1
|
Del Rosso JQ, Kircik L. The primary role of sebum in the pathophysiology of acne vulgaris and its therapeutic relevance in acne management. J DERMATOL TREAT 2024; 35:2296855. [PMID: 38146664 DOI: 10.1080/09546634.2023.2296855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Sebum physiology and its contributions to acne vulgaris (AV) pathophysiology have been long debated. Within the pilosebaceous unit, androgens drive sebocyte production of sebum, comprising mono-, di-, and triglycerides (the latter converted to fatty acids); squalene; cholesterol; cholesterol esters; and wax esters. Upon release to the skin surface, human sebum has important roles in epidermal water retention, antimicrobial defenses, and innate immune responses. AIMS Alterations in sebum alone and with other pathogenic factors (inflammation, follicular hyperkeratinization, and Cutibacterium acnes [C. acnes] proliferation) contribute to AV pathophysiology. Androgen-driven sebum production, mandatory for AV development, propagates C. acnes proliferation and upregulates inflammatory and comedogenic cascades. RESULTS Some sebum lipids have comedogenic effects in isolation, and sebum content alterations (including elevations in specific fatty acids) contribute to AV pathogenesis. Regional differences in facial sebum production, coupled with patient characteristics (including sex and age), help exemplify this link between sebum alterations and AV lesion formation. CONCLUSIONS To date, only combined oral contraceptives and oral spironolactone (both limited to female patients), oral isotretinoin and topical clascoterone (cortexolone 17α-propionate) modulate sebum production in patients with AV. A better understanding of mechanisms underlying sebaceous gland changes driving AV development is needed to expand the AV treatment armamentarium.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
2
|
Del Rosso JQ, Kircik L. The cutaneous effects of androgens and androgen-mediated sebum production and their pathophysiologic and therapeutic importance in acne vulgaris. J DERMATOL TREAT 2024; 35:2298878. [PMID: 38192024 DOI: 10.1080/09546634.2023.2298878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Background: The recognition of an association between the development of acne vulgaris (AV) and pubertal hormonal changes during adolescence dates back almost 100 years. Since these formative observations, a significant role of circulating hormones in the pathophysiology of AV and other cutaneous disorders has been established.Aims: This review article aims to provide an overview of clinical and preclinical evidence supporting the influences of androgens on the skin and their therapeutic importance in AV pathophysiology.Results: The cutaneous effects of hormones are attributable, to a large extent, to the influence of steroid hormones, particularly androgens, on sebocyte development and sebum production in both sexes. Androgen-mediated excess sebum production is implicated as a necessary early step in AV pathophysiology and is therefore considered an important therapeutic target in AV treatment. Although the local production and/or activity of androgens within the skin is believed to be important in AV pathophysiology, it has received limited therapeutic attention.Conclusions: We have summarized the current evidence in support of the therapeutic benefits of targeted hormonal treatment to decrease androgen-stimulated sebum production for the effective and safe treatment of AV in both male and female patients.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University, School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
3
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024:S0891-5849(24)01025-6. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
4
|
Le NNT, Wu J, Rickard AH, Xi C. Evaluation of the long-term protection conferred by an organosilicon-based disinfectant formulation against bacterial contamination of surfaces. J Appl Microbiol 2024; 135:lxae210. [PMID: 39227172 DOI: 10.1093/jambio/lxae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
AIMS The aim of this work was to evaluate the efficacy of an organosilicon-based, commercially available antimicrobial formulation in the My-shield® product line against bacterial surface contamination. METHODS AND RESULTS The antimicrobial product was tested in vitro for its long-term persistence on surfaces and effectiveness against Staphylococcus aureus biofilms in comparison to 70% ethanol and 0.1% or 0.6% sodium hypochlorite. Field testing was also conducted over 6 weeks at a university athletic facility. In vitro studies demonstrated the log reductions achieved by the test product, 70% ethanol, and 0.1% sodium hypochlorite were 3.6, 3.1, and 3.2, respectively. The test product persisted on surfaces after washing and scrubbing, and pre-treatment with this product prevented S. aureus surface colonization for up to 30 days. In comparison, pre-treatment with 70% ethanol or 0.6% sodium hypochlorite was not protective against S. aureus biofilm formation after seven days. The field test demonstrated that weekly applications of the test product were more effective at reducing surface bacterial load than daily applications of a control product. CONCLUSIONS The test product conferred greater long-term protection against bacterial growth and biofilm formation by S. aureus than ethanol and sodium hypochlorite. Even with less frequent applications, the test product maintained a high level of antimicrobial activity.
Collapse
Affiliation(s)
- Nguyen Nhat Thu Le
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Jianfeng Wu
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Chuanwu Xi
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
6
|
De Pessemier B, López CD, Taelman S, Verdonck M, Chen Y, Stockman A, Lambert J, Van de Wiele T, Callewaert C. Comparative Whole Metagenome Analysis in Lesional and Nonlesional Scalp Areas of Patients with Psoriasis Capitis and Healthy Individuals. J Invest Dermatol 2024:S0022-202X(24)01984-5. [PMID: 39128495 DOI: 10.1016/j.jid.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024]
Abstract
Psoriasis is an immune-mediated inflammatory disorder, where the majority of the patients suffer from psoriasis capitis or scalp psoriasis. Current therapeutics remain ineffective to treat scalp lesions. In this study, we present a whole-metagenome characterization of the scalp microbiome in psoriasis capitis. We investigated how changes in the homeostatic cutaneous microbiome correlate with the condition and identified metagenomic biomarkers (taxonomic, functional, virulence factors, antimicrobial resistance genes) that could partly explain its emergence. Within this study, 83 top and back scalp samples from healthy individuals and 64 lesional and nonlesional scalp samples from subjects with untreated psoriasis capitis were analyzed. Using qPCR targeting the 16S and 18S ribosomal RNA genes, we found a significant decrease in microbial load within scalp regions affected by psoriasis compared with that in their nonlesional counterparts. Metagenomic analysis revealed that psoriatic lesions displayed significant lower Cutibacterium species (including C. modestum, C. namnetense, C. granulosum, C. porci), along with an elevation in Staphylococcus aureus. A heightened relative presence of efflux pump protein-encoding genes was detected, suggesting potential antimicrobial resistance mechanisms. These mechanisms are known to specifically target human antimicrobial peptides (including cathelicidin LL-37), which are frequently encountered within psoriasis lesions. These shifts in microbial community dynamics may contribute to psoriasis disease pathogenesis.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Celia Díez López
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Steff Taelman
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium; BIOLIZARD, Ghent, Belgium
| | - Merel Verdonck
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Yang Chen
- Department of Dermatology, School of Medicine, University of California San Diego, California, USA; Department of Pediatrics, School of Medicine, University of California San Diego, California, USA; Biomedical Sciences Graduate Program, University of California San Diego, California, USA
| | | | - Jo Lambert
- Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.
