1
|
Wang L, Li J, Qian K, Xie X, Wang Y. Reactive transport modeling to quantify the transformation of iron oxyhydroxides on the enrichment of iodine in groundwater of central Datong Basin. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138270. [PMID: 40233457 DOI: 10.1016/j.jhazmat.2025.138270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
The enrichment of groundwater iodine is posing health risk for residents relying on groundwater for drinking. The transformation of iron oxyhydroxides plays the vital role in mobilizing sediment iodine into groundwater. However, few studies have provided sufficient knowledge of iodine adsorption on iron oxyhydroxides. In this study, we obtained thermodynamic parameters of iodate adsorption on magnetite and aluminum silicates through batch experiments. The extended three-layer model (ETLM) was developed to simulate the adsorption behavior under varying pH, ionic strength, and solid concentration. Using thermodynamic constants, a reactive transport model involving several scenarios was developed to explore the transformation of iron oxyhydroxides on the enrichment of iodine based on sediment profiles in the Datong Basin. Results indicate that the transformation from ferrihydrite to goethite within shallow aquifers reduces groundwater iodine concentrations by increasing the thermodynamic stability of the mineralogical system constituting the sediment, making iron oxyhydroxides less prone to reductive dissolution and release adsorbed iodine. In deep aquifers, newly formed secondary hematite and magnetite exhibit complementary surface properties, enhancing adsorption capacities of iodine compared to single-mineral systems. Overall, this study emphasizes the importance of minerals compositions and transformation on the mobilization of iodine in the groundwater system.
Collapse
Affiliation(s)
- Lu Wang
- MOE Key Laboratory of Groundwater Quality and Health & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Junxia Li
- MOE Key Laboratory of Groundwater Quality and Health & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Wuhan 430078, China.
| | - Kun Qian
- MOE Key Laboratory of Groundwater Quality and Health & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Wuhan 430078, China
| | - Xianjun Xie
- MOE Key Laboratory of Groundwater Quality and Health & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Wuhan 430078, China
| | - Yanxin Wang
- MOE Key Laboratory of Groundwater Quality and Health & School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Wuhan 430078, China
| |
Collapse
|
2
|
Li M, Wang Z, Feng Z, Lu J, Chen D, Chen C, He H, Zhang Q, Chen X, Morel JL, Baker AJM, Chao Y, Tang Y, Jiang F, Qiu R, Wang S. New insights into efficient iron sulfide oxidation for arsenic immobilization by microaerophilic and acidophilic Fe(II)-oxidizing bacteria under micro-oxygen and acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137695. [PMID: 39986099 DOI: 10.1016/j.jhazmat.2025.137695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Microbial-mediated FeS oxidation to Fe(Ⅲ) minerals via chemolithoautotrophic Fe(Ⅱ) oxidizers under pH/O₂ limitations engages As immobilization. However, this process is constrained under the dual stress of micro-oxygen and acidic conditions due to the critically diminished Fe(Ⅱ) oxidation capacity. Therefore, the interplay between Fe(Ⅱ) oxidation, carbon metabolism, and As immobilization in Fe(Ⅱ)-oxidizing bacteria under micro-oxygen and acidic conditions remains unclear. This study presents the first successful enrichment of microaerophilic and acidophilic Fe(II)-oxidizing bacteria (MAFeOB). These bacteria are capable of oxidizing FeS to Fe(III) minerals and immobilizing up to 27,835 mg/kg of As(Ⅴ) under micro-oxygen content (below 3.2 mg/L) and acidic pH (4.5-6.2). Through comprehensive metagenomic analysis, it was speculated that MAFeOB harbor a suite of genes potentially participating in critical processes, including carbon fixation, Fe(II) oxidation, and arsenic detoxification. Notably, a potential electron transfer pathway from Cyc2_repCluster2 to Cytochrome cbb3-type oxidases facilitates Fe(II) oxidation. Furthermore, As(Ⅲ) efflux pump (arsA, arsB, acr3) and As(Ⅲ) oxidase (aioA) genes indicate MAFeOB's potential for As immobilization. Our findings underscore the pivotal role of MAFeOB in overcoming limitations associated with Fe(III) mineral formation, thereby enhancing arsenic immobilization under micro-oxygen and acidic water.
Collapse
Affiliation(s)
- Mengyao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Daijie Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qi Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoting Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | | | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia; School of Environmental Sciences & Engineering, Sun Yat-sen University, Guangzhou, China; Centre for Contaminant Geosciences, Environmental Earth Sciences International Pty Ltd, Sydney, Melbourne, Australia; Scientific Advisory Board Member Econick/Botanickel, Lunéville, France
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial International Joint Research Center on Urban Water Management and Treatment, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Jiang Z, Ran H, Yu L, Jiang M, Yang W. Slow-release ferrous effects on synchronous stabilization of lead, cadmium, and arsenic in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:136. [PMID: 40138041 DOI: 10.1007/s10653-025-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Zero-valent iron (ZVI)-based materials is considered promising for the synchronous stabilization of soils contaminated with multi-heavy metals (e.g., Pb(II), Cd(II), and As(V)), particularly due to its continuous slow-release ferrous. However, little is known about the effect of slow-released Fe(II) on the stabilization of Pb, Cd, and As in the contaminated soil. In this study, ZVI(Fe0) and ball-milled ZVI(B-Fe0), with different ability of slow-releasing Fe(II), were used to investigate the effect of slow-released Fe(II) on the simultaneous stabilization of Pb, Cd, and As in soil. The B-Fe0, with stronger ability to sustainably release Fe(II), possessed higher stabilization efficiency of Pb, Cd, and As in soil compared to the Fe0. After 56 days of B-Fe0 treatment, the stabilization efficiency of NaHCO3-extractable As and DTPA-extractable Pb and Cd reached 72.52%, 43.63%, and 34.71%, respectively. The speciation change analysis demonstrated that soil Pb, Cd, and As were transformed into more stable states with the treatment time. The superior stabilization performance could be attributed to the slow-release of ferrous, which not only increased the content of iron oxide in the soil, but also promoted the conversion of amorphous iron (hydro)oxides (e.g., ferrihydrite) into crystalline magnetite. Consequently, Pb, Cd, and As were effectively stabilized by being incorporated into the structure of the secondary Fe mineral. This study provided valuable guidance for the application of ZVI-based materials in the stabilization remediation of multi-heavy metals contaminated soils.
Collapse
Affiliation(s)
- Zhi Jiang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, Hunan, People's Republic of China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - HongZhen Ran
- Hunan Province Environment Monitoring Center, Changsha, 410014, People's Republic of China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Mei Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
4
|
Xiang Y, Hou J, Ren L, Xiong J, Wan B, Wang M, Tan W, Kappler A. Spontaneous Abiotic Reduction of Arsenate to Arsenite Mediated by Structural Fe(II) Resulting from Abundant Oxygen Vacancy Clusters in Poorly Crystalline Ferrihydrite in Drought Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5191-5201. [PMID: 40043151 DOI: 10.1021/acs.est.4c10674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The reduction of As(V) to As(III) has been proposed as an undesirable process, increasing the mobility and toxicity of arsenic. Although most studies revealed that As(V) reduction occurs in the aqueous phase, it remains unclear whether abiotic As(V) reduction driven by minerals in drought environments also exists. In this study, we examined the transformation of As(V) to As(III) mediated by ferrihydrite during drying processes using high-resolution X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) spectroscopy analyses. The results revealed that nearly 40.8% of ferrihydrite-sorbed As(V) was transformed to As(III) after placing the As(V)-adsorbed ferrihydrite solids in a drought-tolerant environment for 7 days. As(V) reduction occurred under both oxic and anoxic conditions, with the reduction rate being higher in an anoxic atmosphere than in oxygen and air. Chemical analysis revealed the presence of structural Fe(II) in ferrihydrite, which was attributed to the abundance of oxygen vacancy clusters, as evidenced by positron annihilation lifetime (PAL) analysis. Fe L-edge XANES analysis and DFT calculations demonstrated that structural Fe(II) in dried ferrihydrite played a vital role in As(V) reduction, inducing electron transfer from Fe to As atoms. The findings of this study highlight a potentially important but long-overlooked As(V) reduction pathway at mineral surfaces under drought conditions in dried soils.
Collapse
Affiliation(s)
- Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Biao Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
5
|
Wei H, Wei S, Chen Q, Yang Y, Liu X, Long S, Liu J, Zhu J, Zhu R. Nano-Scale Insights into Clay Minerals Regulating the Fe(II)-Catalyzed Ferrihydrite Transformation under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3982-3991. [PMID: 39960236 DOI: 10.1021/acs.est.4c11232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Metastable ferrihydrite nanoparticles and clay minerals always coexist as heteroaggregates in nature due to their abundance, opposite charge, and large interface energy. However, the impact of clay minerals on the transformation of ferrihydrite under anoxic conditions remains elusive. This study systematically investigated the effect of distinct clay minerals on the Fe(II)-catalyzed transformation of ferrihydrite and clarifying the underlying nanoscale mechanisms for the first time. Our results demonstrated that clay minerals could affect the production and recrystallization of labile Fe(III) (an active Fe(III) intermediate species formed by oxidation of Fe(II) at the ferrihydrite surface) by dispersing ferrihydrite aggregates. This modulation led to different transformation rates, higher crystallinity of formed lepidocrocite, and enhanced goethite formation in the heteroaggregates. Importantly, montmorillonite can accommodate Fe(II) and labile Fe(III) within its interlayer spaces, which further led to the inhibited crystallization of Fe(II) to magnetite and long-term preservation of labile Fe(III). Additionally, clay minerals served as templates for forming dendritic goethite and hexagonal magnetite nanoplates. Our findings provide new insights into the complicated roles of clay minerals in controlling the ferrihydrite transformation and other iron (oxyhydr)oxides formation, which is significant for predicting the bioavailability of iron and the fate of other coexisting contaminants.
