1
|
Zheng WR, Li YZ, Xu J, Liu KX, Liu FH, Xing WY, Liu JX, Wu L, Li XY, Huang DH, Gong TT, Wu QJ. Urinary concentrations of phthalate metabolites and the survival of high-grade serous ovarian cancer with advanced stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125895. [PMID: 39984016 DOI: 10.1016/j.envpol.2025.125895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Phthalates have been reported to increase the risk of various hormone-dependent cancers. However, there is still a lack of evidence regarding the association between phthalates and overall survival (OS) in advanced high-grade serous ovarian cancer (HGSOC). This study investigated the relationship between urinary phthalate metabolites and OS in patients with HGSOC using a nested case-control study within the Ovarian Cancer Follow-Up Study. We matched 159 deceased patients with HGSOC to 159 survivors by age at diagnosis, body mass index, and sampling date. Spot urine samples were analyzed for ten phthalate metabolites and five classes of phthalate molar sums via mass spectrometry. Conditional logistic regression models were employed to calculate odds ratios (ORs) and 95% confidence intervals (CIs), comparing the highest tertile with the lowest. We found that the highest tertiles of mono-2-ethyl-5-oxohexyl phthalates and monoethyl phthalates were associated with poorer OS, with ORs (95%CIs) being 4.24 (1.46, 12.32) and 3.28 (1.16, 9.22), respectively. Additionally, the highest tertiles of the sum of di(2-ethylhexyl) phthalate metabolites, the sum of high-molar-weight phthalate metabolites, and the sum of 10 phthalate metabolites, were associated with worse OS, with ORs (95%CIs) were 18.4 (4.14, 81.87), 9.28 (2.87, 30.08), and 5.94 (2.00, 17.64), respectively. Our study suggests that exposure to high levels of phthalates may be associated with poorer OS in patients with advanced HGSOC, particularly exposure to di(2-ethylhexyl) phthalates. Since it is widely used in personal care products, avoiding the use of these products may improve the OS of patients with HGSOC.
Collapse
Affiliation(s)
- Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke-Xin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
2
|
Bonilla-Enriquez G, Caballero-Morales SO. Analyzing exposure risks in warehousing due to the presence of phthalate contamination. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2025:1-8. [PMID: 40028764 DOI: 10.1080/10803548.2024.2444141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phthalate esters (PAEs) are widely used in plastic consumer products and many studies published to date have associated these chemicals with severe human health problems. Particularly, the risks within warehouses, which involve large quantities of PAE sources stored in closed spaces, have not been addressed. This article presents an integrated inventory control model to determine the periods within the supply cycle where concentrations of PAEs are likely to represent a risk for the warehouse personnel. This model considers the dynamic aspect of the warehouse supply and consumption mechanisms, and links it to the release patterns of PAEs in closed environments which depend on the type of materials, temperature and time. Numerical analysis corroborates that, in certain periods of time, concentrations of PAEs in the warehouse can exceed permissible levels for humans, and thus the use of appropriate protective wear and decontamination procedures should be established.
Collapse
Affiliation(s)
- Gladys Bonilla-Enriquez
- Department of Logistics, National Technological Institute of Mexico - Puebla Institute of Technology (TecNM - ITP), Mexico
| | | |
Collapse
|
3
|
Li Q, Zhang Y, Zha H, Xu L, Su Y, Jiang H, Li L. Short-term subacute di(2-ethylhexyl) phthalate exposure disrupts gut microbiota, metabolome, liver transcriptome, immunity, and induces liver injury in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117948. [PMID: 40009945 DOI: 10.1016/j.ecoenv.2025.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/12/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is recognised as a pollutant with multiple health risks. In this study, multi-omics approaches were used to examine the alterations in immunity, gut microbiota and metabolome, and liver transcriptome in the rats with DEHP-induced subacute liver injury. Following short-term subacute DEHP exposure, the rats exhibited decreased body weight, increased liver weight, impaired liver function and immunity, and signs of liver injury. DEHP exposure reduced the richness, diversity, and evenness of gut microbiota, resulting in elevated levels of Lactobacillus, Romboutsia, and Alistipes and decreased levels of unclassified Muribaculaceae, Oscillibacter, and Akkermansia in the intestine. Multiple gut metabolic pathways were altered by DEHP, among which sphingolipid metabolism was enriched with the most differentially expressed metabolites. In the liver tissues of rats exposed to DEHP, lipid metabolism-related pathways were altered, including downregulated steroid biosynthesis and upregulated fatty acid degradation. In conclusion, the relevant findings suggest that DEHP can cause immune alteration, gut microbiota dysbiosis, gut metabolome disruption, liver transcriptome dysregulation, and result in liver injury in rats. These results could benefit the clinical diagnosis of DEHP-induced subacute liver injury.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Lvwan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - He Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City 310003, China.
| |
Collapse
|
4
|
Dong L, Qi X, Lin L, Zhao K, Yin G, Zhao L, Pan X, Wu Z, Gao Y. Characteristics, sources, and concentration prediction of endocrine disruptors in a large reservoir driven by hydrological rhythms: A case study of the Danjiangkou Reservoir. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136779. [PMID: 39642733 DOI: 10.1016/j.jhazmat.2024.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Herein, we present the first systematic investigation to clarify the effect of hydrological rhythms on the concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) in the Danjiangkou Reservoir. The results revealed that hydrological rhythms remarkably affected the PAH and PAE concentrations and distributions in the water body, wherein the PAH concentration peaked in the flood season while the PAE concentration remarkably increased in the dry season. This study represents methodological innovation, revealing significant heterogeneity of PAHs and PAEs across different water layers. The former compounds tended to accumulate in the water body's bottom layer while the latter compounds had the highest concentration at the surface layer, which can be attributed to the different physicochemical properties and environmental transport behaviors of the two compound types. The overall concentrations of PAHs and PAEs fall within the international and domestic safety standards. The primary sources of these contaminants-coal and biomass combustion for PAHs and widespread use of plastic products for PAEs-are critical areas of regulatory focus. A machine learning model is proposed for the first time for predicting PAE concentrations in the Danjiangkou Reservoir, primarily based on the stacking model and supplemented by the random forest or XGBoost models.
Collapse
Affiliation(s)
- Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xingrui Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430074, PR China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China.
| | - Kefeng Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangyuan Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Zhiguang Wu
- Changjiang Technology and Economy Society, Wuhan 430074, PR China
| | - Yu Gao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| |
Collapse
|
5
|
Lv J, Sun S, Wu R, Li X, Bai Y, Xu J, Guo C. Phthalate esters in dusts from different indoor and outdoor microenvironment and potential human health risk: A case study in Beijing. ENVIRONMENTAL RESEARCH 2025; 266:120513. [PMID: 39631649 DOI: 10.1016/j.envres.2024.120513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Phthalate esters (PAEs) are widely used plasticizers that can easily migrate from plastic products, thereby presenting potential health risks through exposure. While PAE concentrations in dust have received increasing attention, there is still a lack of comprehensive understanding regarding their environmental distribution, composition profiles, and associated human exposure risks in Beijing. This study investigated the presence of seven PAEs in 124 dust samples collected from eight indoor and four outdoor microenvironment types across the Beijing metropolitan area. The PAEs were detected universally in all samples, with di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and di-iso-butyl phthalate (DIBP) as the predominant compounds, accounting for 91.78%-99.91% and 91.22%-99.76% of total PAE concentrations (Σ7PAEs) in indoor and outdoor dust, respectively. Indoor dust exhibited significantly higher Σ7PAEs (range: 45.33-1212.41 μg/g, mean: 130.61 μg/g) compared to outdoor dust (range: 2.10-5.41 μg/g, mean: 3.38 μg/g). Among indoor microenvironments, taxis had the highest Σ7PAEs (mean: 1250.59 μg/g), followed by private cars, print shops, residences, furniture shops, shopping malls, dormitories and offices. Outdoor Σ7PAEs levels decreased in the order of roads, residential areas, green belts, and parks. Estimated daily exposure doses through dust ingestion were significantly higher than those from dermal absorption and inhalation for five occupational groups (taxi drivers, print shop workers, road workers, office workers, jobless people), indicating dust ingestion as the primary exposure route, with DEHP and DBP as the main contributors. While current exposure levels may not present significant non-cancer risks based on hazard quotient and hazard index estimations, it's noteworthy that DEHP may pose a carcinogenic risk to taxi drivers. Potential risks cannot be overlooked considering the absence of toxicity thresholds, additional exposure pathways, and possible cocktail effects from coexisting pollutants.
Collapse
Affiliation(s)
- Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shanwei Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xu Li
- Beijing Jianhua Experimental E-Town School, Beijing, 100023, China
| | - Yangwei Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
6
|
Liu H, Liu X, Wang K, Ma X, Gao H, Liu X, Yan C. The occurrence and safety evaluation of phthalic acid esters in Oasis agricultural soils of Xinjiang, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117593. [PMID: 39953690 DOI: 10.1016/j.ecoenv.2024.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Soil pollution caused by plastic residues containing additives (e.g. phthalic acid esters (PAEs)) is ubiquitous and has become a global concern. However, the distribution, accumulation, and potential risks associated with PAEs in agricultural soils have not been fully explored. This study quantified the types, concentrations, and distribution patterns of common PAEs in 29 agricultural soil samples collected from the Xinjiang Oasis, China. The results indicated that no significant variation in PAE concentrations across the oasis farmlands in Xinjiang. The PAEs were predominantly concentrated in the topsoil layer (0-20 cm), with an average concentration of 102.3 μg/kg, with some migration observed to the deeper soil layer (20-40 cm). The most abundant PAEs detected were Di (2-ethylhexyl) phthalate (DEHP), diisobutyl phthalate (DIBP), and diethyl phthalate (DEP), which accounted for 49.82 %, 23.74 %, and 20.96 % of the total, respectively. Furthermore, the concentrations of all PAEs were below China's soil quality risk control standards, and the non-carcinogenic risks to both adults and children were below the current threshold, indicating relatively low risks to both the human health and the environment. These findings are crucial for understanding the presence and safety evaluation of PAEs in Xinjiang Oasis farmland, and they provide important reference data for managing and controlling PAE contamination in agricultural soils.
