1
|
Ishizaka Y, Watanabe H, Ono M. Structure-Affinity-Pharmacokinetics Relationships of Novel 18F-Labeled 1,4-Diazepane Derivatives for Orexin 1 Receptor Imaging. J Med Chem 2024; 67:18781-18793. [PMID: 39431857 DOI: 10.1021/acs.jmedchem.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The orexin 1 receptor (OX1R) has been suggested to be involved in the reward and autonomic nervous systems. Positron emission tomography (PET) of OX1R contributes to elucidating its role and developing new drugs. However, there are no useful PET probes for in vivo imaging of OX1R. Here, we newly designed and synthesized 18F-labeled 1,4-diazepane derivatives and evaluated their utilities as OX1R PET probes. In particular, BTF showed high and selective binding affinity for OX1R. In a biodistribution study using normal mice, [18F]BTF exhibited brain uptake, and radioactivity in the brain was significantly decreased by preinjection of unlabeled BTF. In a PET/CT study, it was suggested that [18F]BTF has the potential to visualize high-expression regions of OX1R in the normal mouse brain. Collectively, [18F]BTF has the fundamental features of an OX1R PET probe, and further studies may lead to the development of more useful probes.
Collapse
Affiliation(s)
- Yui Ishizaka
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Jiang M, Ellin NR, Telu S, Mungalpara M, Wu X, Li Z, Lu S, Pike VW. Difluoromethoxide Is a Strong Leaving Group in the Photoredox Deoxyradiofluorination of 2-Phenylpyridines. J Org Chem 2024; 89:13768-13773. [PMID: 39258625 DOI: 10.1021/acs.joc.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A 2-phenyl-3-difluoromethoxy-pyridinyl moiety features in potent phosphodiesterase 4D inhibitors that are considered to be candidate radiotracers for positron emission tomography if they are labeled with fluorine-18. Fluorine-18 could be installed as desired at the 3'-phenyl position with acridinium-mediated photoredox radiodeoxyfluorination in homologues bearing variously substituted 3'-aryloxy groups. However, a distal 3-difluoromethoxide (-OCHF2) group strongly competes as a leaving group, especially when an electron-deficient aryloxy group is present at position 3'. A yield of up to 50% may occur without observable 19F for 18F exchange.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1003, United States
| | - Nicholas R Ellin
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1003, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1003, United States
| | - Maulik Mungalpara
- Biomedical Research Imaging Center, Department of Radiology and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
3
|
Jakova E, Aigbogun OP, Moutaoufik MT, Allen KJH, Munir O, Brown D, Taghibiglou C, Babu M, Phenix CP, Krol ES, Cayabyab FS. The Bifunctional Dimer Caffeine-Indan Attenuates α-Synuclein Misfolding, Neurodegeneration and Behavioral Deficits after Chronic Stimulation of Adenosine A1 Receptors. Int J Mol Sci 2024; 25:9386. [PMID: 39273333 PMCID: PMC11395333 DOI: 10.3390/ijms25179386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
We previously found that chronic adenosine A1 receptor stimulation with N6-Cyclopentyladenosine increased α-synuclein misfolding and neurodegeneration in a novel α-synucleinopathy model, a hallmark of Parkinson's disease. Here, we aimed to synthesize a dimer caffeine-indan linked by a 6-carbon chain to cross the blood-brain barrier and tested its ability to bind α-synuclein, reducing misfolding, behavioral abnormalities, and neurodegeneration in our rodent model. Behavioral tests and histological stains assessed neuroprotective effects of the dimer compound. A rapid synthesis of the 18F-labeled analogue enabled Positron Emission Tomography and Computed Tomography imaging for biodistribution measurement. Molecular docking analysis showed that the dimer binds to α-synuclein N- and C-termini and the non-amyloid-β-component (NAC) domain, similar to 1-aminoindan, and this binding promotes a neuroprotective α-synuclein "loop" conformation. The dimer also binds to the orthosteric binding site for adenosine within the adenosine A1 receptor. Immunohistochemistry and confocal imaging showed the dimer abolished α-synuclein upregulation and aggregation in the substantia nigra and hippocampus, and the dimer mitigated cognitive deficits, anxiety, despair, and motor abnormalities. The 18F-labeled dimer remained stable post-injection and distributed in various organs, notably in the brain, suggesting its potential as a Positron Emission Tomography tracer for α-synuclein and adenosine A1 receptor in Parkinson's disease therapy.
Collapse
Affiliation(s)
- Elisabet Jakova
- Department of Surgery, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Omozojie P. Aigbogun
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | | | - Kevin J. H. Allen
- Pharmaceutical and Nutrition Sciences Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Omer Munir
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Devin Brown
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology, Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chris P. Phenix
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ed S. Krol
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
4
|
Xue L, Jie CVML, Desrayaud S, Auberson YP. Developing Low Molecular Weight PET and SPECT Imaging Agents. ChemMedChem 2024; 19:e202400094. [PMID: 38634545 DOI: 10.1002/cmdc.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Imaging agents for positron emission tomography (PET) and single-photon emission computerized tomography (SPECT) have shown their utility in many situations, answering clinical questions related to drug development and medical considerations. The discovery and development of imaging agents follow a well-understood process, with variations related to available starting points and to the envisaged imaging application. This article describes the general development path leading from the expression of an imaging need and project initiation to a clinically usable imaging agent. The definition of the project rationale, the design and optimization of early leads, and the assessment of the imaging potential of an imaging agent candidate are followed by preclinical and clinical development activities that differ from those required for therapeutic agents. These include radiolabeling with a positron emitter and first-in-human clinical studies, to rapidly evaluate the ability of a new imaging agent to address the questions it was designed to answer.
Collapse
Affiliation(s)
- Lian Xue
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, Victoria 3052, Australia
| | - Caitlin V M L Jie
- ETH Zürich, Department of Chemistry and Applied Biosciences Center for Radiopharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093, Zürich, Switzerland
| | - Sandrine Desrayaud
- Novartis Biomedical Research, In Vivo preclinical PK/ADME, Novartis campus, WSJ-352/6/73.01, 4056, Basel, Switzerland
| | - Yves P Auberson
- Novartis Biomedical Research, Global Discovery Chemistry, Novartis campus, WSJ-88.10.100, 4056, Basel, Switzerland
| |
Collapse
|
5
|
Distler K, Maschauer S, Neu E, Hübner H, Einsiedel J, Prante O, Gmeiner P. Structure-guided discovery of orexin receptor-binding PET ligands. Bioorg Med Chem 2024; 110:117823. [PMID: 38964170 DOI: 10.1016/j.bmc.2024.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Molecular imaging using positron emission tomography (PET) can serve as a promising tool for visualizing biological targets in the brain. Insights into the expression pattern and the in vivo imaging of the G protein-coupled orexin receptors OX1R and OX2R will further our understanding of the orexin system and its role in various physiological and pathophysiological processes. Guided by crystal structures of our lead compound JH112 and the approved hypnotic drug suvorexant bound to OX1R and OX2R, respectively, we herein describe the design and synthesis of two novel radioligands, [18F]KD23 and [18F]KD10. Key to the success of our structural modifications was a bioisosteric replacement of the triazole moiety with a fluorophenyl group. The 19F-substituted analog KD23 showed high affinity for the OX1R and selectivity over OX2R, while the high affinity ligand KD10 displayed similar Ki values for both subtypes. Radiolabeling starting from the respective pinacol ester precursors resulted in excellent radiochemical yields of 93% and 88% for [18F]KD23 and [18F]KD10, respectively, within 20 min. The new compounds will be useful in PET studies aimed at subtype-selective imaging of orexin receptors in brain tissue.
Collapse
Affiliation(s)
- Katharina Distler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 12, 91054 Erlangen, Germany
| | - Eduard Neu
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Olaf Prante
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Kussmaulallee 12, 91054 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
Li B, Wadhwa P, Lerchner W, Zanotti-Fregonara P, Liow JS, Yan X, Zoghbi SS, Nerella SG, Telu S, Morse CL, Solis O, Gomez JL, Holt DP, Dannals RF, Cummins AC, Innis RB, Pike VW, Richmond BJ, Michaelides M, Eldridge MAG. Evaluation of [ 18F]fluoroestradiol and ChRERα as a gene expression PET reporter system in rhesus monkey brain. Mol Ther 2024; 32:2223-2231. [PMID: 38796702 PMCID: PMC11286805 DOI: 10.1016/j.ymthe.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.