| |
Collapse
|
7
|
Lane Starr NM, Al-Rayyan N, Smith JM, Sandstrom S, Swaney MH, Salamzade R, Steidl O, Kalan LR, Singh AM. Combined metagenomic- and culture-based approaches to investigate bacterial strain-level associations with medication-controlled mild-moderate atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100259. [PMID: 38779310 PMCID: PMC11109885 DOI: 10.1016/j.jacig.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 05/25/2024]
Abstract
Background The skin microbiome is disrupted in atopic dermatitis (AD). Existing research focuses on moderate to severe, unmedicated disease. Objective We sought to investigate metagenomic- and culture-based bacterial strain-level differences in mild, medicated AD and the effects these have on human keratinocytes (HKs). Methods Skin swabs from anterior forearms were collected from 20 pediatric participants (11 participants with AD sampled at lesional and nonlesional sites and 9 age- and sex-matched controls). Participants had primarily mild to moderate AD and maintained medication use. Samples were processed for microbial metagenomic sequencing and bacterial isolation. Isolates identified as Staphylococcus aureus were tested for enterotoxin production. HK cultures were treated with cell-free conditioned media from representative Staphylococcus species to measure barrier effects. Results Metagenomic sequencing identified significant differences in microbiome composition between AD and control groups. Differences were seen at the species and strain levels for Staphylococci, with S aureus found only in participants with AD and differences in Staphylococcus epidermidis strains between control and AD swabs. These strains showed differences in toxin gene presence, which was confirmed in vitro for S aureus enterotoxins. The strain from the participant with the most severe AD produced enterotoxin B levels more than 100-fold higher than the other strains (P < .001). Strains also displayed differential effects on HK metabolism and barrier function. Conclusions Strain-level differences in toxin genes from Staphylococcus strains may explain varying effects on HK, with S aureus and non-aureus strains negatively affecting viability and barrier function. These differences are likely important in AD pathogenesis.
Collapse
Affiliation(s)
- Nicole M. Lane Starr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Numan Al-Rayyan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Jennifer M. Smith
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Olivia Steidl
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anne Marie Singh
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wis
| |
Collapse
|
8
|
Choa R, Harris JC, Yang E, Yokoyama Y, Okumura M, Kim M, To J, Lou M, Nelson A, Kambayashi T. Thymic stromal lymphopoietin induces IL-4/IL-13 from T cells to promote sebum secretion and adipose loss. J Allergy Clin Immunol 2024; 154:480-491. [PMID: 38157943 PMCID: PMC11211244 DOI: 10.1016/j.jaci.2023.11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - MinJu Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Meng Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Amanda Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pa
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
9
|
Su Q, Hu X, Yang M, He H, Jia Y. Lipidomic analysis of facial skin surface lipids in acne in young women. Int J Cosmet Sci 2024; 46:424-436. [PMID: 38229406 DOI: 10.1111/ics.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Alterations in the secretion and composition of skin surface lipids (SSL) are closely associated with the development of acne. Lipidomics is a useful tool to analyse the SSL of different types of acne. Our previous study found that phosphatidylserine and triacylglycerols dominate SSL changes in male acne and infantile acne, respectively. However, skin surface lipids as well as specific lipids in female acne patients remain to be investigated. OBJECTIVES To analyse and compare the SSL profile of acne women and healthy women and to discuss the involvement of differential lipids in acne development. METHODS Systematic lipidomics approach (high-throughput UPLC-QTOF-MS technology in combination with multivariate data analysis methods) was used to analyse the variations of SSL between acne and healthy groups. RESULTS Analysis revealed significant differences in lipid content and composition between the two groups. Further analysis showed that levels of 13 individual lipids were significantly different and followed the same trend as the main class and subclasses. The largest individual contributor to the subgroup was triglycerides (TG) and phosphatidylinositol (PI). In addition, female acne patients exhibited reduced ceramide chain length (CCL) and increased levels of unsaturated fatty acids (UFAs), The changes of CCL in female acne are identical to male acne. CONCLUSIONS There was a significantly higher level of TG and PI in the SSL of female acne patients. A reduction in CCL and an increase in UFAs content might contribute to the reduced skin barrier function in acne patients. The results suggest that female acne may have different pathogenesis than male acne.