Collapse
Affiliation(s)
- Hejiang Liu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Xiuting Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Xingwang Ma
- Institute of Soil, Fertilizer and Water-saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, PR China.
| | - Haihe Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
7
|
Chen Z, Tian E, Jiang Y, Mo J. Global perspectives on indoor phthalates and alternative plasticizers: Occurrence and key transport parameters. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136506. [PMID: 39577293 DOI: 10.1016/j.jhazmat.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Phthalates and emerging alternative plasticizers have garnered significant attention due to their ubiquitous presence indoors and potential adverse health effects. However, the occurrences and key transport parameters of indoor alternative plasticizers have not been sufficiently summarized and analyzed, complicating exposure evaluation and pollution control efforts. This study addresses the gap by providing a comprehensive overview of the occurrence and key transport parameters of the most reported plasticizers, including 10 phthalates and 14 alternative plasticizers. The plasticizer content in source materials was found to range up to 27.6 wt%. An empirical formula was developed to predict the surface-adjacent gaseous plasticizer concentration (y0) of source materials, with values ranging from 0.015 to 64.7 μg/m3. Variations in plasticizer concentrations across source, gas, particle, and dust phases were thoroughly analyzed over both temporal and spatial dimensions from a global perspective, indicating significant differences between continents over time. A detailed investigation of phthalate regulations across continents suggests that the earlier enactment of phthalate bans in Europe is likely a key factor contributing to the most significant decrease in indoor phthalate concentrations. Furthermore, after systematically reviewing mass-transfer and partitioning theories, we developed empirical formulas to predict mass-transfer coefficients (hm) and partition coefficients (K) for both phthalates and alternative plasticizers. Notably, the hm and K parameters of the plasticizers were thoroughly calculated for typical indoor interfaces, including airborne particles, settled dust, and impermeable and permeable materials. Overall, this study advances the understanding of indoor plasticizers, facilitating health-risk assessment and the development of suitable control and monitoring technologies.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinhan Mo
- Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Li X, Xiao C, Liu J, Wei N, Song J, Yuan J, Liu L, Song R, Yi W, Pan R, Cheng J, Wang S, Su H. Association of Di(2-ethylhexyl) Phthalate Exposure with Reproductive Hormones in the General Population and the Susceptible Population: A Systematic Review and Meta-Analysis. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:750-765. [PMID: 39568700 PMCID: PMC11574633 DOI: 10.1021/envhealth.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 11/22/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, has hormone-like activity and endocrine-disrupting effects. However, the types of reproductive hormones associated with DEHP vary across the studies. Thus, we conducted a systematic review and meta-analysis to pool existing epidemiological evidence. We searched three databases up to January 31, 2024, for eligible original studies to ultimately include 37 studies from eight countries with a total of 28 911 participants. DEHP exposure was evaluated with urinary metabolites. Since the main types, production sites, blood concentrations, and functions of reproductive hormones differ between men and women, we reported the combined effect values by gender. Subgroup analyses were conducted by age, subfertility status, and the national sociodemographic index (SDI) level. Furthermore, the effect of maternal exposure during pregnancy on children's reproductive hormone levels was analyzed separately. Overall, in general, in men, DEHP was positively correlated with sex hormone binding-globulin (SHBG) and adversely correlated with total testosterone (TT), free androgen index (FAI), and follicle-stimulating hormone (FSH). Results indicated that among men of reproductive age, DEHP exposure was associated with more significant hormonal suppression in infertile men compared with fertile men. Notably, age subgroup analysis among women revealed that postmenopausal women were more vulnerable to DEHP, which was related to lower TT and estradiol (E2). However, this study did not observe a significant association between prenatal DEHP metabolites and reproductive hormone levels in children. Our research identifies the most susceptible hormones (androgen suppression) after DEHP exposure and suggests that infertile men and postmenopausal women are in great need of more attention as sensitive populations.
Collapse
Affiliation(s)
- Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei, Anhui 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shusi Wang
- Department of Healthcare-associated Infection Management, Hefei Stomatological Hospital, Anhui Medical University Hefei Oral Clinic College, 265 Changjiang Middle Road, Hefei, 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
- Center for Big Data and Population Health of IHM, Hefei, Anhui 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| |
Collapse
|
9
|
Pirow R, Bernauer U, Blume A, Cieszynski A, Flingelli G, Heiland A, Herzler M, Huhse B, Riebeling C, Rosenthal E, Sy M, Tietz T, Trubiroha A, Luch A. Mono-n-hexyl phthalate: exposure estimation and assessment of health risks based on levels found in human urine samples. Arch Toxicol 2024; 98:3659-3671. [PMID: 39153032 PMCID: PMC11489165 DOI: 10.1007/s00204-024-03835-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Mono-n-hexyl phthalate (MnHexP) is a primary metabolite of di-n-hexyl phthalate (DnHexP) and other mixed side-chain phthalates that was recently detected in urine samples from adults and children in Germany. DnHexP is classified as toxic for reproduction category 1B in Annex VI of Regulation (EC) 1272/2008 and listed in Annex XIV of the European chemical legislation REACH; thereby, its use requires an authorisation. Health-based guidance values for DnHexP are lacking and a full-scale risk assessment has not been carried out under REACH. The detection of MnHexP in urine samples raises questions about the sources of exposure and concerns of consumer safety. Here, we propose the calculation of a provisional oral tolerable daily intake value (TDI) of 63 µg/kg body weight/day for DnHexP and compare it to intake levels corresponding to levels of MnHexP found in urine. The resulting mean intake levels correspond to less than 0.2% of the TDI, and maximum levels to less than 5%. The TDI was derived by means of an approximate probabilistic analysis using the credible interval from benchmark dose modelling of published ex vivo data on reduced foetal testosterone production in rats. Thus, for the dose associated to a 20% reduction in testosterone production, a lower and upper credible interval of 14.9 and 30.0 mg/kg bw/day, respectively, was used. This is considered a conservative approach, since apical developmental endpoints (e.g. changed anogenital distance) were only observed at higher doses. In addition, we modelled various scenarios of the exposure to the precursor substance DnHexP from different consumer products, taking measured contamination levels into account, and estimated systemic exposure doses. Of the modelled scenarios including the application of sunscreen (as a lotion or pump spray), the use of lip balm, and the wearing of plastic sandals, and considering conservative assumptions, the use of DnHexP-contaminated sunscreen was highlighted as a major contributing factor. A hypothetical calculation using conservative assumptions for the latter resulted in a margin of safety in relation to the lower credible interval of 3267 and 1007 for adults and young children, respectively. Most importantly, it was found that only a fraction of the TDI is reached in all studied exposure scenarios. Thus, with regard to the reported DnHexP exposure, a health risk can be considered very unlikely.
Collapse
Affiliation(s)
- Ralph Pirow
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Ulrike Bernauer
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Annegret Blume
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Adrian Cieszynski
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Gabriele Flingelli
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Astrid Heiland
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Bettina Huhse
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Esther Rosenthal
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Moustapha Sy
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Thomas Tietz
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Achim Trubiroha
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| |
Collapse
|
10
|
Wang Y, Wang L, Jiang Z, Qu M, Meng Z, Sun Q, Du Y, Wang Y. Non-dietary exposure to phthalates in primary school children: Risk and correlation with anthropometric indices, cardiovascular and respiratory diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117203. [PMID: 39423508 DOI: 10.1016/j.ecoenv.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Phthalates are endocrine disruptors of increasing concern for human health; however, previous studies have only assessed the association between internal exposure and human health. We aimed to assess the non-carcinogenic and carcinogenic risks of non-dietary exposure to phthalates in indoor environments among primary school children and their correlations with health indicators. A study involving 54 children was conducted in Jinan, Shandong Province, China. Questionnaires and health examinations were conducted, dust in hard-to-clean corners of students' classrooms and homes was collected, and airborne phthalates in the middle of classrooms and family living rooms were sampled. The gas-phase phthalate concentrations, individual exposure, and non-carcinogenic and carcinogenic risks were calculated. Associations were estimated using linear mixed models. The findings revealed that phthalates posed a non-carcinogenic risk to 7.4 % of the children and a moderate carcinogenic risk to 27.8 % of the children, with higher non-carcinogenic and carcinogenic risks to girls than to boys. Five phthalates were negatively correlated with body mass index, dimethyl phthalate and diethyl phthalate (DEP) were significantly correlated with waist circumference, and di-iso-butyl phthalate (DiBP) was negatively correlated with hip circumference. DiBP, di-n-butyl phthalate, and DEP, were significantly correlated with cardiovascular disease, DEP and di (2-n-butoxyethyl) phthalate were correlated with decreased lung function, and di-n-octyl phthalate influenced airway inflammation. The findings indicated that phthalate exposure may negatively impact children's health, thereby warranting further comprehensive research on the health effects of these chemicals.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Lixin Wang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Zhiyu Jiang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meinan Qu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyan Meng
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Pan J, Li X, Ding P, Luo H, Cai S, Ge Q, Zhang L, Hu G. Levels, sources, and health risk assessment of phthalate acid esters in indoor dust of various microenvironments in university. CHEMOSPHERE 2024; 364:143182. [PMID: 39182730 DOI: 10.1016/j.chemosphere.2024.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Phthalate acid esters (PAEs), as a common group of plasticizers, are widely present in indoor environments and pose a risk to human health. Indoor dust samples collected from dormitory, classroom, laboratory, and office in several universities in China, were analyzed for seven types of PAEs. The total concentrations of seven PAEs (Σ7PAEs) ranged from 4.87 to 360 μg/g, with a median concentration of 51 μg/g, which is lower than that reported by other studies. Using the median concentration of Σ7PAEs as a metric, we assessed the levels of contamination in different microenvironments, resulting in the following ranking: dormitory > classroom > laboratory > office. There are significant differences in the levels of individual PAEs in different microenvironments. Radiation from sunlight, ventilation rates, cleaning frequency, and sprays were influential factors for the concentrations of individual PAEs in indoor dust. The indoor environmental conditions and consumption patterns profoundly affect PAEs levels. The sources of PAEs in classroom and office were more complex than in dormitory and laboratory. Daily intakes of PAEs were used to calculate carcinogenic and non-carcinogenic human risk for males and females, indicating a low health risk to humans. This is the first study to assess the risk of PAEs in university microenvironments and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sha Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liuyi Zhang
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China.
| |
Collapse
|
12
|
Liu Y, Kannan K. Concentrations, Profiles, and Potential Sources of Liquid Crystal Monomers in Residential Indoor Dust from the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12400-12408. [PMID: 38967412 DOI: 10.1021/acs.est.4c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Liquid crystal monomers (LCMs) are biphenyl- or cyclohexane-based organic chemicals used in electronic digital displays, and several of them possess bioaccumulative and toxic properties. Little is known about their occurrence in indoor dust from the United States. We analyzed 60 LCMs in 104 residential indoor dust samples collected from 16 states across the United States. Forty-seven of 60 LCMs were detected in dust samples at a median ∑LCM concentration of 402 ng/g (range: not detected to 4300 ng/g). Trans-4-propylcyclohexyl trans,trans-4'-propylbicyclohexyl-4-carboxylate (MPVBC) and (trans,trans)-4-fluorophenyl 4'-pentyl-[1,1'-bi(cyclohexane)]-4-carboxylate (FPeBC) were frequently detected in dust samples. We investigated potential sources of LCMs in dust by determining concentrations and profiles of these chemicals in smartphone screens, desktop and laptop computer monitors, and displays of other electronic devices and found that profiles in smartphones matched closely with those found in dust. The calculated median daily intake of ∑LCM through dust ingestion was 1.19 ng/kg bw/d for children, whereas that through dermal absorption was 0.18 ng/kg bw/d for adults in the United States.