Collapse
Affiliation(s)
- Hongyan Wei
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Shoushu Wei
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Qingze Chen
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yixuan Yang
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xun Liu
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Shiqin Long
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa 999078 Macau, China
- CNSA Macau Center for Space Exploration and Science, Taipa 999078 Macao, China
| | - Jianxi Zhu
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Runliang Zhu
- State Key Laboratory of Advanced Environmental Technology & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
6
|
Luo H, Tian Y, Fu F, Bin L, Chen W, Li P, Tang B. Enhancing the affinity of Pb(II) to the metastable ferrihydrite with the presence of gallic acid and anoxia condition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123953. [PMID: 39754796 DOI: 10.1016/j.jenvman.2024.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral. This study investigated the effects of Gallic acid and anoxia on the migration and distribution of Pb(II) in ferrihydrite-Pb co-precipitates. XRD, FT-IR, SEM, XPS were employed to explore the internal interactions. The results showed that Gallic acid could promote Pb(II) to enter the mineral and inhibit the release of Pb(II). The fixation of Pb(II) could be achieved under anoxia by passivating ferrihydrite. Gallic acid could formed ferrihydrite-gallic acid-Pb ternary complexes with ferrihydrite-Pb co-precipitates, which improved the affinity of ferrihydrite to Pb(II) and promoted the ability of ferrihydrite to fix Pb(II). The anoxia allowed the Fe(II) produced by reductive dissolution of ferrihydrite to be retained for longer time, thus catalyzed the production of goethite from ferrihydrite and passivating ferrihydrite to inhibit the aging of ferrihydrite. In addition, acid environments caused most of Pb(II) to be released into solution through competition with hydrogen ions. Pb(II) in alkaline environment led to Pb(II) immobilization by entering the interior of mineral. The findings of this study provide references for better understanding the environmental behavior of Pb(II) during ferrihydrite transformation.
Collapse
Affiliation(s)
- Hao Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjing Tian
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Ma X, Chen J, Chang H, Zhu K, Ma K, Zhao X, Lin J, Yao S, Cui Y, Hu Y, Pan Y, Wang S. Hydrous ferric arsenate transformation coupled with As, Fe, and S environmental cycling in sulfidic systems under anoxic and circumneutral conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178038. [PMID: 39671941 DOI: 10.1016/j.scitotenv.2024.178038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Despite many studies on the environmental cycling of As, Fe, and S, sulfide (S(-II))-induced hydrous ferric arsenate (HFA) transformation remains to be elucidated. Herein, we investigated the anaerobic reaction of HFA with S(-II) at three environmental concentrations (1, 10, and 50 mM) at pH 48. Changes in solid-phase As, Fe, and S speciation were investigated by XRD, FTIR, Raman, XPS, synchrotron XANES, SEM, and TEM. The results demonstrated that 1 mM S(-II) induced significant As mobilization from HFA, and secondary goethite formed only at pH 8. Greater S(-II) addition caused rapid reductions in As(V) and Fe(III) and generated substantial amounts of elemental sulfur, S2O32, SO32, and SO42, subsequently decreasing As mobilization through secondary As-bearing phase formation. Solid characterization revealed that 10 mM S(-II) produced a scorodite‑sulfur mixture at pH 4, while schwertmannite, goethite, hematite, and tooeleite formed at pH 8. At pH 4 and 6, 50 mM S(-II) produced secondary semicrystalline symplesite, lepidocrocite, and tooeleite; in contrast, a substantial fraction of FeSam plus minor amounts of hematite and goethite were generated at pH 8. These results deepen our understanding of the geochemical cycling of As, Fe, and S and will help establish an effective As fixation method for effluent treatment.
Collapse
Affiliation(s)
- Xu Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Jia Chen
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - He Chang
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Kongyun Zhu
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Kedong Ma
- College of Environment and Resources, Dalian Minzu University, Dalian 116600, China
| | - Xiaoming Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jinru Lin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Yubo Cui
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Yongfeng Hu
- Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N 0X4, Canada
| | - Yuanming Pan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
Huang Y, Liu Q, Luo J, Huang F, Yan X, Huang X. Silicate impedes arsenic release and oxidation from ferrihydrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136406. [PMID: 39522206 DOI: 10.1016/j.jhazmat.2024.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Silicate fertilization is a common farming practice and an effective method to mitigate arsenic (As) pollution in paddy. Investigating the interaction between silicate and ferrihydrite on As retention is key to comprehensively understand the mechanism of As sequestration by silicate fertilization. Our results indicated that the transformation of ferrihydrite into goethite and hematite was inversely proportional to Si/Fe ratios. The added silicate impeded the decrease of solution pH from neutral to acidity, and imposed strong inhibitory effect on goethite formation. The aqueous As in silicate-free system was 3.43 times higher than that with Si/Fe ratio at 0.33, but similar results were not observed in those with high-level As pollution due to the inhibitory effect of As on ferrihydrite transformation. Solid characterization showed that silicate was monomerically adsorbed to ferrihydrite through Si-O-Fe bond, which impeded the reductive dissolution, Fe atom exchange, internal atomic rearrangement and dehydration of ferrihydrite. As(III) oxidation weakened in silicate-coprecipitated ferrihydrite due to the lack of Fe(II) catalysis stem from ferrihydrite dissolution. This work demonstrated that As release could be effectively impeded through the inhibitory effect of silicate on ferrihydrite transformation, thereby providing new insights into the understanding of As accumulation reduction in rice by silicate fertilization.
Collapse
Affiliation(s)
- Yuting Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qianjun Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jiayi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiuming Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaoqing Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
9
|
Liu J, Duan Y, Chen H, Ye B, Zhang H, Tan W, Kappler A, Hou J. Extent of As(III) versus As(V) adsorption on iron (oxyhydr) oxides depends on the presence of vacancy cluster-like micropore sites: Insights into a seesaw effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176376. [PMID: 39304166 DOI: 10.1016/j.scitotenv.2024.176376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Iron (oxyhydr)oxides are ubiquitous in terrestrial environments and play a crucial role in controling the fate of arsenic in sediments and groundwater. Although there is evidence that different iron (oxyhydr)oxides have different affinities towards As(III) and As(V), it is still unclear why As(V) adsorption on some iron (oxyhydr)oxides is larger than As(III) adsorption, while it is opposite for other ones. In this study, six typical iron (oxyhydr)oxides are selected to evaluate their adsorption capacities for As(III) and As(V). The characteristics of these iron minerals such as morphology, arsenic adsorption species, and pore size distribution are carefully examined using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), positron annihilation lifetime (PAL) spectroscopy, and X-ray absorption spectroscopy (XAS). We confirm a seesaw effect occurred in different iron minerals for As(III) and As(V) immobilization, i.e., at pH 6.0, adsorption of As(V) on hematite (0.73 μmol m-2) and magnetite (0.33 μmol m-2) is higher than for As(III) (0.61 μmol m-2 and 0.27 μmol m-2, respectively), for goethite and lepidocrocite it is almost equal, while As(III) sorption on ferrihydrite (5.77 μmol m-2) and schwertmannite (28.41 μmol m-2) showed higher sorption than As(V) (1.53 μmol m-2 and 12.99 μmol m-2, respectively). PAL analysis demonstrates that ferrihydrite and schwertmannite have a large concentration of vacancy cluster-like micropores, significantly more than goethite and lepidocrocite, followed by hematite and magnetite. The difference of adsorption of As(III) and As(V) to different iron (oxyhydr)oxides is due to differences in the abundance of vacancy cluster-like micropore sites, which are conducive for smaller size As(III) immobilization but not for larger size of As(V). The findings of this study provide novel insights into a seesaw effect for As(III) and As(V) immobilization on naturally occurring iron mineral.
Collapse
Affiliation(s)
- Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixin Duan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China.
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Furcas F, Mundra S, Lothenbach B, Angst UM. Speciation Controls the Kinetics of Iron Hydroxide Precipitation and Transformation at Alkaline pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19851-19860. [PMID: 39440946 PMCID: PMC11542892 DOI: 10.1021/acs.est.4c06818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
The formation of energetically favorable and metastable mineral phases within the Fe-H2O system controls the long-term mobility of iron complexes in natural aquifers and other environmentally and industrially relevant systems. The fundamental mechanism controlling the formation of these phases has remained enigmatic. We develop a general partial equilibrium model, leveraging recent synchrotron-based data on the time evolution of solid Fe(III) hydroxides along with aqueous complexes. We combine thermodynamic considerations and particle-morphology-dependent kinetic rate equations under full consideration of the aqueous phase in disequilibrium with one or more of the forming minerals. The new model predicts the rate of amorphous 2-line ferrihydrite precipitation, dissolution, and overall transformation to crystalline goethite. It is found that the precipitation of goethite (i) occurs from solution and (ii) is limited by the comparatively slow dissolution of the first forming amorphous phase 2-line ferrihydrite. A generalized transformation mechanism further illustrates that differences in the kinetics of Fe(III) precipitation are controlled by the coordination environment of the predominant Fe(III) hydrolysis product. The framework allows modeling of other iron(bearing) phases across a broad range of aqueous phase compositions.
Collapse
Affiliation(s)
- Fabio
E. Furcas
- Institute
for Building Materials, ETH Zürich, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| | - Shishir Mundra
- Institute
for Building Materials, ETH Zürich, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| | - Barbara Lothenbach
- Empa
Concrete & Asphalt Laboratory, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ueli M. Angst
- Institute
for Building Materials, ETH Zürich, Laura-Hezner-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Zhang M, Ding L, Qiu X, Liang X, Huang Y, Shan X, Chen Q, Guo X. Interactions between Iron Minerals and Dissolved Organic Matter Derived from Microplastics Inhibited the Ferrihydrite Transformation as Revealed at the Molecular Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39020513 DOI: 10.1021/acs.est.4c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Microplastic-derived dissolved organic matter (MP-DOM) is an emerging carbon source in the environment. Interactions between MP-DOM and iron minerals alter the transformation of ferrihydrite (Fh) as well as the distribution and fate of MP-DOM. However, these interactions and their effects on both two components are not fully elucidated. In this study, we selected three types of MP-DOM as model substances and utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and extended X-ray absorption fine structure (EXAFS) spectroscopy to characterize the structural features of DOMs and DOM-mineral complexes at the molecular and atomic levels. Our results suggest that carboxyl and hydroxyl groups in MP-DOM increased the Fe-O bond length by 0.02-0.03 Å through interacting with Fe atoms in the first shell, thereby inhibiting the transformation of Fh to hematite (Hm). The most significant inhibition of Fh transformation was found in PS-DOM, followed by PBAT-DOM and PE-DOM. MP-DOM components, such as phenolic compounds and condensed polycyclic aromatics (MW > 360 Da) with high oxygen content and high unsaturation, exhibited stronger mineral adsorption affinity. These findings provide a profound theoretical basis for accurately predicting the behavior and fate of iron minerals as well as MP-DOM in complex natural environments.
Collapse
Affiliation(s)
- Mengwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Huang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Xue J, Deng Y, Zhang Y, Du Y, Fu QL, Xu Y, Shi J, Wang Y. Hidden Role of Organic Matter in the Immobilization and Transformation of Iodine on Fe-OM Associations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9840-9849. [PMID: 38775339 DOI: 10.1021/acs.est.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.