Collapse
Affiliation(s)
- Bing Li
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Palak Wadhwa
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Walter Lerchner
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Oscar Solis
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Daniel P Holt
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Dannals
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Alex C Cummins
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barry J Richmond
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
7
|
Lindberg A, Murrell E, Tong J, Mason NS, Sohn D, Sandell J, Ström P, Stehouwer JS, Lopresti BJ, Viklund J, Svensson S, Mathis CA, Vasdev N. Ligand-based design of [ 18F]OXD-2314 for PET imaging in non-Alzheimer's disease tauopathies. Nat Commun 2024; 15:5109. [PMID: 38877019 PMCID: PMC11178805 DOI: 10.1038/s41467-024-49258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Positron emission tomography (PET) imaging of tau aggregation in Alzheimer's disease (AD) is helping to map and quantify the in vivo progression of AD pathology. To date, no high-affinity tau-PET radiopharmaceutical has been optimized for imaging non-AD tauopathies. Here we show the properties of analogues of a first-in-class 4R-tau lead, [18F]OXD-2115, using ligand-based design. Over 150 analogues of OXD-2115 were synthesized and screened in post-mortem brain tissue for tau affinity against [3H]OXD-2115, and in silico models were used to predict brain uptake. [18F]OXD-2314 was identified as a selective, high-affinity non-AD tau PET radiotracer with favorable brain uptake, dosimetry, and radiometabolite profiles in rats and non-human primate and is being translated for first-in-human PET studies.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Sohn
- Oxiant Discovery, SE-15136, Södertälje, Sweden
| | | | - Peter Ström
- Novandi Chemistry AB, SE-15136, Södertälje, Sweden
| | | | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Jiang M, Tang S, Jenkins MD, Lee AC, Kenou B, Knoer C, Montero Santamaria J, Wu S, Liow JS, Zoghbi SS, Zanotti-Fregonara P, Innis RB, Telu S, Pike VW. Robust Quantification of Phosphodiesterase-4D in Monkey Brain with PET and 11C-Labeled Radioligands That Avoid Radiometabolite Contamination. J Nucl Med 2024; 65:788-793. [PMID: 38423785 PMCID: PMC11064827 DOI: 10.2967/jnumed.123.266750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Shiyu Tang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Madeline D Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Adrian C Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Bruny Kenou
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Carson Knoer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jose Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Shawn Wu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
He Y, Delparente A, Jie CVML, Keller C, Humm R, Heer D, Collin L, Schibli R, Gobbi L, Grether U, Mu L. Preclinical Evaluation of the Reversible Monoacylglycerol Lipase PET Tracer (R)-[ 11C]YH132: Application in Drug Development and Neurodegenerative Diseases. Chembiochem 2024; 25:e202300819. [PMID: 38441502 DOI: 10.1002/cbic.202300819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Indexed: 04/05/2024]
Abstract
Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Yingfang He
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
- Present address: Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Aro Delparente
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Caitlin V M L Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Roland Humm
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| |
Collapse
|
10
|
Chen Z, Chen J, Mori W, Yi Y, Rong J, Li Y, Leon ERC, Shao T, Song Z, Yamasaki T, Ishii H, Zhang Y, Kokufuta T, Hu K, Xie L, Josephson L, Van R, Shao Y, Factor S, Zhang MR, Liang SH. Preclinical Evaluation of Novel Positron Emission Tomography (PET) Probes for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2). J Med Chem 2024; 67:2559-2569. [PMID: 38305157 PMCID: PMC10895652 DOI: 10.1021/acs.jmedchem.3c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.
Collapse
Affiliation(s)
- Zhen Chen
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Jiahui Chen
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Wakana Mori
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yongjia Yi
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization
of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels
and Chemicals, International Innovation Center for Forest Chemicals
and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jian Rong
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Yinlong Li
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Erick R. Calderon Leon
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tuo Shao
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Zhendong Song
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
| | - Tomoteru Yamasaki
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hideki Ishii
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tomomi Kokufuta
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kuan Hu
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lee Josephson
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| | - Richard Van
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United States
| | - Stewart Factor
- Jean and
Paul Amos Parkinson’s Disease and Movement Disorder Program,
Department of Neurology, Emory University
School of Medicine, Atlanta, Georgia 30322, United States
| | - Ming-Rong Zhang
- Department
of Radiopharmaceuticals Development, National Institute of Radiological
Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Steven H. Liang
- Department
of Radiology and Imaging Sciences, Emory
University, 1364 Clifton Rd, Atlanta, Georgia 30322, United States
- Division
of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital
& Department of Radiology, Harvard Medical
School, Boston, Massachusetts 02114, United States
| |
Collapse
|
11
|
Saito H, Watanabe H, Ono M. Synthesis and biological evaluation of novel 18F-labeled 2,4-diaminopyrimidine derivatives for detection of ghrelin receptor in the brain. Bioorg Med Chem Lett 2024; 99:129625. [PMID: 38253227 DOI: 10.1016/j.bmcl.2024.129625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/25/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
The ghrelin receptor (GHSR) is known to regulate various physiological processes including appetite, food intake, and growth hormone release. Its expression is mainly observed in the brain, pancreas, stomach, and intestine. However, the functions of the receptor have not been fully elucidated. GHSR imaging with positron emission tomography (PET) is expected to further understanding of the functions and pathologies of the receptor. In this study, we newly designed and synthesized diaminopyrimidine derivatives ([18F]BPP-1 and [18F]BPP-2) and evaluated their utility as novel PET probes targeting GHSR. In in vitro competitive binding assays, the binding affinity of BPP-2 for GHSR (Ki = 274 nM) was comparable to that of the diaminopyimidine lead compound Abb8a (Ki = 109 nM). In a biodistribution study using normal mice, [18F]BPP-2 displayed low uptake in the brain and moderate uptake in the pancreas, but high radioactivity accumulation in bone was observed due to its defluorination in vivo. Taken together, although further improvement of the pharmacokinetics is needed, the diaminopyrimidine scaffold has potential for the development of useful GHSR-targeting PET probes.
Collapse
Affiliation(s)
- Haruka Saito
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
13
|
Ikenuma H, Ogata A, Koyama H, Ji B, Ishii H, Yamada T, Abe J, Seki C, Nagai Y, Ichise M, Minamimoto T, Higuchi M, Zhang MR, Kato T, Ito K, Suzuki M, Kimura Y. Synthesis and evaluation of a novel PET ligand, a GSK'963 analog, aiming at autoradiography and imaging of the receptor interacting protein kinase 1 in the brain. EJNMMI Radiopharm Chem 2023; 8:31. [PMID: 37853253 PMCID: PMC10584749 DOI: 10.1186/s41181-023-00217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/μmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.
Collapse
Affiliation(s)
- Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science (GUMS), Kani, Japan
| | - Hiroko Koyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Bin Ji
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Hideki Ishii
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Yamada
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Chie Seki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masanori Ichise
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), 7-430 Morioka-Cho, Obu, Aichi, 474-8511, Japan.
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| |
Collapse
|
14
|
Stéen EJL, Park AY, Beaino W, Gadhe CG, Kooijman E, Schuit RC, Schreurs M, Leferink P, Hoozemans JJM, Kim JE, Lee J, Windhorst AD. Development of 18F-Labeled PET Tracer Candidates for Imaging of the Abelson Non-receptor Tyrosine Kinase in Parkinson's Disease. J Med Chem 2023; 66:12990-13006. [PMID: 37712438 DOI: 10.1021/acs.jmedchem.3c00902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Activated Abelson non-receptor tyrosine kinase (c-Abl) plays a harmful role in neurodegenerative conditions such as Parkinson's disease (PD). Inhibition of c-Abl is reported to have a neuroprotective effect and be a promising therapeutic strategy for PD. We have previously identified a series of benzo[d]thiazole derivatives as selective c-Abl inhibitors from which one compound showed high therapeutic potential. Herein, we report the development of a complementary positron emission tomography (PET) tracer. In total, three PET tracer candidates were developed and eventually radiolabeled with fluorine-18 for in vivo evaluation studies in mice. Candidate [18F]3 was identified as the most promising compound, since it showed sufficient brain uptake, good washout kinetics, and satisfactory metabolic stability. In conclusion, we believe this tracer provides a good starting point to further validate and explore c-Abl as a target for therapeutic strategies against PD supported by PET.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - A Yeong Park
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Changdev Gorakshnath Gadhe
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Esther Kooijman
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maxime Schreurs
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Prisca Leferink
- Industry Alliance Office, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jae Eun Kim
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Jinhwa Lee
- 1ST Biotherapeutics Inc. 240 Pangyoyeok-ro A-313, Bundang-gu, Seongnam-si, Gyeonggi-do 13493, Republic of Korea
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam UMC location, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
15
|
Marik J, Rich S, Deshmukh G, Zhang D, Tinianow J, Cai J, Wong S, Bobba S, DeMent K, Liu N, Halladay J, Sanabria-Bohórquez S, Cheruzel L, Khojasteh C. GTP1 metabolic stability assessment: A study of the tau PET tracer [ 18F]GTP1. Nucl Med Biol 2023; 124-125:108386. [PMID: 37699300 DOI: 10.1016/j.nucmedbio.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Tau PET imaging using the tau specific PET tracer [18F]GTP1 has been and is part of therapeutic trials in Alzheimer's disease to monitor the accumulation of tau aggregates in the brain. Herein, we examined the metabolic processes of GTP1 and assessed the influence of smoking on its metabolism through in vitro assays. The tracer metabolic profile was assessed by incubating GTP1 with human liver microsomes (HLM) and human hepatocytes. Since smoking strongly stimulates the CYP1A2 enzyme activity, we incubated GTP1 with recombinant CYP1A2 to evaluate the role of the enzyme in tracer metabolism. It was found that GTP1 could form up to eleven oxidative metabolites with higher polarity than the parent. Only a small amount (2.6 % at 60 min) of a defluorinated metabolite was detected in HLM and human hepatocytes incubations highlighting the stability of GTP1 with respect to enzymatic defluorination. Moreover, the major GTP1 metabolites were not the product of CYP1A2 activity suggesting that smoking may not impact in vivo tracer metabolism and subsequently GTP1 brain kinetics.
