1
|
Pan M, Sun Z, Zhang Y, Chen J, Zhao Z, He H, Zeng H, Li Q, Gu N. Aggregation-Disruption-Induced Multi-Scale Mediating Strategy for Anticoagulation in Blood-Contacting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412701. [PMID: 39344862 DOI: 10.1002/adma.202412701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Minimally invasive blood-contacting interventional devices are increasingly used to treat cardiovascular diseases. However, the risk of device-related thrombosis remains a significant concern, particularly the formation of cycling thrombi, which pose life-threatening risks. To better understand the interactions between these devices and blood, the initial stages of coagulation contact activation on extrinsic surfaces are investigated. Direct force measurements reveals that activated contact factors stimulate the intrinsic coagulation pathway and promote surface crosslinking of fibrin. Furthermore, fibrin aggregation is disrupted by surface-grafted inhibitors, as confirmed by ex vivo coagulation tests. An engineered serum protein with zwitterion grafts to resist the deposition of biological species such as fibrin, platelets, and red blood cells is also developed. Simultaneously, a protease inhibitor-based coacervate is incorporated into the coating to inhibit the intrinsic pathway effectively. The loaded coacervate can be released and reloaded through modulation of catechol-amine interactions, facilitating material regeneration. The strategy offers a novel multi-scale mediation strategy that simultaneously inhibits nanoscale coagulation factors and resists microscale thrombus aggregation, providing a long-term solution for anticoagulation in blood-contacting devices.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Zhaoyun Sun
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Yuhao Zhang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jiangwei Chen
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Qingguo Li
- Cardiovascular Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210028, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
3
|
Xie Q, Chen A, Gao Z, Gu S, Wei B, Liang R, Zhang F, Zhao Y, Tang J, Pan C, Yu G. Regulating Conformational Locking in Covalent Organic Framework for Selective and Recyclable Photocatalytic Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405550. [PMID: 39240003 DOI: 10.1002/smll.202405550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The exploration of new properties and functionality of covalent organic frameworks (COFs) rely mostly on the covalent modification of the starting building blocks or linkages. Noncovalent forces that guide the assembly and adhesion of layers to develop two-dimensional (2D) COFs and improve their bulk properties and functionalities, however, are rarely explored. Herein, the "conformational lock" (CL) effect in 2D hydrazine-linked COFs with intralayer F-H interaction is discovered and regulated to stabilize interlayer adhesion and develop a facile strategy to increase their stability, promote selectivity and efficiency in reactive singlet oxygen (1O2)-triggered photocatalytic transformation when acting as photocatalysts. The CL strategy endows the fluorinated COFs with an efficient intersystem crossing process for 1O2 generation and strong interlayer π-π stacking interaction. The 4F-COF with the strongest F-H noncovalent interaction exhibits the highest photocatalytic conversion and selectivity (exceeding 98%) in typical 1O2-dependent transformations, even over 7 continuous photocatalytic cycles. This work demonstrates that promoting intralayer noncovalent interaction in 2D-COFs can impart high photocatalytic activity and stability, and would vigorously inspire their developments in heterogeneous catalysis.
Collapse
Affiliation(s)
- Qiujian Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Anqi Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhu Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Shuai Gu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Baosheng Wei
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Rongran Liang
- Texas A&M University, College Station, TX, 77843, USA
| | - Fupeng Zhang
- China Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Juntao Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Guipeng Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
4
|
Ma M, Qian J, Jiang K, Wang L, Song Y, Zhang W. Molecular-level periodic arrays of long-chain poly(3-hexylthiophene-2,5-diyl) driven by an electric field. NANOSCALE 2024; 16:15995-16002. [PMID: 39045735 DOI: 10.1039/d4nr01900h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Two-dimensional (2D) periodic arrays of conductive polymers represent attractive platforms for wiring functional molecules into the integrated circuits of molecular electronics. However, the large-scale assembly of polymer periodic arrays at the molecular level faces challenges such as curling, twisting, and aggregation. Here, we assembled the periodic arrays of long-chain poly(3-hexylthiophene-2,5-diyl) (P3HT, Mw = 65 k) at the solid-liquid interface by applying an electric field, within which the charged chain segments were aligned. Atomic force microscopy (AFM) imaging revealed that individual P3HT chains assemble into monolayers featuring face-on orientation, extended chain conformation and isolated packing, which is thermodynamically more stable than folded chains in 2D polycrystals. The assembly process is initiated with the formation of disordered clusters and progresses through voltage-dependent nucleation and growth of extended-chain arrays, wherein continuous conformational adjustments along the nucleation pathway exhibit dependence on the cluster size.
Collapse
Affiliation(s)
- Mingze Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Jingyi Qian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Ke Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
6
|
Zhang L, Pei L, Li D, Bian H. Theoretical Insights into Regulation of Red/Blue-Shifting Hydrogen Bonds Through Cooperativity with Regium Bonds. J Phys Chem A 2024; 128:6898-6907. [PMID: 39138147 DOI: 10.1021/acs.jpca.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
To deeply understand the characteristics and regulation of red/blue-shifting hydrogen bonds (HBs), a theoretical investigation was conducted to explore the cooperativity between regium bonds and HBs in the complexes of Y···MCN···HCX3 (M = Cu, Ag, Au; Y = H2O, HCN, NH3; X = F, Cl). When MCN formed a hydrogen bonding dimer with CHF3 or CHCl3, the blue shift of C-H vibration frequency v(C-H) decreases as the following sequence Au > Cu > Ag, and the red shift decreases following the order Ag > Cu > Au. Upon the formation of ternary complexes, the presence of regium bonding interactions exerts a positive synergistic effect, resulting in the strengthening of the HBs. This, in turn, leads to noticeable changes in the red and blue shifts of v(C-H). In CHF3 complexes, v(C-H) undergoes a decrease in the blue shift, whereas that in CHCl3 exhibits an increase in the red shift. Especially, a transition from blue to red shift is observed within the AuCN···HCCl3 complex. As the strength of the regium bond increases, the trend of shifting from blue to red becomes more pronounced. For a given MCN, the changes occur in the order of NH3 > HCN > H2O. The interplay between two interactions was revealed by the molecular electrostatic potentials (MEP), the atoms in the molecule (AIM), and natural bond orbitals (NBO) analysis. It is revealed that Δv(C-H) is linearly correlated with a series of configuration and energy parameters. We explain the red- and blue-shifting HBs and their changes from the perspective of hyperconjugation and rehybridization. The presence of the positive synergistic effect enhances the hyperconjugation effect, thereby leading to a reduction in the blue shift and an increase in the red shift of v(C-H) within the complexes. This study enriches previous mechanisms regarding red- and blue-shifting HBs and introduces a novel idea to manipulate the characteristics of HBs, with the potential to impact the functioning of intricate systems.
Collapse
Affiliation(s)
- Lijuan Zhang
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - Ling Pei
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - Dazhi Li
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - He Bian
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| |
Collapse
|
7
|
Zhang H, He Q, Yu H, Qin M, Feng Y, Feng W. Mussel-Inspired Polymer-Based Composites for Efficient Thermal Management in Dry and Underwater Environments. ACS NANO 2024. [PMID: 39094105 DOI: 10.1021/acsnano.4c05894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
To address the escalating power consumption of processors in data centers and the growing emphasis on environmental sustainability, the prospective shift from traditional air-cooling to immersion liquid cooling necessitates multiple functional integrations in polymer-based thermal conductive materials. Here, drawing inspiration from mussels, we showed a copolymer, poly(dimethylsiloxane-co-dopamine methacrylate) (PDMS-DMA), with a variety of reversible molecular interactions and simply combined with liquid metal (EGaIn) can yield a flexible, waterproof, and electrically insulating thermal conductive composite. The obtained PDMS-DMA/EGaIn composites demonstrate a harmonious blend of attributes, including a low modulus (75.8 kPa), high thermal conductivity of 6.9 W m-1 K-1, and rapid room-temperature self-healing capabilities, capable of complete repair within 20 min, even under water. Based on its electrically insulating and water resistance properties, PDMS-DMA/EGaIn emerges as a promising candidate for efficient and stable heat transfer in both air and underwater thermal management. Consequently, this water-resistant polymer-based composite holds significance for application in thermal protective layers for future immersion liquid cooling systems.
Collapse
Affiliation(s)
- Heng Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Qingxia He
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Huitao Yu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Mengmeng Qin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Yiyu Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
8
|
Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, Liu Q, Chen W, Zhou Y, Mao H. The Spermine Oxidase/Spermine Axis Coordinates ATG5-Mediated Autophagy to Orchestrate Renal Senescence and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306912. [PMID: 38775007 PMCID: PMC11304251 DOI: 10.1002/advs.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-β1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-β1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.