Collapse
Affiliation(s)
- Jiangkai Xue
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxi Zhang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
| | - Yao Du
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
13
|
Zhu X, Yan Z, Liu S, Zhou M, Zeng X, Wang S, Jia Y. Simultaneous stabilization of particulate and bioavailable arsenic in soils from the realgar mining area by polyacrylamide, nano-SiO 2, and ferrihydrite composite materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172123. [PMID: 38575008 DOI: 10.1016/j.scitotenv.2024.172123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Arsenic (As) contamination in realgar mining areas poses a severe environmental and health risk, highlighting the critical need for effective strategies to manage As migration, particularly in its particulate and bioavailable states. Soil erosion and water leaching serve as significant pathways for spreading As, emphasizing the imperative to curtail its mobility. In the present study, we proposed an effective strategy that combines the utilization of polyacrylamide (PAM), nano-SiO2 (NS), and ferrihydrite (Fh) to elevate the stability of As in soils from a realgar mining area. The results show that this composite material demonstrates the capability to concurrently regulate soil erosion and mitigate the leaching of bioavailable As. The combination of the three materials in the proportion of 0.5 % PAM +0.1 % NS + 1.0 % Fh can reduce the soil particulate and bioavailable As content by 99.11 % and 93.98 %, respectively. The unconfined compressive strength of the soil can be increased by about 30 % under this condition. The SEM analyses show that the addition of PAM and NS can significantly enhance the aggregation of soil particles and then reduce the soil erosion rate. These findings highlight the significant potential of the proposed approach in mitigating As contamination in soil within mining environments. The approach offers a sustainable and comprehensive solution to address the transport of heavy metal contaminants in both particulate and bioavailable states in mining areas.
Collapse
Affiliation(s)
- Xiayu Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zelong Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shichao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mengchao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
14
|
Namayandeh A, Zhang W, Watson SK, Borkiewicz OJ, Bompoti NM, Chrysochoou M, Penn RL, Michel FM. Goethite and Hematite Nucleation and Growth from Ferrihydrite: Effects of Oxyanion Surface Complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5952-5962. [PMID: 38506754 DOI: 10.1021/acs.est.3c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The presence of oxyanions, such as nitrate (NO3-) and phosphate (PO43-), regulates the nucleation and growth of goethite (Gt) and hematite (Hm) during the transformation of ferrihydrite (Fh). Our previous studies showed that oxyanion surface complexes control the rate and pathway of Fh transformation to Gt and Hm. However, how oxyanion surface complexes control the mechanism of Gt and Hm nucleation and growth during the Fh transformation is still unclear. We used synchrotron scattering methods and cryogenic transmission electron microscopy to investigate the effects of NO3- outer-sphere complexes and PO43- inner-sphere complexes on the mechanism of Gt and Hm formation from Fh. Our TEM results indicated that Gt particles form through a two-step model in which Fh particles first transform to Gt nanoparticles and then crystallographically align and grow to larger particles by oriented attachment (OA). In contrast, for the formation of Hm, imaging shows that Fh particles first aggregate and then transform to Hm through interface nucleation. This is consistent with our X-ray scattering results, which demonstrate that NO3- outer-sphere and PO43- inner-sphere complexes promote the formation of Gt and Hm, respectively. These results have implications for understanding the coupled interactions of oxyanions and iron oxy-hydroxides in Earth-surface environments.
Collapse
Affiliation(s)
- Alireza Namayandeh
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven K Watson
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Olaf J Borkiewicz
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nefeli M Bompoti
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - F Marc Michel
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Division of Nanoscience, Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
15
|
Gao M, Li H, Xie Z, Li Z, Luo Z, Yu R, Lü C, He J. The fate of Arsenic associated with the transformation of iron oxides in soils: The mineralogical evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169795. [PMID: 38199364 DOI: 10.1016/j.scitotenv.2023.169795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The influence of iron (oxyhydr)oxides on the transformation and migration of arsenic(As) has garnered significant attention. Previous work has largely focused on the transformation of iron oxides related to As fate at molecular and mechanistic levels. However, studies examining the interplay between As concentration and iron oxides transformation within complex soil system are sparse. This study investigates the transformation of iron oxides in soils with varying As concentration during microbial dissimilatory iron reduction (DIR), employing humic acid (HA) as electron shuttle and assesses the impact on As speciation transformation. Comparative analyses indicate that in soils with high As concentration (>1000 mg/kg), the secondary transformation of iron (oxyhydr)oxides to other forms, such as the conversion of ferrihydrite to goethite and lepidocrocite, or schwertmannite to goethite, is impeded. Consequently, the formation of goethite and lepidocrocite, which would typically re-stabilize As, is inhibited, leading to elevated release of As(III). On the other hand, an increase in magnetite formation in soils with low As concentration (<100 mg/kg) appears to re-stabilize As effectively. Furthermore, the formation of new secondary iron (oxyhydr)oxides in soils with As concentration <200 mg/kg enhances fraction F5, which subsequently contributes to the re-immobilization of As, sequestering it within the soil matrix. This process results in a lower release of As(III) from soils with As concentration below 200 mg/kg. These findings enhance the understanding of the interdependent relationship between the transformation of iron oxides and the fate of As in complex soil systems.
Collapse
Affiliation(s)
- Manshu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hao Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhilei Xie
- Environmental Monitoring Center of Inner Mongolia, Hohhot 010011, China
| | - Zhichao Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiqi Luo
- Inner Mongolia Third of Geology and Mineral Resources Exploration Development co., LTD, Hohhot 010011, China
| | - Ruihong Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
16
|
Guo Z, Wang L, Feng B, Zhang L, Zhang W, Dong D. Degradation of enoxacin with different dissociated species during the transformation of ferrihydrite-antibiotic coprecipitates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169797. [PMID: 38181939 DOI: 10.1016/j.scitotenv.2023.169797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Ferrihydrite acts as a natural reservoir for nutrient elements, organic matter, and coexisting pollutants through adsorption and coprecipitation. However, the degradation of emerging fluoroquinolone antibiotics during the transformation of ferrihydrite coprecipitates, especially those with various dissociated species, remains insufficiently explored. In this study, Enoxacin (ENO), employed as a model antibiotic, was introduced to prepare ferrihydrite-ENO coprecipitates. The influence of coprecipitated ENO on the transformation of the ferrihydrite-ENO coprecipitate was investigated across different pH conditions. The results revealed that ferrihydrite-ENO coprecipitates thermodynamically transformed into more stable goethite and/or hematite under all pH conditions. In neutral and alkaline conditions, ENO promoted the transformation of coprecipitates into goethite while hindering hematite formation. Conversely, under acidic conditions, ENO directly obstructed the transformation of coprecipitates into hematite. Different dissociated species of ENO displayed distinct degradation pathways. The cationic form of ENO exhibited a greater tendency for hydroxylation and defluorination, while the zwitterion form leaned toward piperazine ring oxidation, with limited preference for quinolone ring oxidation. The anionic form of ENO exhibited the fastest degradation rate. It is essential to emphasize that the toxicity of the degradation products was intricately connected to the specific reaction sites and the functional groups they acquired post-oxidation. These findings offer fresh insights into the role of antibiotics in coprecipitation, the transformation of ferrihydrite coprecipitates, and the fate of coexisting antibiotics.
Collapse
Affiliation(s)
- Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, Sichuan 610031, China.
| | - Baogen Feng
- China Three Gorges Corporation, Hubei 430010, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenming Zhang
- Dept of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
17
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Zhang D, Jin Y, Wang Y, Wang S, Xiao F, Wang Y, Wang D, Xu D, Wang F, Jia Y. The fate of arsenic during the crystallization process of Fe III oxyhydroxides: Effect of reaction media, pH value, and Fe/As molar ratio under relatively low arsenic loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167427. [PMID: 37774868 DOI: 10.1016/j.scitotenv.2023.167427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Understanding the nature of arsenic (As) adsorbed on FeIII oxyhydroxides, and the subsequent behavior of As during the crystallization process, is critical to predicting its fate in a range of natural and engineered settings. In this work, As adsorbed on FeIII oxyhydroxides formed in the different reaction media at different pH values were characterized with X-ray diffraction (XRD), Raman spectra, transmission electron microscopy (TEM), and extended X-ray absorption fine structure spectroscopy (EXAFS) to determine how As is redistributed during the crystallization process. Results showed that at pH 12, a quarter of the added As was still left in the liquid phase with the formation of goethite and hematite as the major and minor product. The concentration of As was found to be the lowest at pH 4 which is independent of the reaction media, indicating the importance of pH value in the crystallization process of the As adsorbed FeIII oxyhydroxides. Under acidic conditions, sulfate and chloride media favored the formation of goethite and hematite, respectively. Arsenic can indeed be incorporated into the structure of the formed goethite at pH 4. The morphology of the formed products changed to rhombus-like particles if both goethite and hematite appeared as the later as the dominant product.
Collapse
Affiliation(s)
- Danni Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yuting Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Yumeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; College of Energy and Power, Shenyang Institute of Engineering, Shenyang 110136, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Fan Xiao
- Shanxi Academy of Ecological Environmental Planning and Technology, Taiyuan 030002, China
| | - Ying Wang
- College of Ecology and Environment, NingXia University, Yinchuan 750021, China
| | - Duo Wang
- Liaoning Provincial Institute of Metrology, Shenyang 110004, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
19
|
Furcas F, Lothenbach B, Mundra S, Borca CN, Albert CC, Isgor OB, Huthwelker T, Angst UM. Transformation of 2-Line Ferrihydrite to Goethite at Alkaline pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16097-16108. [PMID: 37822288 PMCID: PMC10603785 DOI: 10.1021/acs.est.3c05260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The transformation of 2-line ferrihydrite to goethite from supersaturated solutions at alkaline pH ≥ 13.0 was studied using a combination of benchtop and advanced synchrotron techniques such as X-ray diffraction, thermogravimetric analysis, and X-ray absorption spectroscopy. In comparison to the transformation rates at acidic to mildly alkaline environments, the half-life, t1/2, of 2-line ferrihydrite reduces from several months at pH = 2.0, and approximately 15 days at pH = 10.0, to just under 5 h at pH = 14.0. The calculated-first order rate constants of transformation, k, increase exponentially with respect to the pH and follow the progression log10 k = log10 k0 + a·pH3. Simultaneous monitoring of the aqueous Fe(III) concentration via inductively coupled plasma optical emission spectroscopy demonstrates that (i) goethite likely precipitates from solution and (ii) its formation is rate-limited by the comparatively slow redissolution of 2-line ferrihydrite. The analysis presented can be used to estimate the transformation rate of naturally occurring 2-line ferrihydrite in aqueous electrolytes characteristic to mine and radioactive waste tailings as well as the formation of corrosion products in cementitious pore solutions.
