induced hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Krishnan Gokuladhas
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Subramaniyan Jayakumar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Balan Rajan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Ramasamy Elamaran
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | | | - Mani Gopikrishnan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Sasivarman Tamilarasi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Thiruvengadam Devaki
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| |
Collapse
|
26
|
Nabil HM, Hassan BN, Tohamy AA, Waaer HF, Abdel Moneim AE. Radioprotection of 1,2-dimethylhydrazine-initiated colon cancer in rats using low-dose γ rays by modulating multidrug resistance-1, cytokeratin 20, and β-catenin expression. Hum Exp Toxicol 2016; 35:282-292. [DOI: 10.1177/0960327115584687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Ionizing radiation is a widely used therapy for solid tumors. However, high-dose ionizing radiation causes apoptosis, transforms normal cells into tumor cells, and impairs immune functions, leading to the defects in the removal of damaged or tumor cells. In contrast, low-dose radiation has been reported to exert various beneficial effects in cells. This experimental study investigated the effect of γ rays at low dose on the development of colorectal tumor in a 1,2-dimethylhydrazine (DMH)-induced colon cancer. Colorectal tumor model was induced in Wistar rats by subcutaneous injection of DMH (20 mg/kg) once a week for 15 weeks. Starting from zero day of DMH injection, a single low dose of whole-body γ irradiation of 0.5 Gy/week was applied to the rats. A significant reduction in lipid peroxidation, nitric oxide, and elevation in the glutathione content and antioxidant enzyme activity (superoxide dismutase and catalase) were observed after γ irradiation comparing with DMH group. Moreover, γ ray reduced the expressions of multidrug resistance 1 (MDR1), β-catenin, and cytokeratin 20 (CK20) those increased in DMH-treated rats. However, survivin did not change with γ ray treatment. A histopathological examination of the DMH-injected rats revealed ulcerative colitis, dysplasia, anaplasia, and hyperchromasia. An improvement in the histopathological picture was seen in the colon of rats exposed to γ rays. In conclusion, the present results showed that low-dose γ ray significantly inhibited DMH-induced colon carcinogenesis in rats by modulating CK20, MDR1, and β-catenin expression but not survivin expression.
Collapse
Affiliation(s)
- HM Nabil
- National Center for Radiation Research and Technology, Atomic Energy Authority (AEA), Cairo, Egypt
| | - BN Hassan
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - AA Tohamy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| | - HF Waaer
- National Center for Radiation Research and Technology, Atomic Energy Authority (AEA), Cairo, Egypt
| | - AE Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Cairo, Egypt
| |
Collapse
|
27
|
Abstract
This study aimed to evaluate the effect of organic/conventional coffee in liver tissues in the cancer process, taking into account the level and activities of catalase. The experiments were carried out with 8 groups of rats during 12 weeks. They received two injections of ethylenediaminetetraacetic acid solution 1.5% (v/v) prepared in 0.9% NaCl or 1,2-dimethylhydrazine (DMH) subcutaneous dose of 40 mg·kg−1·bw−1for 2 weeks. The organic/conventional coffee infusions were at 5, 10, and 20% and were incorporated to feed (100 mL of infusion·kg−1of diet). The catalase activity showed a decrease for livers which received DMH and DMH plus organic coffee at 5% and 10%. However, an increase was observed for those receiving organic 20% and conventional 10% coffee, slowing down and favoring the reversibility of the carcinogenic process. By SDS-PAGE, we observed an intensity decrease of 59 kDa bands, as the percentage of coffee was increased. The iron concentration (by ET-AAS) confirmed the electrophoretic results, suggesting that the DMH influenced the catalase expression conditions, reducing the activity by the loss of iron ions. Thus, the coffee may restore the catalase system in the liver, exerting its chemopreventive effects.
Collapse
|
28
|
de Cássia Da Silveira e Sá R, Andrade LN, De Sousa DP. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented.