Collapse
Affiliation(s)
- Dan Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Xiaohui Lu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Hongyu Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yating Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Simin Jiang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Guanglan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yiping Xu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Kefei Wu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Xianrui Dou
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| |
Collapse
|
9
|
Zhao J, Liu J, Wang Q, Wei A, Zhang P, Li A, Yu Y. Visual Quantitation of Dopamine-Inspired Fluorescent Adhesion with Orthogonal Phenanthrenequinone Photochemistry. ACS Macro Lett 2024; 13:788-797. [PMID: 38838345 DOI: 10.1021/acsmacrolett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Quantifying adhesion is crucial for understanding adhesion mechanisms and developing advanced dopamine-inspired materials and devices. However, achieving nondestructive and real-time quantitation of adhesion using optical spectra remains challenging. Here, we present a dopamine-inspired orthogonal phenanthrenequinone photochemistry strategy for the one-step adhesion and real-time visual quantitation of fluorescent spectra. This strategy utilizes phenanthrenequinone-mediated photochemistry to facilitate conjoined network formation in the adhesive through simultaneous photoclick cycloaddition and free-radical polymerization. The resulting hydrogel-like adhesive exhibits good mechanical performance, with a Young's modulus of 300 kPa, a toughness of 750 kJ m-3, and a fracture energy of 4500 J m-2. This adhesive, along with polycyclic aromatic phenanthrenequinones, shows strong adhesion (>100 kPa) and interfacial toughness thresholds (250 J m-2) on diverse surfaces─twice to triple as much as typical dopamine-contained adhesives. Importantly, such an adhesive demonstrates excellent fluorescent performance under UV irradiation, closely correlating with its adhesion strengths. Their fluorescence intensities remain constant after continuous stretching/releasing treatment and even in the dried state. Therefore, this dopamine-inspired orthogonal phenanthrenequinone photochemistry is readily available for real-time and nondestructive visual quantitation of adhesion performance under various conditions. Moreover, the adhesive precursor is chemically ultrastable for more than seven months and achieves adhesion on substrates within seconds upon blue light irradiation. As a proof-of-concept, we leverage the rapid and visual quantitation of adhesion and printability to create fluorescent patterns and structures, showcasing applications in information storage, adhesion prediction, and self-reporting properties. This general and straightforward strategy holds promise for rapidly preparing functional adhesive materials and designing high-performance wearable devices.
Collapse
Affiliation(s)
- Jinhao Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - An Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| |
Collapse
|
10
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
11
|
Liu L, Lan H, Cui Y, Tang Q, Bai J, An X, Sun M, Liu H, Qu J. A Janus membrane with electro-induced multi-affinity interfaces for high-efficiency water purification. SCIENCE ADVANCES 2024; 10:eadn8696. [PMID: 38787943 PMCID: PMC11122666 DOI: 10.1126/sciadv.adn8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Drinking water with micropollutants is a notable environmental concern worldwide. Membrane separation is one of the few methods capable of removing micropollutants from water. However, existing membranes face challenges in the simultaneous and efficient treatment of small-molecular and ionic contaminants because of their limited permselectivity. Here, we propose a high-efficiency water purification method using a low-pressure Janus membrane with electro-induced multi-affinity. By virtue of hydrophobic and electrostatic interactions between the functional interfaces and contaminants, the Janus membrane achieves simultaneous separation of diverse types of organics and heavy metals from water via single-pass filtration, with an approximately 100% removal efficiency, high water flux (>680 liters m-2 hour-1), and 98% lower energy consumption compared with commercial nanofiltration membranes. The electro-induced switching of interfacial affinity enables 100% regeneration of membrane performance; thus, our work paves a sustainable avenue for drinking water purification by regulating the interfacial affinity of membranes.
Collapse
Affiliation(s)
- Lie Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | | | - Yuqi Cui
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Bai
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Meng Sun
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Khattab H, Gawish AA, Gomaa S, Hamdy A, El-Hoshoudy AN. Assessment of modified chitosan composite in acidic reservoirs through pilot and field-scale simulation studies. Sci Rep 2024; 14:10634. [PMID: 38724544 PMCID: PMC11082220 DOI: 10.1038/s41598-024-60559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Chemical flooding through biopolymers acquires higher attention, especially in acidic reservoirs. This research focuses on the application of biopolymers in chemical flooding for enhanced oil recovery in acidic reservoirs, with a particular emphasis on modified chitosan. The modification process involved combining chitosan with vinyl/silane monomers via emulsion polymerization, followed by an assessment of its rheological behavior under simulated reservoir conditions, including salinity, temperature, pressure, and medium pH. Laboratory-scale flooding experiments were carried out using both the original and modified chitosan at conditions of 2200 psi, 135,000 ppm salinity, and 196° temperature. The study evaluated the impact of pressure on the rheological properties of both chitosan forms, finding that the modified composite was better suited to acidic environments, showing enhanced resistance to pressure effects with a significant increase in viscosity and an 11% improvement in oil recovery over the 5% achieved with the unmodified chitosan. Advanced modeling and simulation techniques, particularly using the tNavigator Simulator on the Bahariya formations in the Western Desert, were employed to further understand the polymer solution dynamics in reservoir contexts and to predict key petroleum engineering metrics. The simulation results underscored the effectiveness of the chitosan composite in increasing oil recovery rates, with the composite outperforming both its native counterpart and traditional water flooding, achieving a recovery factor of 48%, compared to 39% and 37% for native chitosan and water flooding, thereby demonstrating the potential benefits of chitosan composites in enhancing oil recovery operations.
Collapse
Affiliation(s)
- Hamid Khattab
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Ahmed A Gawish
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Sayed Gomaa
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
- Department of Petroleum Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt
| | - Abdelnaser Hamdy
- Reservoir Engineering Department, Khalda Petroleum Company, Cairo, Egypt
| | - A N El-Hoshoudy
- PVT lab, Production Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
- PVT service center, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| |
Collapse
|
13
|
Wang Z, Cao Z, Hao A, Xing P. Pnictogen bonding in imide derivatives for chiral folding and self-assembly. Chem Sci 2024; 15:6924-6933. [PMID: 38725497 PMCID: PMC11077576 DOI: 10.1039/d4sc00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Pnictogen bonding (PnB) is an attraction interaction that originates from the anisotropic distribution of electron density of pnictogen elements, which however has been rarely found in nitrogen atoms. In this work, for the first time, we unveil the general presence of N-involved PnB in aromatic or aliphatic imide groups and reveal its implications in chiral self-assembly of folding. This long-neglected interaction was consolidated by Cambridge structural database (CSD) searching as well as subsequent computational studies. Though the presence of PnB has limited effects on spectroscopic properties in the solution phase, conformation locking effects are sufficiently expressed in the chiral folding and self-assembly behavior. PnB anchors the chiral conformation to control the emergence and inversion of chiroptical signals, while intramolecular PnB induces the formation of supramolecular tilt chirality. It also enables the chiral folding of imide-containing amino acid or peptide derivatives, which induces the formation of unique secondary structural sequences such as β-sheets. Finally, the effects of PnB in directing folded helical structures were revealed. Examples of cysteine and cystine derivatives containing multiple N⋯O and N⋯S PnBs constitute an α-helix like secondary structure with characteristic circular dichroism. This work discloses the comprehensive existence of imide-involved PnB, illustrates its important role in folding and self-assembly, and sheds light on the rational fabrication of conformation-locked compounds and polymers with controllable chiroptical activities.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| |
Collapse
|
14
|
Huang L, Song Z, Song X, Yu F, Lu A, He H, Liu W, Wang Z, Zhang P, Li S, Zhao X, Cui S, Zhu C, Liu Y. Performance Enhancement of Silicone Rubber Using Superhydrophobic Silica Aerogel with Robust Nanonetwork Structure and Outstanding Interfacial Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22580-22592. [PMID: 38634565 DOI: 10.1021/acsami.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The application of high-performance rubber nanocomposites has attracted wide attention, but its development is limited by the imbalance of interface and network effects caused by fillers. Herein, an ultrastrong polymer nanocomposite is successfully designed by introducing a superhydrophobic and mesoporous silica aerogel (HSA) as the filler to poly(methyl vinyl phenyl) siloxane (PVMQ), which increased the PVMQ elongation at break (∼690.1%) by ∼9.3 times and the strength at break (∼6.6 MPa) by ∼24.3 times. Furthermore, HSA/PVMQ with a high dynamic storage modulus (G'0) of ∼12.2 MPa and high Payne effect (ΔG') of ∼9.4 MPa is simultaneously achieved, which is equivalent to 2-3 times that of commercial fumed silica reinforced PVMQ. The superior performance is attributed to the filler-rubber interfacial interaction and the robust filler-rubber entanglement network which is observed by scanning electron microscopy. When the HSA-PVMQ entanglement network is subjected to external stress, both the HSA and bound-PVMQ chains are synergistically involved in resisting structural evolution, resulting in the maximized energy dissipation and deformation resistance through the desorption of the polymer chain and the slip/interpenetrating of the exchange hydrogen bond pairs. Hence, highly aggregated nanoporous silica aerogels may soon be widely used in the application of reinforced silicone rubber or other polymers shortly.