Collapse
Affiliation(s)
- Jan Marik
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA.
| | - Sharyl Rich
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Gauri Deshmukh
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Donglu Zhang
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jeff Tinianow
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jingwei Cai
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Susan Wong
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Sudheer Bobba
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Kevin DeMent
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Ning Liu
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jason Halladay
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Sandra Sanabria-Bohórquez
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Cyrus Khojasteh
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| |
Collapse
|
16
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Perkins JJ, McQuade P, Bungard CJ, Diamond TL, Gantert LT, Gotter AL, Hanney B, Hills ID, Hurzy DM, Joshi A, Kern JT, Schlegel KAS, Manikowski JJ, Meng Z, O’Brien JA, Roecker AJ, Smith SM, Uslaner JM, Hostetler E, Meissner RS. Discovery of [ 11C]MK-8056: A Selective PET Imaging Agent for the Study of mGluR 2 Negative Allosteric Modulators. ACS Med Chem Lett 2023; 14:986-992. [PMID: 37465306 PMCID: PMC10351059 DOI: 10.1021/acsmedchemlett.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Modification of potent, selective metabotropic glutamate receptor 2 negative allosteric modulator (mGluR2 NAM) led to a series of analogues with excellent binding affinity, lipophilicity, and suitable physicochemical properties for a PET tracer with convenient chemical handles for incorporation of a 11C or 18F radiolabel. [11C]MK-8056 was synthesized and evaluated in vivo and demonstrated appropriate affinity, selectivity, and physicochemical properties to be used as a positron emission tomography tracer for mGluR2.
Collapse
Affiliation(s)
- James J. Perkins
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Paul McQuade
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Christopher J. Bungard
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Tracy L. Diamond
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Liza T. Gantert
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony L. Gotter
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Barbara Hanney
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Ivory D. Hills
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Danielle M. Hurzy
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Aniket Joshi
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jonathan T. Kern
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Kelly-Ann S. Schlegel
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jesse J. Manikowski
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Zhaoyang Meng
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Julie A. O’Brien
- Pharmacology, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Anthony J. Roecker
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Sean M. Smith
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Jason M. Uslaner
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Eric Hostetler
- Translational
Imaging, Merck & Co., Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| | - Robert S. Meissner
- Departments
of Discovery Chemistry, Merck & Co.,
Inc., 770 Sumneytown Pike, PO Box 4, West Point, Pennsylvania 19486, USA
| |
Collapse
|
18
|
Chassé M, Vasdev N. Synthesis and Preclinical Positron Emission Tomography Imaging of the p38 MAPK Inhibitor [ 11C]Talmapimod: Effects of Drug Efflux and Sex Differences. ACS Chem Neurosci 2023. [PMID: 37186961 DOI: 10.1021/acschemneuro.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Stress-activated kinases are targets of interest in neurodegenerative disease due to their involvement in inflammatory signaling and synaptic dysfunction. The p38α kinase has shown clinical and preclinical promise as a druggable target in several neurodegenerative conditions. We report the radiosynthesis and evaluation of the first positron emission tomography (PET) radiotracer for imaging MAPK p38α/β through radiolabeling of the inhibitor talmapimod (SCIO-469) with carbon-11. [11C]Talmapimod was reliably synthesized by carbon-11 methylation with non-decay corrected radiochemical yields of 3.1 ± 0.7%, molar activities of 38.9 ± 13 GBq/μmol, and >95% radiochemical purity (n = 20). Preclinical PET imaging in rodents revealed a low baseline brain uptake and retention with standardized uptake values (SUV) of ∼0.2 over 90 min; however, pretreatment with the P-glycoprotein (P-gp) drug efflux transporter inhibitor elacridar enabled [11C]talmapimod to pass the blood-brain barrier (>1.0 SUV) with distinct sex differences in washout kinetics. Blocking studies with a structurally dissimilar p38α/β inhibitor, neflamapimod (VX-745), and displacement imaging studies with talmapimod were attempted in elacridar-pretreated rodents, but neither compound displaced radiotracer uptake in the brain of either sex. Ex vivo radiometabolite analysis revealed substantial differences in the composition of radioactive species present in blood plasma but not in brain homogenates at 40 min post radiotracer injection. Digital autoradiography in fresh-frozen rodent brain tissue confirmed that the radiotracer signal was largely non-displaceable in vitro, where self-blocking and blocking with neflamapimod marginally decreased the total signal by 12.9 ± 8.8% and 2.66 ± 2.1% in C57bl/6 healthy controls and 29.3 ± 2.7% and 26.7 ± 12% in Tg2576 rodent brains, respectively. An MDCK-MDR1 assay suggests that talmapimod is likely to suffer from drug efflux in humans as well as rodents. Future efforts should focus on radiolabeling p38 inhibitors from other structural classes to avoid P-gp efflux and non-displaceable binding.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto M5T-1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
19
|
Yu Y, Jiang H, Liang Q, Qiu L, Huang T, Hu H, Bolshakov VY, Perlmutter JS, Tu Z. Radiosynthesis and Evaluation of a C-11 Radiotracer for Transient Receptor Potential Canonical 5 in the Brain. Mol Imaging Biol 2023; 25:334-342. [PMID: 35951211 PMCID: PMC9918595 DOI: 10.1007/s11307-022-01760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE TRPC5 belongs to the mammalian superfamily of transient receptor potential (TRP) Ca2+-permeable cationic channels and it has been implicated in various CNS disorders. As part of our ongoing interest in the development of a PET radiotracer for imaging TRPC5, herein, we explored the radiosynthesis, and in vitro and in vivo evaluation of a new C-11 radiotracer [11C]HC070 in rodents and nonhuman primates. PROCEDURES [11C]HC070 was radiolabeled utilizing the corresponding precursor and [11C]CH3I via N-methylation protocol. Ex vivo biodistribution study of [11C]HC070 was performed in Sprague-Dawley rats. In vitro autoradiography study was conducted for the rat brain sections to characterize the radiotracer distribution in the brain regionals. MicroPET brain imaging studies of [11C]HC070 were done for 129S1/SvImJ wild-type mice and 129S1/SvImJ TRPC5 knockout mice for 0-60-min dynamic data acquisition after intravenous administration of the radiotracer. Dynamic PET scans (0-120 min) for the brain of cynomolgus male macaques were performed after the radiotracer injection. RESULTS [11C]HC070 was efficiently prepared with good radiochemical yield (45 ± 5%, n = 15), high chemical and radiochemical purity (> 99%), and high molar activity (320.6 ± 7.4 GBq/μmol, 8.6 ± 0.2 Ci/μmol) at the end of bombardment (EOB). Radiotracer [11C]HC070 has good solubility in the aqueous dose solution. The ex vivo biodistribution study showed that [11C]HC070 had a quick rat brain clearance. Autoradiography demonstrated that [11C]HC070 specifically binds to TRPC5-enriched regions in rat brain. MicroPET study showed the peak brain uptake (SUV value) was 0.63 in 129S1/SvImJ TRPC5 knockout mice compared to 1.13 in 129S1/SvImJ wild-type mice. PET study showed that [11C]HC070 has good brain uptake with maximum SUV of ~ 2.2 in the macaque brain, followed by rapid clearance. CONCLUSIONS Our data showed that [11C]HC070 is a TRPC5-specific radiotracer with high brain uptake and good brain washout pharmacokinetics in both rodents and nonhuman primates. The radiotracer is worth further investigating of its suitability to be a PET radiotracer for imaging TRPC5 in animals and human subjects in vivo.