Collapse
Affiliation(s)
| | - Luciana Nalone Andrade
- Department of Pharmacy, Federal University of Sergipe, CEP 49100-000, Sao Cristovão, Sergipe, Brazil
| | - Damião Pergentino De Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, CEP 58051-970, João Pessoa, Paraiba, Brazil
| |
Collapse
|
29
|
Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 2015; 41:1-14. [PMID: 25545372 DOI: 10.1002/biof.1195] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
Collapse
Affiliation(s)
- Ashok Kumar Pandurangan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
30
|
Osman NHA, Said UZ, El-Waseef AM, Ahmed ESA. Luteolin supplementation adjacent to aspirin treatment reduced dimethylhydrazine-induced experimental colon carcinogenesis in rats. Tumour Biol 2014; 36:1179-90. [DOI: 10.1007/s13277-014-2678-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
|
31
|
Sharma P, Huq AU, Singh R. Cypermethrin-induced reproductive toxicity in the rat is prevented by resveratrol. J Hum Reprod Sci 2014; 7:99-106. [PMID: 25191022 PMCID: PMC4150150 DOI: 10.4103/0974-1208.138867] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023] Open
Abstract
AIMS The current study was to assess the protective role of resveratrol in cypermethrin-induced reproductive toxicity in male Wistar rats. MATERIALS AND METHODS Rats were exposed to cypermethrin (3.83 mg/kg bw) for 14 days. Pre- and post-treatment of resveratrol (20 mg/kg bw for 14 days) was given to cypermethrin exposed rats. At the end of the experiment, rats were sacrificed, testis and epididymis were removed, sperm characteristics, sex hormones, and various biochemical parameters were studied. RESULTS Cypermethrin exposure resulted in a significant decrease in weight of testis and epididymis, testicular sperm head counts, sperm motility and live sperm counts and increase in sperm abnormalities. Serum testosterone (T), follicle stimulating hormone (FSH), luteinizing hormone (LH), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and total protein (TP) content were decreased and lipid peroxidation (LPO) level was increased on cypermethrin exposure. Pre- and post-treatment of resveratrol increased sperm head counts, sperm motility, live sperm counts, T, FSH, LH, GSH, CAT, SOD, GST, GR, GPx and TP contents and decreased LPO. Treatment with resveratrol alone has improved sperm parameters and testicular antioxidant defence system. CONCLUSION The study concluded that resveratrol ameliorated cypermethrin-induced testicular damage by reducing oxidative stress and by enhancing the level of sex hormones.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Amir Ul Huq
- Department of Zoology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Rambir Singh
- Department of Biomedical Sciences, Bundelkhand University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
32
|
Son IS, Lee JS, Lee JY, Kwon CS. Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats. Prev Nutr Food Sci 2014; 19:82-8. [PMID: 25054106 PMCID: PMC4103732 DOI: 10.3746/pnf.2014.19.2.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/27/2014] [Indexed: 01/17/2023] Open
Abstract
Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.
Collapse
Affiliation(s)
- In Suk Son
- Department of Food Science and Nutrition, Andong National University, Gyeongbuk 760-749, Korea
| | - Jeong Soon Lee
- Department of Food Science and Nutrition, Andong National University, Gyeongbuk 760-749, Korea
| | - Ju Yeon Lee
- Department of Food Science and Nutrition, Andong National University, Gyeongbuk 760-749, Korea
| | - Chong Suk Kwon
- Department of Food Science and Nutrition, Andong National University, Gyeongbuk 760-749, Korea
| |
Collapse
|
33
|
Vinothkumar R, Vinoth Kumar R, Karthikkumar V, Viswanathan P, Kabalimoorthy J, Nalini N. Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:174-184. [PMID: 24355798 DOI: 10.1016/j.etap.2013.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 10/09/2013] [Accepted: 11/22/2013] [Indexed: 06/03/2023]
Abstract
The present study was aimed to investigate the chemopreventive potential of troxerutin on 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the antioxidant and lipid peroxidation (LPO) status. Rats were randomly divided into six groups. Group I rats served as control. Group II rats received troxerutin (50 mg/kgb.w., p.o.) for 16 weeks. Groups III-VI rats received subcutaneous injections of DMH (20 mg/kgb.w., s.c.) once a week, for the first 4 weeks. In addition to DMH, groups IV-VI rats received troxerutin at the doses of 12.5, 25 and 50 mg/kgb.w., respectively. In DMH treated rats, our results showed decreased activities of antioxidants and increased levels of LPO in the liver. Moreover, LPO and antioxidants in the colon were found to be significantly diminished in DMH the treated rats. Furthermore, enhanced activity of colonic vitamin C and vitamin E levels were observed in DMH alone treated rats (group III), which was significantly reversed on troxerutin supplementation. Troxerutin at the dose of 25 mg/kgb.w. had shown profound beneficial effects by exhibiting near normal biochemical profile and well-preserved colon histology as compared to the other two tested doses (12.5 and 50 mg/kgb.w.). These findings suggest that troxerutin could serve as a novel agent for colon cancer chemoprevention.