Collapse
Affiliation(s)
- Longjin Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zihao Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaomin Song
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fengmei Yu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Ai Lu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Hongjiang He
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Zihan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Ping Zhang
- Southwest Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xueyan Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Sheng Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Material Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chunhua Zhu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
15
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
16
|
Zhao ZH, Chen SY, Zhao PC, Luo WL, Luo YL, Zuo JL, Li CH. Mechanically Adaptive Polymers Constructed from Dynamic Coordination Equilibria. Angew Chem Int Ed Engl 2024; 63:e202400758. [PMID: 38450854 DOI: 10.1002/anie.202400758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0 Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.
Collapse
Affiliation(s)
- Zi-Han Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shi-Yi Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Pei-Chen Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Wen-Lin Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yan-Long Luo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
17
|
Martín-Fernández C, Montero-Campillo MM, Alkorta I. Hydrogen Bonds Are Never of an "Anti-electrostatic" Nature: A Brief Tour of a Misleading Nomenclature. J Phys Chem Lett 2024; 15:4105-4110. [PMID: 38634115 PMCID: PMC11033937 DOI: 10.1021/acs.jpclett.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
A large amount of scientific works have contributed through the years to rigorously reflect the different forces leading to the formation of hydrogen bonds, the electrostatic and polarization ones being the most important among them. However, we have witnessed lately with the emergence of a new terminology, anti-electrostatic hydrogen bonds (AEHBs), that seems to contradict this reality. This nomenclature is used in the literature to describe hydrogen bonds between equally charged systems to justify the existence of these species, despite numerous proofs showing that AEHBs are, as any other hydrogen bond between neutral species, mostly due to electrostatic forces. In this Viewpoint, we summarize the state of the art regarding this issue, try to explain why this terminology is very misleading, and strongly recommend avoiding its use based on the hydrogen bond physical grounds.
Collapse
Affiliation(s)
| | - M. Merced Montero-Campillo
- Departamento
de Química (Módulo 13, Facultad de Ciencias),
Campus de Excelencia UAM-CSIC, Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| | - Ibon Alkorta
- Instituto
de Química Médica (CSIC), 28006 Madrid, Spain
| |
Collapse
|
18
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
19
|
Ren X, Tsuji H, Uchino T, Kono I, Isoshima T, Okamoto A, Nagaoka N, Ozaki T, Matsukawa A, Miyatake H, Ito Y. An osteoinductive surface by adhesive bone morphogenetic protein-2 prepared using the bioorthogonal approach for tight binding of titanium with bone. J Mater Chem B 2024; 12:3006-3014. [PMID: 38451210 DOI: 10.1039/d3tb02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.
Collapse
Affiliation(s)
- Xueli Ren
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hironori Tsuji
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Takahiko Uchino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Izumi Kono
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
20
|
Niu W, Li Z, Liang F, Zhang H, Liu X. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318434. [PMID: 38234012 DOI: 10.1002/anie.202318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Supramolecular polymer networks (SPNs), crosslinked by noncovalent bonds, have emerged as reorganizable and recyclable polymeric materials with unique functionality. However, poor stability is an imperative challenge faced by SPNs, because SPNs are susceptible to heat, water, and/or solvents due to the dynamic and reversible nature of noncovalent bonds. Herein, the design of a noncovalent cooperative network (NCoN) to simultaneously stabilize and reinforce SPNs is reported, resulting in an ultrastable, superrobust, and recyclable SPN. The NCoN is constructed by multiplying the H-bonding sites and tuning the conformation/geometry of the H-bonding segment to optimize the multivalence cooperativity of H-bonds. The rationally designed H-bonding segment with high conformational compliance favors the formation of tightly packed H-bond arrays comprising higher-density and stronger H-bonds. Consequently, the H-bonded crosslinks in the NCoN display a covalent crosslinking effect but retain on-demand dynamics and reversibility. The resultant ultrastable SPN not only displays remarkable resistance to heat up to 120 °C, water soaking, and a broad spectrum of solvents, but also possesses a superhigh true stress at break (1.1 GPa) and an ultrahigh toughness (406 MJ m-3 ). Despite the covalent-network-like stability, the SPN is recyclable through activating its reversibility in a high-polarity solvent heated to a threshold temperature.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fengli Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Liu K, Wang M, Huang C, Yuan Y, Ning Y, Zhang L, Wan P. Flexible Bioinspired Healable Antibacterial Electronics for Intelligent Human-Machine Interaction Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305672. [PMID: 38140748 PMCID: PMC10933681 DOI: 10.1002/advs.202305672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Indexed: 12/24/2023]
Abstract
Flexible electronic sensors are receiving numerous research interests for their potential in electronic skins (e-skins), wearable human-machine interfacing, and smart diagnostic healthcare sensing. However, the preparation of multifunctional flexible electronics with high sensitivity, broad sensing range, fast response, efficient healability, and reliable antibacterial capability is still a substantial challenge. Herein, bioinspired by the highly sensitive human skin microstructure (protective epidermis/spinous sensing structure/nerve conduction network), a skin bionic multifunctional electronics is prepared by face-to-face assembly of a newly prepared healable, recyclable, and antibacterial polyurethane elastomer matrix with conductive MXene nanosheets-coated microdome array after ingenious templating method as protective epidermis layer/sensing layer, and an interdigitated electrode as signal transmission layer. The polyurethane elastomer matrix functionalized with triple dynamic bonds (reversible hydrogen bonds, oxime carbamate bonds, and copper (II) ion coordination bonds) is newly prepared, demonstrating excellent healability with highly healing efficiency, robust recyclability, and reliable antibacterial capability, as well as good biocompatibility. Benefiting from the superior mechanical performance of the polyurethane elastomer matrix and the unique skin bionic microstructure of the sensor, the as-assembled flexible electronics exhibit admirable sensing performances featuring ultrahigh sensitivity (up to 1573.05 kPa-1 ), broad sensing range (up to 325 kPa), good reproducibility, the fast response time (≈4 ms), and low detection limit (≈0.98 Pa) in diagnostic human healthcare monitoring, excellent healability, and reliable antibacterial performance.
Collapse
Affiliation(s)
- Kuo Liu
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Mingcheng Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Chenlin Huang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yue Yuan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yao Ning
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
22
|
Zhang Z, Zhao W, Cheng Z, Zhang G, Liu H. Olympic gels formed through catenation of dsDNA rings regulated by topoisomerase II: A coarse-grained model. J Chem Phys 2024; 160:054906. [PMID: 38341711 DOI: 10.1063/5.0190580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
Topological regulation of DNA by topoisomerases in cells is very crucial for life. We propose a coarse-grained model to study the catenation process of double-stranded DNA (dsDNA) rings regulated by topoisomerase II (TOP2) and provide a computational method to characterize the topological structures of the Olympic gels obtained. The function of TOP2 in the catenation of dsDNA rings is implicitly fulfilled by operating the length of a stretchable catch bond in the dsDNA ring. After the catenation reaction of initially noncatenated dsDNA rings in the solution, the Olympic gel is obtained and the interlocked topology of the dsDNA rings can be characterized by a computational method derived from the HOMFLY polynomial, based on which the catenation degree and the complexity of catenation are quantified. Detailed dependence of the catenation degree and the complexity of the catenated topology on key parameters, including the size of the transient broken gap and the duration time of the break on the dsDNA ring during operation by TOP2, the initial molar ratio of TOP2 to the dsDNA rings, and the reaction temperature, has been investigated.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wenbo Zhao
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
| | - Zhiyuan Cheng
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
| | - Guojie Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
23
|
Li L, Wang X, Gao S, Zheng S, Zou X, Xiong J, Li W, Yan F. High-Toughness and High-Strength Solvent-Free Linear Poly(ionic liquid) Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308547. [PMID: 37816506 DOI: 10.1002/adma.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Indexed: 10/12/2023]
Abstract
Solvent-free elastomers, unlike gels, do not suffer from solvent evaporation and leakage in practical applications. However, it is challenging to realize the preparation of high-toughness (with both high stress and strain) ionic elastomers. Herein, high-toughness linear poly(ionic liquid) (PIL) elastomers are constructed via supramolecular ionic networks formed by the polymerization of halometallate ionic liquid (IL) monomers, without any chemical crosslinking. The obtained linear PIL elastomers exhibit high strength (16.5 MPa), Young's modulus (157.49 MPa), toughness (130.31 MJ m-3 ), and high crack propagation insensitivity (fracture energy 243.37 kJ m-2 ), owing to the enhanced intermolecular noncovalent interactions of PIL chains. Furthermore, PIL elastomer-based strain, pressure, and touch sensors have shown high sensitivity. The linear noncovalent crosslinked network endows the PIL elastomers with self-healing and recyclable properties, and broad application prospects in the fields of flexible sensor devices, health monitoring, and human-machine interaction.