Collapse
Affiliation(s)
- Qianqian Su
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Xueqing Hu
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Manli Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huaming He
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
10
|
Jiao Q, Zhi L, You B, Wang G, Wu N, Jia Y. Skin homeostasis: Mechanism and influencing factors. J Cosmet Dermatol 2024; 23:1518-1526. [PMID: 38409936 DOI: 10.1111/jocd.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The skin is the largest organ in the human body, not only resisting the invasion of harmful substances, but also preventing the loss of moisture and nutrients. Maintaining skin homeostasis is a prerequisite for the proper functioning of the body. Any damage to the skin can lead to a decrease in local homeostasis, such as ultraviolet radiation, seasonal changes, and air pollution, which can damage the skin tissue and affect the function of the skin barrier. OBJECTIVE This article reviews the maintenance mechanism and influencing factors of skin homeostasis and the symptoms of homeostasis imbalance. METHODS We searched for articles published between 1990 and 2022 in English and Chinese using PubMed, Web of Science, CNKI, and other databases in the subject area of dermatology, using the following search terms in various combinations: "skin homeostasis," "skin barrier," and "unstable skin." Based on our results, we further refined our search criteria to include a series of common skin problems caused by the destruction of skin homeostasis and its treatments. Limitations include the lack of research on dermatological and cosmetic problems triggered by the disruption of skin homeostasis. RESULTS This study describes the neuroendocrine-immune system, skin barrier structure, and skin metabolic system that maintain skin homeostasis. In addition, we discuss several common symptoms that occur when skin homeostasis is out of balance, such as dryness, redness, acne, sensitivity, and aging, and explain the mechanism of these symptoms. CONCLUSION This article provides an update and review for students and practitioners, and provides a theoretical basis for the development of skin care products for the maintenance and repair of skin homeostasis.
Collapse
Affiliation(s)
- Qian Jiao
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Leilei Zhi
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Bing You
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | | | - Nan Wu
- R&D Center, PeiLai Group Co., Ltd, Shanghai, China
| | - Yan Jia
- Key Laboratory of Cosmetic of China National Light Industry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Liu Y, Gao H, Chen H, Ji S, Wu L, Zhang H, Wang Y, Fu X, Sun X. Sebaceous gland organoid engineering. BURNS & TRAUMA 2024; 12:tkae003. [PMID: 38699464 PMCID: PMC11063650 DOI: 10.1093/burnst/tkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Indexed: 05/05/2024]
Abstract
Sebaceous glands (SGs), as holocrine-secreting appendages, lubricate the skin and play a central role in the skin barrier. Large full-thickness skin defects cause overall architecture disruption and SG loss. However, an effective strategy for SG regeneration is lacking. Organoids are 3D multicellular structures that replicate key anatomical and functional characteristics of in vivo tissues and exhibit great potential in regenerative medicine. Recently, considerable progress has been made in developing reliable procedures for SG organoids and existing SG organoids recapitulate the main morphological, structural and functional features of their in vivo counterparts. Engineering approaches empower researchers to manipulate cell behaviors, the surrounding environment and cell-environment crosstalk within the culture system as needed. These techniques can be applied to the SG organoid culture system to generate functionally more competent SG organoids. This review aims to provide an overview of recent advancements in SG organoid engineering. It highlights some potential strategies for SG organoid functionalization that are promising to forge a platform for engineering vascularized, innervated, immune-interactive and lipogenic SG organoids. We anticipate that this review will not only contribute to improving our understanding of SG biology and regeneration but also facilitate the transition of the SG organoid from laboratory research to a feasible clinical application.
Collapse
Affiliation(s)
- Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Yujia Wang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| |
Collapse
|
12
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Silva Carvalho R, Nóbrega Cardoso RK, Teixeira Amorim Dos Santos LA, Xavier Sales Dos Santos M, Leocadio Santos Neto E, Zamora Restan WA, Savinov A, Paul A, Agy Loureiro B. Effect of feeding black soldier fly larvae meal based diet on canine skin barrier function, organic antioxidant defence and blood biochemistry. Arch Anim Nutr 2024; 78:159-177. [PMID: 39037852 DOI: 10.1080/1745039x.2024.2375463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Black soldier fly meal in pet diets is gaining acceptance. This study aimed to assess the use of black soldier fly larvae defatted meal (BSFL) and its impact on blood parameters, biochemical markers, organic antioxidant capacity, skin barrier function and skin and coat quality. A cross-over study involved eight beagle dogs with two periods of 50 days each and a washout period of seven days in between. Two approximately iso-nutritive extruded diets were evaluated, the first containing 29.5% BSFL meal and a control diet containing 26% poultry by-product meal (PBP) as protein source. Skin and coat evaluations and blood collections were conducted before and after each period. Skin barrier function was assessed by measurement of trans epidermal water loss (TEWL) and stratum corneum hydration (SCH) in belly and pinna of the dogs on days 0, 15, 30, and 45 of each period. A trend for higher antioxidant effect significant reduction in serum scavenging capacity was found with PBP for BSFL diet trough malondialdehyde and Vitamin E measurement in dog's serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. When fed PBP diet dogs exhibited reduction in serum cholesterol triglycerides and decreased LDL levels after 50 days, while dogs fed BSFL presented significant reduction in ALT. TEWL was significantly reduced in belly and pinna over time when dogs were fed BSFL, and TEWL in belly was significantly lower in dogs fed BSFL in comparison to PBP. while Increased SCH was also higher for the BSFL group observed in the same along the feeding period in comparison to PBP, indicating improved ability of the dogs to retain water and keep skin moisture. Improvement skin barrier function could be related to fatty acids from BSFL and increased sebaceous lipids in skin. These are responsible for to avoid water loss and improve skin protection against microbial insults. Inclusion of BSFL as protein source did not promote negative changes in blood biochemistry and had minor antioxidant effect in healthy dogs. However, it proved effective in improving skin barrier function, making BSFL a valuable alternative protein source for dogs, particularly those with sensitive skin or allergies manifesting on the skin.