Collapse
Affiliation(s)
- Fabio
E. Furcas
- Institute
for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Shishir Mundra
- Institute
for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Camelia N. Borca
- Swiss
Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - O. Burkan Isgor
- School
of Civil and Construction Engineering, Oregon
State University, Corvallis, 97331 Oregon, United States
| | - Thomas Huthwelker
- Swiss
Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ueli M. Angst
- Institute
for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Lei M, Huang Y, Zhou Y, Mensah CO, Wei D, Li B. The role of organic and inorganic substituents of roxarsone determines its binding behavior and mechanisms onto nano-ferrihydrite colloidal particles. J Environ Sci (China) 2023; 129:30-44. [PMID: 36804240 DOI: 10.1016/j.jes.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 06/18/2023]
Abstract
The retention and fate of Roxarsone (ROX) onto typical reactive soil minerals were crucial for evaluating its potential environmental risk. However, the behavior and molecular-level reaction mechanism of ROX and its substituents with iron (hydr)oxides remains unclear. Herein, the binding behavior of ROX on ferrihydrite (Fh) was investigated through batch experiments and in-situ ATR-FTIR techniques. Our results demonstrated that Fh is an effective geo-sorbent for the retention of ROX. The pseudo-second-order kinetic and the Langmuir model successfully described the sorption process. The driving force for the binding of ROX on Fh was ascribed to the chemical adsorption, and the rate-limiting step is simultaneously dominated by intraparticle and film diffusion. Isotherms results revealed that the sorption of ROX onto Fh appeared in uniformly distributed monolayer adsorption sites. The two-dimensional correlation spectroscopy and XPS results implied that the nitro, hydroxyl, and arsenate moiety of ROX molecules have participated in binding ROX onto Fh, signifying that the predominated mechanisms were attributed to the hydrogen bonding and surface complexation. Our results can help to better understand the ROX-mineral interactions at the molecular level and lay the foundation for exploring the degradation, transformation, and remediation technologies of ROX and structural analog pollutants in the environment.
Collapse
Affiliation(s)
- Ming Lei
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China
| | - Yayuan Huang
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China
| | - Yimin Zhou
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China
| | - Caleb Oppong Mensah
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China
| | - Dongning Wei
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China
| | - Bingyu Li
- College of Resource & Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha 410128, China.
| |
Collapse
|
21
|
Jiang Z, Nie K, Arinzechi C, Li J, Liao Q, Si M, Yang Z, Li Q, Yang W. Cooperative effect of slow-release ferrous and phosphate for simultaneous stabilization of As, Cd and Pb in soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131232. [PMID: 36940528 DOI: 10.1016/j.jhazmat.2023.131232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The different chemical behavior of anionic As and cationic Cd and Pb makes the simultaneous stabilization of soils contaminated with arsenic (As), cadmium (Cd), and lead (Pb) challenging. The use of soluble, insoluble phosphate materials and iron compounds cannot simultaneously stabilize As, Cd, and Pb in soil effectively due to the easy re-activation of heavy metals and poor migration. Herein, we propose a new strategy of "cooperatively stabilizing Cd, Pb, and As with slow-release ferrous and phosphate". To very this theory, we developed ferrous and phosphate slow-release materials to simultaneously stabilize As, Cd, and Pb in soil. The stabilization efficiency of water-soluble As, Cd and Pb reached 99% within 7d, and the stabilization efficiencies of NaHCO3-extractable As, DTPA-extractable Cd and Pb reached 92.60%, 57.79% and 62.81%, respectively. The chemical speciation analysis revealed that soil As, Cd and Pb were transformed into more stable states with the reaction time. The proportion of residual fraction of As, Cd, and Pb increased from 58.01% to 93.82%, 25.69 to 47.86%, 5.58 to 48.54% after 56 d, respectively. Using ferrihydrite as a representative soil component, the beneficial interactions of phosphate and slow-release ferrous material in stabilizing Pb, Cd, and As were demonstrated. The slow-release ferrous and phosphate material reacted with As and Cd/Pb to form stable ferrous arsenic and Cd/Pb phosphate. Furthermore, the slow-release phosphate converted the adsorbed As into dissolved As, then the dissolved As reacted with released ferrous to form a more stable form. Concurrently, As, Cd and Pb were structurally incorporated into the crystalline iron oxides during the ferrous ions-catalyzed transformation of amorphous iron (hydrogen) oxides. The results demonstrates that the use of slow-release ferrous and phosphate materials can aid in the simultaneous stabilization of As, Cd, and Pb in soil.
Collapse
Affiliation(s)
- Zhi Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kai Nie
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chukwuma Arinzechi
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaxin Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
22
|
Wang L, Hu C, Yang Z, Guo S, Zhang T, Li S. Simple Co-Precipitation of Iron Minerals for the Removal of Phenylarsonic Acid: Insights into the Adsorption Performance and Mechanism. Molecules 2023; 28:3448. [PMID: 37110683 PMCID: PMC10145160 DOI: 10.3390/molecules28083448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, three kinds of iron minerals, ferrihydrite, hematite, and goethite, were prepared by a simple coprecipitation method for the adsorption and removal of phenylarsonic acid (PAA). The adsorption of PAA was explored, and the influences of ambient temperature, pH, and co-existing anions on adsorption were evaluated. The experimental results show that rapid adsorption of PAA occurs within 180 min in the presence of iron minerals, and the adsorption process conforms to a pseudo-second-order kinetic model. The isothermal adsorption of PAA by ferrihydrite, goethite, and hematite agrees with the Redlich-Peterson model. The maximum adsorption capacities of PAA are 63.44 mg/g, 19.03 mg/g, and 26.27 mg/g for ferrihydrite, goethite, and hematite, respectively. Environmental factor experiments illustrated that an alkaline environment will significantly inhibit the adsorption of PAA by iron minerals. CO32-, SiO32-, and PO43- in the environment will also significantly reduce the adsorption performance of the three iron minerals. The adsorption mechanism was analyzed by FTIR and XPS, which indicated that ligand exchange between the surface hydroxyl group and the arsine group leads to the formation of an Fe-O-As bond, and electrostatic attraction between the iron minerals and PAA played an important role in the adsorption.
Collapse
Affiliation(s)
- Lili Wang
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China;
| | - Changchao Hu
- Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100083, China;
| | - Ze Yang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Y.); (S.G.); (T.Z.)
| | - Songding Guo
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Y.); (S.G.); (T.Z.)
| | - Tingting Zhang
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Y.); (S.G.); (T.Z.)
| | - Shangyi Li
- Department of Environmental Science and Engineering, Research Centre for Resource and Environment, Beijing University of Chemical Technology, Beijing 100029, China; (Z.Y.); (S.G.); (T.Z.)
| |
Collapse
|
23
|
Liang C, Wu H, Chen J, Wei Y. Mechanistic insights into the interfacial adsorption behaviors of Cr(VI) on ferrihydrite: Effects of pH and naturally coexisting anions in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114474. [PMID: 38321689 DOI: 10.1016/j.ecoenv.2022.114474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Interfacial interaction of hexavalent chromium (Cr[VI]) with ferrihydrite (Fh) plays a key role in the behavior of Cr(VI) in the environment. In this study, H2PO4-, SO42-, NO3-, Cl-, and HCO3- were chosen as coexisting anions to explore their inhibition of the capacity of Fh to adsorb Cr(VI). We employed X-ray diffraction, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy to thoroughly characterize Fh reaction products before and after adsorption of Cr(VI). The results clearly revealed that pH has a marked effect on the extent of Cr(VI) adsorption onto Fh, and this process is also highly dependent on the types of anions present. H2PO4- exhibited the most evident inhibition of Cr(VI) adsorption, even at low concentrations. Similarly, the inhibition of Cr(VI) adsorption by HCO3- increased markedly with increasing pH. In contrast, SO42- only slightly competed with Cr(VI) for reactive Fh surface sites. The anions Cl- and NO3- exhibited almost no inhibitory effect on Cr(VI) adsorption. The differential order of adsorptive affinity of all six anions for Fh was as follows: H2PO4- > HCO3- > SO42- ≈ HCrO4- > NO3- ≈ Cl-. Based on these results, we further provide mechanistic insights into the complexities of Cr(VI) adsorption/desorption behaviors on Fh surfaces. Using Fh as a geosorbent, these interfacial properties could be exploited to mediate the immobilization and release of chromate from and/or into contaminated environments such as aquifers.
Collapse
Affiliation(s)
- Changjin Liang
- School of Environment, South China Normal University, Guangzhou 510006, China; School of Materials Science & Engineering, Hanshan Normal University, Chaozhou 515633, China
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Jing Chen
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao, China.
| |
Collapse
|
24
|
Namayandeh A, Borkiewicz OJ, Bompoti NM, Chrysochoou M, Michel FM. Oxyanion Surface Complexes Control the Kinetics and Pathway of Ferrihydrite Transformation to Goethite and Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15672-15684. [PMID: 36219790 DOI: 10.1021/acs.est.2c04971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rate and pathway of ferrihydrite (Fh) transformation at oxic conditions to more stable products is controlled largely by temperature, pH, and the presence of other ions in the system such as nitrate (NO3-), sulfate (SO42-), and arsenate (AsO43-). Although the mechanism of Fh transformation and oxyanion complexation have been separately studied, the effect of surface complex type and strength on the rate and pathway remains only partly understood. We have developed a kinetic model that describes the effects of surface complex type and strength on Fh transformation to goethite (Gt) and hematite (Hm). Two sets of oxyanion-adsorbed Fh samples were prepared, nonbuffered and buffered, aged at 70 ± 1.5 °C, and then characterized using synchrotron X-ray scattering methods and wet chemical analysis. Kinetic modeling showed a significant decrease in the rate of Fh transformation for oxyanion surface complexes dominated by strong inner-sphere (SO42- and AsO43-) versus weak outer-sphere (NO3-) bonding and the control. The results also showed that the Fh transformation pathway is influenced by the type of surface complex such that with increasing strength of bonding, a smaller fraction of Gt forms compared with Hm. These findings are important for understanding and predicting the role of Fh in controlling the transport and fate of metal and metalloid oxyanions in natural and applied systems.