Collapse
Affiliation(s)
- Yanbo Yu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lin Qiu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tianyu Huang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongzhen Hu
- Center for the Study of Itch and Sensory Disorders, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Zhang N, Pan F, Pan L, Diao W, Su F, Huang R, Yang B, Li Y, Qi Z, Zhang W, Wu X. Synthesis, radiolabeling, and evaluation of a (4-quinolinoyl)glycyl-2-cyanopyrrolidine analogue for fibroblast activation protein (FAP) PET imaging. Front Bioeng Biotechnol 2023; 11:1167329. [PMID: 37057133 PMCID: PMC10086185 DOI: 10.3389/fbioe.2023.1167329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Fibroblast activation protein (FAP) is regarded as a promising target for the diagnosis and treatment of tumors as it was overexpressed in cancer-associated fibroblasts. FAP inhibitors bearing a quinoline scaffold have been proven to show high affinity against FAP in vitro and in vivo, and the scaffold has been radio-labeled for the imaging and treatment of FAP-positive tumors. However, currently available FAP imaging agents both contain chelator groups to enable radio-metal labeling, making those tracers more hydrophilic and not suitable for the imaging of lesions in the brain. Herein, we report the synthesis, radio-labeling, and evaluation of a 18F-labeled quinoline analogue ([18F]3) as a potential FAP-targeted PET tracer, which holds the potential to be blood–brain barrier-permeable. [18F]3 was obtained by one-step radio-synthesis via a copper-mediated SNAR reaction from a corresponding boronic ester precursor. [18F]3 showed moderate lipophilicity with a log D7.4 value of 1.11. In cell experiments, [18F]3 showed selective accumulation in A549-FAP and U87 cell lines and can be effectively blocked by the pre-treatment of a cold reference standard. Biodistribution studies indicated that [18F]3 was mainly excreted by hepatic clearance and urinary excretion, and it may be due to its moderate lipophilicity. In vivo PET imaging studies indicated [18F]3 showed selective accumulation in FAP-positive tumors, and specific binding was confirmed by blocking studies. However, low brain uptake was observed in biodistribution and PET imaging studies. Although our preliminary data indicated that [18F]3 holds the potential to be developed as a blood–brain barrier penetrable FAP-targeted PET tracer, its low brain uptake limits its application in the detection of brain lesions. Herein, we report the synthesis and evaluation of [18F]3 as a novel small-molecule FAPI-targeted PET tracer, and our results suggest further structural optimizations would be needed to develop a BBB-permeable PET tracer with this scaffold.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Diao
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feijing Su
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Bo Yang
- Department of Pharmacy, The Seventh People’s Hospital of Chengdu, Chengdu, China
- Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Yunchun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongzhi Qi
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Wenjie Zhang
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Zhongzhi Qi, ; Wenjie Zhang,
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Molecules 2023; 28:molecules28072890. [PMID: 37049661 PMCID: PMC10096429 DOI: 10.3390/molecules28072890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. A diffuse infiltrative growth pattern and high resistance to therapy make them largely incurable, but there are significant differences in the prognosis of patients with different subtypes of glioma. Mutations in isocitrate dehydrogenase (IDH) have been recognized as an important biomarker for glioma classification and a potential therapeutic target. However, current clinical methods for detecting mutated IDH (mIDH) require invasive tissue sampling and cannot be used for follow-up examinations or longitudinal studies. PET imaging could be a promising approach for non-invasive assessment of the IDH status in gliomas, owing to the availability of various mIDH-selective inhibitors as potential leads for the development of PET tracers. In the present review, we summarize the rationale for the development of mIDH-selective PET probes, describe their potential applications beyond the assessment of the IDH status and highlight potential challenges that may complicate tracer development. In addition, we compile the major chemical classes of mIDH-selective inhibitors that have been described to date and briefly consider possible strategies for radiolabeling of the most promising candidates. Where available, we also summarize previous studies with radiolabeled analogs of mIDH inhibitors and assess their suitability for PET imaging in gliomas.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Boris D Zlatopolskiy
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
22
|
Hsieh CJ, Giannakoulias S, Petersson EJ, Mach RH. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development. Pharmaceuticals (Basel) 2023; 16:317. [PMID: 37259459 PMCID: PMC9964981 DOI: 10.3390/ph16020317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 11/19/2023] Open
Abstract
The use of computer-aided drug design (CADD) for the identification of lead compounds in radiotracer development is steadily increasing. Traditional CADD methods, such as structure-based and ligand-based virtual screening and optimization, have been successfully utilized in many drug discovery programs and are highlighted throughout this review. First, we discuss the use of virtual screening for hit identification at the beginning of drug discovery programs. This is followed by an analysis of how the hits derived from virtual screening can be filtered and culled to highly probable candidates to test in in vitro assays. We then illustrate how CADD can be used to optimize the potency of experimentally validated hit compounds from virtual screening for use in positron emission tomography (PET). Finally, we conclude with a survey of the newest techniques in CADD employing machine learning (ML).
Collapse
Affiliation(s)
- Chia-Ju Hsieh
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert H. Mach
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Chen Z, Chen J, Chen L, Yoo CH, Rong J, Fu H, Shao T, Coffman K, Steyn SJ, Davenport AT, Daunais JB, Haider A, Collier L, Josephson L, Wey HY, Zhang L, Liang SH. Imaging Leucine-Rich Repeat Kinase 2 In Vivo with 18F-Labeled Positron Emission Tomography Ligand. J Med Chem 2023; 66:1712-1724. [PMID: 36256881 DOI: 10.1021/acs.jmedchem.2c00551] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been demonstrated to be closely involved in the pathogenesis of Parkinson's disease (PD), and pharmacological blockade of LRRK2 represents a new opportunity for therapeutical treatment of PD and other related neurodegenerative conditions. The development of an LRRK2-specific positron emission tomography (PET) ligand would enable a target occupancy study in vivo and greatly facilitate LRRK2 drug discovery and clinical translation as well as provide a molecular imaging tool for studying physiopathological changes in neurodegenerative diseases. In this work, we present the design and development of compound 8 (PF-06455943) as a promising PET radioligand through a PET-specific structure-activity relationship optimization, followed by comprehensive pharmacology and ADME/neuroPK characterization. Following an efficient 18F-labeling method, we have confirmed high brain penetration of [18F]8 in nonhuman primates (NHPs) and validated its specific binding in vitro by autoradiography in postmortem NHP brain tissues and in vivo by PET imaging studies.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037Jiangsu, China
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Laigao Chen
- Digital Medicine & Translational Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts02114, United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Karen Coffman
- Internal Medicine Medicinal Chemistry, Pfizer Inc., Groton, Connecticut06340, United States
| | - Stefanus J Steyn
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina27157, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts02114, United States
| | - Lei Zhang
- Medicine Design, Internal Medicine Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts02139, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts02114, United States
| |
Collapse
|
24
|
Jiang M, Lu S, Telu S, Pike VW. An Empirical Quantitative Structure-Activity Relationship Equation Assists the Discovery of High-Affinity Phosphodiesterase 4D Inhibitors as Leads to PET Radioligands. J Med Chem 2023; 66:1543-1561. [PMID: 36608175 PMCID: PMC10433104 DOI: 10.1021/acs.jmedchem.2c01745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A positron emission tomography (PET) radioligand for imaging phosphodiesterase 4D (PDE4D) would benefit drug discovery and the investigation of neuropsychiatric disorders. The most promising radioligand to date, namely, [11C]T1650, has shown unstable quantification in humans. Structural elaboration of [11C]T1650 was therefore deemed necessary. High target affinity in the low nM range is usually required for successful PET radioligands. In our PDE4D PET radioligand development, we formulated and optimized an empirical equation (log[IC50 (nM)] = P1 + P2 + P3 + P4) that well described the relationship between binding affinity and empirically derived values (P1-P4) for the individual fragments in four subregions commonly composing each inhibitor (R2 = 0.988, n = 62). This equation was used to predict compounds that would have high inhibitory potency. Fourteen new compounds were obtained with IC50 of 0.3-10 nM. Finally, eight compounds were judged to be worthy of future radiolabeling and evaluation as PDE4D PET radioligands.