Collapse
Affiliation(s)
- Rafaela Silva Carvalho
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | - Bruna Agy Loureiro
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
14
|
Seiringer P, Hillig C, Schäbitz A, Jargosch M, Pilz AC, Eyerich S, Szegedi A, Sochorová M, Gruber F, Zouboulis CC, Biedermann T, Menden MP, Eyerich K, Törőcsik D. Spatial transcriptomics reveals altered lipid metabolism and inflammation-related gene expression of sebaceous glands in psoriasis and atopic dermatitis. Front Immunol 2024; 15:1334844. [PMID: 38433843 PMCID: PMC10904577 DOI: 10.3389/fimmu.2024.1334844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Sebaceous glands drive acne, however, their role in other inflammatory skin diseases remains unclear. To shed light on their potential contribution to disease development, we investigated the spatial transcriptome of sebaceous glands in psoriasis and atopic dermatitis patients across lesional and non-lesional human skin samples. Both atopic dermatitis and psoriasis sebaceous glands expressed genes encoding key proteins for lipid metabolism and transport such as ALOX15B, APOC1, FABP7, FADS1/2, FASN, PPARG, and RARRES1. Also, inflammation-related SAA1 was identified as a common spatially variable gene. In atopic dermatitis, genes mainly related to lipid metabolism (e.g. ACAD8, FADS6, or EBP) as well as disease-specific genes, i.e., Th2 inflammation-related lipid-regulating HSD3B1 were differentially expressed. On the contrary, in psoriasis, more inflammation-related spatially variable genes (e.g. SERPINF1, FKBP5, IFIT1/3, DDX58) were identified. Other psoriasis-specific enriched pathways included lipid metabolism (e.g. ACOT4, S1PR3), keratinization (e.g. LCE5A, KRT5/7/16), neutrophil degranulation, and antimicrobial peptides (e.g. LTF, DEFB4A, S100A7-9). In conclusion, our results show that sebaceous glands contribute to skin homeostasis with a cell type-specific lipid metabolism, which is influenced by the inflammatory microenvironment. These findings further support that sebaceous glands are not bystanders in inflammatory skin diseases, but can actively and differentially modulate inflammation in a disease-specific manner.
Collapse
Affiliation(s)
- Peter Seiringer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Hillig
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany
| | - Alexander Schäbitz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manja Jargosch
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Zentrum für Allergie und Umwelt (ZAUM) - Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
| | - Anna Caroline Pilz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Stefanie Eyerich
- Zentrum für Allergie und Umwelt (ZAUM) - Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Hungarian Research Network (HUN-REN DE), Allergology Research Group, Debrecen, Hungary
| | - Michaela Sochorová
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Division for Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Michael P Menden
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Centre for Environmental Health, Munich, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Hungarian Research Network (HUN-REN DE), Allergology Research Group, Debrecen, Hungary
| |
Collapse
|
15
|
Huang L, Yang S, Yu X, Fang F, Zhu L, Wang L, Zhang X, Yang C, Qian Q, Zhu T. Association of different cell types and inflammation in early acne vulgaris. Front Immunol 2024; 15:1275269. [PMID: 38357543 PMCID: PMC10864487 DOI: 10.3389/fimmu.2024.1275269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Acne vulgaris, one of the most common skin diseases, is a chronic cutaneous inflammation of the upper pilosebaceous unit (PSU) with complex pathogenesis. Inflammation plays a central role in the pathogenesis of acne vulgaris. During the inflammatory process, the innate and adaptive immune systems are coordinately activated to induce immune responses. Understanding the infiltration and cytokine secretion of differential cells in acne lesions, especially in the early stages of inflammation, will provide an insight into the pathogenesis of acne. The purpose of this review is to synthesize the association of different cell types with inflammation in early acne vulgaris and provide a comprehensive understanding of skin inflammation and immune responses.
Collapse
Affiliation(s)
- Lei Huang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Baoshan, Yunnan, China
| | - Xiuqin Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fumin Fang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liping Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Wang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoping Zhang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Changzhi Yang
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qihong Qian
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Mijaljica D, Townley JP, Spada F, Harrison IP. The heterogeneity and complexity of skin surface lipids in human skin health and disease. Prog Lipid Res 2024; 93:101264. [PMID: 37940006 DOI: 10.1016/j.plipres.2023.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The outermost epidermal layer of the skin, the stratum corneum, is not simply a barrier that safeguards skin integrity from external insults and invaders, it is also a delicately integrated interface composed of firm, essentially dead corneocytes and a distinctive lipid matrix. Together, the stratum corneum lipid matrix and sebum lipids derived from sebaceous glands give rise to a remarkably complex but quite unique blend of skin surface lipids that demonstrates tremendous heterogeneity and provides the skin with its indispensable protective coating. The stratum corneum lipid matrix is composed primarily of three major lipid classes: ceramides, non-esterified fatty acids and cholesterol, whereas sebum is a waxy mixture predominantly composed of acylglycerols, wax esters, non-esterified fatty acids, squalene, cholesterol and cholesterol esters. The balance of these skin surface lipids in terms of their relative abundance, composition, molecular organisation and dynamics, and their intricate interactions play a crucial role in the maintenance of healthy skin. For that reason, even minuscule alterations in skin surface lipid properties or overall lipid profile have been implicated in the aetiology of many common skin diseases including atopic dermatitis, psoriasis, xerosis, ichthyosis and acne. Novel lipid-based interventions aimed at correcting the skin surface lipid abnormalities have the potential to repair skin barrier integrity and the symptoms associated with such skin diseases, even though the exact mechanisms of lipid restoration remain elusive.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Joshua P Townley
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Fabrizio Spada
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| | - Ian P Harrison
- Department of Scientific Affairs, Ego Pharmaceuticals Pty Ltd, 21-31 Malcolm Road, Braeside, Victoria 3195, Australia.
| |
Collapse
|
17
|
Dessì A, Di Maria C, Pintus R, Fanos V, Bosco A. Lipidomics and Metabolomics in Infant Atopic Dermatitis: What's the Correlation with Early Nutrition? Curr Pediatr Rev 2024; 20:510-524. [PMID: 37055903 DOI: 10.2174/1573396320666230411093122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/15/2023]
Abstract
To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk. In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.