Collapse
Affiliation(s)
- Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Jiang M, Zhu Y, Li Q, Liu W, Dong A, Zhang L. 2D nanomaterial-based 3D network hydrogels for anti-infection therapy. J Mater Chem B 2024; 12:916-951. [PMID: 38224023 DOI: 10.1039/d3tb02244g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Two-dimensional nanomaterials (2D NMs) refer to nanomaterials that possess a planar topography with a thickness of one or several atomic layers. Due to their large specific surface areas, atomic thickness, rough edges, and electron confinement in two dimensions, they have emerged as promising antimicrobial agents over antibiotics in combating bacterial infections. However, 2D NMs encounter issues such as low bio-safety, easy aggregation, and limited tissue penetration efficiency. To address these concerns, hydrogels with three-dimensional (3D) networks have been developed to encapsulate 2D NMs, aiming to enhance their biocompatibility, biodegradability, and ability to regulate and remodel the tissue microenvironment at the infected site. This review systematically summarizes the current studies on 2D NM-based antibacterial hydrogels with 3D network structures (named 2N3Hs). Firstly, we introduce the emerging types of 2N3Hs and describe their antibacterial actions. Subsequently, we discuss the applications of 2N3Hs in three biomedical fields, including wound dressing, cancer treatment, and bone regeneration. Finally, we conclude the review with current challenges and future developments for 2N3Hs, highlighting their potential as a promising choice for next-generation biomedical devices, particularly in the field of tissue engineering and regenerative medicine. This review aims to provide a comprehensive and panoramic overview of anti-infective 2N3Hs for various biomedical applications.
Collapse
Affiliation(s)
- Mingji Jiang
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Qingsi Li
- Tianjin University, Tianjin, P. R. China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, P. R. China.
| | - Alideertu Dong
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Lei Zhang
- Tianjin University, Tianjin, P. R. China.
| |
Collapse
|
25
|
Yang W, Chen J, Zhao Z, Wu M, Gong L, Sun Y, Huang C, Yan B, Zeng H. Recent advances in fabricating injectable hydrogels via tunable molecular interactions for bio-applications. J Mater Chem B 2024; 12:332-349. [PMID: 37987037 DOI: 10.1039/d3tb02105j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hydrogels with three-dimensional structures have been widely applied in various applications because of their tunable structures, which can be easily tailored with desired functionalities. However, the application of hydrogel materials in bioengineering is still constrained by their limited dosage flexibility and the requirement of invasive surgical procedures. Compared to traditional hydrogels, injectable hydrogels, with shear-thinning and/or in situ formation properties, simplify the implantation process and reduce tissue invasion, which can be directly delivered to target sites using a syringe injection, offering distinct advantages over traditional hydrogels. These injectable hydrogels incorporate physically non-covalent and/or dynamic covalent bonds, granting them self-healing abilities to recover their structural integrity after injection. This review summarizes our recent progress in preparing injectable hydrogels and discusses their performance in various bioengineering applications. Moreover, the underlying molecular interaction mechanisms that govern the injectable and functional properties of hydrogels were characterized by using nanomechanical techniques such as surface forces apparatus (SFA) and atomic force microscopy (AFM). The remaining challenges and future perspectives on the design and application of injectable hydrogels are also discussed. This work provides useful insights and guides future research directions in the field of injectable hydrogels for bioengineering.
Collapse
Affiliation(s)
- Wenshuai Yang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Jingsi Chen
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Meng Wu
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Lu Gong
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yimei Sun
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Charley Huang
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
26
|
Jiang QQ, Wang X, Wu Q, Li YJ, Luo QX, Mao XL, Cai YJ, Liu X, Liang RP, Qiu JD. Rapid Charge Transfer Enabled by Noncovalent Interaction through Guest Insertion in Supercapacitors based on Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202313970. [PMID: 37953692 DOI: 10.1002/anie.202313970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Covalent organic frameworks (COFs) have been proposed for electrochemical energy storage, although the poor conductivity resulted from covalent bonds limits their practical performance. Here, we propose to introduce noncovalent bonds in COFs through a molecular insertion strategy for improving the conductivity of the COFs as supercapacitor. The synthesized COFs (MI-COFs) establish equilibriums between covalent bonds and noncovalent bonds, which construct a continuous charge transfer channel to enhance the conductivity. The rapid charge transfer rate enables the COFs to activate the redox sites, bringing about excellent electrochemical energy storage behavior. The results show that the MI-COFs exhibit much better performance in specific capacitance and capacity retention rate than those of most COFs-based supercapacitors. Moreover, through simply altering inserted guests, the mode and strength of noncovalent bond can be adjusted to obtain different energy storage characteristics. The introduction of noncovalent bonds is an effective and flexible way to enhance and regulate the properties of COFs, providing a valuable direction for the development of novel COFs-based energy storage materials.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| |
Collapse
|
27
|
Xu L, Hu Y, Zhao D, Zhang W, Wang H. A Versatile Assembly Approach toward Multifunctional Supramolecular Poly(Ionic Liquid) Nanoporous Membranes in Water. Macromol Rapid Commun 2023; 44:e2300189. [PMID: 37248809 DOI: 10.1002/marc.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Hydrogen (H)-bonding-integration of multiple ingredients into supramolecular polyelectrolyte nanoporous membranes in water, thereby achieving tailor-made porous architectures, properties, and functionalities, remains one of the foremost challenges in materials chemistry due to the significantly opposing action of water molecules against H-bonding. Herein, a strategy is described that allows direct fusing of the functional attributes of small additives into water-involved hydrogen bonding assembled supramolecular poly(ionic liquid) (PIL) nanoporous membranes (SPILMs) under ambient conditions. It discloses that the pore size distributions and mechanical properties of SPILMs are rationally controlled by tuning the H-bonding interactions between small additives and homo-PIL. It demonstrates that, benefiting from the synergy of multiple noncovalent interactions, small dye additives/homo-PIL solutions can be utilized as versatile inks for yielding colorful light emitting films with robust underwater adhesion strength, excellent stretchability, and flexibility on diverse substrates, including both hydrophilic and hydrophobic surfaces. This system provides a general platform for integrating the functional attributes of a diverse variety of additives into SPILMs to create multifunctional and programmable materials in water.
Collapse
Affiliation(s)
- Luyao Xu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingyi Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hong Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
28
|
Novikov AP, Zagidullin KA, Volkov MA, German KE, Nevolin IM, Grigoriev MS. Influence of the organic cation on the formation of hexahalotechnetates: X-ray, thermal and comparative analyses of non-covalent interactions. Dalton Trans 2023; 52:17538-17547. [PMID: 37962484 DOI: 10.1039/d3dt03235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this work, we have reviewed non-covalent interactions in technetium hexahalide compounds and obtained eight new compounds of the CatnTcHal6 type, where Cat = dimethylammonium, tetramethylammonium, caffeinium, benzothiazolium, nicotinamidium, and pyrazolium, and Hal = Cl, Br. SCXRD studies were carried out for new compounds. In some compounds, halide anions and/or crystallization water were present. In the compounds obtained, an essential influence on the formation of structures and crystal packing is exerted by the molecules of crystallization water and halide ions. Diethylammonium and nicotinamidium compounds, whose structures do not contain other ions and contain sufficiently strong non-covalent interactions, best bind hexahalotechnetates. π-Stacking interactions, anion-π interactions, and halogen bonds were found in the structures. The percentage contribution of the H⋯Hal/Hal⋯H interactions in the transition from fluorine to bromine in TcHal62- anions decreases, while the contribution of interactions of other types increases. The greatest variety of interactions in anions is observed for compounds of caffeinium and nicotinamidium with TcBr62-. The paper considers the processes of thermolysis of some new and previously known CatnTcHal6 compounds with various cations. It is shown that the thermal stability of the compounds is only due to the properties of the organic cation and does not depend on the nature of the halogen. The proposed stages of the process of thermolysis of the TcHal62- anion, accompanied by the reduction of technetium to metal, have been established.