Collapse
Affiliation(s)
- Meijuan Jiang
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
25
|
Liu L, Johnson PD, Prime ME, Khetarpal V, Brown CJ, Anzillotti L, Bertoglio D, Chen X, Coe S, Davis R, Dickie AP, Esposito S, Gadouleau E, Giles PR, Greenaway C, Haber J, Halldin C, Haller S, Hayes S, Herbst T, Herrmann F, Heßmann M, Hsai MM, Khani Y, Kotey A, Lembo A, Mangette JE, Marriner GA, Marston RW, Mills MR, Monteagudo E, Forsberg-Morén A, Nag S, Orsatti L, Sandiego C, Schaertl S, Sproston J, Staelens S, Tookey J, Turner PA, Vecchi A, Veneziano M, Muñoz-Sanjuan I, Bard J, Dominguez C. Design and Evaluation of [ 18F]CHDI-650 as a Positron Emission Tomography Ligand to Image Mutant Huntingtin Aggregates. J Med Chem 2023; 66:641-656. [PMID: 36548390 DOI: 10.1021/acs.jmedchem.2c01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Peter D Johnson
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Michael E Prime
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Christopher J Brown
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Luca Anzillotti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Xuemei Chen
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Samuel Coe
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Randall Davis
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Anthony P Dickie
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Simone Esposito
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Elise Gadouleau
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Paul R Giles
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Catherine Greenaway
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - James Haber
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Scott Haller
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Sarah Hayes
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Frank Herrmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Manuela Heßmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Ming Min Hsai
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Yaser Khani
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Adrian Kotey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Angelo Lembo
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - John E Mangette
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Gwendolyn A Marriner
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Richard W Marston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Matthew R Mills
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Anton Forsberg-Morén
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Laura Orsatti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Christine Sandiego
- Invicro, 60 Temple St, Ste 8A, New Haven, Connecticut 06510, United States
| | - Sabine Schaertl
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Joanne Sproston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jack Tookey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Penelope A Turner
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Andrea Vecchi
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Maria Veneziano
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Ignacio Muñoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Jonathan Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| |
Collapse
|
26
|
Koike T. Development of Specific PET Tracers for Central Nervous System Drug Targets. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tatsuki Koike
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| |
Collapse
|
27
|
Kaide S, Watanabe H, Iikuni S, Hasegawa M, Ono M. Synthesis and Evaluation of 18F-Labeled Chalcone Analogue for Detection of α-Synuclein Aggregates in the Brain Using the Mouse Model. ACS Chem Neurosci 2022; 13:2982-2990. [PMID: 36197745 DOI: 10.1021/acschemneuro.2c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the brains of patients with synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, α-synuclein (α-syn) aggregates deposit abnormally to induce neurodegeneration, although the mechanism is unclear. Thus, in vivo imaging studies targeting α-syn aggregates have attracted much attention to guide medical intervention against synucleinopathy. In our previous study, a chalcone analogue, [125I]PHNP-3, functioned as a feasible probe in terms of α-syn binding in vitro; however, it did not migrate to the mouse brain, and further improvement of brain uptake was required. In the present study, we designed and synthesized two novel 18F-labeled chalcone analogues, [18F]FHCL-1 and [18F]FHCL-2, using a central nervous system multiparameter optimization (CNS MPO) algorithm with the aim of improving blood-brain barrier permeation in the mouse brain. Then, we evaluated their utility for in vivo imaging of α-syn aggregates using a mouse model. In the competitive inhibition assay, both chalcone analogues exhibited high binding affinity for α-syn aggregates (Ki = 2.6 and 3.4 nM, respectively), while no marked amyloid β (Aβ)-binding was observed. The 18F-labeling reaction was successfully performed. In a biodistribution experiment, brain uptake of both chalcone analogues in normal mice (2.09 and 2.40% injected dose/gram (% ID/g) at 2 min postinjection, respectively) was higher than that of [125I]PHNP-3, suggesting that the introduction of 18F into the chalcone analogue led to an improvement in brain uptake in mice while maintaining favorable binding ability for α-syn aggregates. Furthermore, in an ex vivo autoradiography experiment, [18F]FHCL-2 showed the feasibility of the detection of α-syn aggregates in the mouse brain in vivo. These preclinical studies demonstrated the validity of the design of α-syn-targeting probes based on the CNS MPO score and the possibility of in vivo imaging of α-syn aggregates in a mouse model using 18F-labeled chalcone analogues.
Collapse
Affiliation(s)
- Sho Kaide
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Nakagawa K, Watanabe H, Kaide S, Ono M. Structure-Activity Relationships of Styrylquinoline and Styrylquinoxaline Derivatives as α-Synuclein Imaging Probes. ACS Med Chem Lett 2022; 13:1598-1605. [PMID: 36262393 PMCID: PMC9575165 DOI: 10.1021/acsmedchemlett.2c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Synucleinopathies are characterized by the deposition of α-synuclein (α-syn) aggregates before the onset of clinical symptoms. Therefore, in vivo imaging of α-syn may contribute to early diagnosis of these diseases and has attracted much attention in recent years. However, no clinically useful probes have been reported. In the present study, 16 quinoline/quinoxaline derivatives with different styryl and fluorine groups were evaluated in order to develop α-syn imaging probes. Among them, SQ3, which is a quinoline analogue with a p-(dimethylamino)styryl group and fluoroethoxy group at the 2- and 7- positions of the skeleton, displayed moderate selectivity for α-syn aggregates over β-amyloid (Aβ) aggregates (K i = 230 nM), while maintaining high binding affinity for α-syn aggregates (K i = 39.3 nM). In a biodistribution study, [18F]SQ3 exhibited high uptake (2.08% ID/g at 2 min after intravenous injection) into a normal mouse brain. Taken together, we demonstrate that [18F]SQ3 has basic properties as a lead compound for the development of a useful α-syn imaging probe.
Collapse
Affiliation(s)
- Kohei Nakagawa
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Kaide
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Auberson YP, Lièvre A, Desrayaud S, Briard E. A practical approach to the optimization of positron emission tomography (PET) imaging agents for the central nervous system. J Labelled Comp Radiopharm 2022; 65:343-350. [PMID: 36148533 DOI: 10.1002/jlcr.4004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The discovery of novel imaging agents for positron emission tomography (PET) relies on medicinal chemistry best practices, including a good understanding of molecular and pharmacological properties required for the acquisition of relevant, high-quality images. This short note reviews the characteristics of a series of clinically successful imaging agents, providing guidance for the optimization of such molecular tools. PET imaging plays an important role in staging disease and in helping clinical dose selection, which is critical for the efficient development of drug candidates.
Collapse
Affiliation(s)
- Yves P Auberson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Akané Lièvre
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | |
Collapse
|
30
|
He Y, Grether U, Taddio MF, Meier C, Keller C, Edelmann MR, Honer M, Huber S, Wittwer MB, Heer D, Richter H, Collin L, Hug MN, Hilbert M, Postmus AGJ, Stevens AF, van der Stelt M, Krämer SD, Schibli R, Mu L, Gobbi LC. Multi-parameter optimization: Development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain. Eur J Med Chem 2022; 243:114750. [PMID: 36137365 DOI: 10.1016/j.ejmech.2022.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained substantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL distribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C]RO7284390) showed promising results warranting further clinical evaluation.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Marco F Taddio
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Carla Meier
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin R Edelmann
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Sylwia Huber
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Matthias B Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Hans Richter
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Melanie N Hug
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Manuel Hilbert
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Annemarieke G J Postmus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Anna Floor Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland; Department of Nuclear Medicine, University Hospital Zurich, CH-8091, Zurich, Switzerland.
| | - Luca C Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| |
Collapse
|
31
|
Nakaie M, Katayama F, Nakagaki T, Yoshida S, Kawasaki M, Nishi K, Ogawa K, Toriba A, Nishida N, Nakayama M, Fuchigami T. Synthesis and Biological Evaluation of Novel 2-(Benzofuran-2-yl)-chromone Derivatives for In Vivo Imaging of Prion Deposits in the Brain. ACS Infect Dis 2022; 8:1869-1882. [PMID: 35969484 DOI: 10.1021/acsinfecdis.2c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the deposition of scrapie prion protein aggregates (PrPSc) in the brain. We previously reported that styrylchromone (SC) and benzofuran (BF) derivatives have potential as imaging probes for PrPSc. To further improve their properties, we designed and synthesized 2-(benzofuran-2-yl)-chromone (BFC) derivatives hybridized with SC and BF backbones as novel single-photon emission computed tomography probes for the detection of cerebral PrPSc deposits. Recombinant mouse prion protein (rMoPrP) aggregates and mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice were used to evaluate the binding properties of BFC derivatives to PrPSc. The BFC derivatives exhibited high binding affinities (equilibrium dissociation constant [Kd] = 22.6-47.7 nM) for rMoPrP aggregates. All BFC derivatives showed remarkable selectivity against amyloid beta aggregates. Fluorescence microscopy confirmed that the fluorescence signals of the BFC derivatives corresponded to the antibody-positive deposits of PrPSc in mBSE-infected mouse brains. Among the BFC derivatives, [125I]BFC-OMe and [125I]BFC-NH2 exhibited high brain uptake and favorable washout from the mouse brain. In vitro autoradiography demonstrated that the distribution of [125I]BFC-OMe in the brain tissues of mBSE-infected mice was colocalized with PrPSc deposits. Taken together, BFC derivatives appear to be promising prion imaging probes.
Collapse
Affiliation(s)
- Mari Nakaie
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Fumihiro Katayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takeshi Fuchigami
- Laboratory of Clinical Analytical Sciences, Graduate School, Division of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
32
|
Ma BB, Montgomery AP, Chen B, Kassiou M, Danon JJ. Strategies for targeting the P2Y 12 receptor in the central nervous system. Bioorg Med Chem Lett 2022; 71:128837. [PMID: 35640763 DOI: 10.1016/j.bmcl.2022.128837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
The purinergic 2Y type 12 receptor (P2Y12R) is a well-known biological target for anti-thrombotic drugs due to its role in platelet aggregation and blood clotting. While the importance of the P2Y12R in the periphery has been known for decades, much less is known about its expression and roles in the central nervous system (CNS), where it is expressed exclusively on microglia - the first responders to brain insults and neurodegeneration. Several seminal studies have shown that P2Y12 is a robust, translatable biomarker for anti-inflammatory and neuroprotective microglial phenotypes in models of degenerative diseases such as multiple sclerosis and Alzheimer's disease. An enduring problem for studying this receptor in vivo, however, is the lack of selective, high-affinity small molecule ligands that can bypass the blood-brain barrier and accumulate in the CNS. In this Digest, we discuss previous attempts by researchers to target the P2Y12R in the CNS and opine on strategies that may be employed to design and assess the suitability of novel P2Y12 ligands for this purpose going forward.