Collapse
Affiliation(s)
- Yuan Liu
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
| | - Kurunthachalam Kannan
- New York State Department of Health, Wadsworth Center, Empire State Plaza, Albany, New York 12237, United States
- Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12237, United States
| |
Collapse
|
13
|
Chen LB, Gao CJ, Zhang Y, Shen HY, Lu XY, Huang C, Dai X, Ye J, Jia X, Wu K, Yang G, Xiao H, Ma WL. Phthalate Acid Esters (PAEs) in Indoor Dust from Decoration Material Stores: Occurrence, Sources, and Health Risks. TOXICS 2024; 12:505. [PMID: 39058157 PMCID: PMC11280923 DOI: 10.3390/toxics12070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Phthalate acid esters (PAEs) are one of the most widely used plasticizers globally, extensively employed in various decoration materials. However, studies on the impact of these materials on indoor environmental PAE pollution and their effects on human health are limited. In this study, forty dust samples were collected from four types of stores specializing in decoration materials (flooring, furniture boards, wall coverings, and household articles). The levels, sources, exposure doses, and potential health risks of PAEs in dust from decoration material stores were assessed. The total concentrations of Σ9PAE (the sum of nine PAEs) in dust from all decoration-material stores ranged from 46,100 ng/g to 695,000 ng/g, with a median concentration of 146,000 ng/g. DMP, DEP, DBP, and DEHP were identified as the predominant components. Among all stores, furniture board stores exhibited the highest Σ9PAE (159,000 ng/g, median value), while flooring stores exhibited the lowest (95,300 ng/g). Principal component analysis (PCA) showed that decoration materials are important sources of PAEs in the indoor environment. The estimated daily intakes of PAEs through non-dietary dust ingestion and dermal-absorption pathways among staff in various decoration-material stores were 60.0 and 0.470 ng/kg-bw/day (flooring stores), 113 and 0.780 ng/kg-bw/day (furniture board stores), 102 and 0.510 ng/kg-bw/day (wall covering stores), and 114 and 0.710 ng/kg-bw/day (household article stores). Particularly, staff in wall-covering and furniture-board stores exhibited relatively higher exposure doses of DEHP. Risk assessment indicated that although certain PAEs posed potential health risks, the exposure levels for staff in decoration material stores were within acceptable limits. However, staff in wall covering stores exhibited relatively higher risks, necessitating targeted risk-management strategies. This study provides new insights into understanding the risk associated with PAEs in indoor environments.
Collapse
Affiliation(s)
- Li-Bo Chen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Chong-Jing Gao
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Hao-Yang Shen
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xin-Yu Lu
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Cenyan Huang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xiaorong Dai
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Jien Ye
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Xiaoyu Jia
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Observation and Research Station, Ningbo 315830, China; (X.J.); (K.W.)
| | - Kun Wu
- Institute of Urban Environment, Chinese Academy of Sciences, Ningbo Observation and Research Station, Ningbo 315830, China; (X.J.); (K.W.)
| | - Guojing Yang
- College of Biological & Environmental Science, Zhejiang Wanli University, Ningbo 315100, China; (L.-B.C.); (Y.Z.); (H.-Y.S.); (X.-Y.L.); (C.H.); (X.D.); (J.Y.); (G.Y.)
| | - Hang Xiao
- Institute of Urban Environment, Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, China
| | - Wan-Li Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Harbin 150090, China
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| |
Collapse
|
14
|
Rosen EM, Stevens DR, Ramos AM, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Personal care product use patterns in association with phthalate and replacement biomarkers across pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:591-600. [PMID: 38177334 PMCID: PMC11303244 DOI: 10.1038/s41370-023-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Humans are exposed to phthalates, a class of non-persistent chemicals, through multiple products, including personal care and cosmetics. Associations between specific phthalates and product use have been inconsistent. However, determining these connections could provide avenues for exposure reduction. OBJECTIVE Examine the association between patterns of personal care product use and associations with phthalate and replacement biomarkers. METHODS In the Human Placenta and Phthalates Study, 303 women were enrolled in early pregnancy and followed for up to 8 visits across gestation. At each visit, women completed a questionnaire about product use in the prior 24 hours and contributed urine samples, subsequently analyzed for 18 phthalate and replacement metabolites. At early, mid-, and late pregnancy, questionnaire responses were condensed and repeated metabolite concentrations were averaged. Latent class analysis (LCA) was used to determine groups of women with similar use patterns, and weighted associations between group membership and biomarker concentrations were assessed. RESULTS LCA sorted women into groups which largely corresponded to: (1) low fragranced product use (16-23% of women); (2) fragranced product and low body wash use (22-26%); 3) fragranced product and low bar soap use (26-51%); and (4) low product use (7-34%). Monoethyl phthalate (MEP) urinary concentrations were 7-10% lower and concentrations of summed di(2-ethylhexyl) terephthalate metabolites were 15-21% lower among women in the "low fragranced product use" group compared to the population mean. Few other consistent associations between group and biomarker concentrations were noted. IMPACT STATEMENT Personal care products and cosmetics are a known exposure source for phthalates and potentially represent one of the most accessible intervention targets for exposure reduction. However, in this analysis accounting for concurrent use and fragranced status of products, we did not find any use patterns that corresponded to universally lower levels.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Amanda M Ramos
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Mollie E Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
15
|
Lu M, Gan H, Zhou Q, Han F, Wang X, Zhang F, Tong J, Huang K, Gao H, Yan S, Jin Z, Wang Q, Tao F. Trimester-specific effect of maternal co-exposure to organophosphate esters and phthalates on preschooler cognitive development: The moderating role of gestational vitamin D status. ENVIRONMENTAL RESEARCH 2024; 251:118536. [PMID: 38442813 DOI: 10.1016/j.envres.2024.118536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Organophosphate esters (OPEs) and phthalate acid esters (PAEs) are prevalent endocrine-disrupting chemicals (EDCs). Humans are often exposed to OPEs and PAEs simultaneously through multiple routes. Given that fetal stage is a critical period for neurodevelopment, it is necessary to know whether gestational co-exposure to OPEs and PAEs affects fetal neurodevelopment. However, accessible epidemiological studies are limited. The present study included 2, 120 pregnant women from the Ma'anshan Birth Cohort (MABC) study. The concentrations of tris (2-chloroethyl) phosphate (TCEP), 6 OPE metabolites and 7 PAE metabolites were measured in the first, second and third trimester using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS). Cognitive development of preschooler was assessed based on the Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition (WPPSI-IV) of the Chinese version. Generalized estimating equations (GEEs), restricted cubic spline (RCS) and generalized additive models (GAMs) were employed to explore the associations between individual OPE exposure and preschooler cognitive development. The quantile-based g-computation (QGC) method was used to estimate the joint effect of PAEs and OPEs exposure on cognitive development. GEEs revealed significant adverse associations between diphenyl phosphate (DPHP) (β: -0.58, 95% CI: -1.14, -0.01), bis (2-butoxyethyl) phosphate(BBOEP) (β: -0.44, 95% CI: -0.85, -0.02), bis(1-chloro-2-propyl) phosphate (BCIPP) (β: -0.81, 95%CI: -1.43, -0.20) and full-scale intelligence quotient (FSIQ) in the first trimester; additionally, TCEP and bis(2-ethylhexyl) phosphate (BEHP) in the second trimester, as well as DPHP in the third trimester, were negatively associated with cognitive development. Through the QGC analyses, mixture exposure in the first trimester was negatively associated with FSIQ scores (β: -1.70, 95% CI: -3.06, -0.34), mono-butyl phthalate (MBP), BCIPP, and DPHP might be the dominant contributors after controlling for other OPEs and PAEs congeners. Additionally, the effect of OPEs and PAEs mixture on cognitive development might be driven by vitamin D deficiency.
Collapse
Affiliation(s)
- Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qiong Zhou
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feifei Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaorui Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fu Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Healthcare (MCH) Center, Ma'anshan, 243011, China
| | - Zhongxiu Jin
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Aldegunde-Louzao N, Lolo-Aira M, Herrero-Latorre C. Phthalate esters in clothing: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104457. [PMID: 38677495 DOI: 10.1016/j.etap.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.
Collapse
Affiliation(s)
- Natalia Aldegunde-Louzao
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| | - Manuel Lolo-Aira
- Applied Mass Spectrometry Laboratory (AMSlab), Avda. Benigno Rivera, 56, Lugo 27003, Spain.
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| |
Collapse
|
17
|
Li Y, Ren J, Zhao R, Xu L, Cai Y. Phenylmethylsiloxanes in indoor dust from residential area of China: Source, occurrence, bioavailability and exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171496. [PMID: 38453083 DOI: 10.1016/j.scitotenv.2024.171496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Phenylmethylsiloxanes, as modified products of dimethylsiloxanes, have been used in personal care products (PCPs) and household appliances, with indoor dust serving as one potential reservoir due to their particle-binding properties. This study measured six isomers of two phenylmethylsiloxanes (P3 and P4) in PCPs (99 %) intakes of phenylmethylsiloxanes for adults, while dust ingestion/adsorption (0.19 ng/d) may play important roles for toddlers/infants with little usage of phenylmethylsiloxanes-containing PCPs. Additionally, total daily intakes of PhMeSi(OH)2 (0.30-0.84 ng/d) via ingestion and dermal absorption of dust were higher than P3 (0.06-0.31 ng/d) and P4 (0.02-0.09 ng/d), suggesting exposure risk of degradation product of phenylmethylsiloxanes deserving attention.