Collapse
Affiliation(s)
- Alireza Namayandeh
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Olaf J Borkiewicz
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Nefeli M Bompoti
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - Maria Chrysochoou
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut06269, United States
| | - F Marc Michel
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia24061, United States
- Virginia Tech, Division of Nanoscience, Academy of Integrated Science, Blacksburg, Virginia24061, United States
| |
Collapse
|
25
|
Wang L, Zhang L, Feng B, Hua X, Li Y, Zhang W, Guo Z. The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153707. [PMID: 35149063 DOI: 10.1016/j.scitotenv.2022.153707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The sorption of antibiotics on iron (hydr)oxides is an important process that influences their environmental fate. Ferrihydrite (Fh) nanosized iron hydroxide is omnipresent in nature. However, the sorption mechanism of fluoroquinolone (FQ) antibiotics on Fh is unclear. Here, a combined experimental and computational study was conducted to investigate the sorption of enoxacin (ENO) as one model of FQs on Fh. Pipemidic acid (PPA), as a structural analog of ENO, was selected to compare the effect of fluorinated substituent on the sorption mechanism. Results indicated that the average Kd values of ENO at pH = 7.0 and 8.0 were 1.72 and 2.75 times higher than those at pH in the ranges of 4.0-6.0 and 9.0-10.0, respectively. The main sorption mechanisms included electrostatic, hydrophobic interaction, and inner-sphere complexation. The fluorinated substituent of ENO facilitated its sorption on Fh through enhancing its hydrophobicity as well as modifying its dissociation constants and charge distribution. The findings give new insights into the significant influence of active fluorinated substituents on the environmental behaviors of fluorinated pharmaceuticals.
Collapse
Affiliation(s)
- Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Baogen Feng
- China Three Gorges Corporation, Beijing 100038, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yanchun Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Wenming Zhang
- Dept of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
26
|
Zhang L, Fu F, Yu G, Sun G, Tang B. Fate of Cr(VI) during aging of ferrihydrite-humic acid co-precipitates: Comparative studies of structurally incorporated Al(III) and Mn(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151073. [PMID: 34678368 DOI: 10.1016/j.scitotenv.2021.151073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Ferrihydrite-humic acid co-precipitates have impacts on the adsorption and reduction of Cr(VI) in the natural environment. Besides, ferrihydrite-humic acid co-precipitates usually coexist with foreign metal cations like Al(III) and Mn(II), which may change the properties of ferrihydrite and affect the fate of Cr(VI). In this work, structurally incorporated Al(III) or Mn(II) in ferrihydrite-humic acid co-precipitates with Cr(VI) (Fh-HA-Cr-Al or Fh-HA-Cr-Mn) were prepared, and the behavior and phase transformation of co-precipitates were explored via the characterization analyses of samples during aging for 10 days. This study showed that partial adsorbed Cr(VI) was reduced to Cr(III) in the presence of humic acid, thereby reducing the toxicity of Cr(VI). Interestingly, two different results occurred because of the incorporation of Al(III) and Mn(II). Al(III) hindered the transformation of ferrihydrite and changed the aging products by inhibiting the dissolution of ferrihydrite, which decreased Cr to incorporate iron minerals. By contrast, doping of Mn(II) accelerated the phase transformation of co-precipitates, and was more conducive to the encapsulation and fixation of Cr. The results of this study can facilitate the understanding of the effects of Al(III) and Mn(II) on Cr(VI) fixation during the aging of Fh-HA-Cr.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Malakar A, Snow DD, Kaiser M, Shields J, Maharjan B, Walia H, Rudnick D, Ray C. Ferrihydrite enrichment in the rhizosphere of unsaturated soil improves nutrient retention while limiting arsenic and uranium plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150967. [PMID: 34656603 DOI: 10.1016/j.scitotenv.2021.150967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Improvement of nutrient use efficiency and limiting trace elements such as arsenic and uranium bioavailability is critical for sustainable agriculture and food safety. Arsenic and uranium possess different properties and mobility in soils, which complicates the effort to reduce their uptake by plants. Here, we postulate that unsaturated soil amended with ferrihydrite nanominerals leads to improved nutrient retention and helps reduce uptake of these geogenic contaminants. Unsaturated soil is primarily oxic and can provide a stable environment for ferrihydrite nanominerals. To demonstrate the utility of ferrihydrite soil amendment, maize was grown in an unsaturated agricultural soil that is known to contain geogenic arsenic and uranium. The soil was maintained at a gravimetric moisture content of 15.1 ± 2.5%, typical of periodically irrigated soils of the US Corn Belt. Synthetic 2-line ferrihydrite was used in low doses as a soil amendment at three levels (0.00% w/w (control), 0.05% w/w and 0.10% w/w). Further, the irrigation water was fortified (~50 μg L-1 each) with elevated arsenic and uranium levels. Plant dry biomass at maturity was ~13.5% higher than that grown in soil not receiving ferrihydrite, indicating positive impact of ferrihydrite on plant growth. Arsenic and uranium concentrations in maize crops (root, shoot and grain combined) were ~ 20% lower in amended soils than that in control soils. Our findings suggest that the addition of low doses of iron nanomineral soil amendment can positively influence rhizosphere geochemical processes, enhancing nutrient plant availability and reduce trace contaminants plant uptake in sprinkler irrigated agroecosystem, which is 55% of total irrigated area in the United States.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, United States.
| | - Daniel D Snow
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, United States
| | - Michael Kaiser
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, United States
| | - Jordan Shields
- School of Natural Resources, Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, United States
| | - Bijesh Maharjan
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Panhandle Research and Extension Center, 4502 AVE I, Scottsbluff, NE 69361-4939, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, United States
| | - Daran Rudnick
- Biological Systems Engineering Department, 247 L.W. Chase Hall, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, United States
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-6204, United States.
| |
Collapse
|
28
|
Yang Z, Zhang N, Sun B, Su S, Wang Y, Zhang Y, Wu C, Zeng X. Contradictory tendency of As(V) releasing from Fe-As complexes: Influence of organic and inorganic anions. CHEMOSPHERE 2022; 286:131469. [PMID: 34340118 DOI: 10.1016/j.chemosphere.2021.131469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The strong ability of ferrihydrite and its aged minerals for fixing arsenate is a key factor in remediating arsenate-polluted environments. It is therefore crucial to clarify the stability of Fe-As complexes and the release conditions for As(V). The As(V) release amount was evaluated and compared in the presence of six representative anions, namely, phosphate, silicate, sulfate, inositol hexaphosphate, citrate, and oxalate. It was found that the As(V) release amount changed with the aging time of ferrihydrite and that this tendency generally followed two rules. These are, longer aging time leads to lower As(V) release (Rule 1), and longer aging time leads to higher As(V) release (Rule 2). Whether Rule 1 or Rule 2 dominated As release depended on the number of surface groups, size of competing anions, and contribution of As(V) re-adsorption. Characterization results using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) provided evidence for the predicted mechanisms of As(V) release under various circumstances. In this work, it was demonstrated that when inorganic anions such as sulfate and silicate are present, ferrihydrite with longer aging time led to decreased As(V) release. When organic anions are present, ferrihydrite with less aging time results in reduced As(V) leaching. For anions such as phosphate, the As(V) release amount in relation to the ferrihydrite aging time depends on the concentration of phosphate ions. Nevertheless, the ligand concentration and As(V) loading rate on ferrihydrite should be simultaneously considered for the rule governing As(V) releasing.
Collapse
Affiliation(s)
- Zhonglan Yang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Nan Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Benhua Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shiming Su
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Yanan Wang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Yang Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Cuixia Wu
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences, Beijing, 100081, China.
| |
Collapse
|
29
|
Liu Y, Li C, Lou Z, Zhou C, Yang K, Xu X. Antimony removal from textile wastewater by combining PFS&PAC coagulation: Enhanced Sb(V) removal with presence of dispersive dye. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Matulová M, Bujdoš M, Miglierini MB, Cesnek M, Duborská E, Mosnáčková K, Vojtková H, Kmječ T, Dekan J, Matúš P, Urík M. The Effect of High Selenite and Selenate Concentrations on Ferric Oxyhydroxides Transformation under Alkaline Conditions. Int J Mol Sci 2021; 22:9955. [PMID: 34576122 PMCID: PMC8466294 DOI: 10.3390/ijms22189955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations.
Collapse
Affiliation(s)
- Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (M.M.); (M.B.); (E.D.); (P.M.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (M.M.); (M.B.); (E.D.); (P.M.)
| | - Marcel B. Miglierini
- Institute of Nuclear and Physical Engineering, Slovak Technical University in Bratislava, Ilkovičova 3, 81219 Bratislava, Slovakia; (M.B.M.); (J.D.)
- Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic;
| | - Martin Cesnek
- Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 18000 Prague, Czech Republic;
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (M.M.); (M.B.); (E.D.); (P.M.)
| | - Katarína Mosnáčková
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 84541 Bratislava, Slovakia;
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB—Technical University of Ostrava, 17 Listopadu 15/2172, 70800 Ostrava-Poruba, Czech Republic;
| | - Tomáš Kmječ
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague, Czech Republic;
| | - Július Dekan
- Institute of Nuclear and Physical Engineering, Slovak Technical University in Bratislava, Ilkovičova 3, 81219 Bratislava, Slovakia; (M.B.M.); (J.D.)
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (M.M.); (M.B.); (E.D.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (M.M.); (M.B.); (E.D.); (P.M.)
| |
Collapse
|
31
|
Liang C, Fu F, Tang B. Mn-incorporated ferrihydrite for Cr(VI) immobilization: Adsorption behavior and the fate of Cr(VI) during aging. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126073. [PMID: 34020359 DOI: 10.1016/j.jhazmat.2021.126073] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Chromium(VI) (Cr(VI)) is an environmental priority pollutant, and its mobility in natural environment is strongly controlled by ferrihydrite. Ferrihydrite always contains various ions, which may change the properties of ferrihydrite, thereby affecting the behavior of pollutants. This study aims to investigate the adsorption of Cr(VI) by Mn-incorporated ferrihydrite and the mobility behavior of Cr(VI) during aging. Results showed that the incorporation of Mn enhanced the adsorption of Cr(VI) on ferrihydrite, and the adsorption performance increased with the increase of Mn content. The maximum adsorption capacity for Cr(VI) reached to 48.5 mg/g with molar ratio of Mn/Fe 5%, while it was 36.1 mg/g for pure ferrihydrite. After aging for 7 days, ferrihydrite transformed into goethite and hematite. The adsorbed Cr(VI) on the surface of ferrihydrite was released into the solution during aging. The incorporation of Mn retarded the transformation of ferrihydrite, which inhibited the migration of adsorbed Cr(VI). Nevertheless, the incorporation of Mn resulted in the transformation of adsorbed Cr(VI) to non-desorbed Cr(VI), thereby enhancing the retention of Cr(VI). Our results suggest that the incorporation of Mn into ferrihydrite has an important role on the mobility of Cr(VI), which enhances our understanding of the behavior of Cr(VI) in the environment.