Collapse
Affiliation(s)
- Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Camilla Di Maria
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Jin Z, Song Y, He L. A review of skin immune processes in acne. Front Immunol 2023; 14:1324930. [PMID: 38193084 PMCID: PMC10773853 DOI: 10.3389/fimmu.2023.1324930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
Acne vulgaris is one of the most prevalent skin conditions, affecting almost all teenagers worldwide. Multiple factors, including the excessive production of sebum, dysbiosis of the skin microbiome, disruption of keratinization within hair follicles, and local inflammation, are believed to trigger or aggravate acne. Immune activity plays a crucial role in the pathogenesis of acne. Recent research has improved our understanding of the immunostimulatory functions of microorganisms, lipid mediators, and neuropeptides. Additionally, significant advances have been made in elucidating the intricate mechanisms through which cutaneous innate and adaptive immune cells perceive and transmit stimulatory signals and initiate immune responses. However, our understanding of precise temporal and spatial patterns of immune activity throughout various stages of acne development remains limited. This review provides a comprehensive overview of the current knowledge concerning the immune processes involved in the initiation and progression of acne. Furthermore, we highlight the significance of detailed spatiotemporal analyses, including analyses of temporal dynamics of immune cell populations as well as single-cell and spatial RNA sequencing, for the development of targeted therapeutic and prevention strategies.
Collapse
Affiliation(s)
| | | | - Li He
- Skin Health Research Center, Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
20
|
Kim K, Jang H, Kim E, Kim H, Sung GY. Recent advances in understanding the role of the skin microbiome in the treatment of atopic dermatitis. Exp Dermatol 2023; 32:2048-2061. [PMID: 37767872 DOI: 10.1111/exd.14940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
The skin is the largest organ in the human body, and histologically consists of the epidermis, dermis and subcutaneous tissue. Humans maintain a cooperative symbiotic relationship with their skin microbiota, a complex community of bacteria, fungi and viruses that live on the surface of the skin, and which act as a barrier to protect the body from the inside and outside. The skin is a 'habitat' and vast 'ecosystem' inhabited by countless microbes; as such, relationships have been forged through millions of years of coevolution. It is not surprising then that microbes are key participants in shaping and maintaining essential physiological processes. In addition to maintaining barrier function, the unique symbiotic microbiota that colonizes the skin increases the immune response and provides protection against pathogenic microbes. This review examines our current understanding of skin microbes in shaping and enhancing the skin barrier, as well as skin microbiome-host interactions and their roles in skin diseases, such as atopic dermatitis (AD). We also report on the current status of AD therapeutic drugs that target the skin microbiome, related research on current therapeutic strategies, and the limitations and future considerations of skin microbiome research. In particular, as a future strategy, we discuss the need for a skin-on-a-chip-based microphysiological system research model amenable to biomimetic in vitro studies and human skin equivalent models, including skin appendages.
Collapse
Affiliation(s)
- Kyunghee Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeji Jang
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Eunyul Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Hyeju Kim
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon, Korea
- Integrative Materials Research Institute, Hallym University, Chuncheon, Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon, Korea
| |
Collapse
|
21
|
Wallen-Russell C, Pearlman N, Wallen-Russell S, Cretoiu D, Thompson DC, Voinea SC. A Catastrophic Biodiversity Loss in the Environment Is Being Replicated on the Skin Microbiome: Is This a Major Contributor to the Chronic Disease Epidemic? Microorganisms 2023; 11:2784. [PMID: 38004795 PMCID: PMC10672968 DOI: 10.3390/microorganisms11112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
There has been a catastrophic loss of biodiversity in ecosystems across the world. A similar crisis has been observed in the human gut microbiome, which has been linked to "all human diseases affecting westernized countries". This is of great importance because chronic diseases are the leading cause of death worldwide and make up 90% of America's healthcare costs. Disease development is complex and multifactorial, but there is one part of the body's interlinked ecosystem that is often overlooked in discussions about whole-body health, and that is the skin microbiome. This is despite it being a crucial part of the immune, endocrine, and nervous systems and being continuously exposed to environmental stressors. Here we show that a parallel biodiversity loss of 30-84% has occurred on the skin of people in the developed world compared to our ancestors. Research has shown that dysbiosis of the skin microbiome has been linked to many common skin diseases and, more recently, that it could even play an active role in the development of a growing number of whole-body health problems, such as food allergies, asthma, cardiovascular diseases, and Parkinson's, traditionally thought unrelated to the skin. Damaged skin is now known to induce systemic inflammation, which is involved in many chronic diseases. We highlight that biodiversity loss is not only a common finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make the case that biodiversity loss in the skin microbiome is a major contributor to the chronic disease epidemic. The link between biodiversity loss and dysbiosis forms the basis of this paper's focus on the subject. The key to understanding why biodiversity loss creates an unhealthy system could be highlighted by complex physics. We introduce entropy to help understand why biodiversity has been linked with ecosystem health and stability. Meanwhile, we also introduce ecosystems as being governed by "non-linear physics" principles-including chaos theory-which suggests that every individual part of any system is intrinsically linked and implies any disruption to a small part of the system (skin) could have a significant and unknown effect on overall system health (whole-body health). Recognizing the link between ecosystem health and human health allows us to understand how crucial it could be to maintain biodiversity across systems everywhere, from the macro-environment we inhabit right down to our body's microbiome. Further, in-depth research is needed so we can aid in the treatment of chronic diseases and potentially change how we think about our health. With millions of people currently suffering, research to help mitigate the crisis is of vital importance.