Collapse
Affiliation(s)
- Yiyi Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Juntao Ren
- Dongying Eco-Environment Monitoring Center of Shandong Province, Dongying 257091, China
| | - Rusong Zhao
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan 250014, China
| | - Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| |
Collapse
|
18
|
Santacruz-Márquez R, Neff AM, Mourikes VE, Fletcher EJ, Flaws JA. The effects of inhaled pollutants on reproduction in marginalized communities: a contemporary review. Inhal Toxicol 2024; 36:286-303. [PMID: 37075037 PMCID: PMC10584991 DOI: 10.1080/08958378.2023.2197941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023]
Abstract
Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.
Collapse
Affiliation(s)
| | - Alison M. Neff
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | | | - Endia J. Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| |
Collapse
|
19
|
Zhu H, Zheng N, Chen C, Li N, An Q, Zhang W, Lin Q, Xiu Z, Sun S, Li X, Li Y, Wang S. Multi-source exposure and health risks of phthalates among university students in Northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169701. [PMID: 38159748 DOI: 10.1016/j.scitotenv.2023.169701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/19/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.
Collapse
Affiliation(s)
- Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- College of New Energy and Environment, Jilin University, Changchun 130012, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China.
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenhui Zhang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Siyu Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Zhu J, Guo R, Jiang S, Wu P, Jin H. Occurrence of p-phenylenediamine antioxidants (PPDs) and PPDs-derived quinones in indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169325. [PMID: 38101633 DOI: 10.1016/j.scitotenv.2023.169325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The p-phenylenediamine antioxidants (PPDs) have been widely detected in various dust samples. Nevertheless, the knowledge on occurrence of their environmental transformation products, PPD-derived quinones (PPDQs), in indoor dust remains limited. In this study, indoor dust samples (n = 97) were collected from Hangzhou, China, and analyzed for PPDs and PPDQs. Results showed that nine PPDs were detected in indoor dust samples, with the total concentrations of 1.7-223 ng/g. N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD, mean 17 ng/g) was the predominant PPDs in indoor dust, followed by N, N'-di(o-tolyl)-p-phenylenediamine (DTPD, 8.6 ng/g) and N-(1,3-dimethylbutyl)-N'-(p-tolyl)-p-phenylenediamine (DMTPD, 4.7 ng/g). Five PPDQs were detected in indoor dust samples. Among detected PPDQs, 6PPDQ (14 ng/g, 0.33-82 ng/g) had the highest mean concentration, followed by DTPDQ (5.9 ng/g, < LOD-31 ng/g) and DPPDQ (2.2 ng/g, < LOD-11 ng/g). We also estimated the daily intake (DI) of PPDs and PPDQs through indoor dust ingestion. Infants had higher mean DIs of PPDs and PPDQs than children and adults. Notably, to our knowledge, this study first reports the occurrence of three novel PPDs and four novel PPDQs in indoor dust samples. More studies are needed to reveal the potential human health risks of exposure to these newly identified chemicals.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shengtao Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Pengfei Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Jiangsu, Nanjing 210037, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
21
|
Moorchilot VS, P A, Aravind UK, Aravindakumar CT. Human exposure to methyl and butyl parabens and their transformation products in settled dust collected from urban, semi-urban, rural, and tribal settlements in a tropical environment. ENVIRONMENTAL RESEARCH 2024; 242:117805. [PMID: 38042518 DOI: 10.1016/j.envres.2023.117805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
The present study involved monitoring the distribution of two widely consumed parabens (methyl paraben (MeP) and butyl paraben (BuP)) and their transformation products in indoor dust from different categories of settlement (urban, semi-urban, rural, and tribal homes). The results revealed a prevalent occurrence of parabens in all the settlement categories. A non-normal distribution pattern for MeP and BuP levels across the sampling sites was noted. While comparing the residence time of parabens in dust samples, it was found that the half-lives of the analytes were greater in the dust from urban (MeP t1/2: 47.510 h; BuP t1/2: 22.354 h) and rural (MeP t1/2: 27.725 h and BuP t1/2: 31.500 h) areas. The presence of paraben metabolites, such as hydroxy methylparaben (OH-MeP), para hydroxy benzoic acid (p-HBA), and benzoic acid (BA) in dust samples supports their transformation within indoor spaces. The average daily intake of parabens through dust ingestion and dermal absorption by children was higher than adults. BuP was the prime contributor (>85%) to the total estradiol equivalency quotient (tEEQ) in all the settlement categories.
Collapse
Affiliation(s)
- Vishnu S Moorchilot
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Arun P
- Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi, 682022, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam, 686560, Kerala, India.
| |
Collapse
|
22
|
Zhou X, Kang L, Wang X, Meng H. A novel method for assessing indoor di 2-ethylhexyl phthalate (DEHP) contamination and exposure based on dust-phase concentration. CHEMOSPHERE 2024; 349:140994. [PMID: 38141675 DOI: 10.1016/j.chemosphere.2023.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Phthalates (PAEs) are a group of typical semivolatile organic compounds that are widely present in indoor environments with multiple phases. Indoor air, airborne particle and settled dust are considered to be typical indicators of PAE contamination as well as media of human exposure, and the interactions between them are complex. Among various phthalate compounds, di 2-ethylhexyl phthalate (DEHP) was identified as the predominant individual phthalate in settled dust. The existing DEHP contamination assessment requires multiphase sampling or solving the dynamic mass transfer models with multiple partial differential equations, which are both complicated and time-consuming. This study investigated the influence of the indoor source loading rate, surface type, particle size and cleaning frequency on the partitioning between the settled dust-phase, airborne particle-phase and gas-phase. The concentration correlations of DEHP between multiphases were consequently derived, which balance accuracy and complexity well. By comparison with field sampling data in the literatures, the rationality and accuracy of the concentration correlations were validated. Based on the concentration correlations, a new method of directly using dust-phase concentration to estimate the non-dietary exposure to DEHP was proposed. The results indicated that ingestion of settled dust contributes the most to non-dietary exposure. Special attention should be given to infants and toddlers, who suffer the highest daily exposure to DEHP among all age groups. This study provides a new and efficient solution for estimating indoor DEHP pollution loads conveniently and rapidly, offering valuable insights for future research in this field.
Collapse
Affiliation(s)
- Xiaojun Zhou
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lingyi Kang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Hui Meng
- Higher Engineering Education Museum, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
23
|
Pan Y, Xie R, Wei X, Li AJ, Zeng L. Bisphenol and analogues in indoor dust from E-waste recycling sites, neighboring residential homes, and urban residential homes: Implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168012. [PMID: 37871824 DOI: 10.1016/j.scitotenv.2023.168012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The compound 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) has recently emerged as a novel alternative to bisphenol A (BPA) and has been found in various paper products. However, there is limited information available regarding the identification of BPSIP as a novel contaminant in the e-waste dismantling area. In our research, we conducted a comprehensive analysis of 16 bisphenol analogues (BPs), including BPSIP, within indoor dust samples obtained from a representative e-waste recycling facility, neighboring rural communities, and control urban communities. Out of the 16 target BPs, ten were found in both e-waste and local household dust, while only six BPs were identified in the control urban household dust. Bisphenol A (BPA) remained the predominant compound, followed by bisphenol F (BPF), bisphenol S (BPS), BPSIP and bisphenol AF (BPAF). The total concentrations of BPs in e-waste dust were notably higher compared to both local and urban household dust (p < 0.01), with BPA and BPF, in particular, exhibiting significantly elevated levels. Importantly, BPSIP was first identified in e-waste dust, and its concentration significantly exceeded that of the commonly used BPA alternative, BPAF, which justifiably merits increasing concern. Correlation analysis indicated that BPs were commonly used in the production of electronic products, and e-waste dismantling activities contributed significantly to their widespread emission. The daily intakes of BP through dust ingestion for these three population groups exceeded the recently established tolerable daily intake for BPA, especially among e-waste dismantling workers. This represents the first report indicating that e-waste recycling is causing substantial emissions of multiple bisphenol analogues, including a novel contaminant.
Collapse
Affiliation(s)
- Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Agricultural Science and Engineering, Shaoguan University, Shaoguan, Guangdong 512005, China
| | - Ruiman Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
24
|
Gong X, Xiong L, Xing J, Deng Y, Qihui S, Sun J, Qin Y, Zhao Z, Zhang L. Implications on freshwater lake-river ecosystem protection suggested by organic micropollutant (OMP) priority list. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132580. [PMID: 37738851 DOI: 10.1016/j.jhazmat.2023.132580] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Lake-river complex systems represent interconnected ecosystems wherein inflow rivers significantly influence the migration of terrigenous contaminants, particularly organic micropollutants (OMPs), into lakes. Given the extensive array of OMPs, screening for those with the highest potential hazard is crucial for safeguarding freshwater lake-river ecosystems. In this study, an optimized multi-criteria scoring method was applied to prioritize OMPs. Flux estimation was then performed to identify the contamination load contributed by the Le'an River to Poyang Lake. Higher concentrations of phthalate esters (PAEs) were detected in the lake-river system, ranging from 1154.5 to 22,732.8 ng/L, followed by antibiotics and polycyclic aromatic hydrocarbons (PAHs), while historical pollutant residues were comparably lower. Based on the prioritization methodology, 27 compounds, encompassing eight PAEs, six organochlorine pesticides (OCPs), six polychlorinated biphenyls (PCBs), five PAHs and two antibiotics, emerged as priority pollutants. Multiple risk assessments revealed that priority PAEs posed relatively high ecological and human health risks; concurrently, the annual fluxes of individual priority PAEs into the lake all exceeded 1000 kg, with DBP, DEHP and BBP fluxes reaching 18,352, 10,429, and 7825 kg, respectively. This research offers valuable insights stemming from OMP prioritization to aid in the conservation of freshwater lake ecosystems, particularly concerning lake-river system integrity.
Collapse
Affiliation(s)
- Xionghu Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Lili Xiong
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jiusheng Xing
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Su Qihui
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Jing Sun
- Xinjiang and Raohe Hydrology and Water Resources Monitoring Center, Hydrology Bureau of Jiangxi Province, Nanchang 330002, PR China
| | - Yu Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
25
|
Hammel SC, Eftekhari A, Eichler CMA, Liu CW, Nylander-French LA, Engel LS, Lu K, Morrison GC. Reducing Transdermal Uptake of Semivolatile Plasticizers from Indoor Environments: A Clothing Intervention. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20678-20688. [PMID: 38019971 DOI: 10.1021/acs.est.3c06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quantified daily excretion of 17 urinary metabolites (μg/day) for phthalates and phthalate alternatives in nine participants during 5 days. On Day 0, baseline daily excretion was determined in participants' urine. Starting on Day 1, participants refrained from eating phthalate-heavy foods and using personal care products. On Days 3 and 4, participants wore precleaned clothing as an exposure intervention. We observed a reduction in the daily excretion of phthalates during the intervention; mono-n-butyl phthalate, monoisobutyl phthalate (MiBP), and monobenzyl phthalate were significantly reduced by 35, 38, and 56%, respectively. Summed metabolites of di(2-ethylhexyl)phthalate (DEHP) were also reduced (27%; not statistically significant). A similar reduction among phthalate alternatives was not observed. The daily excretion of MiBP during the nonintervention period strongly correlated with indoor air concentrations of diisobutyl phthalate (DiBP), suggesting that inhalation and transdermal uptake of DiBP from the air in homes are dominant exposure pathways. The results indicate that precleaned clothing can significantly reduce environmental exposure to phthalates and phthalate alternatives.