Collapse
Affiliation(s)
- Ben B Ma
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Biling Chen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
33
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Viviano M, Barresi E, Siméon FG, Costa B, Taliani S, Da Settimo F, Pike VW, Castellano S. Essential Principles and Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging. Curr Med Chem 2022; 29:4862-4890. [PMID: 35352645 PMCID: PMC10080361 DOI: 10.2174/0929867329666220329204054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
The translocator protein 18kDa (TSPO) is expressed in the outer mitochondrial membrane and is implicated in several functions, including cholesterol transport and steroidogenesis. Under normal physiological conditions, TSPO is present in very low concentrations in the human brain but is markedly upregulated in response to brain injury and inflammation. This upregulation is strongly associated with activated microglia. Therefore, TSPO is particularly suited for assessing active gliosis associated with brain lesions following injury or disease. For over three decades, TSPO has been studied as a biomarker. Numerous radioligands for positron emission tomography (PET) that target TSPO have been developed for imaging inflammatory progression in the brain. Although [11C]PK11195, the prototypical first-generation PET radioligand, is still widely used for in vivo studies, mainly now as its single more potent R-enantiomer, it has severe limitations, including low sensitivity and poor amenability to quantification. Second-generation radioligands are characterized by higher TSPO specific signals but suffer from other drawbacks, such as sensitivity to the TSPO single nucleotide polymorphism (SNP) rs6971. Therefore, their applications in human studies have the burden of needing to genotype subjects. Consequently, recent efforts are focused on developing improved radioligands that combine the optimal features of the second generation with the ability to overcome the differences in binding affinities across the population. This review presents essential principles in the design and development of TSPO PET ligands and discusses prominent examples among the main chemotypes.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | | | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| |
Collapse
|
35
|
Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int J Mol Sci 2022; 23:ijms23158443. [PMID: 35955578 PMCID: PMC9368793 DOI: 10.3390/ijms23158443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023] Open
Abstract
The use of molecular imaging technologies for brain imaging can not only play an important supporting role in disease diagnosis and treatment but can also be used to deeply study brain functions. Recently, with the support of reporter gene technology, optical imaging has achieved a breakthrough in brain function studies at the molecular level. Reporter gene technology based on traditional clinical imaging modalities is also expanding. By benefiting from the deeper imaging depths and wider imaging ranges now possible, these methods have led to breakthroughs in preclinical and clinical research. This article focuses on the applications of magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) reporter gene technologies for use in brain imaging. The tracking of cell therapies and gene therapies is the most successful and widely used application of these techniques. Meanwhile, breakthroughs have been achieved in the research and development of reporter genes and their imaging probe pairs with respect to brain function research. This paper introduces the imaging principles and classifications of the reporter gene technologies of these imaging modalities, lists the relevant brain imaging applications, reviews their characteristics, and discusses the opportunities and challenges faced by clinical imaging modalities based on reporter gene technology. The conclusion is provided in the last section.
Collapse
|
36
|
Ikeda S, Kajita Y, Miyamoto M, Matsumiya K, Ishii T, Nishi T, Gay SC, Lane W, Constantinescu CC, Alagille D, Papin C, Tamagnan G, Kuroita T, Koike T. Design and synthesis of aryl-piperidine derivatives as potent and selective PET tracers for cholesterol 24-hydroxylase (CH24H). Eur J Med Chem 2022; 240:114612. [PMID: 35863274 DOI: 10.1016/j.ejmech.2022.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol 24-hydroxylase (CH24H, CYP46A1) is a cytochrome P450 family enzyme that maintains the homeostasis of brain cholesterol. Soticlestat, a potent and selective CH24H inhibitor, is in development as a therapeutic agent for Dravet syndrome and Lennox-Gastaut syndrome. Herein, we report the discovery of aryl-piperidine derivatives as potent and selective CH24H positron emission tomography (PET) tracers which can be used for dose guidance of a clinical CH24H inhibitor and as a diagnostic tool for CH24H-related pathology. Starting from compound 1 (IC50 = 16 nM, logD = 1.7), which was reported as a CH24H inhibitor with lower lipophilicity, a18F-labeling site (3-fluoroazetidine) was incorporated by structure-based drug design (SBDD) utilizing the co-crystal structure of a compound 1 analog. Subsequent optimization to adjust key parameters for PET tracers, such as potency, lipophilicity, brain penetration, and unbound plasma protein binding, enabled compounds 3f (IC50 = 8.8 nM) and 3g (IC50 = 8.7 nM) as PET imaging candidates. Selectivity of these compounds for CH24H was validated by a brain distribution study using CH24H-WT and KO mice. In non-human primate PET imaging, [18F]3f and [18F]3g showed similar regional uptake in the brain, indicating that these tracers were specific to the CH24H-expressed regions and validated the expression of CH24H in the living brain by different tracers.
Collapse
Affiliation(s)
- Shuhei Ikeda
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yuichi Kajita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kouta Matsumiya
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tsuyoshi Ishii
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Sean C Gay
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | - Weston Lane
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, CA, 92121, United States
| | | | - David Alagille
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Caroline Papin
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Gilles Tamagnan
- Invicro, LLC, 60 Temple Street, New Haven, CT, 06510, United States
| | - Takanobu Kuroita
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Ltd., 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
37
|
Jackson IM, Webb EW, Scott PJ, James ML. In Silico Approaches for Addressing Challenges in CNS Radiopharmaceutical Design. ACS Chem Neurosci 2022; 13:1675-1683. [PMID: 35606334 PMCID: PMC9945852 DOI: 10.1021/acschemneuro.2c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Positron emission tomography (PET) is a highly sensitive and versatile molecular imaging modality that leverages radiolabeled molecules, known as radiotracers, to interrogate biochemical processes such as metabolism, enzymatic activity, and receptor expression. The ability to probe specific molecular and cellular events longitudinally in a noninvasive manner makes PET imaging a particularly powerful technique for studying the central nervous system (CNS) in both health and disease. Unfortunately, developing and translating a single CNS PET tracer for clinical use is typically an extremely resource-intensive endeavor, often requiring synthesis and evaluation of numerous candidate molecules. While existing in vitro methods are beginning to address the challenge of derisking molecules prior to costly in vivo PET studies, most require a significant investment of resources and possess substantial limitations. In the context of CNS drug development, significant time and resources have been invested into the development and optimization of computational methods, particularly involving machine learning, to streamline the design of better CNS therapeutics. However, analogous efforts developed and validated for CNS radiotracer design are conspicuously limited. In this Perspective, we overview the requirements and challenges of CNS PET tracer design, survey the most promising computational methods for in silico CNS drug design, and bridge these two areas by discussing the potential applications and impact of computational design tools in CNS radiotracer design.
Collapse
Affiliation(s)
- Isaac M. Jackson
- Department of Radiology, Stanford University, Stanford, CA 94305
| | - E. William Webb
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109;,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| | - Michelle L. James
- Department of Radiology, Stanford University, Stanford, CA 94305;,Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94304.,Corresponding Authors: Peter J. H. Scott − Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; , Michelle L. James − Departments of Radiology, and Neurology & Neurological Sciences, 1201 Welch Rd., P-206, Stanford, CA 94305-5484, United States;
| |
Collapse
|
38
|
Nakaie M, Katayama F, Nakagaki T, Kawasaki M, Yoshida S, Toriba A, Ogawa K, Nishida N, Nakayama M, Fuchigami T. Synthesis and Characterization of Hydroxyethylamino- and Pyridyl-Substituted 2-Vinyl Chromone Derivatives for Detection of Cerebral Abnormal Prion Protein Deposits. Chem Pharm Bull (Tokyo) 2022; 70:211-219. [PMID: 35228385 DOI: 10.1248/cpb.c21-00902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases characterized by the deposition of abnormal prion protein aggregates (PrPSc) in the brain. In this study, we developed hydroxyethylamino-substituted styrylchromone (SC) and 2-(2-(pyridin-3-yl)vinyl)-4H-chromen-4-one (VPC) derivatives for single-photon emission computed tomography (SPECT) imaging of PrPSc deposits in the brain. The binding affinity of these compounds was evaluated using recombinant mouse prion protein (rMoPrP) aggregates, which resulted in the inhibition constant (Ki) value of 61.5 and 88.0 nM for hydroxyethyl derivative, (E)-2-(4-((2-hydroxyethyl)amino)styryl)-6-iodo-4H-chromen-4-one (SC-NHEtOH) and (E)-2-(4-((2-hydroxyethyl)(methyl)amino)styryl)-6-iodo-4H-chromen-4-one (SC-NMeEtOH), respectively. However, none of the VPC derivatives showed binding affinity for the rMoPrP aggregates. Fluorescent imaging demonstrated that the accumulation pattern of SC-NHEtOH matched with the presence of PrPSc in the brain slices from mouse-adapted bovine spongiform encephalopathy-infected mice. A biodistribution study of normal mice indicated low initial brain uptake of [125I]SC-NHEtOH (0.88% injected dose/g (% ID/g) at 2 min) despite favorable washout from the brain (0.26% ID/g, at 180 min) was displayed. [125I]SC-NHEtOH exhibited binding affinities to both artificial prion aggregates as well as prion deposits in the brain. However, significant improvement in the binding affinity for PrPSc and blood-brain barrier permeability is necessary for the development of successful in vivo imaging probes for the detection of cerebral PrPSc in the brain.