Collapse
Affiliation(s)
- Anton P Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| | - Karim A Zagidullin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| | - Mikhail A Volkov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| | - Konstantin E German
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| | - Iurii M Nevolin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| | - Mikhail S Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (IPCE RAS), 31 Bldg 4, Leninsky prosp., Moscow, 119071, Russian Federation.
| |
Collapse
|
29
|
Zhang X, Wang J, Zhang Y, Yang Z, Gao J, Gu Z. Synthesizing biomaterials in living organisms. Chem Soc Rev 2023; 52:8126-8164. [PMID: 37921625 DOI: 10.1039/d2cs00999d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Living organisms fabricate biomacromolecules such as DNA, RNA, and proteins by the self-assembly process. The research on the mechanism of biomacromolecule formation also inspires the exploration of in vivo synthesized biomaterials. By elaborate design, artificial building blocks or precursors can self-assemble or polymerize into functional biomaterials within living organisms. In recent decades, these so-called in vivo synthesized biomaterials have achieved extensive applications in cell-fate manipulation, disease theranostics, bioanalysis, cellular surface engineering, and tissue regeneration. In this review, we classify strategies for in vivo synthesis into non-covalent, covalent, and genetic types. The development of these approaches is based on the chemical principles of supramolecular chemistry and synthetic chemistry, biological cues such as enzymes and microenvironments, and the means of synthetic biology. By summarizing the design principles in detail, some insights into the challenges and opportunities in this field are provided to enlighten further research.
Collapse
Affiliation(s)
- Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Junxia Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Petrova A, Mamin G, Gnezdilov O, Fadeeva I, Antonova O, Forysenkova A, Antoniac IV, Rau JV, Gafurov M. Magnetic Resonance-Based Analytical Tools to Study Polyvinylpyrrolidone-Hydroxyapatite Composites. Polymers (Basel) 2023; 15:4445. [PMID: 38006168 PMCID: PMC10675429 DOI: 10.3390/polym15224445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The synthesis of biocompatible and bioresorbable composite materials, such as a "polymer matrix-mineral constituent," stimulating the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine and materials science. Composite films of bioresorbable polymer of polyvinylpyrrolidone (PVP) and hydroxyapatite (HA) were obtained. HA was synthesized in situ in the polymer solution. We applied electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) approaches to study the composite films' properties. The application of EPR in two frequency ranges allowed us to derive spectroscopic parameters of the nitrogen-based light and radiation-induced paramagnetic centers in HA, PVP and PVP-HA with high accuracy. It was shown that PVP did not significantly affect the EPR spectral and relaxation parameters of the radiation-induced paramagnetic centers in HA, while light-induced centers were detected only in PVP. Magic angle spinning (MAS) 1H NMR showed the presence of two signals at 4.7 ppm and -2.15 ppm, attributed to "free" water and hydroxyl groups, while the single line was attributed to 31P. NMR relaxation measurements for 1H and 31P showed that the relaxation decays were multicomponent processes that can be described by three components of the transverse relaxation times. The obtained results demonstrated that the applied magnetic resonance methods can be used for the quality control of PVP-HA composites and, potentially, for the development of analytical tools to follow the processes of sample treatment, resorption, and degradation.
Collapse
Affiliation(s)
- Alina Petrova
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (A.P.); (O.G.)
| | - Georgy Mamin
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (A.P.); (O.G.)
| | - Oleg Gnezdilov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (A.P.); (O.G.)
| | - Inna Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Avenue 49, 119334 Moscow, Russia; (I.F.); (A.F.)
| | - Olga Antonova
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Avenue 49, 119334 Moscow, Russia; (I.F.); (A.F.)
| | - Anna Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Leninsky Avenue 49, 119334 Moscow, Russia; (I.F.); (A.F.)
| | - Iulian V. Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei Street, District 6, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100, 00133 Rome, Italy;
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str., Build. 8/2, 119048 Moscow, Russia
| | - Marat Gafurov
- Institute of Physics, Kazan Federal University, Kremlyovskaya St.18, 420008 Kazan, Russia; (A.P.); (O.G.)
| |
Collapse
|
31
|
Zhao Z, Pan M, Yang W, Huang C, Qiao C, Yang H, Wang J, Wang X, Liu J, Zeng H. Bioinspired engineered proteins enable universal anchoring strategy for surface functionalization. J Colloid Interface Sci 2023; 650:1525-1535. [PMID: 37487283 DOI: 10.1016/j.jcis.2023.07.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
HYPOTHESIS Conventional coating strategies and materials for bio-applications with protective, diagnostic, and therapeutic functions are commonly limited by their arduous preparation processes and lack of on-demand functionalities. Herein, inspired by the 'root-leaf' structure of grass, a series of novel polyacrylate-conjugated proteins can be engineered with sticky bovine serum albumin (BSA) protein as a 'root' anchoring layer and a multifunctional polyacrylate as a 'leaf' functional layer for the facile coating procedure and versatile surface functionalities. EXPERIMENTS The engineered proteins were synthesized based on click chemistry, where the 'root' layer can universally anchor onto both organic and inorganic substrates through a facile dip/spraying method with excellent stability in harsh solution conditions, thanks to its multiple adaptive molecular interactions with substrates that further elucidated by molecular force measurements between the 'root' BSA protein and substrates. The 'leaf' conjugated-polyacrylates imparted coatings with versatile on-demand functionalities, such as resistance to over 99% biofouling in complex biofluids, pH-responsive performance, and robust adhesion with various nanomaterials. FINDINGS By synergistically leveraging the universal anchoring capabilities of BSA with the versatile physicochemical properties of polyacrylates, this study introduces a promising and facile strategy for imparting novel functionalities to a myriad of surfaces through engineering natural proteins and biomaterials for biotechnical and nanotechnical applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
32
|
Tang X, Li L, You G, Li X, Kang J. Metallic elements combine with herbal compounds upload in microneedles to promote wound healing: a review. Front Bioeng Biotechnol 2023; 11:1283771. [PMID: 38026844 PMCID: PMC10655017 DOI: 10.3389/fbioe.2023.1283771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a dynamic and complex restorative process, and traditional dressings reduce their therapeutic effectiveness due to the accumulation of drugs in the cuticle. As a novel drug delivery system, microneedles (MNs) can overcome the defect and deliver drugs to the deeper layers of the skin. As the core of the microneedle system, loaded drugs exert a significant influence on the therapeutic efficacy of MNs. Metallic elements and herbal compounds have been widely used in wound treatment for their ability to accelerate the healing process. Metallic elements primarily serve as antimicrobial agents and facilitate the enhancement of cell proliferation. Whereas various herbal compounds act on different targets in the inflammatory, proliferative, and remodeling phases of wound healing. The interaction between the two drugs forms nanoparticles (NPs) and metal-organic frameworks (MOFs), reducing the toxicity of the metallic elements and increasing the therapeutic effect. This article summarizes recent trends in the development of MNs made of metallic elements and herbal compounds for wound healing, describes their advantages in wound treatment, and provides a reference for the development of future MNs.
Collapse
Affiliation(s)
- Xiao Tang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gehang You
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Li
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Kang
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Yokochi H, O’Neill RT, Abe T, Aoki D, Boulatov R, Otsuka H. Sacrificial Mechanical Bond is as Effective as a Sacrificial Covalent Bond in Increasing Cross-Linked Polymer Toughness. J Am Chem Soc 2023; 145:23794-23801. [PMID: 37851530 PMCID: PMC10623562 DOI: 10.1021/jacs.3c08595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 10/20/2023]
Abstract
Sacrificial chemical bonds have been used effectively to increase the toughness of elastomers because such bonds dissociate at forces significantly below the fracture limit of the primary load-bearing bonds, thereby dissipating local stress. This approach owes much of its success to the ability to adjust the threshold force at which the sacrificial bonds fail at the desired rate, for example, by selecting either covalent or noncovalent sacrificial bonds. Here, we report experimental and computational evidence that a mechanical bond, responsible for the structural integrity of a rotaxane or a catenane, increases the elastomer's fracture strain, stress, and energy as much as a covalent bond of comparable mechanochemical dissociation kinetics. We synthesized and studied 6 polyacrylates cross-linked by either difluorenylsuccinonitrile (DFSN), which is an established sacrificial mechanochromic moiety; a [2]rotaxane, whose stopper allows its wheel to dethread on the same subsecond time scale as DFSN dissociates when either is under tensile force of 1.5-2 nN; a structurally homologous [2]rotaxane with a much bulkier stopper that is stable at force >5.5 nN; similarly stoppered [3]rotaxanes containing DFSN in their axles; and a control polymer with aliphatic nonsacrificial cross-links. Our data suggest that mechanochemical dethreading of a rotaxane without failure of any covalent bonds may be an important, hitherto unrecognized, contributor to the toughness of some rotaxane-cross-linked polymers and that sacrificial mechanical bonds provide a mechanism to control material fracture behavior independently of the mechanochemical response of the covalent networks, due to their distinct relationships between structure and mechanochemical reactivity.