Collapse
Affiliation(s)
- Stephanie C Hammel
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- National Research Centre for the Working Environment, Copenhagen 2100, Denmark
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Clara M A Eichler
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Niu H, Su X, Li Q, Zhao J, Hou M, Dong S, Yan X, Sun J, Feng J. Dimethylsiloxanes in dust from nine indoor microenvironments of Henan Province: Occurrence and human exposure assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166546. [PMID: 37625713 DOI: 10.1016/j.scitotenv.2023.166546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Dimethylsiloxanes (MSs) are widely used in daily life and industry, with indoors being the main release site. Detecting the levels of MSs in indoor dust is essential for assessing the risks of human exposure. In this study, the content of MSs (D3-D8 and L3-L16) was quantified in indoor dust samples from nine microenvironments of Henan Province. The detection frequency of the targets ranged from 5.00 % to 100 %. The sum concentration of dimethylsiloxanes (TSi) was in a range of 463-3.32 × 104 ng·g-1 (median: 1.92 × 103 ng·g-1). The sum concentration of linear dimethylsiloxanes (TLSi) from all microenvironments was higher than the sum concentration of cyclic dimethylsiloxanes (TCSi), which was consistent with previously reported results. D7 and D8 were the main cyclic dimethylsiloxane, which had similar sources based on Spearman correlation analysis (p < 0.001). Moreover, D8 was detected with high levels in indoor dust for the first time, which warrants further exploration. L8-L16 were the main linear dimethylsiloxanes, which may have been due to their widespread use in electronic equipment and office equipment. The Spearman analysis found that total organic carbon (TOC) in indoor dust had weak effect on MSs. Additionally, relatively high MS levels were recorded in high people-flow working microenvironments. Accordingly, the exposure doses of MSs via indoor dust intake were estimated for different age groups using the model of worst-case exposure and median concentration. Toddlers had the highest EDIs (95th percentile concentration, 90.7 ng·kg-1-bw·d-1) to MSs.
Collapse
Affiliation(s)
- Haoran Niu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xianfa Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Qian Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jiahui Zhao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Manyun Hou
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Shuying Dong
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Xu Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jianhui Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China
| | - Jinglan Feng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
27
|
Chandra S, Chakraborty P. Air-water exchange and risk assessment of phthalic acid esters during the early phase of COVID-19 pandemic in tropical riverine catchments of India. CHEMOSPHERE 2023; 341:140013. [PMID: 37657701 DOI: 10.1016/j.chemosphere.2023.140013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Given the increased load of waste plastic in the solid waste stream after the outbreak of the COVID-19 pandemic, we investigated the fate of selected plastic additives along open burning dumps, industrial and residential transects in tropical riverine catchments of India. Polyurethane foam disk passive air samples, surface water and community stored water (CSW) samples were collected along the Adyar River (AR), Cooum River (CR) and canals in Chennai and Daman Ganga River (DG) in Vapi. Among the quantified phthalic acid esters (PAEs), a widely used plastic additive, di(2-ethylhexyl) phthalate (DEHP), was ubiquitous across all the transects. More open drains and leaching of littered single-use plastic items can be the reason for significantly higher (p < 0.05) levels of PAEs in CR over other rivers with a dominance of di-n-butyl phthalate (DnBP). Prevalence of open burning of dumped plastic waste was the possible primary emission source of PAEs in these riverine catchments. Excluding highly soluble dimethyl phthalate (DMP), air-water exchange processes reflected the secondary emission of all the PAEs from the surface water along the open burning sites. Despite the cleansing effect of the oceanic air mass from the Bay of Bengal and the Indian Ocean, the average atmospheric PAE level was two-fold higher in Chennai than Vapi. Even though Vapi is a coastal city along the Arabian Sea, it was impacted by inland air masses during the sampling event. Open burning dumpsites showed a five-fold increase in atmospheric priority PAEs in Chennai city after the outbreak of the COVID-19 pandemic. DnBP was the major contributor to estrogenicity in CSW and DG, and also posed maximum risk for fishes in the open burning transect of these tropical rivers.
Collapse
Affiliation(s)
- Sarath Chandra
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
28
|
Di X, Xiang L, Jian Z, Xia Z, Luo D. Association between urinary phthalate metabolites and nephrolithiasis in adults: A cross-sectional analysis with NHANES 2007-2018. CHEMOSPHERE 2023; 337:139436. [PMID: 37422213 DOI: 10.1016/j.chemosphere.2023.139436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Nephrolithiasis is highly prevalent and brings health and economic burdens to patients. The augmentation of nephrolithiasis may be associated with exposure to phthalate metabolites. However, few studies investigated the effect of various phthalates exposure on nephrolithiasis. We analyzed data from 7139 participants aged 20 years or above from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. Serum calcium level-stratified univariate and multivariate linear regression analyses were performed to explore the relationship between urinary phthalate metabolites and nephrolithiasis. As a result, the prevalence of nephrolithiasis was approximately 9.96%. After adjusting for confounding factors, associations were found between serum calcium concentration with monoethyl phthalate (P = 0.012) and mono-isobutyl phthalate (P = 0.003) compared with tertile 1 (T1). In adjusted analysis, nephrolithiasis was positively associated with middle and high tertiles of mono benzyl phthalate (P < 0.05) compare with low tertile group. Furthermore, high-level exposure to mono-isobutyl phthalate had a similar positive association with nephrolithiasis (P = 0.028). Our findings provide evidence that exposure to certain phthalate metabolites (i.e. MiBP and MBzP) may be associated with a high risk of nephrolithiasis depending on serum calcium level.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liyuan Xiang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyuan Xia
- College of Architecture and Environment, Sichuan University, Chengdu, China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Milton SG, Tejiram RA, Joglekar R, Hoffman K. Characterizing the Contribution of Indoor Residential Phthalate and Phthalate Alternative Dust Concentrations to Internal Dose in the US General Population: An Updated Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6589. [PMID: 37623174 PMCID: PMC10454216 DOI: 10.3390/ijerph20166589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diet is the primary exposure pathway for phthalates, but relative contributions of other exposure sources are not well characterized. This study quantifies the relative contribution of indoor residential dust phthalate and phthalate alternative concentrations to total internal dose estimated from the National Health and Nutrition Examination Survey (NHANES) urinary metabolite concentrations. Specifically, median phthalate and phthalate alternative concentrations measured in residential dust were determined by updating a pre-existing systematic review and meta-analysis published in 2015 and the attributable internal dose was estimated using intake and reverse dosimetry models. Employing a predetermined search strategy, 12 studies published between January 2000 and April 2022 from Web of Science and PubMed measuring phthalates and phthalate alternatives in residential dust were identified. From the data extracted, it was estimated that dust contributed more significantly to the internal dose of low-molecular weight chemicals such as DEP and BBP when compared to high-molecular weight chemicals such as DEHTP. Additionally, findings showed that the chemical profile of residential dust is changing temporally with more phthalate alternatives being detected in the indoor environment. Future studies should seek to characterize the contribution of dust to an overall phthalate and phthalate alternative intake for individuals who have higher than normal exposures.
Collapse
Affiliation(s)
- Sashoy G. Milton
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| | - Rachel A. Tejiram
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Rashmi Joglekar
- Earthjustice, Toxic Exposure and Health Program, Washington, DC 20001, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
30
|
Aldekheel M, Farahani VJ, Sioutas C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. TOXICS 2023; 11:697. [PMID: 37624202 PMCID: PMC10457896 DOI: 10.3390/toxics11080697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Lifetime cancer risk characterization of ambient PM-bound carcinogenic metals and polycyclic aromatic hydrocarbons (PAHs) were examined in the cities of Los Angeles (USA), Thessaloniki (Greece) and Milan (Italy), which share similar Mediterranean climates but are different in their urban emission sources and governing air quality regulations. The samples in Milan and Thessaloniki were mostly dominated by biomass burning activities whereas the particles collected in Los Angeles were primary impacted by traffic emissions. We analyzed the ambient PM2.5 mass concentration of Cadmium (Cd), Hexavalent Chromium (Cr(VI)), Nickel (Ni), Lead (Pb), as well as 13 PAH compounds in the PM samples, collected during both cold and warm periods at each location. Pb exhibited the highest annual average concentration in all three cities, followed by Ni, As, Cr(VI), Cd and PAHs, respectively. The cancer risk assessment based on outdoor pollutants was performed based on three different scenarios, with each scenario corresponding to a different level of infiltration of outdoor pollutants into the indoor environment. Thessaloniki exhibited a high risk associated with lifetime inhalation of As, Cr(VI), and PAHs, with values in the range of (0.97-1.57) × 10-6, (1.80-2.91) × 10-6, and (0.77-1.25) × 10-6, respectively. The highest cancer risk values were calculated in Milan, exceeding the US EPA standard by a considerable margin, where the lifetime risk values of exposure to As, Cr(VI), and PAHs were in the range of (1.29-2.08) × 10-6, (6.08-9.82) × 10-6, and (1.10-1.77) × 10-6, respectively. In contrast, the estimated risks associated with PAHs and metals, except Cr(VI), in Los Angeles were extremely lower than the guideline value, even when the infiltration factor was assumed to be at peak. The lifetime cancer risk values associated with As, Cd, Ni, Pb, and PAHs in Los Angeles were in the range of (0.04-0.33) × 10-6. This observation highlights the impact of local air quality measures in improving the air quality and lowering the cancer risks in Los Angeles compared to the other two cities.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
- Department of Civil Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
| |
Collapse
|
31
|
Zhu L, Hajeb P, Fauser P, Vorkamp K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162374. [PMID: 36828075 DOI: 10.1016/j.scitotenv.2023.162374] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Several chemicals with widespread consumer uses have been identified as endocrine-disrupting chemicals (EDCs), with a potential risk to humans. The occurrence in indoor dust and resulting human exposure have been reviewed for six groups of known and suspected EDCs, including phthalates and non-phthalate plasticizers, flame retardants, bisphenols, per- and polyfluoroalkyl substances (PFAS), biocides and personal care product additives (PCPs). Some banned or restricted EDCs, such as polybrominated diphenyl ethers (PBDEs), di-(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are still widely detected in indoor dust in most countries, even as the predominating compounds of their group, but generally with decreasing trends. Meanwhile, alternatives that are also potential EDCs, such as bisphenol S (BPS), bisphenol F (BPF), decabromodiphenyl ethane (DBDPE) and organophosphate flame retardants (OPFRs), and PFAS precursors, such as fluorotelomer alcohols, have been detected in indoor dust with increasing frequencies and concentrations. Associations between some known and suspected EDCs, such as phthalate and non-phthalate plasticizers, FRs and BPs, in indoor dust and paired human samples indicate indoor dust as an important human exposure pathway. Although the estimated daily intake (EDI) of most of the investigated compounds was mostly below reference values, the co-exposure to a multitude of known or suspected EDCs requires a better understanding of mixture effects.