Collapse
Affiliation(s)
- R Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - R Vinoth Kumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - V Karthikkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - P Viswanathan
- Department of Pathology, Rajah Muthiah Medical College, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - J Kabalimoorthy
- Department of Surgery, Rajah Muthiah Medical College, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India
| | - N Nalini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.
| |
Collapse
|
34
|
Molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition. PLoS One 2013; 8:e73804. [PMID: 24066073 PMCID: PMC3774767 DOI: 10.1371/journal.pone.0073804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/24/2013] [Indexed: 11/25/2022] Open
Abstract
Uridine diphosphate glycosyltransferases (UGTs) are pivotal in the process of glycosylation for decorating natural products with sugars. It is one of the versatile mechanisms in determining chemical complexity and diversity for the production of suite of pharmacologically active plant natural products. Picrorhiza kurrooa is a highly reputed medicinal herb known for its hepato-protective properties which are attributed to a novel group of iridoid glycosides known as picrosides. Although the plant is well studied in terms of its pharmacological properties, very little is known about the biosynthesis of these important secondary metabolites. In this study, we identified two family-1 glucosyltransferases from P. kurrooa. The full length cDNAs of UGT94F4 and UGT86C4 contained open reading frames of 1455 and 1422 nucleotides, encoding polypeptides of 484 and 473 amino acids respectively. UGT94F2 and UGT86C4 showed differential expression pattern in leaves, rhizomes and inflorescence. To elucidate whether the differential expression pattern of the two Picrorhiza UGTs correlate with transcriptional regulation via their promoters and to identify elements that could be recognized by known iridoid-specific transcription factors, upstream regions of each gene were isolated and scanned for putative cis-regulatory elements. Interestingly, the presence of cis-regulatory elements within the promoter regions of each gene correlated positively with their expression profiles in response to different phytohormones. HPLC analysis of picrosides extracted from different tissues and elicitor-treated samples showed a significant increase in picroside levels, corroborating well with the expression profile of UGT94F2 possibly indicating its implication in picroside biosynthesis. Using homology modeling and molecular docking studies, we provide an insight into the donor and acceptor specificities of both UGTs identified in this study. UGT94F2 was predicted to be an iridoid-specific glucosyltransferase having maximum binding affinity towards 7-deoxyloganetin while as UGT86C4 was predicted to be a kaempferol-specific glucosyltransferase. These are the first UGTs being reported from P. kurrooa.
Collapse
|
35
|
Hamiza OO, Rehman MU, Khan R, Tahir M, Khan AQ, Lateef A, Sultana S. Chemopreventive effects of aloin against 1,2-dimethylhydrazine-induced preneoplastic lesions in the colon of Wistar rats. Hum Exp Toxicol 2013; 33:148-63. [PMID: 23928829 DOI: 10.1177/0960327113493307] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemoprevention opens new window in the prevention of all types of cancers including colon cancer. Aloin, an anthracycline in plant pigment, can be utilized as a protective agent in cancer induction. In the present study, we have evaluated the chemopreventive efficacy of aloin against 1,2-dimethylhydrazine (DMH)-induced preneoplastic lesions in the colon of Wistar rats. DMH-induced aberrant crypt foci (ACF) and mucin-depleted foci (MDF) have been used as biomarkers of colon cancer. Efficacy of aloin against the colon toxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, lipid peroxidation, ACF, MDF, histopathological changes, and expression levels of molecular markers of inflammation and tumor promotion. Aloin pretreatment ameliorates the damaging effects induced by DMH through a protective mechanism that involved reduction in increased oxidative stress enzymes (p < 0.001), ACF, MDF, cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6, proliferating cell nuclear antigen protein expression, and tumor necrosis factor-α (p < 0.001) release. From the results, it could be concluded that aloin clearly protects against chemically induced colon toxicity and acts reasonably by inducing antioxidant level, anti-inflammatory and antiproliferative markers.