Collapse
Affiliation(s)
| | - Nancy Pearlman
- Ecology Center of Southern California, Los Angeles, CA 90035, USA;
| | | | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Dana Claudia Thompson
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Al. Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| |
Collapse
|
22
|
Dewi DAR, Perdiyana A, Wiliantari NM, Nadhira F, Arkania N, Salsabila CA, Allun CV, Allatib A, Dewantara K. Managing the Skin Microbiome as a New Bacteriotherapy for Inflammatory Atopic Dermatitis. Cureus 2023; 15:e48803. [PMID: 38024036 PMCID: PMC10645580 DOI: 10.7759/cureus.48803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The microbiome, comprising various bacteria, assumes a significant role in the immune system's maturation and maintaining bodily homeostasis. Alterations in the microbial composition can contribute to the initiation and progression of inflammation. Recent studies reveal that changes in microbial composition and function, known as dysbiosis in the skin and gut, have been associated with altered immunological responses and skin barrier disruption. These changes are implicated in the development of several skin diseases, such as atopic dermatitis (AD). This review examines research demonstrating the potential of microbiome repair as a therapeutic approach to reduce the effect of inflammatory processes in the skin during atopic dermatitis. This way, corticosteroids in atopic dermatitis therapy can be reduced or even replaced with treatments focusing on controlling the skin microbiome. This study used scientific literature from recognized platforms, including PubMed, Scopus, Google Scholar, and ScienceDirect, covering publications from 2013 to 2023. The primary aim of this study was to assess the efficacy of skin microbiome management in treating atopic dermatitis. This study concludes that physicians must comprehensively understand the microbiome's involvement in atopic dermatitis, including its pathophysiological implications and its relevance to therapeutic interventions.
Collapse
Affiliation(s)
- Dian Andriani Ratna Dewi
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
- Department of Dermatovenereology, Gatot Soebroto Central Army Hospital, Central Jakarta, IDN
| | - Angki Perdiyana
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Ni M Wiliantari
- Department of Dermatovenereology, Ratna Dewi Principal Clinic, Bekasi, IDN
| | - Farrasila Nadhira
- Department of Dermatovenereology, Ratna Dewi Principal Clinic, Bekasi, IDN
| | - Nabila Arkania
- Department of Dermatovenereology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Special Region of Yogyakarta, IDN
| | - Cut A Salsabila
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Clara V Allun
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Arohid Allatib
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| | - Kelvin Dewantara
- Department of Dermatovenereology, Faculty of Military Medicine, The Republic of Indonesia Defense University, Bogor, IDN
| |
Collapse
|
23
|
Kuiack RC, Tuffs SW, Dufresne K, Flick R, McCormick JK, McGavin MJ. The fadXDEBA locus of Staphylococcus aureus is required for metabolism of exogenous palmitic acid and in vivo growth. Mol Microbiol 2023; 120:425-438. [PMID: 37501506 DOI: 10.1111/mmi.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
In Staphylococcus aureus, genes that should confer the capacity to metabolize fatty acids by β-oxidation occur in the fadXDEBA locus, but their function has not been elucidated. Previously, incorporation into phospholipid through the fatty acid kinase FakA pathway was thought to be the only option available for S. aureus to metabolize exogenous saturated fatty acids. We now find that in S. aureus USA300, a fadX::lux reporter was repressed by glucose and induced by palmitic acid but not stearic acid, while in USA300ΔfakA basal expression was significantly elevated, and enhanced in response to both fatty acids. When cultures were supplemented with palmitic acid, palmitoyl-CoA representing the first metabolite in the β-oxidation pathway was detected in USA300, but not in a fadXDEBA deletion mutant USA300Δfad, which relative to USA300 exhibited increased incorporation of palmitic acid into phospholipid accompanied by a rapid loss of viability. USA300Δfad also exhibited significantly reduced viability in a murine tissue abscess infection model. Our data are consistent with FakA-mediated incorporation of fatty acids into phospholipid as a preferred pathway for metabolism of exogenous fatty acids, while the fad locus is critical for metabolism of palmitic acid, which is the most abundant free fatty acid in human plasma.
Collapse
Affiliation(s)
- Robert C Kuiack
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Robert Flick
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin J McGavin
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Almoughrabie S, Cau L, Cavagnero K, O’Neill AM, Li F, Roso-Mares A, Mainzer C, Closs B, Kolar MJ, Williams KJ, Bensinger SJ, Gallo RL. Commensal Cutibacterium acnes induce epidermal lipid synthesis important for skin barrier function. SCIENCE ADVANCES 2023; 9:eadg6262. [PMID: 37595033 PMCID: PMC10438445 DOI: 10.1126/sciadv.adg6262] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Lipid synthesis is necessary for formation of epithelial barriers and homeostasis with external microbes. An analysis of the response of human keratinocytes to several different commensal bacteria on the skin revealed that Cutibacterium acnes induced a large increase in essential lipids including triglycerides, ceramides, cholesterol, and free fatty acids. A similar response occurred in mouse epidermis and in human skin affected with acne. Further analysis showed that this increase in lipids was mediated by short-chain fatty acids produced by Cutibacterium acnes and was dependent on increased expression of several lipid synthesis genes including glycerol-3-phosphate-acyltransferase-3. Inhibition or RNA silencing of peroxisome proliferator-activated receptor-α (PPARα), but not PPARβ and PPARγ, blocked this response. The increase in keratinocyte lipid content improved innate barrier functions including antimicrobial activity, paracellular diffusion, and transepidermal water loss. These results reveal that metabolites from a common commensal bacterium have a previously unappreciated influence on the composition of epidermal lipids.