Collapse
Affiliation(s)
- Hirogi Yokochi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Robert T. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Takumi Abe
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department
of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Roman Boulatov
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Hideyuki Otsuka
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
34
|
Ma J, Insausti A, Hazrah AS, Xu Y. Deciphering the non-covalent interactions in the furan⋯hexane complex using rotational spectroscopy and theoretical analyses. J Chem Phys 2023; 159:134302. [PMID: 37782256 DOI: 10.1063/5.0166935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
The rotational spectrum of a binary complex formed between furan and n-hexane was investigated using a chirped pulse Fourier transform microwave spectrometer in the range of 2-6 GHz. While furan has only one conformer, n-hexane exists in multiple conformations. The conformational landscape of the binary complex was systematically explored by using a semiempirical conformational search tool, namely CREST. The CREST conformational candidates were subjected to further geometry optimization and harmonic frequency calculations at the B3LYP-D3BJ/def2-TZVP level of theory, resulting in 34 minima within an energy window of 5 kJ mol-1. The three most stable furan⋯hexane minima all contain the most stable n-hexane conformer subunit and are separated by relatively low conformational conversion barriers. Additional calculations were carried out to support the conclusive identification of the global minimum structure responsible for the set of assigned rotational transitions. These include calculations at the B3LYP-D3BJ level with the aug-cc-pVTZ and 6-311++G(d,p) basis sets and the MP2/def2-TZVP level, as well as the single point energy calculations at the CCSD(T)-F12/cc-pVDZ level. Further non-covalent interaction and principal interacting orbital analyses show that the synergy of the πfuran → σ*hexane and σhexane → π*furan interactions plays an important role in stabilizing the observed furan-hexane conformer.
Collapse
Affiliation(s)
- Jiarui Ma
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Aran Insausti
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena s/n, Leioa, Spain
| | - Arsh S Hazrah
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
35
|
Xia X, Ma J, Liu F, Cong H, Li X. A Novel Demulsifier with Strong Hydrogen Bonding for Effective Breaking of Water-in-Heavy Oil Emulsions. Int J Mol Sci 2023; 24:14805. [PMID: 37834251 PMCID: PMC10573199 DOI: 10.3390/ijms241914805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In the heavy petroleum industry, the development of efficient demulsifiers for the effective breaking of interfacially active asphaltenes (IAA)-stabilized water-in-heavy oil (W/HO) emulsions is a highly attractive but challenging goal. Herein, a novel nitrogen and oxygen containing demulsifier (JXGZ) with strong hydrogen bonding has been successfully synthesized through combining esterification, polymerization and amidation. Bottle tests indicated that JXGZ is effectual in quickly demulsifying the IAA-stabilized W/HO emulsions; complete dehydration (100%) to the emulsions could be achieved in 4 min at 55 °C using 400 ppm of JXGZ. In addition, the effects of demulsifier concentration, temperature and time on the demulsification performance of JXGZ are systematically analyzed. Demulsification mechanisms reveal that the excellent demulsification performance of JXGZ is attributed to the strong hydrogen bonding between JXGZ and water molecules (dual swords synergistic effect under hydrogen bond reconstruction). The interaction of the "dual swords synergistic effect" generated by two types of hydrogen bonds can quickly break the non-covalent interaction force (π-π stacking, Van der Waals force, hydrogen bonds) of IAA at the heavy oil-water interface, quickly promote the aggregation and coalescence of water molecules and finally achieve the demulsification of W/HO emulsions. These findings indicate that the JXGZ demulsifier shows engineering application prospects in the demulsification of heavy oil-water emulsions, and this work provides the key information for developing more efficient chemical demulsifiers suitable for large-scale industrial applications.
Collapse
Affiliation(s)
- Xiao Xia
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (X.X.); (F.L.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (X.X.); (F.L.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (X.X.); (F.L.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Haifeng Cong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (H.C.); (X.L.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (H.C.); (X.L.)
- Zhejiang Institute of Tianjin University, Ningbo 315201, China
| |
Collapse
|
36
|
Nan X, Li X, Wu Y, Li H, Wang Q, Xing S, Liang Z. Design, synthesis and biological evaluation of sulfonylamidines as potent c-Met inhibitors by enhancing hydrophobic interaction. Org Biomol Chem 2023; 21:7459-7466. [PMID: 37667983 DOI: 10.1039/d3ob01156a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The dysregulation of c-Met kinase has emerged as a significant contributing factor for the occurrence, progression, poor clinical outcomes and drug resistance of various human cancers. In our ongoing pursuit to identify promising c-Met inhibitors as potential antitumor agents, a docking study of the previously reported c-Met inhibitor 7 revealed a large unoccupied hydrophobic pocket, which could present an opportunity for further exploration of structure-activity relationships to improve the binding affinity with the allosteric hydrophobic back pocket of c-Met. Herein we performed structure-activity relationship and molecular modeling studies based on lead compound 7. The collective endeavors culminated in the discovery of compound 21j with superior efficacy to 7 and positive control foretinib by increasing the hydrophobic interaction with the hydrophobic back pocket of c-Met active site.
Collapse
Affiliation(s)
- Xiang Nan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Xin Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Yanchao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Huijing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Shaojun Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| |
Collapse
|
37
|
Xiao Y, Zheng B, Ding X, Zheng P. Probing nanomechanical interactions of SARS-CoV-2 variants Omicron and XBB with common surfaces. Chem Commun (Camb) 2023; 59:11268-11271. [PMID: 37664897 DOI: 10.1039/d3cc02721j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The emergence of SARS-CoV-2 variants has further raised concerns about viral transmission. A fundamental understanding of the intermolecular interactions between the coronavirus and different surfaces is needed to address the transmission of SARS-CoV-2 through respiratory droplet-contaminated surfaces or fomites. The receptor-binding domain (RBD) of the spike protein is a key target for the adhesion of SARS-CoV-2 on the surface. To understand the effect of mutations on adhesion, atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) was used to quantify the interactions between wild-type, Omicron, and XBB with several surfaces. The measurement revealed that RBD exhibits relatively higher forces on paper and gold surfaces, with the average force being 1.5 times greater compared to that on plastic surface. In addition, the force elevation on paper and gold surfaces for the variants can reach ∼28% relative to the wild type. These findings enhance our understanding of the nanomechanical interactions of the virus on common surfaces.
Collapse
Affiliation(s)
- Yuelong Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Xuan Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Centre (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
38
|
Chen W, Chen Z, Chi Y, Tian W. Double Cation-π Directed Two-Dimensional Metallacycle-Based Hierarchical Self-Assemblies for Dual-Mode Catalysis. J Am Chem Soc 2023; 145:19746-19758. [PMID: 37657081 DOI: 10.1021/jacs.3c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Hierarchical self-assembly of Pt(II) metallacycles for the construction of functional materials has received considerable research interest, owing to their potential to meet increasing complexity and functionality demands while being based on well-defined scaffolds. However, the fabrication of long-range-ordered Pt(II) metallacycle-based two-dimensional hierarchical self-assemblies (2D HSAs) remains a challenge, primarily because of the limitations of conventional orthogonal noncovalent interaction (NCI) motifs and the intrinsic characteristics of Pt(II) metallacycles, making the delicate self-assembly processes difficult to control. Herein, we prepare well-regulated Pt(II)-metallacycle-based 2D HSAs through a directed strategy involving double cation-π interactions derived from C3-symmetric hexagonal Pt(II) metallacycles and C2-symmetric sodium phenate monomers. Spatially confined arrays of planar Pt(II) metallacycles and the selective growth of self-assemblies at desired locations are achieved by employing strong cation-π driving forces with well-defined directionality as the second orthogonal NCI, realizing the bottom-up, three-stage construction of Pt(II)-metallacycle-based 2D HSAs. The resultant 2D HSAs are applied as dual-mode catalysis platforms, which are loaded with two different nanocatalysts, one promoting catalytic oxidation and the other promoting photocatalytic reduction.