Collapse
Affiliation(s)
- O O Hamiza
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Venkatachalam K, Gunasekaran S, Jesudoss VAS, Namasivayam N. The effect of rosmarinic acid on 1,2-dimethylhydrazine induced colon carcinogenesis. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:409-18. [PMID: 22236574 DOI: 10.1016/j.etp.2011.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/06/2011] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
This study was carried out to investigate the chemopreventive potential of rosmarinic acid (RA) against 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the effect of RA on tumour formation, antioxidant enzymes, cytochrome P450 content, p-nitrophenol hydroxylase and GST activities. Rats were divided into six groups and fed modified pellet diet for the entire experimental period. Group 1 served as control, group 2 received RA (10 mg/kgb.w.). Groups 3-6 were induced colon cancer by injecting DMH (20 mg/kgb.w.) subcutaneously once a week for the first four weeks (groups 3-6). In addition, RA was administered at the doses of 2.5, 5 and 10 mg/kgb.w. to groups 4-6 respectively. DMH treated rats showed large number of colonic tumours; decreased lipid peroxidation; decreased antioxidant status; elevated CYP450 content and PNPH activities; and decreased GST activity in the liver and colon. Supplementation with RA (5 mgkg/b.w.) to DMH treated rats significantly decreased the number of polyps (50%); reversed the markers of oxidative stress (21.0%); antioxidant status (38.55%); CYP450 content (29.41%); and PNPH activities (21.9%). RA at the dose of 5 mg/kgb.w. showed a most pronounced effect and could be used as a possible chemopreventive agent against colon cancer.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | | | | | | |
Collapse
|
37
|
Synergistic and individual effects of umbelliferone with 5-flurouracil on the status of lipid peroxidation and antioxidant defense against 1, 2-dimethylhydrazine induced rat colon carcinogenesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2012.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
A Picrorhiza kurroa derivative, picroliv, attenuates the development of dextran-sulfate-sodium-induced colitis in mice. Mediators Inflamm 2012; 2012:751629. [PMID: 23125487 PMCID: PMC3480037 DOI: 10.1155/2012/751629] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 09/06/2012] [Indexed: 12/18/2022] Open
Abstract
Background. Free radicals and proinflammatory cytokines have been shown to play a critical role in the pathogenesis of ulcerative colitis (UC). Picroliv, a Picrorhiza kurroa derivative, has been demonstrated to have antioxidant and anti-inflammatory effect. The purpose of the study was to investigate the effects of picroliv on experimental model of UC in mice. Materials and Methods. Picroliv was administrated orally by gavage to mice with colitis induced by dextran sulfate sodium (DSS). Disease activity index (DAI), colon length, and histology score were observed. Myeloperoxidase (MPO) activity, and SOD, MDA concentrations were measured by enzyme-linked immunosorbent assay (ELISA) while the expression of cytokine mRNAs was studied by real-time-quantitative polymerase chain reaction and also ELISA. The expression of NF-κB p65 was observed by immunohistochemistry staining and western blotting. Results. A significant improvement was observed in DAI and histological score in mice treated with picroliv, and incerased MPO activity, MDA concentrations, and the expression of IL-1β, TNF-α, and NF-κB p65 in mice with DSS-induced colitis were significantly reduced while decreased SOD level increased following administration of picroliv. Conclusion. The administration of picroliv leads to an amelioration of DSS-induced colitis, suggesting administration of picroliv may provide a therapeutic approach for UC.
Collapse
|
39
|
Hamiza OO, Rehman MU, Tahir M, Khan R, Khan AQ, Lateef A, Ali F, Sultana S. Amelioration of 1,2 Dimethylhydrazine (DMH) Induced Colon Oxidative Stress, Inflammation and Tumor Promotion Response by Tannic Acid in Wistar Rats. Asian Pac J Cancer Prev 2012; 13:4393-402. [DOI: 10.7314/apjcp.2012.13.9.4393] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Prahalathan P, Kumar S, Raja B. Morin attenuates blood pressure and oxidative stress in deoxycorticosterone acetate-salt hypertensive rats: a biochemical and histopathological evaluation. Metabolism 2012; 61:1087-99. [PMID: 22386933 DOI: 10.1016/j.metabol.2011.12.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/02/2011] [Accepted: 12/29/2011] [Indexed: 01/07/2023]
Abstract
The present study was designed to evaluate the antihypertensive and antioxidant effect of morin, a flavonoid against deoxycorticosterone acetate (DOCA)-salt induced hypertension in male Wistar rats. Hypertension was induced in uninephrectomized rats (UNX) by weekly twice subcutaneous injection of DOCA (25mg/kg) and 1% NaCl in the drinking water for six consecutive weeks. The DOCA-salt hypertensive rats showed significant (P < .05) increase in the systolic and diastolic blood pressure, heart rate, water intake and organ weights (kidney, heart, aorta and liver). DOCA-salt hypertensive rats also showed significant (P < .05) increase in the levels of thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes in plasma and tissues (kidney, heart, aorta and liver), and significant (P < .05) decrease in the body weight, nitrite and nitrate levels in plasma and heart. Furthermore, the activities of enzymic antioxidants such as superoxide dismutase, catalase and glutathione peroxidase in erythrocyte and tissues and the levels of non-enzymic antioxidants such as reduced glutathione, vitamin C and vitamin E in plasma and tissues were significantly (P < .05) decreased in DOCA-salt rats. Morin supplementation (50mg/kg) daily for six weeks brought back all the above parameters to near normal level. The above findings were confirmed by the histopathological examination. No significant (P < .05) effect was observed in UNX-rats treated with morin (50mg/kg). These results suggest that morin acts as an antihypertensive and antioxidant agent against DOCA-salt induced hypertension.