Collapse
Affiliation(s)
- Mari Nakaie
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Fumihiro Katayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masao Kawasaki
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University.,Institute for Frontier Science Initiative, Kanazawa University
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University.,Laboratory of Clinical Analytical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
39
|
He Y, Gobbi LC, Herde AM, Rombach D, Ritter M, Kuhn B, Wittwer MB, Heer D, Hornsperger B, Bell C, O'Hara F, Benz J, Honer M, Keller C, Collin L, Richter H, Schibli R, Grether U, Mu L. Discovery, synthesis and evaluation of novel reversible monoacylglycerol lipase radioligands bearing a morpholine-3-one scaffold. Nucl Med Biol 2022; 108-109:24-32. [DOI: 10.1016/j.nucmedbio.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
40
|
He Y, Schild M, Grether U, Benz J, Leibrock L, Heer D, Topp A, Collin L, Kuhn B, Wittwer M, Keller C, Gobbi LC, Schibli R, Mu L. Development of High Brain-Penetrant and Reversible Monoacylglycerol Lipase PET Tracers for Neuroimaging. J Med Chem 2022; 65:2191-2207. [PMID: 35089028 DOI: 10.1021/acs.jmedchem.1c01706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) is one of the key enzymes in the endocannabinoid system. Inhibition of MAGL has been proposed as an attractive approach for the treatment of various diseases. In this study, we designed and successfully synthesized two series of piperazinyl pyrrolidin-2-one derivatives as novel reversible MAGL inhibitors. (R)-[18F]13 was identified through the preliminary evaluation of two carbon-11-labeled racemic structures [11C]11 and [11C]16. In dynamic positron-emission tomography (PET) scans, (R)-[18F]13 showed a heterogeneous distribution and matched the MAGL expression pattern in the mouse brain. High brain uptake and brain-to-blood ratio were achieved by (R)-[18F]13 in comparison with previously reported reversible MAGL PET radiotracers. Target occupancy studies with a therapeutic MAGL inhibitor revealed a dose-dependent reduction of (R)-[18F]13 accumulation in the mouse brain. These findings indicate that (R)-[18F]13 ([18F]YH149) is a highly promising PET probe for visualizing MAGL non-invasively in vivo and holds great potential to support drug development.
Collapse
Affiliation(s)
- Yingfang He
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matthias Schild
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Lea Leibrock
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Andreas Topp
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Bernd Kuhn
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Matthias Wittwer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Luca C Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland
| |
Collapse
|
41
|
Pan L, He Q, Wu Y, Zhang N, Cai H, Yang B, Wang Y, Li Y, Wu X. Synthesis, radiolabeling, and evaluation of a potent β-site APP cleaving enzyme (BACE1) inhibitor for PET imaging of BACE1 in vivo. Bioorg Med Chem Lett 2022; 59:128543. [PMID: 35031452 DOI: 10.1016/j.bmcl.2022.128543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/24/2021] [Accepted: 01/09/2022] [Indexed: 02/05/2023]
Abstract
The β-site APP-cleaving enzyme 1 (BACE1) plays important roles in the proteolytic processing of amyloid precursor protein, and can be regarded as an important target for the diagnosis and treatment of AD. This study aimed to report the synthesis and evaluation of an 18F-labeled 2-amino-3,4-dihydroquinazoline analog as a potential BACE1 radioligand. A fluoropropyl side chain was introduced to the phenyl of this 3,4-dihydroquinazoline scaffold to generate the radioligand. Our preliminary data indicated that although the 2-amino-3,4-dihydroquinazoline scaffold possessed favorable in-vitro properties as a PET ligand, its poor brain uptake hindered the in-vivo imaging of BACE1. Further investigation would be required to optimize the scaffold for the development of a blood-brain-barrier-permeable BACE1-targeted PET ligand.
Collapse
Affiliation(s)
- Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian He
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Ni Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, Sichuan, 617067, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yunchun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Nuclear Medicine, The Second People's Hospital of Yibin, Yibin 644000, Sichuan, China.
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
42
|
Talukdar A, Mukherjee A, Bhattacharya D. Fascinating Transformation of SAM-Competitive Protein Methyltransferase Inhibitors from Nucleoside Analogues to Non-Nucleoside Analogues. J Med Chem 2022; 65:1662-1684. [PMID: 35014841 DOI: 10.1021/acs.jmedchem.1c01208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The abnormal expression of protein methyltransferase (PMT) has been linked with many diseases such as diabetes, neurological disorders, and cancer. S-Adenyl-l-methionine (SAM) is a universal methyl donor and gets converted to S-adenyl-l-homocysteine (SAH), an endogenous competitive inhibitor of SAM. Initially developed SAM/SAH mimetic nucleoside analogues were pan methyltransferase inhibitors. The gradual understanding achieved through ligand-receptor interaction paved the way for various rational approaches of drug design leading to potent and selective nucleoside inhibitors. The present perspective is based on the systematic evolution of selective SAM-competitive heterocyclic non-nucleoside inhibitors from nucleoside inhibitors. This fascinating transition has resolved several issues inherent to nucleoside analogues such as poor pharmacokinetics leading to poor in vivo efficacy. The perspective has brought together various concepts and strategies of drug design that contributed to this rational transition. We firmly believe that the strategies described herein will serve as a template for the future development of drugs in general.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB, India
| |
Collapse
|
43
|
van der Wildt B, Janssen B, Pekošak A, Stéen EJL, Schuit RC, Kooijman EJM, Beaino W, Vugts DJ, Windhorst AD. Novel Thienopyrimidine-Based PET Tracers for P2Y 12 Receptor Imaging in the Brain. ACS Chem Neurosci 2021; 12:4465-4474. [PMID: 34757711 PMCID: PMC8640995 DOI: 10.1021/acschemneuro.1c00641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
The P2Y12 receptor (P2Y12R) is uniquely expressed
on microglia in the brain, and its expression level directly depends
on the microglial activation state. Therefore, P2Y12R provides
a promising imaging marker for distinguishing the pro- and anti-inflammatory
microglial phenotypes, both of which play crucial roles in neuroinflammatory
diseases. In this study, three P2Y12R antagonists were
selected from the literature, radiolabeled with carbon-11 or fluorine-18,
and evaluated in healthy Wistar rats. Brain imaging was performed
with and without blocking of efflux transporters P-glycoprotein and breast cancer resistance protein using tariquidar.
Low brain uptake in healthy rats was observed for all tracers at baseline
conditions, whereas blocking of efflux transporters resulted in a
strong (6–7 fold) increase in brain uptake for both of them.
Binding of the most promising tracer, [18F]3, was further evaluated by in vitro autoradiography on rat brain
sections, ex vivo metabolite studies, and in vivo P2Y12R blocking studies. In vitro binding of [18F]3 on rat brain sections indicated high P2Y12R targeting
with approximately 70% selective and specific binding. At 60 min post-injection,
over 95% of radioactivity in the brain accounted for an intact tracer.
In blood plasma, still 40% intact tracer was found, and formed metabolites
did not enter the brain. A moderate P2Y12R blocking effect
was observed in vivo by positron emission tomography (PET) imaging
with [18F]3 (p = 0.04). To
conclude, three potential P2Y12R PET tracers were obtained
and analyzed for P2Y12R targeting in the brain. Unfortunately,
the brain uptake appeared low. Future work will focus on the design
of P2Y12R inhibitors with improved physicochemical characteristics
to reduce efflux transport and increase brain penetration.
Collapse
Affiliation(s)
- Berend van der Wildt
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Bieneke Janssen
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Aleksandra Pekošak
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - E. Johanna L. Stéen
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Robert C. Schuit
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Esther J. M. Kooijman
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Danielle J. Vugts
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
44
|
Giustiniano M, Gruber CW, Kent CN, Trippier PC. Back to the Medicinal Chemistry Future. J Med Chem 2021; 64:15515-15518. [PMID: 34719927 DOI: 10.1021/acs.jmedchem.1c01788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Napoli, Italy
| | - Christian W Gruber
- Medical University of Vienna, Center for Physiology and Pharmacology, Schwsrzspanierstr. 17, 1090 Vienna, Austria
| | - Caitlin N Kent
- Integrated Drug Discovery, Sanofi R&D, Waltham, Massachusetts 02451, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
45
|
Ataeinia B, Heidari P. Artificial Intelligence and the Future of Diagnostic and Therapeutic Radiopharmaceutical Development:: In Silico Smart Molecular Design. PET Clin 2021; 16:513-523. [PMID: 34364818 PMCID: PMC8453048 DOI: 10.1016/j.cpet.2021.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel diagnostic and therapeutic radiopharmaceuticals are increasingly becoming a central part of personalized medicine. Continued innovation in the development of new radiopharmaceuticals is key to sustained growth and advancement of precision medicine. Artificial intelligence has been used in multiple fields of medicine to develop and validate better tools for patient diagnosis and therapy, including in radiopharmaceutical design. In this review, we first discuss common in silico approaches and focus on their usefulness and challenges in radiopharmaceutical development. Next, we discuss the practical applications of in silico modeling in design of radiopharmaceuticals in various diseases.