Collapse
Affiliation(s)
- Chenwei Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
Ye C, Ariya PA, Fu F, Yu G, Tang B. Influence of Al(III) and Sb(V) on the transformation of ferrihydrite nanoparticles: Interaction among ferrihydrite, coprecipitated Al(III) and Sb(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124423. [PMID: 33162243 DOI: 10.1016/j.jhazmat.2020.124423] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Ferrihydrite is ubiquitous in natural environments and is usually co-precipitated with impure ions and toxic contaminants like Al(III) and Sb(V) during the neutralization process of acid mine drainage. However, little is known about the dynamic interactions among ferrihydrite, Al(III) and Sb(V). In this study, the influence of coprecipitated Al(III) and Sb(V) on the transformation of ferrihydrite was investigated. The samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy before and after aging for 10 days at 70 °C. Results indicated that the Al(III) enhanced the immobilization of Sb(V) under neutral and alkaline conditions, and the presence of Sb(V) induced more production of extractable Al(III). XRD patterns revealed that the transformation rate of coprecipitated Al(III) and Sb(V) ferrihydrite was higher than Al-coprecipitated ferrihydrite. It is speculated that the presence of Sb(V) weakened the inhibition of Al(III) under experimental conditions. Competitive reaction of Al(III) and Sb(V) for substitution on the lattice Fe of ferrihydrite, likely decreased Al(III) substitution on ferrihydrite, and thus increased the observed transformation rate of ferrihydrite. These results have significant environmental implications for predicting the role of impurities and contaminants on ferrihydrite transformation processes.
Collapse
Affiliation(s)
- Chujia Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Parisa A Ariya
- Department of Atmospheric & Oceanic Sciences, McGill University, Montreal, PQ H3A 0B9, Canada; Department of Chemistry, McGill University, Montreal, PQ H3A 0B8, Canada
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
33
|
Yoo SJ. Synthesis of mesoporous 2-line ferrihydrite/γ-Al2O3 hybrid adsorbent for the effective adsorption of phosphate for water remediation. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0708-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Yang Z, Bai L, Su S, Wang Y, Wu C, Zeng X, Sun B. Stability of Fe-As composites formed with As(V) and aged ferrihydrite. J Environ Sci (China) 2021; 100:43-50. [PMID: 33279052 DOI: 10.1016/j.jes.2020.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 06/12/2023]
Abstract
During the aging process, ferrihydrite was transformed into mineral mixtures composed of different proportions of ferrihydrite, goethite, lepidocrocite and hematite. Such a transformation may affect the fixed ability of arsenic. In this study, the stability of Fe-As composites formed with As(V) and the minerals aged for 0, 1, 4, 10 and 30 days of ferrihydrite were systematically examined, and the effects of molar of ratios Fe/As were also clarified using kinetic methods combined with multiple spectroscopic techniques. The results indicated that As(V) was rapidly adsorbed on minerals during the initial polymerization process, which delayed both the ferrihydrite conversion and the hematite formation. When the Fe/As molar ratio was 1.875 and 5.66, the As(V) adsorbed by ferrihydrite began to release after 6 hr and 12 hr, respectively. The corresponding release amounts of As(V) were 0.55 g/L and 0.07 g/L, and the adsorption rates were 92.43% and 97.50% at 60 days, respectively. However, the As(V) adsorbed by the transformation products aged for 30 days of ferrihydrite began to release after adsorbed 30 days. The corresponding release amounts of As(V) were 0.25 g/L and 0.03 g/L, and the adsorption rates were 84.23% and 92.18% after adsorbed 60 days, for the Fe/As=1.875 and 5.66, respectively. Overall, the combination of As(V) with ferrihydrite and aged products transformed from a thermodynamically metastable phase to a dynamically stable state within a certain duration. Moreover, the aging process of ferrihydrite reduced the sorption ability of arsenate by iron (hydr)oxide but enhanced the stability of the Fe-As composites.
Collapse
Affiliation(s)
- Zhonglan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyu Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Cuixia Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Benhua Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Li Y, Yang M, Pentrak M, He H, Arai Y. Carbonate-Enhanced Transformation of Ferrihydrite to Hematite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13701-13708. [PMID: 33089996 DOI: 10.1021/acs.est.0c04043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An elevated activity of (bi)carbonate in soils and sediments (pCO2, ∼2%) above current atmospheric CO2 (∼0.04%) could influence the iron cycling in mineral-water interfacial chemistry. However, the impact of (bi)carbonate on mineral transformation is unclear. Here, a model short range-ordered iron oxyhydroxide, two-line ferrihydrite, was used to evaluate the impact of (bi)carbonate on mineral transformation at near-neutral pH using experimental geochemistry, X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Results showed that (bi)carbonate promoted the transformation of ferrihydrite to hematite and retarded the goethite formation. As pCO2 increased from 408 to 20,000 ppmv at 40 °C, the transformation efficiency of ferrihydrite increased from 53 to 95%, and the formation of hematite increased from 13 to 76%. During the formation of hematite, a terminal ligand on a Fe(III)O6 octahedral monomer such as a hydroxyl or water was displaced to form Fe(III)O6 octahedral dimers and/or polymers. Because the Fe-O bond of ≡(Fe-O)2-CO is much weaker than that of ≡Fe-O-H, the -O2CO group can be more easily replaced by two terminal -OH groups; the dehydration/rearrangement between Fe(III)O6 octahedral monomers was enhanced under high pCO2. Results suggest that high carbonate activity is an important geochemical parameter controlling the occurrence of hematite in oxic environments and, in turn, iron cycling in the critical zone.
Collapse
Affiliation(s)
- Ying Li
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Martin Pentrak
- Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, United States
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Barreto MSC, Elzinga EJ, Alleoni LRF. Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114196. [PMID: 32163805 DOI: 10.1016/j.envpol.2020.114196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a toxic element that leads the list of human health threats and is one of the priority contaminants in soil and water. In order to remove As(V) and/or reduce its mobility, filters and amendments with high affinity for As(V) adsorption are used in drinking water treatment or directly applied to the soil, thereby promoting its immobilization. Hausmannite and hematite were compared by in-situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy and batch experiments for evaluating As(V) adsorption and sequential desorption by citrate. The pH and contact time were used as variables. Hausmanite adsorbed more As(V) than hematite. As(V) was adsorbed on the mineral surface of simultaneously inner- and outer-sphere species. Inner-sphere bidentate complex form preferentially at high pH, early adsorption time and low surface loading, while the monodentate species should be responsible to increase total As(V) adsorption at low pH, later adsorption kinetics and higher As(V) surface loading. Citrate was effective in causing As(V) desorption at higher citric acid concentrations and higher pH values. After a long time of incubation, the neogenesis of a manganite by hausmnannite oxidation was observed. Concomitantly, less As(V) was desorbed by citrate desorption, even in the presence of high citric acid concentrations. Hausmannite was an efficient mineral for As(V) removal and immobilization.
Collapse
Affiliation(s)
- Matheus Sampaio C Barreto
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil; Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, USA.
| | - Evert J Elzinga
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Luís Reynaldo F Alleoni
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
37
|
Shi Z, Hu S, Lin J, Liu T, Li X, Li F. Quantifying Microbially Mediated Kinetics of Ferrihydrite Transformation and Arsenic Reduction: Role of the Arsenate-Reducing Gene Expression Pattern. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6621-6631. [PMID: 32352764 DOI: 10.1021/acs.est.9b07137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The behavior of arsenic (As) is usually coupled with iron (Fe) oxide transformation and mediated by both abiotic reactions and microbial processes in the environment. However, quantitative models for the coupled kinetic processes, which specifically consider the arsenate-reducing gene expression correspondent to different reaction conditions, are lacking. In this study, based on the pure cultured Shewanella putrefaciens incubation experiments, extended X-ray absorption fine structure spectroscopy, high resolution transmission electron microscopy, and a suite of microbial analyses, we developed a coupled kinetics model for microbially mediated As reduction and Fe oxide transformation and specifically quantified the As(V) reduction rate coefficients based on the expression patterns of arrA genes. The model reasonably described the temporal changes of As speciation and distribution. The microbial reduction rates of As(V) varied dramatically during the reactions, which were well represented by the varying transcript abundances of arrA genes at different As concentrations. The contributions of biotic and abiotic reactions to the overall reaction rates were assessed. The results improved our quantitative understanding on the key role of As(V)-reducing genes in regulating the speciation and distribution of As. The kinetic modeling approaches based on microbial gene expression patterns are promising for developing comprehensive biogeochemical models of As involving multiple coupled reactions.
Collapse
Affiliation(s)
- Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shiwen Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jingyi Lin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, People's Republic of China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, People's Republic of China
| |
Collapse
|
38
|
Zhang D, Wang S, Gomez MA, Wang Y, Jia Y. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention. CHEMOSPHERE 2019; 237:124503. [PMID: 31398610 DOI: 10.1016/j.chemosphere.2019.124503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
The coprecipitation of arsenic with Fe(III) by lime neutralization is widely used in industrial practices to treat arsenic-containing waste waters generated from mineral processing operations. In this work, coprecipitation was conducted directly at pH 8 to simulate the operations in hydrometallurgical practices, which differed from the conventional laboratory operations. Moreover, although ferric is the major species of iron in arsenic-containing waste waters, the coexistence of ferrous ions cannot be ignored. Therefore, the effect of different neutralization modes, as well as the effect of ferrous ions on the removal of arsenic and the stability of the generated arsenic-bearing wastes, was systematically investigated. The result showed that arsenic was still released back into the liquid phase under alkaline conditions even for the samples formed directly at alkaline pH. It was found that the extra addition of Fe(II) may exert negative effect on the stability of the as-formed Fe(II)-Fe(III)-As(V) coprecipitates at pH 7 - 10. The concentration of ferrous ions in the liquid/solid phase decreased with increasing pH for each sample formed at different Fe(II)/Fe(tot). The results indicated that complete oxidation of the ferrous ions before coprecipitation with arsenic should be conducted to achieve optimal stability of the arsenic-bearing wastes for hydrometallurgical practice and waste disposal.