Collapse
Affiliation(s)
- Linyan Zhu
- Aarhus University, Department of Environmental Science, Roskilde, Denmark.
| | - Parvaneh Hajeb
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Patrik Fauser
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Roskilde, Denmark
| |
Collapse
|
32
|
Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, Khalid M. Review of microplastics in the indoor environment: Distribution, human exposure and potential health impacts. CHEMOSPHERE 2023; 324:138270. [PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
Collapse
Affiliation(s)
- M Dewika
- Centre of American Education, Sunway University, Bandar Sunway, 47500, Selangor, Malaysia.
| | - Kalaimani Markandan
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - N Ahmad Irfan
- Centre of American Education, Sunway University, Bandar Sunway, 47500, Selangor, Malaysia
| | - Muhammad Amirul Aizat Mohd Abdah
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia
| | - J Nor Ruwaida
- Air Resources Research Laboratory, Malaysia Japan International Institute of Technology, 54100, UTM, Kuala Lumpur, Malaysia
| | - Y Y Sara
- Faculty of Civil Engineering & Technology, University Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600, Arau, Perlis, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia; Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, Selangor, 47500, Malaysia; Uttaranchal University, Dehradun, 248007, Uttarakhand, India.
| |
Collapse
|
33
|
Li ZM, Kannan K. Occurrence of 1,3-Diphenylguanidine, 1,3-Di- o-tolylguanidine, and 1,2,3-Triphenylguanidine in Indoor Dust from 11 Countries: Implications for Human Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6129-6138. [PMID: 37010350 PMCID: PMC10116588 DOI: 10.1021/acs.est.3c00836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
1,3-Diphenylguanidine (DPG), 1,3-di-o-tolylguanidine (DTG), and 1,2,3-triphenylguanidine (TPG) are synthetic chemicals widely used in rubber and other polymers. Nevertheless, limited information is available on their occurrence in indoor dust. We measured these chemicals in 332 dust samples collected from 11 countries. DPG, DTG, and TPG were found in 100%, 62%, and 76% of the house dust samples, at median concentrations of 140, 2.3, and 0.9 ng/g, respectively. The sum concentrations of DPG and its analogues varied among the countries in the following decreasing order: Japan (median: 1300 ng/g) > Greece (940) > South Korea (560) > Saudi Arabia (440) > the United States (250) > Kuwait (160) > Romania (140) > Vietnam (120) > Colombia (100) > Pakistan (33) > India (26). DPG accounted for ≥87% of the sum concentrations of the three compounds in all countries. DPG, DTG, and TPG exhibited significant correlations (r: 0.35-0.73; p < 0.001). Elevated concentrations of DPG were found in dust from certain microenvironments (e.g., offices and cars). Human exposure to DPG through dust ingestion were in the ranges 0.07-4.40, 0.09-5.20, 0.03-1.70, 0.02-1.04, and 0.01-0.87 ng/kg body weight (BW)/day for infants, toddlers, children, teenagers, and adults, respectively.
Collapse
Affiliation(s)
- Zhong-Min Li
- Department
of Pediatrics, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Environmental Medicine, New York University
Grossman School of Medicine, New York, New York 10016, United States
| | - Kurunthachalam Kannan
- Department
of Pediatrics, New York University Grossman
School of Medicine, New York, New York 10016, United States
- Department
of Environmental Medicine, New York University
Grossman School of Medicine, New York, New York 10016, United States
| |
Collapse
|
34
|
Huo CY, Li WL, Liu LY, Sun Y, Guo JQ, Wang L, Hung H, Li YF. Seasonal variations of airborne phthalates and novel non-phthalate plasticizers in a test residence in cold regions: Effects of temperature, humidity, total suspended particulate matter, and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160852. [PMID: 36526181 DOI: 10.1016/j.scitotenv.2022.160852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As a class of plasticizers widely used in consumer products, some phthalate esters (PAEs) have been restricted due to their adverse health effects and ubiquitous presence, leading to the introduction of alternative non-phthalates plasticizers (NPPs) to the market. However, few studies focus on the influence of environmental parameters on the presence of these plasticizers and the potential human health risks for people living in poorly ventilated indoor spaces in cold regions. We investigated the trends of PAEs and NPPs in air in a typical indoor residence in northern China for over one year. The air concentrations of PAEs were significantly higher than those of NPPs (p < 0.05), indicating that PAEs are still the dominant plasticizers currently being used in the studied residence. PAEs showed seasonal fluctuation patterns of the highest levels found in summer and autumn. The temperature and relative humidity dependence for most PAEs and NPPs decreased with decreasing vapor pressure. Concentrations of the high molecular weight NPPs and PAEs positively correlated with total suspended particles (TSP). It is worth noting that the peak concentrations of PAEs and NPPs were found when the haze occurred in autumn. Principal component analysis (PCA) suggested the diverse applications of PAEs and NPPs in the indoor environment. The hazard index (HI) values observed in this study were all below international guidelines (<1); however, the average carcinogenic risk (CR) values for some compounds exceeded acceptable levels (One in a million), which raised concerns about the possibility of carcinogenicity for people living indoors for long periods of time in cold regions.
Collapse
Affiliation(s)
- Chun-Yan Huo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen, China; Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China.
| | - Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Jia-Qi Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; University Corporation for Polar Research, Beijing 100875, China; IJRC-PTS-NA, Toronto M2N 6X9, Canada
| |
Collapse
|
35
|
Tan H, Yang L, Liang X, Huang D, Qiao X, Dai Q, Chen D, Cai Z. Nonphthalate Plasticizers in House Dust from Multiple Countries: An Increasing Threat to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3634-3644. [PMID: 36821817 PMCID: PMC9996830 DOI: 10.1021/acs.est.2c08110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Along with the restrictions of phthalate esters (PAEs), a variety of nonphthalate plasticizers (NPPs) have been increasingly used for industrial needs. Knowledge remains limited on the environmental occurrences, fate, and human exposure risks of many emerging NPPs. In this study, we investigated a suite of 45 NPPs along with the major PAEs in house dust from five regions in the Asia-Pacific region and the United States. The findings clearly demonstrated ubiquitous occurrences of many NPPs in the home environment, particularly acetyl tributyl citrate (ATBC), tricapryl trimellitate (TCTM), trioctyl trimellitate (TOTM), glycerol monooleate (GMO), methyl oleate (MO), and diisobutyl adipate (DiBA). The median total concentrations of NPPs ranged from 17.8 to 252 μg/g in the study regions, while the mean ratios of ΣNPPs to ΣPAEs ranged from 0.19 (Hanoi) to 0.72 (Adelaide). Spatial differences were observed not only for the chemical abundances but also for the composition profiles and the hazard quotient (HQ) prioritization of individual chemicals. Although the current exposure may unlikely cause significant health risks according to the HQ estimation, potential exposure risks cannot be overlooked, due to the lack of appropriate toxic threshold data, the existence of additional exposure pathways, and possible cocktail effects from coexisting NPPs and PAEs.
Collapse
Affiliation(s)
- Hongli Tan
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| | - Liu Yang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Xiaolin Liang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Diedie Huang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Xinhang Qiao
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Qingyuan Dai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| | - Da Chen
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| |
Collapse
|
36
|
Duong HT, Kadokami K, Nguyen DT, Trinh HT, Doan NH, Mizukawa H, Takahashi S. Occurrence, potential sources, and risk assessment of pharmaceuticals and personal care products in atmospheric particulate matter in Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34814-34826. [PMID: 36520291 DOI: 10.1007/s11356-022-24630-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceutical and personal care products (PCPPs) were recently recognized as emerging pollutants due to their potential for adverse health and environmental impacts. One potential route of exposure, atmospheric particulate matter (APM), for polar PPCP chemicals has to date received limited attention. This study screened for 190 polar PPCP chemicals in outdoor APM samples collected from two locations in Hanoi, Vietnam, and predictions of source and potential effects on human health are presented. Day and night, as well as dry and rainy seasonal samples, were taken, and samples screened by LC-TOF, using sequential window acquisition and all theoretical fragment ion spectra method. Eleven PPCP chemicals were detected above the LOD and in more than one sample. The ∑11PPCP chemicals ranged from 0.61 to 21.9 ng m-3 (median 2.07 ng m-3), with between 2 and 6 compounds identified in individual samples (median 4). The ∑11PPCP chemicals collected near a heavy traffic area was greater than that in a populated residential zone. Night concentrations were significantly greater than day in both dry and rainy seasons (p < 0.05). Butyl methoxydibenzoylmethane, benzophenone-3, acetaminophen, cotinine, and fluorescent brightener 71 were detected in > 50% of samples. These are typically found in sunscreens, cosmetics, antipyretics, tobacco, and dyes. The DIair, hazard quotient (HQ), and hazard index (HI) for adults and children at sampling sites were estimated. The HQ for both adults and children were orders of magnitude less than the risk or were close to or whichever. APM does appear to be a potential additional secondary exposure source of PPCP chemicals to the environment and more work is needed to identify if sources are local or ubiquitous and if there is a greater health risk.