Collapse
Affiliation(s)
- Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Wht 427, Boston, MA 02114, USA.
| |
Collapse
|
46
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
47
|
Hoffmann C, Evcüman S, Neumaier F, Zlatopolskiy BD, Humpert S, Bier D, Holschbach M, Schulze A, Endepols H, Neumaier B. [ 18F]ALX5406: A Brain-Penetrating Prodrug for GlyT1-Specific PET Imaging. ACS Chem Neurosci 2021; 12:3335-3346. [PMID: 34449193 DOI: 10.1021/acschemneuro.1c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Selective inhibition of glycine transporter 1 (GlyT1) has emerged as a potential approach to alleviate N-methyl-d-aspartate receptor (NMDAR) hypofunction in patients with schizophrenia and cognitive decline. ALX5407 is a potent and selective inhibitor of GlyT1 derived from the metabolic intermediate sarcosine (N-methylglycine) that showed antipsychotic potential in a number of animal models. Whereas clinical application of ALX5407 is limited by adverse effects on motor performance and respiratory function, a suitably radiolabeled drug could represent a promising PET tracer for the visualization of GlyT1 in the brain. Herein, [18F]ALX5407 and the corresponding methyl ester, [18F]ALX5406, were prepared by alcohol-enhanced copper mediated radiofluorination and studied in vitro in rat brain slices and in vivo in normal rats. [18F]ALX5407 demonstrated accumulation consistent with the distribution of GlyT1 in in vitro autoradiographic studies but no brain uptake in μPET experiments in naı̈ve rats. In contrast, the methyl ester [18F]ALX5406 rapidly entered the brain and was enzymatically transformed into [18F]ALX5407, resulting in a regional accumulation pattern consistent with GlyT1 specific binding. We conclude that [18F]ALX5406 is a promising and easily accessible PET probe for preclinical in vivo imaging of GlyT1 in the brain.
Collapse
Affiliation(s)
- Chris Hoffmann
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Sibel Evcüman
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Felix Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Boris D. Zlatopolskiy
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Swen Humpert
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dirk Bier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Marcus Holschbach
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Annette Schulze
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Heike Endepols
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Nuclear Medicine Department, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine, and University Hospital Cologne, 50937 Cologne, Germany
- Max Planck Institute of Metabolism Research, 50931 Cologne, Germany
| |
Collapse
|
48
|
Barret O, Zhang L, Alagille D, Constantinescu CC, Sandiego C, Papin C, Sullivan JM, Morley T, Carroll VM, Seibyl J, Chen J, Lee C, Villalobos A, Gray D, McCarthy TJ, Tamagnan G. Dopamine D 1 Receptor Agonist PET Tracer Development: Assessment in Nonhuman Primates. J Nucl Med 2021; 62:1307-1313. [PMID: 33579806 PMCID: PMC8882897 DOI: 10.2967/jnumed.120.256008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Non-catechol-based high-affinity selective dopamine D1 receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic 18F-MNI-800 and its more active atropisomeric (-)-enantiomer, 18F-MNI-968. Methods: Ten brain PET experiments were conducted with 18F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with 18F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques. PET data were analyzed with both plasma-input-based methods and reference-region-based methods. Whole-body PET images were acquired with 18F-MNI-800 from 2 adult rhesus macaques for radiation dosimetry estimates. Results:18F-MNI-800 and 18F-MNI-968 exhibited regional uptake consistent with D1R distribution. Specificity and selectivity were demonstrated by dose-dependent blocking with the D1 antagonist SCH-23390. 18F-MNI-968 showed a 30% higher specific signal than 18F-MNI-800, with a nondisplaceable binding potential of approximately 0.3 in the cortex and approximately 1.1 in the striatum. Dosimetry radiation exposure was favorable, with an effective dose of about 0.023 mSv/MBq. Conclusion:18F-MNI-968 has significant potential as a D1R agonist PET radiotracer, and further characterization in human subjects is warranted.
Collapse
Affiliation(s)
- Olivier Barret
- Invicro, LLC, New Haven, Connecticut;
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Lei Zhang
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
| | - David Alagille
- Invicro, LLC, New Haven, Connecticut
- Xing Imaging, New Haven, Connecticut
| | | | | | | | | | | | | | | | - Jianqing Chen
- Digital Medicine and Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Chewah Lee
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
| | | | - David Gray
- Medicine Design, Medicinal Chemistry, Pfizer Inc., Cambridge, Massachusetts
- Cerevel Therapeutics, Boston, Massachusetts
| | - Timothy J McCarthy
- Digital Medicine and Imaging, Early Clinical Development, Pfizer Inc., Cambridge, Massachusetts; and
| | - Gilles Tamagnan
- Invicro, LLC, New Haven, Connecticut
- Xing Imaging, New Haven, Connecticut
| |
Collapse
|
49
|
Alpha-Synuclein PET Tracer Development-An Overview about Current Efforts. Pharmaceuticals (Basel) 2021; 14:ph14090847. [PMID: 34577548 PMCID: PMC8466155 DOI: 10.3390/ph14090847] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson’s disease (PD) are manifested by inclusion bodies of alpha-synuclein (α-syn) also called α-synucleinopathies. Detection of these inclusions is thus far only possible by histological examination of postmortem brain tissue. The possibility of non-invasively detecting α-syn will therefore provide valuable insights into the disease progression of α-synucleinopathies. In particular, α-syn imaging can quantify changes in monomeric, oligomeric, and fibrillic α-syn over time and improve early diagnosis of various α-synucleinopathies or monitor treatment progress. Positron emission tomography (PET) is a non-invasive in vivo imaging technique that can quantify target expression and drug occupancies when a suitable tracer exists. As such, novel α-syn PET tracers are highly sought after. The development of an α-syn PET tracer faces several challenges. For example, the low abundance of α-syn within the brain necessitates the development of a high-affinity ligand. Moreover, α-syn depositions are, in contrast to amyloid proteins, predominantly localized intracellularly, limiting their accessibility. Furthermore, another challenge is the ligand selectivity over structurally similar amyloids such as amyloid-beta or tau, which are often co-localized with α-syn pathology. The lack of a defined crystal structure of α-syn has also hindered rational drug and tracer design efforts. Our objective for this review is to provide a comprehensive overview of current efforts in the development of selective α-syn PET tracers.
Collapse
|
50
|
Liu L, Johnson PD, Prime ME, Khetarpal V, Lee MR, Brown CJ, Chen X, Clark-Frew D, Coe S, Conlon M, Davis R, Ensor S, Esposito S, Moren AF, Gai X, Green S, Greenaway C, Haber J, Halldin C, Hayes S, Herbst T, Herrmann F, Heßmann M, Hsai MM, Kotey A, Mangette JE, Mills MR, Monteagudo E, Nag S, Nibbio M, Orsatti L, Schaertl S, Scheich C, Sproston J, Stepanov V, Varnäs K, Varrone A, Wityak J, Mrzljak L, Munoz-Sanjuan I, Bard JA, Dominguez C. [ 11C]CHDI-626, a PET Tracer Candidate for Imaging Mutant Huntingtin Aggregates with Reduced Binding to AD Pathological Proteins. J Med Chem 2021; 64:12003-12021. [PMID: 34351166 DOI: 10.1021/acs.jmedchem.1c00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aβ- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Peter D Johnson
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Michael E Prime
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Christopher J Brown
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Xuemei Chen
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Daniel Clark-Frew
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Samuel Coe
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Mike Conlon
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Randall Davis
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Samantha Ensor
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Simone Esposito
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30,600, Pomezia, Rome 00071, Italy
| | - Anton Forsberg Moren
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Xinjie Gai
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Samantha Green
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Catherine Greenaway
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - James Haber
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Sarah Hayes
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Frank Herrmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Manuela Heßmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Ming Min Hsai
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Adrian Kotey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - John E Mangette
- Albany Molecular Research, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Matthew R Mills
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Martina Nibbio
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30,600, Pomezia, Rome 00071, Italy
| | - Laura Orsatti
- IRBM, IRBM Science Park S.p.A., Via Pontina Km 30,600, Pomezia, Rome 00071, Italy
| | - Sabine Schaertl
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Christoph Scheich
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Joanne Sproston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - John Wityak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Ladislav Mrzljak
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Ignacio Munoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Jonathan A Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| |
Collapse
|