Collapse
Affiliation(s)
- Danni Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Mario A Gomez
- Institute of Environmental Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Ying Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
39
|
Zhang D, Wang S, Wang Y, Gomez MA, Jia Y. The long-term stability of calcium arsenates: Implications for phase transformation and arsenic mobilization. J Environ Sci (China) 2019; 84:29-41. [PMID: 31284914 DOI: 10.1016/j.jes.2019.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
It is well known that calcium arsenates may not be a good choice for arsenic removal and immobilization in hydrometallurgical practices. However, they are still produced at some plants in the world due to various reasons. Furthermore, calcium arsenates can also naturally precipitate under some specific environments. However, the transformation process of poorly crystalline calcium arsenates (PCCA) and the stability of these samples under atmospheric CO2 are not yet well understood. This work investigated the transformation process of PCCA produced by using different neutralization reagents (CaO vs. NaOH) with various Ca/As molar ratios at pH 7-12 in the presence of atmospheric CO2. After aging at room temperature for a period of time, for samples neutralized with NaOH and precipitated at pH 10 and 12, release of arsenic back into the liquid phase occurred. In contrast, for the samples precipitated at pH 8, the aqueous concentration of arsenic was observed to decrease. XRD, Raman, and SEM results suggested that the formation of various types of crystalline calcium carbonates and/or calcium arsenates controls the arsenic behavior. Moreover, the application of lime may enhance the stability of the generated PCCA. However, no matter what neutralization reagent is used, the stability of the generated PCCA is still of concern.
Collapse
Affiliation(s)
- Danni Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Ying Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mario A Gomez
- Institute of Environmental Protection, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
40
|
Lin J, Hu S, Liu T, Li F, Peng L, Lin Z, Dang Z, Liu C, Shi Z. Coupled Kinetics Model for Microbially Mediated Arsenic Reduction and Adsorption/Desorption on Iron Oxides: Role of Arsenic Desorption Induced by Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8892-8902. [PMID: 31246435 DOI: 10.1021/acs.est.9b00109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dynamic behavior of arsenic (As) species is closely associated with iron mineral dissolution/transformation in the environment. Bacterially induced As(V) desorption from iron oxides may be another important process that facilitates As(V) release from iron oxides without significant reductive dissolution of iron oxides. Under the impact of bacterially induced desorption, As kinetic behavior is controlled by both the microbial reduction of As(V) and the As(III)&As(V) reactions on iron oxide surfaces. However, there is still a lack of quantitative understanding on the coupled kinetics of these processes in complex systems. We developed a quantitative model that integrated the time-dependent microbial reduction of As(V) with nonlinear As(III)&As(V) adsorption/desorption kinetics on iron oxides under the impact of bacterially induced As(V) desorption. We collected and modeled literature data from 11 representative studies, in which microbial reduction reactions occurred with minimal iron oxide dissolution/transformation. Our model highlighted the significance of microbially induced As(V) desorption and time-dependent changes of microbial reduction rates. The model can quantitatively assess the roles and the coupling of individual reactions in controlling the overall reaction rates. It provided a basis for developing comprehensive models for As cycling in the environment by coupling with other chemical, physical, and microbial processes.
Collapse
Affiliation(s)
- Jingyi Lin
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Shiwen Hu
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control , Guangdong Institute of Eco-Environmental Science and Technology , Guangzhou , Guangdong 510650 , People's Republic of China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control , Guangdong Institute of Eco-Environmental Science and Technology , Guangzhou , Guangdong 510650 , People's Republic of China
| | - Lanfang Peng
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Zhang Lin
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Zhi Dang
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| |
Collapse
|
41
|
Zhang D, Wang S, Gomez MA, Wang Y, Jia Y. The long-term stability of Fe III-As V coprecipitates at pH 4 and 7: Mechanisms controlling the arsenic behavior. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:276-286. [PMID: 31009892 DOI: 10.1016/j.jhazmat.2019.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Hydrometallurgical FeIII-AsV coprecipitates, which are amorphous in nature, could re-crystallize gradually and pose risks of contamination to the environment. However, the mechanisms controlling the As behavior when the FeIII-AsV coprecipitates stored at different pHs is still not fully understood. This work systematically investigated the fate of As and the transformation process of the coprecipitates (Fe/As = ˜4) at different pHs and temperatures. XRD, EXAFS, HRTEM, and chemical extraction methods were employed to characterize the crystallinity degrees and the transformation products of the coprecipitates. The results showed that the coprecipitates are more stable at acidic pH than at neutral pH. For those samples aged at pH 4, the arsenic speciation includes poorly crystalline ferric arsenate (PCFA) and As adsorbed on 2-line ferrihydrite (Fh). Due to the presence of PCFA, the Fe/As molar ratio for the latter phase is much higher than the bulk Fe/As molar ratio (˜4 in this work) of the coprecipitates and controls As release. However, for those samples aged at pH 7, due to the fact that 2-line Fh is the major As-bearing phase, slight changes of the crystallinity degrees of 2-line Fh will trigger As release.
Collapse
Affiliation(s)
- Danni Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Mario A Gomez
- Institute of Environmental Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Ying Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
42
|
Hu S, Lu Y, Peng L, Wang P, Zhu M, Dohnalkova AC, Chen H, Lin Z, Dang Z, Shi Z. Coupled Kinetics of Ferrihydrite Transformation and As(V) Sequestration under the Effect of Humic Acids: A Mechanistic and Quantitative Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11632-11641. [PMID: 30230819 DOI: 10.1021/acs.est.8b03492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In natural environments, kinetics of As(V) sequestration/release is usually coupled with dynamic Fe mineral transformation, which is further influenced by the presence of natural organic matter (NOM). Previous work mainly focused on the interactions between As(V) and Fe minerals. However, there is a lack of both mechanistic and quantitative understanding on the coupled kinetic processes in the As(V)-Fe mineral-NOM system. In this study, we investigated the effect of humic acids (HA) on the coupled kinetics of ferrihydrite transformation into hematite/goethite and sequestration of As(V) on Fe minerals. Time-resolved As(V) and HA interactions with Fe minerals during the kinetic processes were studied using aberration-corrected scanning transmission electron microscopy, chemical extractions, stirred-flow kinetic experiments, and X-ray absorption spectroscopy. Based on the experimental results, we developed a mechanistic kinetics model for As(V) fate during Fe mineral transformation. Our results demonstrated that the rates of As(V) speciation changes within Fe minerals were coupled with ferrihydrite transformation rates, and the overall reactions were slowed down by the presence of HA that sorbed on Fe minerals. Our kinetics model is able to account for variations of Fe mineral compositions, solution chemistry, and As(V) speciation, which has significant environmental implications for predicting As(V) behavior in the environment.
Collapse
Affiliation(s)
- Shiwen Hu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Yang Lu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Lanfang Peng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Pei Wang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Alice C Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Hong Chen
- SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 , United States
| | - Zhang Lin
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy , South China University of Technology , Guangzhou , Guangdong 510006 , People's Republic of China
| |
Collapse
|
43
|
Aqueous Fe(II)-Induced Phase Transformation of Ferrihydrite Coupled Adsorption/Immobilization of Rare Earth Elements. MINERALS 2018. [DOI: 10.3390/min8080357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phase transformation of iron minerals induced by aqueous Fe(II) (Fe(II)aq) is a critical geochemical reaction which greatly affects the geochemical behavior of soil elements. How the geochemical behavior of rare earth elements (REEs) is affected by the Fe(II)aq-induced phase transformation of iron minerals, however, is still unknown. The present study investigated the adsorption and immobilization of REEs during the Fe(II)aq-induced phase transformation of ferrihydrite. The results show that the heavy REEs of Ho(III) were more efficiently adsorbed and stabilized compared with the light REEs of La(III) by ferrihydrite and its transformation products, which was due to the higher adsorptive affinity and smaller atomic radius of Ho(III). Both La(III) and Ho(III) inhibited the Fe atom exchange between Fe(II)aq and ferrihydrite, and sequentially, the Fe(II)aq-induced phase transformation rates of ferrihydrite, because of the competitive adsorption with Fe(II)aq on the surface of iron (hydr)oxides. Owing to the larger amounts of adsorbed and stabilized Ho(III), the inhibition of the Fe(II)aq-induced phase transformation of ferrihydrite affected by Ho(III) was higher than that by La(III). Our findings suggest an important role for the Fe(II)aq-induced phase transformation of iron (hydr)oxides in assessing the mobility and transfer behavior of REEs, as well as for their occurrence in earth surface environments.
Collapse
|
44
|
Shi Q, Jing C, Meng X. Competing Interactions of As Adsorption and Fe(III) Polymerization during Ferric Coprecipitation Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7343-7350. [PMID: 29856217 DOI: 10.1021/acs.est.8b01845] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study revealed the effect of As on the formation and dissolution of iron (hydr)oxides and its further impact on the As removal efficacy of FeCl3 treatment. Adding 6.7 mg/L FeCl3 into 325 μg/L As solution (coprecipitation) resulted in more As removal (99% As(V) and 75% As(III)) at 2 min than adding As into aged FeCl3 solution (preaged, 52-87% As(V) and 7-42% As(III)) at pH 7. However, soluble As gradually increased in the coprecipitation system and decreased in the preaged system to give similar concentrations during 800 h aging. The particle size of the iron (hydr)oxides increased more slowly in the coprecipitation than in the preaged systems. These results suggest the rapid adsorption of As on Fe polymer during the initial polymerization process, which delays the growth of iron (hydr)oxides. Thermodynamically, quantum chemical calculations implied that iron ions adsorption on iron (hydr)oxide polymer was more stable than As adsorption, which is the main driving force for the As release during aging process. This study improved our understanding of the kinetic and thermodynamic processes of As adsorption and iron (hydr)oxide precipitation in the coprecipitation treatment of As, and the potential for As release during aging of sludge generated in the treatment.