Collapse
Affiliation(s)
- Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Dung Tran Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
- Institute of Environmental Science and Technology, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Nguyen Hai Doan
- Graduate School of Global Environmental Studies, Sophia University, Kioicho 7-1, Chiyoda-Ku, Tokyo, 102-8554, Japan
| | - Hazuki Mizukawa
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| |
Collapse
|
37
|
Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48532-48545. [PMID: 36759412 DOI: 10.1007/s11356-023-25687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Plasticizers are compounds often involved in the manufacturing of plastic products. Nevertheless, the ageing of the latter generates plasticizers that generally end up in the marine environment. In fact, marine pollution by phthalate acid esters (PAEs) and their alternatives has become an environmental and health issue of serious concern, as they are largely and ubiquitously present in the environment and aquatic organisms. In the present study, four PAEs, such as diethyl phthalate (DEP), diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), and one non-phthalate plasticizer (NPP), namely di-2-ethylhexyl terephthalate (DEHT), are wanted in different marine compartments from the coast of Mahdia in Tunisia such as sediment, seagrass, and mussel. The most abundant and frequently detected congener was DEHT at the concentrations reached 1.181 mg/kg in the sediment, 1.121 mg/kg in the seagrass, and 1.86 mg/kg in the mussel. This result indicates that the DEHT could emerge through the food chain and therefore bioaccumulate in marine compartments. In addition, we noticed that the seasonal variations of plasticizers were seriously affected by environmental factors including industrial and urban discharges.
Collapse
|
38
|
Li Z, He C, Yang J, Gao T, Huang Y, Tao L. Is e-waste a source of phthalate and novel non-phthalate plasticizers? A comparison study on indoor dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159558. [PMID: 36265624 DOI: 10.1016/j.scitotenv.2022.159558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Nine traditional phthalate plasticizers and 33 novel non-phthalate plasticizers were determined in indoor dust from a typical e-waste recycling area. The median concentrations ranged from <LOQ to 22,700 ng/g for phthalates and from <LOQ to 1250 ng/g for non-phthalates. Bis-(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DINP) were the two major phthalates in dust, while glycerol monooleate (GMO) and methyl oleate (MO) were the predominant non-phthalates. Different pollutant patterns among different sites implied multiple sources of the plasticizers. Using the ratio of DINP/DEHP as an indicator, we evaluated the impact of e-waste source emission on the sampling sites, resulting in an impact rank of Matou > Dakeng > Baihetang > Shiding > Jieyang, which was consistent with the local e-waste dismantling activities and supported by polybrominated diphenyl ethers (PBDEs) levels. The correlations between chemical levels and the indicators indicated that most phthalates and non-phthalate plasticizers in the dust, might not be primarily influenced by e-waste emission sources. Additionally, the estimated median human exposures of phthalates and non-phthalates via dust ingestion were 30.6 and 1.82 ng/kg/day for adults, and 299 and 17.8 ng/kg/day for toddlers respectively, indicating negligible health risks.
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang He
- QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, 4102, Brisbane, Australia
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Center, Beijing 100012, China
| | - Tianrui Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
39
|
Ali N, Rashid MI, Alhakamy NA, Alamri SH, Eqani SAMAS. Profiling of phthalates, brominated, and organophosphate flame retardants in COVID-19 lockdown house dust; implication on the human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158779. [PMID: 36116658 PMCID: PMC9474971 DOI: 10.1016/j.scitotenv.2022.158779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
In this study, brominated flame retardants (BFRs), phthalates, and organophosphate flame retardants (PFRs) were analyzed in indoor household dust collected during the COVID-19 related strict lockdown (April-July 2020) period. Floor dust samples were collected from 40 households in Jeddah, Saudi Arabia. The levels of most of the analyzed chemicals were visibly high and for certain chemicals multifold high in analyzed samples compared to earlier studies on indoor dust from Jeddah. Bis (2-ethylhexyl) phthalate (DEHP) was the primary chemical in these dust samples, with a median concentration of 769,500 ng/g of dust. Tris (2-butoxy ethyl) phosphate (TBEP) and Decabromodiphenyl ether (BDE 209) contributed the highest among PFRs and BFRs with median levels of 5990 and 940 ng/g of dust, respectively. The estimated daily exposure in the worst case scenario (23,700 ng/kg bw/day) for Saudi children was above the reference dose (20,000 ng/kg bw/day) for DEHP, and the hazardous index (HI) was also >1. The long-term carcinogenic risk was above the 1 × 10-5, indicating a risk to the health of Saudi young children from getting exposed to DEHP from indoor dust. This study draws attention to the increased indoor pollution during the lockdown period when all of the daily activities by adults and children were performed indoors, which negatively impacted human health, as suggested by the calculated risk. However, the current study has limitations and warrants more monitoring studies from different parts of the world to understand the phenomenon. At the same time, this study also highlights another side of COVID-19 related to our lives.
Collapse
Affiliation(s)
- Nadeem Ali
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Pharmaceutics Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Hassan Alamri
- Department of Family Medicine, Medical College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| |
Collapse
|
40
|
Xie Z, Zhang X, Xie Y, Wu J, Wu Y. Occurrences and potential lipid-disrupting effects of phthalate metabolites in humpback dolphins from the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129939. [PMID: 36096058 DOI: 10.1016/j.jhazmat.2022.129939] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are ubiquitous environmental contaminants, arising growing public concern. Nevertheless, information on the exposure and risks of PAEs in wildlife remains limited. Here, we conducted the first investigation of the occurrences, spatiotemporal trends, and potential risks of twelve metabolites of PAEs (mPAEs) in 74 humpback dolphins from the northern South China Sea during 2005-2020. All twelve mPAEs (∑12mPAEs: 9.6-810.7 ng g-1 wet weight) were detected in the dolphin liver, and seven major mPAEs showed increasing trends during the study period, indicating high PAE contamination in the coastal environment of South China. Monoethylhexyl phthalate accounted for over half of the ∑12mPAE concentrations. The accumulation of mPAEs in the dolphins was neither age-dependent nor sex-specific. Compared to parent PAEs, mPAEs generally induced higher agonistic effects on the dolphin peroxisome proliferator-activated receptor alpha/gamma (PPARA/G) as master regulators of lipid homeostasis. Although short-term in vitro assays revealed no significant activation of dolphin PPARA/G by tissue-relevant doses of mPAEs, long-term in vivo evidence (i.e., correlations between hepatic mPAEs and blubber fatty acids) suggested that chronic exposure to mPAEs might have impacted lipid metabolism in the dolphin. This study highlighted the potential health risks of PAE exposure on marine mammals.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
41
|
Isci G, Topdas EF, Dagdemir E, Genis HE. Risk assessment of oral exposure to phthalates from coffee samples marketed in Turkey. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Zhou Q, Shen Y, Chou L, Guo J, Zhang X, Shi W. Identification of Glucocorticoid Receptor Antagonistic Activities and Responsible Compounds in House Dust: Bioaccessibility Should Not Be Ignored. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16768-16779. [PMID: 36345731 DOI: 10.1021/acs.est.2c04183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
More and more contaminants in dust have been found to be glucocorticoid receptor (GR) disrupting chemicals. However, little is known about the related potency and responsible toxicants, especially for the main bioaccessible ones in dust. An effect-directed analysis (EDA)-based workflow was developed, including solvent-based exhaustive extraction/tenax-assisted bioaccessible extraction (TBE), high-throughput bioassays, suspect and non-target analysis, as well as in silico candidate selection, for a more realistic identification of responsible contaminants in dust. None of the 39 dust samples from 23 cities in China exhibited GR agonistic activity, while GR antagonistic potencies were detected in 34.8% of samples, being significantly different from the high detection frequency of GR agonistic activities in other environmental media. The GR antagonistic potencies of the dust samples were all reduced after bioaccessible extraction. The mean bioaccessibility of GR antagonistic potency compared with the related exhaustive extracts was 36.8%, and the lowest value was 9%. By using in silico candidate selection, greater than 99% candidate chemical structures which were found by a non-target screening strategy were removed. Di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and nicotine (NIC) were responsible for the activities of the exhaustive extracts of dust, contributing up to 91% potencies. DiBP and DnBP were also responsible for the bioaccessible activities, contributing up to 79% potencies. However, the contribution from NIC decreased significantly and can be ignored because of its low bioaccessibility. This study suggests that the improved workflow combining extraction, reporter gene bioassays, suspect and non-target analysis, as well as in silico candidate selection is useful for EDA analysis in dust samples. In addition, exhaustive extraction may overestimate the risk of contaminants, while bioaccessibility evaluation based on bioaccessible extraction is essential in both effect evaluation and toxicant identification.
Collapse
Affiliation(s)
- Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Yanhong Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Environmental Monitoring Station of Suzhou Industrial Park, Suzhou215027, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing210023, China
| |
Collapse
|
43
|
Yang J, Ching YC, Kadokami K, Ching KY, Xu S, Hu G, Wang J. Distribution and health risks of organic micropollutants from home dusts in Malaysia. CHEMOSPHERE 2022; 309:136600. [PMID: 36170925 DOI: 10.1016/j.chemosphere.2022.136600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Indoor dust is an important medium to evaluate human exposure to emerging organic contaminants. The principal aim of this study was to determine overall status of organic micropollutants (OMPs) of indoor dust in Kuala Lumpur, Malaysia and assess their corresponding health risks. One hundred thirty-three OMPs, ascribed to 13 chemical groups, were screened by Automated Identification and Quantification System with a GC-MS database. The concentrations of OMPs ranged between 460 and 4000 μg/g, with the median concentration of 719 μg/g. The dominant chemical groups were ascribed to n-alkanes (median: 274 μg/g), plasticizers (151 μg/g), sterols (120 μg/g), and pesticides (42.6 μg/g). Cholestrol was the most abundant compound (median: 115 μg/g). Different sources and usage patterns of OMPs in various houses were expected. Toxicity values of OMPs were obtained from existing databases or predicted by quantitative structure-activity relationship models. Cumulative hazard quotients for OMPs through ingestion route were lower than one for all the dust samples, demonstrating that there was no remarkable non-cancer risk. The cancer risks of these OMPs were greater than 10-4, with cholestrol dominating 99.1% of the carcinogenic risks, which suggested that there was a significant cancer risk. This study might offer a benchmark to ensure the safety of chemical usages in future in Malaysia.