Collapse
Affiliation(s)
- Pichavaram Prahalathan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | | |
Collapse
|
41
|
Thangavel P, Muthu R, Vaiyapuri M. Antioxidant potential of naringin – a dietary flavonoid – in N-Nitrosodiethylamine induced rat liver carcinogenesis. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2012.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Júnior JVR, Araújo GR, Pádua BDC, de Brito Magalhães CL, Chaves MM, Pedrosa ML, Silva ME, Costa DC. Annatto extract and β-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats. Free Radic Res 2012; 46:329-38. [DOI: 10.3109/10715762.2012.656100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Apoptosis associated inhibition of DEN-induced hepatocellular carcinogenesis by ellagic acid in experimental rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bionut.2011.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Carvalho DDC, Brigagão MRPL, dos Santos MH, de Paula FBA, Giusti-Paiva A, Azevedo L. Organic and conventional Coffea arabica L.: a comparative study of the chemical composition and physiological, biochemical and toxicological effects in Wistar rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:114-121. [PMID: 21523414 DOI: 10.1007/s11130-011-0221-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Differentiation between organic and conventional coffee has increased due to the growing demand and high consumption of healthy foods that contain compounds with antioxidant potential, which have been associated with the reduction of chronic diseases. We used organic and conventional coffee in powder 4% (w/w) and infusions 5%, 10% and 20% (w/v) incorporated in a commercial diet to test in vivo. The levels of chlorogenic acid, caffeine and trigonelline were determined by high performance liquid chromatography. The body weight, weight gain, food consumption, aberrant foci crypt, mucin depleted foci, stress biomarkers protein carbonyl and malondialdehyde, biochemical parameters and behavior of the rats were compared between the experimental and control groups within a framework of colon carcinogenesis. The organic coffee showed higher levels of chlorogenic acid, caffeine and trigonelline than conventional, however, this difference did not significantly affect behavior. The infusions had an antioxidant effect, reducing the levels of malondialdehyde; however, the biochemical parameters of the serum were not altered, and there was neither induction nor prevention of preneoplasic lesions.
Collapse
Affiliation(s)
- Dayene do Carmo Carvalho
- Department of Exact Science, Federal University of Alfenas-MG, Rua Gabriel Monteiro da Silva, 700, CEP: 37130-000, Alfenas, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
45
|
Antioxidant effects of the ethanol extract from flower of Camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int J Mol Sci 2011; 12:2618-30. [PMID: 21731461 PMCID: PMC3127137 DOI: 10.3390/ijms12042618] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to investigate the antioxidant properties of the ethanol extract of the flower of Camellia japonica (Camellia extract). Camellia extract exhibited 1,1-diphenyl-2-picrylhydrazyl radical and intracellular reactive oxygen species (ROS) scavenging activity in human HaCaT keratinocytes. In addition, Camellia extract scavenged superoxide anion generated by xanthine/xanthine oxidase and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2) in a cell-free system, which was detected by electron spin resonance spectrometry. Furthermore, Camellia extract increased the protein expressions and activity of cellular antioxidant enzymes, such as superoxide dismutase, catalase and glutathione peroxidase. These results suggest that Camellia extract exhibits antioxidant properties by scavenging ROS and enhancing antioxidant enzymes. Camellia extract contained quercetin, quercetin-3-O-glucoside, quercitrin and kaempferol, which are antioxidant compounds.