Collapse
Affiliation(s)
- Qiantao Shi
- Center for Environmental Systems , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Xiaoguang Meng
- Center for Environmental Systems , Stevens Institute of Technology , Hoboken , New Jersey 07030 , United States
| |
Collapse
|
45
|
Liu J, Zhu R, Xu T, Laipan M, Zhu Y, Zhou Q, Zhu J, He H. Interaction of polyhydroxy fullerenes with ferrihydrite: adsorption and aggregation. J Environ Sci (China) 2018; 64:1-9. [PMID: 29478628 DOI: 10.1016/j.jes.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 06/08/2023]
Abstract
The rapid development of nanoscience and nanotechnology, with thousands types of nanomaterials being produced, will lead to various environmental impacts. Thus, understanding the behaviors and fate of these nanomaterials is essential. This study focused on the interaction between polyhydroxy fullerenes (PHF) and ferrihydrite (Fh), a widespread iron (oxyhydr)oxide nanomineral and geosorbent. Our results showed that PHF were effectively adsorbed by Fh. The adsorption isotherm fitted the D-R model well, with an adsorption capacity of 67.1mg/g. The adsorption mean free energy of 10.72kJ/mol suggested that PHF were chemisorbed on Fh. An increase in the solution pH and a decrease of the Fh surface zeta potential were observed after the adsorption of PHF on Fh; moreover, increasing initial solution pH led to a reduction of adsorption. The Fourier transform infrared spectra detected a red shift of C-O stretching from 1075 to 1062cm-1 and a decrease of Fe-O bending, implying the interaction between PHF oxygenic functional groups and Fh surface hydroxyls. On the other hand, PHF affected the aggregation and reactivity of Fh by changing its surface physicochemical properties. Aggregation of PHF and Fh with individual particle sizes increasing from 2nm to larger than 5nm was measured by atomic force microscopy. The uniform distribution of C and Fe suggested that the aggregates of Fh were possibly bridged by PHF. Our results indicated that the interaction between PHF and Fh could evidently influence the migration of PHF, as well as the aggregation and reactivity of Fh.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runliang Zhu
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China.
| | - Tianyuan Xu
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingwang Laipan
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanping Zhu
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhou
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research & Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Huhmann BL, Harvey CF, Uddin A, Choudhury I, Ahmed KM, Duxbury JM, Bostick BC, van Geen A. Field Study of Rice Yield Diminished by Soil Arsenic in Bangladesh. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11553-11560. [PMID: 28929748 PMCID: PMC5645253 DOI: 10.1021/acs.est.7b01487] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rice was traditionally grown only during the summer (aman) monsoon in Bangladesh but more than half is now grown during the dry winter (boro) season and requires irrigation. A previous field study conducted in a small area irrigated by a single high-arsenic well has shown that the accumulation of arsenic (As) in soil from irrigating with high-As groundwater can reduce rice yield. We investigated the effect of soil As on rice yield under a range of field conditions by exchanging the top 15 cm of soil between 13 high-As and 13 low-As plots managed by 16 different farmers, and we explore the implications for mitigation. Soil As and rice yields were measured for soil replacement plots where the soil was exchanged and adjacent control plots where the soil was not exchanged. Differences in yield (ranging from +2 to -2 t/ha) were negatively correlated to the differences in soil As (ranging from -9 to +19 mg/kg) between adjacent replacement and control plots during two boro seasons. The relationship between soil As and yield suggests a boro rice yield loss over the entire country of 1.4-4.9 million tons annually, or 7-26% of the annual boro harvest, due to the accumulation of As in soil over the past 25 years.
Collapse
Affiliation(s)
- Brittany L. Huhmann
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Corresponding Author: Phone: 617-258-0392; , Address: Civil and Environmental Engineering, 48-208, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Charles F. Harvey
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anjal Uddin
- Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Imtiaz Choudhury
- Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kazi M. Ahmed
- Department of Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - John M. Duxbury
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| | - Benjamin C. Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| |
Collapse
|
47
|
Peng X, Xi B, Zhao Y, Shi Q, Meng X, Mao X, Jiang Y, Ma Z, Tan W, Liu H, Gong B. Effect of Arsenic on the Formation and Adsorption Property of Ferric Hydroxide Precipitates in ZVI Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10100-10108. [PMID: 28777912 DOI: 10.1021/acs.est.7b02635] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treatment of arsenic by zerovalent iron (ZVI) has been studied extensively. However, the effect of arsenic on the formation of ferric hydroxide precipitates in the ZVI treatment has not been investigated. We discovered that the specific surface area (ca. 187 m2/g) and arsenic content (ca. 67 mg/g) of the suspended solids (As-containing solids) generated in the ZVI treatment of arsenic solutions were much higher than the specific surface area (ca. 37 m2/g) and adsorption capacity (ca.12 mg/g) of the suspended solids (As-free solids) generated in the arsenic-free solutions. Arsenic in the As-containing solids was much more stable than the adsorbed arsenic in As-free solids. XRD, SEM, TEM, and selected area electron diffraction (SAED) analyses showed that the As-containing solids consisted of amorphous nanoparticles, while the As-free solids were composed of micron particles with weak crystallinity. Extended X-ray absorption fine structure (EXAFS) analysis determined that As(V) was adsorbed on the As-containing suspended solids and magnetic solid surfaces through bidentate binuclear complexation; and As(V) formed a mononuclear complex on the As-free suspended solids. The formation of the surface As(V) complexes retarded the bonding of free FeO6 octahedra to the oxygen sites on FeO6 octahedral clusters and prevented the growth of the clusters and their development into 3-dimensional crystalline phases.
Collapse
Affiliation(s)
- Xing Peng
- School of Environment, Beijing Normal University , Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology , Hoboken, New Jersey 07030, United States
| | - Xuhui Mao
- School of Resource and Environmental Science, Wuhan University , Wuhan 430079, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Zhifei Ma
- School of Environment, Beijing Normal University , Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Hongliang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| | - Bin Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences , Beijing 100012, China
| |
Collapse
|
48
|
Essilfie-Dughan J, Hendry MJ, Dynes JJ, Hu Y, Biswas A, Lee Barbour S, Day S. Geochemical and mineralogical characterization of sulfur and iron in coal waste rock, Elk Valley, British Columbia, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:753-769. [PMID: 28202241 DOI: 10.1016/j.scitotenv.2017.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Exposure of coal waste rock to atmospheric oxygen can result in the oxidation of sulfide minerals and the release of sulfate (SO42-) and associated trace elements (e.g., Se, As, Cd, and Zn) to groundwaters and surface waters. Similarly, reduced iron minerals such as siderite, ankerite, and the sulfide, pyrite, present in the waste rock can also undergo oxidation, resulting in the formation of iron oxyhydroxides that can adsorb trace elements released from the oxidation of the sulfide minerals. Characterization and quantification of the distribution of sulfide and iron minerals, their oxidation products, as well as leaching rates are critical to assessing present-day and future impacts of SO42- and associated trace elements on receiving waters. Synchrotron-based X-ray absorption near edge spectroscopic analysis of coal waste rock samples from the Elk Valley, British Columbia showed Fe present as pyrite (mean 6.0%), siderite (mean 44.3%), goethite (mean 35.4%), and lepidocrocite (mean 14.3%) with S present as sulfide (mean 26.9%), organic S (mean 58.7%), and SO42- (mean 14.4%). Squeezed porewater samples from dump solids yielded mean concentrations of 0.28mg/L Fe and 1246mg/L SO42-. Geochemical modeling showed the porewaters in the dumps to be supersaturated with respect to Fe oxyhydroxides and undersaturated with respect to gypsum, consistent with solids analyses. Coupling Fe and S mineralogical data with long-term water quality and quantity measurements from the base of one dump suggest about 10% of the sulfides (which represent 2% of total S) in the dump were oxidized over the past 30years. The S from these oxidized sulfides was released to the receiving surface water as SO42- and the majority of the Fe precipitated as secondary Fe oxyhydroxides (only 3.0×10-5% of the Fe was released to the receiving waters over the past 30years). Although the data suggest that the leaching of SO42- from the waste rock dump could continue for about 300years, assuming no change in the rate of oxidation of sulfides, SO42- is currently not a concern in receiving surface waters as the concentration levels are below regulatory limits.
Collapse
Affiliation(s)
- Joseph Essilfie-Dughan
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - M Jim Hendry
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - James J Dynes
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada.
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada.
| | - Ashis Biswas
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - S Lee Barbour
- Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - S Day
- SRK Consulting (Canada) Inc., 22nd Floor, 1066 West Hastings Street, Vancouver, BC V6E 3X2, Canada.
| |
Collapse
|
49
|
Cao L, Jiang ZX, Du YH, Yin XM, Xi SB, Wen W, Roberts AP, Wee ATS, Xiong YM, Liu QS, Gao XY. Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2643-2651. [PMID: 28125227 DOI: 10.1021/acs.est.6b04716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As an iron oxyhydroxide, nanosized ferrihydrite (Fh) is important in Earth science, biology, and industrial applications. However, its basic structure and origin of its magnetism have long been debated. We integrate synchrotron-based techniques to explore the chemical structures of 2-line ferrihydrite and to determine the origin of its magnetism during hydrothermal aging in air. Our results demonstrate that both the magnetism and X-ray magnetic circular dichroism (XMCD) signal of 2-line ferrihydrite are enhanced with aging time, and that XMCD spectral patterns resemble that of maghemite (γ-Fe2O3) rather than magnetite (Fe3O4). Fe L-edge and K-edge X-ray absorption spectroscopy (XAS) further indicate formation of both maghemite and hematite (α-Fe2O3) with increasing concentrations with longer hydrothermal aging time. Thus, magnetic enhancement with longer hydrothermal aging time is attributed to increasing maghemite concentration instead of a magnetically ordered ferrihydrite as previously reported. Moreover, L-edge and K-edge XAS spectra with different probing depths yield different ratios of these Fe oxides, which suggest the formation of a core (ferrihydrite-rich)-shell (with a mixture of both allotropes; α-Fe2O3 and γ-Fe2O3) structure during hydrothermal aging. Our results provide insights into the chemical evolution of 2-line ferrihydrite that reveal unambiguously the origin of its magnetism.
Collapse
Affiliation(s)
- Liang Cao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , P.O. Box 800-204, Shanghai, 201800, P. R. China
- High Magnetic Field Laboratory, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui, 230031, P. R. China
| | - Zhao-Xia Jiang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences , 19 Beitucheng Western Road, Beijing, 100029, P. R. China
| | - Yong-Hua Du
- Institute of Chemical and Engineering Sciences , A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Xin-Mao Yin
- Department of Physics, National University of Singapore , 2 Science Drive 3, 117542, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University , Shenzhen, 518060, P. R. China
| | - Shi-Bo Xi
- Institute of Chemical and Engineering Sciences , A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wen Wen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , P.O. Box 800-204, Shanghai, 201800, P. R. China
| | - Andrew P Roberts
- Research School of Earth Sciences, The Australian National University , 142 Mills Road, Canberra, ACT 2601, Australia
| | - Andrew T S Wee
- Department of Physics, National University of Singapore , 2 Science Drive 3, 117542, Singapore
| | - Yi-Min Xiong
- High Magnetic Field Laboratory, Chinese Academy of Sciences , 350 Shushanhu Road, Hefei, Anhui, 230031, P. R. China
| | - Qing-Song Liu
- Department of Marine Science and Engineering, Southern University of Science and Technology of China , Shenzhen, 518055, P. R. China
- Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Science and Technology , Qingdao, 266071, P. R. China
| | - Xing-Yu Gao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences , P.O. Box 800-204, Shanghai, 201800, P. R. China
| |
Collapse
|
50
|
Biswas A, Hendry MJ, Essilfie-Dughan J. Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:396-408. [PMID: 27890409 DOI: 10.1016/j.scitotenv.2016.11.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO42- in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley.
Collapse
Affiliation(s)
- Ashis Biswas
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - M Jim Hendry
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Joseph Essilfie-Dughan
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|