Collapse
Affiliation(s)
- Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Zipei Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
39
|
Feng J, Wang J, Wang H, Cao X, Ma X, Rao Y, Pang H, Zhang S, Zhang Y, Wang L, Liu X, Chen H. Multistage Anticoagulant Surfaces: A Synergistic Combination of Protein Resistance, Fibrinolysis, and Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466472 DOI: 10.1021/acsami.3c05145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Anticoagulant surface modification of blood-contacting materials has been shown to be effective in preventing thrombosis and reducing the dose of anticoagulant drugs that patients take. However, commercially available anticoagulant coatings, that is, both bioinert and bioactive coatings, are typically based on a single anticoagulation strategy. This puts the anticoagulation function of the coating at risk of failure during long-term use. Considering the several pathways of the human coagulation system, the synergy of multiple anticoagulation theories may provide separate, targeted effects at different stages of thrombosis. Based on this presumption, in this work, negatively charged poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methyl ether methacrylate) and positively charged poly(lysine-co-1-adamantan-1-ylmethyl methacrylate) were synthesized to construct matrix layers on the substrate by electrostatic layer-by-layer self-assembly (LBL). Amino-functionalized β-cyclodextrin (β-CD-PEI) was subsequently immobilized on the surface by host-guest interactions, and heparin was grafted. By adjusting the content of poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA), the interactions between modified surfaces and plasma proteins/cells were regulated. This multistage anticoagulant surface exhibits inertness at the initial stage of implantation, resisting nonspecific protein adsorption (POEGMA). When coagulation reactions occur, heparin exerts its active anticoagulant function in a timely manner, blocking the pathway of thrombosis. If thrombus formation is inevitable, lysine can play a fibrinolytic role in dissolving fibrin clots. Finally, during implantation, endothelial cells continue to adhere and proliferate on the surface, forming an endothelial layer, which meets the blood compatibility requirements. This method provides a new approach to construct a multistage anticoagulant surface for blood-contacting materials.
Collapse
Affiliation(s)
- Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
- Jiangsu Biosurf Biotech Co, Ltd., Suzhou 215123, P.R. China
| | - Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xinyin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoliang Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Huimin Pang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China
- The SIP Biointerface Engineering Research Institute, Suzhou 215123, P.R. China
| |
Collapse
|
40
|
Deng L, Ma DH, Xie ZL, Lin RY, Zhou ZH. Crown ether-like discrete clusters for sodium binding and gas adsorption. Dalton Trans 2023. [PMID: 37318454 DOI: 10.1039/d3dt00341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hexanuclear polyoxomolybdenum-based discrete supermolecules Nax[MoV6O6(μ2-O)9(Htrz)6-x(trz)x]·nH2O (x = 0, n = 15, 1; x = 1, n = 12, 2; x = 2, n = 10, 3; x = 2, n = 49, 4; Htrz = 1H-1,2,3-triazole) have been prepared and fully characterized with different amounts of sodium cations inside and outside the intrinsic holes. Structural analyses demonstrate that they all exist a triangular channel constructed by six molybdenum-oxygen groups with inner diameters of 2.86 (1), 2.48 (2), and 3.04 (3/4) Å, respectively. Zero, one, or two univalent enthetic guest Na+ have been hosted around the structural centers, which reflect the expansion and contraction effects at microscopic level. Water-soluble species can serve as crown ether-like metallacycles before and after the sodium binding. Diverse nanoscale pores are further formed through intermolecular accumulations with hydrogen bonding. Gas adsorption studies indicate that 2-4 can selectively adsorb CO2 and O2 but have little or even no affinities toward H2, N2, and CH4. Theoretical calculations corroborate the roles of Na+ and auxiliary ligand with different states in bond distances, molecular orbitals, electrostatic potentials, and lattice energies in these discrete clusters. The binding orders of sodium cations in 2-4 are similar with the classical crown ethers, where 2 is the strongest one with 2.226(4)av Å for sodium cation bonded to six O atoms.
Collapse
Affiliation(s)
- Lan Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Deng-Hui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, China
| | - Zhen-Lang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Rong-Yan Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
41
|
Chen J, Zeng H. Designing Bio-Inspired Wet Adhesives through Tunable Molecular Interactions. J Colloid Interface Sci 2023; 645:591-606. [PMID: 37167909 DOI: 10.1016/j.jcis.2023.04.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Marine organisms, such as mussels and sandcastle worms, can master rapid and robust adhesion in turbulent seawater, becoming leading archetypes for the design of underwater adhesives. The adhesive proteins secreted by the organisms are rich in catecholic amino acids along with ionic and amphiphilic moieties, which mediate the adaptive adhesion mainly through catechol chemistry and coacervation process. Catechol allows a broad range of molecular interactions both at the adhesive-substrate interface and within the adhesive matrix, while coacervation promotes the delivery and surface spreading of the adhesive proteins. These natural design principles have been translated to synthetic systems toward the development of biomimetic adhesives with water-resist adhesion and cohesion. This review provides an overview of the recent progress in bio-inspired wet adhesives, focusing on two aspects: (1) the elucidation of the versatile molecular interactions (e.g., electrostatic interactions, metal coordination, hydrogen bonding, and cation-π/anion-π interactions) used by natural adhesives, mainly through nanomechanical characterizations; and (2) the rational designs of wet adhesives based on these biomimetic strategies, which involve catechol-functionalized, coacervation-induced, and hydrogen bond-based approaches. The emerging applications (e.g., tissue glues, surgical implants, electrode binders) of the developed biomimetic adhesives in biomedical, energy, and environmental fields are also discussed, with future research directions proposed.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
42
|
Pokora M, Paneth A, Paneth P. Non-Covalent Isotope Effects. J Phys Chem Lett 2023; 14:3735-3742. [PMID: 37042752 PMCID: PMC10123821 DOI: 10.1021/acs.jpclett.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
In this Perspective, we present examples of isotope effects that originate from noncovalent interactions, mainly hydrogen bonding, electrostatics, and confinement. They are traditionally widely used in isotopic enrichment processes, as well as in studies of mechanisms of different (bio)chemical and physical phenomena. We then show the emerging areas of their applications, mainly medical and material sciences. We stress that these emerging applications require either high enrichment or isotopic substitution, which requires the development of new effective techniques of isotopic purification.
Collapse
Affiliation(s)
- Mateusz Pokora
- International
Center of Research on Innovative Biobased Materials (ICRI-BioM) −
International Research Agenda, Lodz University
of Technology, Stefanowskiego 2/22, 90-924 Lodz, Poland
| | - Agata Paneth
- Chair
and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Piotr Paneth
- International
Center of Research on Innovative Biobased Materials (ICRI-BioM) −
International Research Agenda, Lodz University
of Technology, Stefanowskiego 2/22, 90-924 Lodz, Poland
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Zeromskiego
116, 90-537 Lodz, Poland
| |
Collapse
|
43
|
Peng X, Peng Q, Wu M, Wang W, Gao Y, Liu X, Sun Y, Yang D, Peng Q, Wang T, Chen XZ, Liu J, Zhang H, Zeng H. A pH and Temperature Dual-Responsive Microgel-Embedded, Adhesive, and Tough Hydrogel for Drug Delivery and Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19560-19573. [PMID: 37036950 DOI: 10.1021/acsami.2c21255] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stimuli-responsive hydrogels have attracted much attention over the past decade for potential bioengineering applications such as wound dressing and drug delivery. In this work, a pH and temperature dual-responsive microgel-embedded hydrogel has been fabricated by incorporating poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAAm-co-AAc) based microgel particles into polyacrylamide (PAAm)/chitosan (CS) semi-interpenetrating polymer network (semi-IPN), denoted as microgel@PAM/CS. The resultant hydrogel possesses excellent mechanical properties including stretchability, compressibility, and elasticity. In addition, the microgel@PAM/CS hydrogels can tightly adhere to the surfaces of a variety of tissues such as porcine skin, kidney, intestine, liver, and heart. Moreover, it shows controlled dual-drug release profile of both bovine serum albumin (BSA) (as a model protein) and sulfamethoxazole (SMZ), an antibiotic. Excellent antimicrobial properties are obtained for SMZ-loaded microgel@PAM/CS hydrogels. Compared with traditional drug administration methods such as by mouth, injection, and inhalation, the microgel@PAM/CS hydrogels possess advantages such as higher drug loading efficiency (by more than 80%) and controllable and sustained (over 48 h) release. The microgel@PAM/CS hydrogels can significantly enhance the wound healing process. This work provides a facile approach for the fabrication of multifunctional stimuli-responsive microparticle-embedded hydrogels with semi-IPN structures, and the as-prepared microgel@PAM/CS hydrogels have great potential for applications as smart wound dressing materials in biomedical engineering.