Collapse
|
46
|
Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact 2011; 192:193-200. [PMID: 21453689 DOI: 10.1016/j.cbi.2011.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/27/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022]
Abstract
Colon cancer is the major health hazard related with high mortality and it is a pathological consequence of persistent oxidative stress and inflammation. Farnesol, an isoprenoid alcohol, has been shown to possess antioxidant, anti-inflammatory and chemopreventive properties. The present study was performed to evaluate the protective efficacy of farnesol against 1,2-dimethylhydrazine (DMH) induced oxidative stress, inflammatory response and apoptotic tissue damage. Farnesol was administered once daily for seven consecutive days at the doses of 50 and 100 mg/kg body weight in corn oil. On day 7, a single injection of DMH was given subcutaneously in the groin at the dose of 40 mg/kg body weight. Protective effects of farnesol were assessed by using caspase-3 activity, tissue lipid peroxidation (LPO) and antioxidant status as end point markers. Further strengthening was evident on histopathological observations used to assess the protective efficacy of farnesol. Prophylactic treatment with farnesol significantly ameliorates DMH induced oxidative damage by diminishing the tissue LPO accompanied by increase in enzymatic viz., superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and quinone reductase (QR) and non-enzymatic viz., reduced glutathione (GSH) antioxidant status. Farnesol supplementation significantly decreased caspase-3 activity in colonic tissue. Histological findings also revealed that pretreatment with farnesol significantly reduced the severity of submucosal edema, regional destruction of the mucosal layer and intense infiltration of the inflammatory cells in mucosal and submucosal layers of the colon. The data of the present study suggest that farnesol effectively suppress DMH induced colonic mucosal damage by ameliorating oxidative stress, inflammatory and apoptotic responses.
Collapse
|
47
|
Vijaya Padma V, Sowmya P, Arun Felix T, Baskaran R, Poornima P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem Toxicol 2011; 49:991-8. [PMID: 21219962 DOI: 10.1016/j.fct.2011.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Lindane is an organochlorine pesticide that persists in the environment, bioaccumulate through food chain and has a risk of causing adverse effects to human health and the environment. It induces cell damage by producing free radicals and reactive oxygen species. The aim of the present study is to investigate the protective effect of gallic acid (a plant derived polyphenol) against lindane induced hepatic and renal toxicity in rats. Liver damage was assessed by hepatic serum marker enzymes like SGOT, SGPT and ALP and histopathological observation. Renal damage was observed by histopathological examination and serum markers like creatinine and urea. Treatment with lindane increased the levels of lipid peroxidation, serum marker enzyme activity with a concomitant decrease in GSH, CAT, SOD, GPx and GST. Histological alterations were also observed in kidney and liver tissue with lindane treatment. Co-treatment of gallic acid significantly prevented the lindane induced alterations in kidney and liver tissues with a decrease in LPO, serum marker enzyme activity and a significant increase in antioxidant levels. These results suggest that gallic acid has protective effect over lindane induced oxidative damage in rat liver and kidney.
Collapse
Affiliation(s)
- V Vijaya Padma
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
48
|
Nirmala P, Ramanathan M. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats. Eur J Pharmacol 2010; 654:75-9. [PMID: 21172346 DOI: 10.1016/j.ejphar.2010.11.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/16/2010] [Accepted: 11/26/2010] [Indexed: 02/07/2023]
Abstract
Colorectal cancer, a common cause of cancer related deaths in both sexes in western population is often due to persistent oxidative stress leading to DNA damage. Antioxidants scavenge free radicals and inhibit neoplastic process. Kaempferol, a flavonol widely distributed in tea, broccoli, grape fruit, brussels sprouts and apple, is claimed to have chemopreventive action in colon cancer. The aim of our study was to evaluate the effect of kaempferol on tissue lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal cancer in male Wistar rats and to compare its efficacy with irinotecan. Experimental colon cancer induced by 1,2-dimethyl hydrazine in rats mimic human colon cancer and therefore is an ideal model for chemoprevention studies. The rats were divided into six groups. Group 1 served as control. Group 2 received 1,2-dimethyl hydrazine (20 mg/kg body weight) subcutaneously once a week for four weeks. Group 3 received irinotecan (100 mg/kg body weight) intravenously once a week for four weeks with 1,2-dimethyl hydrazine. Groups 4 to 6 were given a daily oral dose of 50, 100, 200 mg/kg body weight of kaempferol with 1,2-dimethyl hydrazine. The total study period was 16 weeks. Kaempferol supplementation lowered 1,2-dimethyl hydrazine induced erythrocyte lysate and liver thiobarbituric acid reactive substances level and rejuvenated anti oxidant enzymes catalase, super oxide dismutase and glutathione peroxidase. The recovery of enzyme status was maximum at the dose of 200 mg/kg body weight and was comparable to irinotecan. Our study reveals that kaempferol could be safely used as a chemopreventive agent in colorectal cancer.