Collapse
Affiliation(s)
- Samia Almoughrabie
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
- SILAB, Brive, France
| | | | - Kellen Cavagnero
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Andrea Roso-Mares
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | | | | | - Matthew J. Kolar
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| | - Kevin J. Williams
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
- UCLA Lipidomics Lab, UCLA, Los Angeles, CA, USA
| | - Steven J. Bensinger
- UCLA Lipidomics Lab, UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla CA, USA
| |
Collapse
|
25
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Çetinarslan T, Kümper L, Fölster-Holst R. The immunological and structural epidermal barrier dysfunction and skin microbiome in atopic dermatitis-an update. Front Mol Biosci 2023; 10:1159404. [PMID: 37654796 PMCID: PMC10467310 DOI: 10.3389/fmolb.2023.1159404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Atopic dermatitis (AD) is a common, chronic and relapsing inflammatory skin disease with various clinical presentations and combinations of symptoms. The pathophysiology of AD is complex and multifactorial. There are several factors involved in the etiopathogenesis of AD including structural and immunological epidermal barrier defect, imbalance of the skin microbiome, genetic background and environmental factors. Alterations in structural proteins, lipids, proteases, and their inhibitors, lead to the impairment of the stratum corneum which is associated with the increased skin penetration and transepidermal water loss. The elevated serum immunoglobulin E levels and blood eosinophilia have been shown in the majority of AD patients. Type 2 T-helper cell immune pathway with increased expression of interleukin (IL)-4, IL-5, and IL-13, has an important role in the etiopathogenesis of AD. Both T cells and keratinocytes contribute to epidermal barrier impairment in AD via a dynamic interaction of cytokines and chemokines. The skin microbiome is another factor of relevance in the etiopathogenesis of AD. It has been shown that during AD flares, Staphylococcus aureus (S. aureus) colonization increased, while Staphylococcus epidermidis (S. epidermidis) decreased. On the contrary, S. epidermidis and species of Streptococcus, Corynebacterium and Propionibacterium increased during the remision phases. However, it is not clear whether skin dysbiosis is one of the symptoms or one of the causes of AD. There are several therapeutic options, targeting these pathways which play a critical role in the etiopathogenesis of AD. Although topical steroids are the mainstay of the treatment of AD, new biological therapies including IL-4, IL-13, and IL-31 inhibitors, as well as Janus kinase inhibitors (JAKi), increasingly gain more importance with new advances in the therapy of AD. In this review, we summarize the role of immunological and structural epidermal barrier dysfunction, immune abnormalities, impairment of lipids, filaggrin mutation and skin microbiome in the etiopathogenesis of AD, as well as the therapeutic options for AD and their effects on these abnormalities in AD skin.
Collapse
Affiliation(s)
- Tubanur Çetinarslan
- Department of Dermatology and Venereology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Lisa Kümper
- MEDICE Arzneimittel Pütter GmbH and Co. KG, Iserlohn, Germany
| | - Regina Fölster-Holst
- Department of Dermatology-Venereology and Allergology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
27
|
Du W, Wang Z, Dong Y, Hu H, Zhou H, He X, Hu J, Li Y. Electroacupuncture promotes skin wound repair by improving lipid metabolism and inhibiting ferroptosis. J Cell Mol Med 2023; 27:2308-2320. [PMID: 37307402 PMCID: PMC10424292 DOI: 10.1111/jcmm.17811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with 12 rats in each group. After the intervention, local skin tissues were collected for lipid metabolomics analysis, wound perfusion and ferroptosis-related indexes were detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 37 differential metabolites shared by the three groups, mainly phospholipids, lysophospholipids, glycerides, acylcarnitine, sphingolipids and fatty acids, and they could be back-regulated after electroacupuncture. The recovery of blood perfusion and wound healing was faster in the electroacupuncture group than in the model group (p < 0.05). The levels of GPX4, FTH1, SOD and GSH-PX, which are related to ferroptosis, were higher in the electroacupuncture group than in the model group (p < 0.05). The levels of ACSL4 and MDA were lower in the electroacupuncture group than in the model group (p < 0.05). Electroacupuncture may promote skin wound repair by improving lipid metabolism and inhibiting ferroptosis in local tissues.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Huahui Hu
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Huateng Zhou
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yong Li
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
28
|
Kovács D, Camera E, Póliska S, Cavallo A, Maiellaro M, Dull K, Gruber F, Zouboulis CC, Szegedi A, Törőcsik D. Linoleic Acid Induced Changes in SZ95 Sebocytes-Comparison with Palmitic Acid and Arachidonic Acid. Nutrients 2023; 15:3315. [PMID: 37571253 PMCID: PMC10420848 DOI: 10.3390/nu15153315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Linoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.
Collapse
Affiliation(s)
- Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (D.K.); (K.D.); (A.S.)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute—IRCCS, 00144 Rome, Italy; (E.C.); (A.C.); (M.M.)
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Alessia Cavallo
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute—IRCCS, 00144 Rome, Italy; (E.C.); (A.C.); (M.M.)
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute—IRCCS, 00144 Rome, Italy; (E.C.); (A.C.); (M.M.)
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (D.K.); (K.D.); (A.S.)
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Auenweg 38, 06847 Dessau, Germany;
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (D.K.); (K.D.); (A.S.)
- ELKH-DE Allergology Research Group, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (D.K.); (K.D.); (A.S.)
- ELKH-DE Allergology Research Group, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| |
Collapse
|
29
|
Tan J, Chavda R, Baldwin H, Dreno B. Management of Acne Vulgaris With Trifarotene. J Cutan Med Surg 2023; 27:368-374. [PMID: 36927117 PMCID: PMC10486177 DOI: 10.1177/12034754231163542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Topical retinoids have an essential role in treatment of acne. Trifarotene, a topical retinoid selective for retinoic acid receptor (RAR) γ, is the most recent retinoid approved for treatment of acne. RAR-γ is the most common isoform of RARs in skin, and the strong selectivity of trifarotene for RAR-γ translates to efficacy in low concentration. Trifarotene, like other topical retinoids, acts by increasing keratinocyte differentiation and decreasing proliferation, which reduces hyperkeratinization. Retinoids have also been shown to inhibit inflammatory pathways via effects on leukocyte migration, toll-like receptors, and Activator Protein (AP)-1. Large-scale randomized, controlled clinical trials have demonstrated trifarotene to be safe, well tolerated, and efficacious in reducing both comedones and papules/pustules of acne. However, unlike all other retinoids, trifarotene is the first topical retinoid with rigorous clinical data on safety and efficacy in truncal acne. Data supporting use of trifarotene to manage acne are reviewed in this publication.