Collapse
Affiliation(s)
- Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qian Peng
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Meng Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongfeng Gao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tao Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
44
|
Li N, Wanyan H, Lu S, Xiao H, Zhang M, Liu K, Li X, Du B, Huang L, Chen L, Ni Y, Wu H. Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Carbohydr Polym 2023; 306:120617. [PMID: 36746574 DOI: 10.1016/j.carbpol.2023.120617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Liquid marbles, as particle-armored droplets, have potential applications in microreactors, biomedicine, controlled release and gas detection. To improve the stability and biocompatibility of marble, biocompatible cellulose acetate particles and 3-allyloxy-2-hydroxy-propyl-cellulose (AHP-cellulose) were used to fabricate robust cellulose-based liquid marbles with excellent stability. Liquid marble was gelled into hydrogel marble via blue-light-irradiated polymerization of AHP-cellulose. The mechanical properties of cellulose-based hydrogel marble are superior to those of liquid marble. The rupture height of liquid marble is 10.5 m, which is 420 times greater than that of water marble (0.025 m). Surprisingly, the hydrogel marble with a 3 % AHP-cellulose concentration remained intact even after being dropped from a height of 50 m, which is comparable with the ability of a leather ball to withstand larger impact. When released from a height of 60 mm, hydrogel marble bounced to approximately 25.5 mm, 881 % higher than liquid marble (2.6 mm). Hydrogel marble exhibited long-lasting stability and was capable of monitoring ammonia with a detection limit of 365.2 mg/m3. The biocompatible cellulose-based hydrogel marble with excellent mechanical stability and reusability detection has great potential in chemical and environmental engineering as gas sensors.
Collapse
Affiliation(s)
- Na Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Hongying Wanyan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; School of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Xiuliang Li
- Yuzhong (Fujian) New Material Technology Co., Ltd, Quanzhou, Fujian 362141, PR China
| | - Bihui Du
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; Yuzhong (Fujian) New Material Technology Co., Ltd, Quanzhou, Fujian 362141, PR China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Yonghao Ni
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; Limerick Pulp and Paper Centre, Department of Chemical Engineering, University of New Brunswick, Fredericton NBE3B 5A3, Canada
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
45
|
Hu W, Ye B, Yu G, Huang F, Mao Z, Ding Y, Wang W. Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: A Review. Molecules 2023; 28:molecules28083441. [PMID: 37110674 PMCID: PMC10147063 DOI: 10.3390/molecules28083441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With the development of personalized medical demands for precise diagnosis, rational management and effective cancer treatment, supramolecular theranostic systems have received widespread attention due to their reversibly switchable structures, sensitive response to biological stimuli and integration ability for multiple capabilities in a single platform with a programmable fashion. Cyclodextrins (CDs), benefiting from their excellent characteristics, such as non-toxicity, easy modification, unique host-guest properties, good biocompatibility, etc., as building blocks, serve as an all-purpose strategy for the fabrication of a supramolecular cancer theranostics nanodevice that is capable of biosafety, controllability, functionality and programmability. This review focuses on the supramolecular systems of CD-bioimaging probes, CD-drugs, CD-genes, CD-proteins, CD-photosensitizers and CD-photothermal agents as well as multicomponent cooperation systems with regards to building a nanodevice with functions of diagnosis and (or) therapeutics of cancer treatment. By introducing several state-of-the-art examples, emphasis will be placed on the design of various functional modules, the supramolecular interaction strategies under the fantastic topological structures and the hidden "bridge" between their structures and therapeutic efficacy, aiming for further comprehension of the important role of a cyclodextrin-based nanoplatform in advancing supramolecular cancer theranostics.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
46
|
Yang L, Li L, Lu J, Lin B, Fu L, Xu C. Flexible Photothermal Materials with Controllable Accurate Healing and Reversible Adhesive Abilities. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Li Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Luji Li
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| |
Collapse
|
47
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
48
|
Yin C, Lu H, Ye H, Feng Z, Zou H, Zhang M, You L. Double n→π* Interactions with One Electron Donor: Structural and Mechanistic Insights. Org Lett 2023; 25:1470-1475. [PMID: 36856609 DOI: 10.1021/acs.orglett.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Double n→π* interactions between one common electron donor of the carbonyl oxygen and two individual acceptor aldehyde/imine units are presented. The structural and mechanistic insights were revealed through a collection of experimental and computational evidence. The orientation and further energetic dependence of orbital interactions were facilely regulated by the size of cyclic urea scaffolds, the bulkiness of aldehydes/imines, and the flexibility of imine macrocycles.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Hassan AU, Sumrra SH, Mustafa G, Zubair M, Mohyuddin A, Nkungli NK, Imran M. Molecular modeling of mordant black dye for future applications as visible light harvesting materials with anchors: design and excited state dynamics. J Mol Model 2023; 29:74. [PMID: 36826696 DOI: 10.1007/s00894-023-05474-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT In this study, new visible light harvesting dyes (MBR1-MBR5) have been designed as efficient materials with silyl based anchoring abilities on semiconducting units for future dye-solar cells applications. Their unique molecular structures of novel D-π-ASemiconductor type were evaluated thoroughly by density functional theory (DFT) calculations. To enhance the optical performance in visible region, a novel dye structure (MBR) was derived from the chemical structure of mordant black (MB) dye with electron acceptor semiconducting units (MBR1-MBR5). METHODS The Coulomb-attenuating Becke, 3-parameter, Lee-Yang-Parr (CAM-B3LYP) functional, which had a hybrid and long-range correlation with 6-31G + (d,p), generated a [Formula: see text] (683 nm) that was very comparable to its experimental value (672 nm). The energies of highest occupied molecular orbitals (HOMO), lowest unoccupied molecular orbitals (LUMO), and their HOMO-LUMO energy gaps (HLG) were calculated. Their ionization potentials (IP) varied from 5.616 to 8.320 eV, demonstrating their good electron donating trend. The [Formula: see text] values of dyes displayed a significant red shift from MBR (682 nm) value with range 565-807 nm except MBR1 which was slightly blue shifted. The dye MBR4, which had the smallest HLG (0.23 eV) had the greatest second order nonlinear optical (NLO) response of 144,234 Debye-Angstrom-1. The DFT calculated results provided insight into the creation of new silyl anchoring groups for future DSSCs material designs with increased stability and effectiveness. The goal of the current study is to forecast the development of novel NLO materials with a D-π-ASemiconductor design that use semiconductors as anchoring groups to adhere to a surface.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan.
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Gujrat, 54400, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Nyiang K Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili-Bamenda, Cameroon
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.,Department of chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
50
|
Wang M, Nie C, Liu J, Wu S. Organic‒inorganic semi-interpenetrating networks with orthogonal light- and magnetic-responsiveness for smart photonic gels. Nat Commun 2023; 14:1000. [PMID: 36813808 PMCID: PMC9946997 DOI: 10.1038/s41467-023-36706-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Living matter has the ability to perceive multiple stimuli and respond accordingly. However, the integration of multiple stimuli-responsiveness in artificial materials usually causes mutual interference, which makes artificial materials work improperly. Herein, we design composite gels with organic‒inorganic semi-interpenetrating network structures, which are orthogonally responsive to light and magnetic fields. The composite gels are prepared by the co-assembly of a photoswitchable organogelator (Azo-Ch) and superparamagnetic inorganic nanoparticles (Fe3O4@SiO2). Azo-Ch assembles into an organogel network, which shows photoinduced reversible sol-gel transitions. In gel or sol state, Fe3O4@SiO2 nanoparticles reversibly form photonic nanochains via magnetic control. Light and magnetic fields can orthogonally control the composite gel because Azo-Ch and Fe3O4@SiO2 form a unique semi-interpenetrating network, which allows them to work independently. The orthogonal photo- and magnetic-responsiveness enables the fabrication of smart windows, anti-counterfeiting labels, and reconfigurable materials using the composite gel. Our work presents a method to design orthogonally stimuli-responsive materials.
Collapse
Affiliation(s)
- Minghao Wang
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Chen Nie
- grid.59053.3a0000000121679639CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026 Hefei, China
| | - Junbang Liu
- grid.59053.3a0000000121679639CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, 230026 Hefei, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|