Collapse
Affiliation(s)
- Jianlei Yang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Yern Chee Ching
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, the University of Kitakyushu, 1-1 Hibikino, Wakamatsu Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| |
Collapse
|
44
|
Huang J, Wang X, Guo J, Wang X, Ji M, Huang L. Partition of phthalates among air, PM 2 .5 , house dust and skin in residential indoor environments. INDOOR AIR 2022; 32:e13176. [PMID: 36437652 DOI: 10.1111/ina.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
As a group of typical endocrine disrupters, phthalates are simultaneously present in a variety of environmental media and enter human body through multiple exposure pathways. In this study, field monitoring data were used to characterize the skin-air (Klg ), dust-air (Kd ), and PM2.5 -air (Kp ) partition coefficients of DiBP, DnBP, and DEHP. The median values of log(Klg ) in the summer and winter were 7.654 and 7.932, 7.265 and 7.902, 9.419 and 9.015 for DiBP, DnBP, and DEHP, respectively, and Klg was significantly higher in the winter. The median Kd (m3 /mg) in the summer (0.036-0.151 for DiBP, 0.021-0.036 for DnBP and 1.479-4.069 for DEHP) were significantly higher than the counterparts in the winter (0.027-0.065 for DiBP, 0.022-0.245 for DnBP, and 0.140-3.250 for DEHP). In addition, Kd was associated with material of surface and residence time of dust. The Kp values (m3 /μg) of DiBP, DnBP, and DEHP in the summer (0.053, 0.015, and 0.021) were also significantly higher than the counterparts in the winter (0.011, 0.004, and 0.025). The partition of phthalates was influenced by built environment, such as temperature, humidity, ventilation, indoor chemistry, smoking, and building age. Except Klg , there was substantial discrepancy between the estimates of K with empirical equations and the values of K based on field monitoring data in our study.
Collapse
Affiliation(s)
- Jinding Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Xiaoke Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Jifeng Guo
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Xiaolu Wang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Mengli Ji
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
| | - Lihui Huang
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an, China
- Department of Building Science, Institute of Built Environment, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Hua L, Guo S, Xu J, Yang X, Zhu H, Yao Y, Zhu L, Li Y, Zhang J, Sun H, Zhao H. Phthalates in dormitory dust and human urine: A study of exposure characteristics and risk assessments of university students. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157251. [PMID: 35817099 DOI: 10.1016/j.scitotenv.2022.157251] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phthalate diesters (PAEs) are prevalent and potentially toxic to human health. The university dormitory represents a typical and relatively uniform indoor environment. This study evaluated the concentrations of phthalate monoesters (mPAEs) in urine samples from 101 residents of university status, and the concentrations of PAEs in dust collected from 36 corresponding dormitories. Di-(2-ethylhexyl) phthalate (DEHP, median: 68.0 μg/g) was the major PAE in dust, and mono-ethyl phthalate (47.9 %) was the most abundant mPAE in urine. The levels of both PAEs in dormitory dust and mPAEs in urine were higher in females than in males, indicating higher PAE exposure in females. Differences in lifestyles (dormitory time and plastic product use frequency) may also affect human exposure to PAEs. Moreover, there were significant positive correlations between the estimated daily intakes of PAEs calculated by using concentrations of PAEs in dust (EDID) and mPAEs in urine (EDIU), suggesting that PAEs in dust could be a significant source of human exposure to PAEs. The value of EDID/EDIU for low molecular weight PAEs (3-6 carbon atoms in their backbone) was lower than that of high molecular weight PAEs. The contribution rate of various pathways to PAE exposure illustrated that non-dietary ingestion (87.8 %) was the major pathway of human exposure to PAEs in dust. Approximately 4.95 % of university students' hazard quotients of DEHP were >1, indicating that there may be some health risks associated with DEHP exposure among PAEs. Furthermore, it is recommended that some measures be taken to reduce the production and application of DEHP.
Collapse
Affiliation(s)
- Liting Hua
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sai Guo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiaping Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomeng Yang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingran Zhang
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing 100015, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
46
|
Li X, Liu Y, Wang T, Wang L. A simple device for simulating skin adsorption of polycyclic aromatic hydrocarbons: design and application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71208-71216. [PMID: 35597829 DOI: 10.1007/s11356-022-20851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Dermal exposure is one of the main ways of human body exposure to atmospheric contaminants such as polycyclic aromatic hydrocarbons (PAHs). The skin type significantly affects the skin adsorption of contaminants. However, this is commonly ignored in assessing the dermal exposure based on the atmospheric concentrations of contaminants. In this study, a simulation device suitable for human dermal pollutant exposure assessment was established, which used polyethylene balloons coated with different doses of glycerol trioleate to simulate oily skin, neutral skin, and dry skin type. The sampling effectiveness of the device was verified, and the device was applied to the skin exposure assessment of atmospheric PAHs at different scenarios. Kinetic experiments indicated a linear adsorption within 6 h. The adsorption kinetic constants (k) of PAHs on the oily surface of the balloon were significantly higher than those on the dry surface, especially for PAHs with high ring numbers. Compared with the calculated skin adsorption based on atmospheric concentrations, the results of this simulation device can better simulate the skin adsorption of atmospheric contaminants on different skin types and in different scenarios. Based on the result of balloon sampling, the dermal exposure of PAH3 rings by oily skin inside the tunnel is up to 5.668 ng/cm2/day, indicating a non-negligible health risk.
Collapse
Affiliation(s)
- Xinxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Yinzuo Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Ting Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin, 300350, China.
| |
Collapse
|
47
|
Li Y, Zhu Q, Bi S, Zhou Q, Liang Y, Liu S, Liao C. Associations between concentrations of typical ultraviolet filter benzophenones in indoor dust and human hair from China: A human exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156789. [PMID: 35724781 DOI: 10.1016/j.scitotenv.2022.156789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-3 (BP-3) has been widely used as a typical ultraviolet (UV) filter in various personal care products. While BP-3 and its derivatives (BPs) have been detected in various environmental matrices, very little is known about the concentration profile of BPs in human hair. The associations of BPs in human hair with those in indoor dust samples collected from the same locations remain largely unclear. In this study, a total of 258 indoor dust samples and 66 human hair samples were collected across China and analyzed to determine the presence of BP-3 and its derivatives. The BP-3 concentrations ranged from 0.386 to 1230 ng/g dw in indoor dust and from 0.149 to 696 ng/g dw in human hair. No difference was found between BPs in indoor dust samples from different geographic regions (p > 0.05), whereas relatively higher BP concentrations were observed for dust from urban regions than dust from rural ones (p < 0.05). A positive correlation was found between the BP-3 concentrations of indoor dust and human hair samples (p < 0.05). The estimated daily intake (EDI) of BPs for humans from indoor dust showed a gender difference (females > males; p < 0.05), with the highest EDI value being found in Southwest China (males: 35.5 pg/kg bw/day; females: 40.6 pg/kg bw/day). This study provides the concentration profiles of BPs in human hair and elucidates the associations between the BP concentrations in indoor dust samples and human hair samples collected across China.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shihao Bi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang 310024, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Huang S, Ma S, Wang D, Liu H, Li G, Yu Y. National-scale urinary phthalate metabolites in the general urban residents involving 26 provincial capital cities in China and the influencing factors as well as non-carcinogenic risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156062. [PMID: 35597362 DOI: 10.1016/j.scitotenv.2022.156062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are widely used in daily products but can cause a variety of adverse effects in humans. Few studies have been carried out on human internal exposure levels of PAEs on a large-scale, especially in developing countries. In the present study, 1161 urine samples collected from residents of 26 provincial capitals in China were analyzed for nine phthalate metabolites (mPAEs). The chemicals were widely detected, and the median specific gravity adjusted urinary concentration of Σ9mPAEs was 278 μg/L. Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the main parent PAEs that the residents were exposed to. Demographic characteristics, such as age and educational level, were significantly associated with PAE exposure. Children and the elderly had higher mPAE levels. Subjects with lower educational levels were more frequently exposed to DnBP and DEHP. However, mono-ethyl phthalate showed the opposite trend, i.e., higher concentrations in subjects aged 18-59 years and with higher educational levels. Geographic differences were detected at the national scale. Residents in northeastern and western China had higher levels of mPAEs than those in central China, most likely because of different industrial usage of the chemicals and different living habits and living conditions of the residents. Health risk assessment showed that hazard indices of PAEs ranged from 0.07 to 9.34, with 20.0% of the subjects being concern for potential non-carcinogenic risk as assessed by Monte Carlo simulation. DEHP and DnBP were the primary contributors, representing 96.7% of total risk. This first large-scale study on PAE human internal exposure in China provides useful information on residents' health in a developing country, which could be used for chemical management and health protection.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dongwu Wang
- Shouguang City Center for Disease Control and Prevention in Shandong Province, Weifang 262700, PR China
| | - Hongli Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
49
|
Zhang Y, Li X, Zhang H, Liu W, Liu Y, Guo C, Xu J, Wu F. Distribution, source apportionment and health risk assessment of phthalate esters in outdoor dust samples on Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155103. [PMID: 35398431 DOI: 10.1016/j.scitotenv.2022.155103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The urbanization of Tibetan Plateau (TP) probably results in a significant contamination of organic pollutants in the area, such as phthalate esters (PAEs). However, there is a lack of monitoring and evaluation of their occurrence and risks in the outdoor dust on TP. This study for the first time investigated the concentrations, distributions and health risk of PAEs in outdoor dust samples on TP, China. A total of 132 outdoor dust samples were collected from five different functional areas, and results showed the ubiquitous detection of all PAEs in the samples. The Σ6PAEs concentrations ranged from 0.08 to 31.49 μg·g-1 with a mean of 3.57 μg·g-1. High concentrations of Σ6PAEs in the outdoor dust were found in commercial districts, which were attributed to the heavy use of PAEs in the public commerce such as consumer products, commodities, and building materials. Di-n-butyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the dominant components accounting for 30.65% and 53.19% of the Σ6PAEs. Principal component analysis, positive matrix factorization, and correlation analysis were used to apportion the potential sources of PAEs in outdoor dust samples. The PAEs in the outdoor dust originated mainly from wide application of plasticizers as well as cosmetics and personal care products. The main pathways of human exposure to PAEs in the outdoor dust were ingestion and dermal absorption of dust particles. The total intakes of PAEs from outdoor dusts for children and adults were 1.50 × 10-5 and 2.47 × 10-6 mg·kg-1·d-1, respectively. Children were more susceptible to the PAEs intake than the adults. Although the estimated health risks of the six PAEs are currently acceptable, caution is needed given the likely future increase in use of these PAEs and the currently unknown contribution to human exposure by other medium.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Energy and Environmental Engineering, University of Science and Technology of Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Källsten L, Almamoun R, Pierozan P, Nylander E, Sdougkou K, Martin JW, Karlsson O. Adult Exposure to Di-N-Butyl Phthalate (DBP) Induces Persistent Effects on Testicular Cell Markers and Testosterone Biosynthesis in Mice. Int J Mol Sci 2022; 23:ijms23158718. [PMID: 35955852 PMCID: PMC9369267 DOI: 10.3390/ijms23158718] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3β2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.
Collapse
|