Collapse
Affiliation(s)
- Parthasarathy Nirmala
- Division of Pharmacology, Rajah Muthiah Medical College, Annamalai University, Cuddalore, Tamil Nadu, South India.
| | | |
Collapse
|
49
|
Srihari T, Sengottuvelan M, Nalini N. Dose-dependent effect of oregano (Origanum vulgare L.) on lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Pharm Pharmacol 2010; 60:787-94. [DOI: 10.1211/jpp.60.6.0015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Colon cancer is a major cause of morbidity and mortality in developed and developing countries. Diet and dietary constituents play a major role in the aetiology of colon cancer. We have investigated the effect of an aqueous extract of oregano (Origanum vulgare. L.) on lipid peroxidation and anti-oxidant status in 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. We aimed to identify the important antioxidants present in Indian oregano using RP-HPLC. DMH (20 mgkg−1) was administered subcutaneously once a week for the first four weeks and then discontinued. Oregano was supplemented every day orally at a dose of 20, 40 or 60 mgkg−1 to different groups of rats for 15 weeks. After this time the rats were killed and the colons were examined visually and evaluated biochemically. The levels of lipid peroxidation products, such as thiobarbituric acid reactive substances and conjugated dienes were significantly higher in the liver whereas in caecum and colon the levels were lower in DMH-treated animals as compared with control rats. The levels of the anti-oxidants superoxide dismutase, catalase, reduced glutathione, glutathione reductase, glutathione peroxidase and glutathione-S-transferase were decreased in DMH-treated rats, but were significantly reversed on oregano supplementation. Oregano supplementation (40 mgkg−1) had a modulatory role on tissue lipid peroxidation and antioxidant profile in colon cancer-bearing rats, which suggested a possible anti-cancer property of oregano.
Collapse
Affiliation(s)
- Thummala Srihari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamilnadu, India
| | - Murugan Sengottuvelan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamilnadu, India
| | - Namasivayam Nalini
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamilnadu, India
| |
Collapse
|
50
|
Umesalma S, Sudhandiran G. Chemomodulation of the antioxidative enzymes and peroxidative damage in the colon of 1,2-dimethyl hydrazine-induced rats by ellagicacid. Phytother Res 2009; 24 Suppl 1:S114-9. [PMID: 19827028 DOI: 10.1002/ptr.2962] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Prevention of cancer remains a primary need and new chemopreventive agents must be developed for this purpose. Toward this goal, a chemopreventive study was conducted to evaluate the potential effect of ellagic acid (EA) against 1,2-dimethylhydrazine (DMH-) induced colon carcinogenesis in experimental rats. Rats were administered with DMH (20mg/kg body weight) subcutaneous injection once a week for 15 weeks and were supplemented with EA (60 mg/kg body weight/day orally). In the present study, the efficacy of EA on the formation of aberrant crypt foci (ACF), levels of lipid peroxidation (LPO) and activities of enzymic and non-enzymic antioxidants in DMH-induced colon-cancer-bearing rats were assessed. After the experimental period, frequency of ACF, levels of LPO were found to be increased, whereas a significant decrease in the activities of enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase) and non-enzymic antioxidants (reduced glutathione, vitamin C and vitamin E) were observed in DMH-induced rats. Supplementation of EA attenuated all these alterations to near normal levels, which indicates the anti-carcinogenic efficacy of EA. This effect was further confirmed by histopathological studies. The results obtained in the present study suggest EA as an effective chemopreventive agent on colon carcinogenesis induced by DMH.
Collapse
Affiliation(s)
- Syed Umesalma
- Department of Biochemistry, University of Madras, Guindy campus, Chennai-600 025, Tamil Nadu, India
| | | |
Collapse
|