Collapse
Affiliation(s)
- Jerry Tan
- Windsor Clinical Research Inc, Ontario, Canada
- Department of Medicine, University of Western Ontario, Windsor Campus, Canada
| | | | - Hilary Baldwin
- Robert Wood Johnson Medical Center, New Brunswick, New Jersey, USA
- The Acne Treatment and Research Center, Brooklyn, New York, USA
| | - Brigitte Dreno
- Dermato-cancerology Department, CHU Nantes, University of Nantes, France
| |
Collapse
|
30
|
Zouboulis CC, Hossini AM, Hou X, Wang C, Weylandt KH, Pietzner A. Effects of Moringa oleifera Seed Oil on Cultured Human Sebocytes In Vitro and Comparison with Other Oil Types. Int J Mol Sci 2023; 24:10332. [PMID: 37373478 DOI: 10.3390/ijms241210332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The seeds of Moringa oleifera (horseradish tree) contain about 40% of one of the most stable vegetable oils (Moringa seed oil). Therefore, the effects of Moringa seed oil on human SZ95 sebocytes were investigated and were compared with other vegetable oils. Immortalized human SZ95 sebocytes were treated with Moringa seed oil, olive oil, sunflower oil, linoleic acid and oleic acid. Lipid droplets were visualized by Nile Red fluorescence, cytokine secretion via cytokine antibody array, cell viability with calcein-AM fluorescence, cell proliferation by real-time cell analysis, and fatty acids were determined by gas chromatography. Statistical analysis was performed by the Wilcoxon matched-pairs signed-rank test, the Kruskal-Wallis test and Dunn's multiple comparison test. The vegetable oils tested stimulated sebaceous lipogenesis in a concentration-dependent manner. The pattern of lipogenesis induced by Moringa seed oil and olive oil was comparable to lipogenesis stimulated by oleic acid with also similar fatty acid secretion and cell proliferation patterns. Sunflower oil induced the strongest lipogenesis among the tested oils and fatty acids. There were also differences in cytokine secretion, induced by treatment with different oils. Moringa seed oil and olive oil, but not sunflower oil, reduced the secretion of pro-inflammatory cytokines, in comparison to untreated cells, and exhibited a low n-6/n-3 index. The anti-inflammatory oleic acid detected in Moringa seed oil probably contributed to its low levels of pro-inflammatory cytokine secretion and induction of cell death. In conclusion, Moringa seed oil seems to concentrate several desired oil properties on sebocytes, such as high content level of the anti-inflammatory fatty acid oleic acid, induction of similar cell proliferation and lipogenesis patterns compared with oleic acid, lipogenesis with a low n-6/n-3 index and inhibition of secretion of pro-inflammatory cytokines. These properties characterize Moringa seed oil as an interesting nutrient and a promising ingredient in skin care products.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Xiaoxiao Hou
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Chaoxuan Wang
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
- Division of Psychosomatic Medicine, Medical Department, Campus Benjamin Franklin, Charité-Universitaetsmedizin Berlin, 12203 Berlin, Germany
| | - Karsten H Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School and Faculty of Health Sciences Brandenburg, 16816 Neuruppin, Germany
| |
Collapse
|
31
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
32
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and immune system non-genetically affect offspring phenotypes transgenerationally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535940. [PMID: 37066207 PMCID: PMC10104111 DOI: 10.1101/2023.04.06.535940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development 1-3 . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion 4 , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression 5 were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.
Collapse
|
33
|
Flori E, Mastrofrancesco A, Ottaviani M, Maiellaro M, Zouboulis CC, Camera E. Desaturation of sebaceous-type saturated fatty acids through the SCD1 and the FADS2 pathways impacts lipid neosynthesis and inflammatory response in sebocytes in culture. Exp Dermatol 2023. [PMID: 36843338 DOI: 10.1111/exd.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/12/2022] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
Sebum is a lipid-rich mixture secreted by the sebaceous gland (SG) onto the skin surface. By penetrating through the epidermis, sebum may be involved in the regulation of epidermal and dermal cells in both healthy and diseased skin conditions. Saturated and monounsaturated fatty acids (FAs), found as free FAs (FFAs) and in bound form in neutral lipids, are essential constituents of sebum and key players of the inflammatory processes occurring in the pilosebaceous unit in acne-prone skin. Little is known on the interplay among uptake of saturated FFAs, their biotransformation, and induction of proinflammatory cytokines in sebocytes. In the human SG, palmitate (C16:0) is the precursor of sapienate (C16:1n-10) formed by insertion of a double bond (DB) at the Δ6 position catalysed by the fatty acid desaturase 2 (FADS2) enzyme. Conversely, palmitoleate (C16:1n-7) is formed by insertion of a DB at the Δ9 position catalysed by the stearoyl coenzyme A desaturase 1 (SCD1) enzyme. Other FFAs processed in the SG, also undergo these main desaturation pathways. We investigated lipogenesis and release of IL-6 and IL-8 pro-inflammatory cytokines in SZ95 sebocytes in vitro after treatment with saturated FFAs, that is, C16:0, margarate (C17:0), and stearate (C18:0) with or without specific inhibitors of SCD1 and FADS2 desaturase enzymes, and a drug with mixed inhibitory effects on FADS1 and FADS2 activities. C16:0 underwent extended desaturation through both SCD1 and FADS2 catalysed pathways and displayed the strongest lipoinflammatory effects. Inhibition of desaturation pathways proved to enhance lipoinflammation induced by SFAs in SZ95 sebocytes. Palmitate (C16:0), margarate (C17:0), and stearate (C18:0) are saturated fatty acids that induce different arrays of neutral lipids (triglycerides) and dissimilar grades of inflammation in sebocytes.
Collapse
Affiliation(s)
- Enrica Flori
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Emanuela Camera
- Cutaneous Physiopathology and Integrated Centre for Metabolomic Research, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| |
Collapse
|
34
|
Kengmo Tchoupa A, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol 2023:S0966-842X(23)00027-6. [PMID: 36822953 DOI: 10.1016/j.tim.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
The corneocyte layers forming the upper surface of mammalian skin are embedded in a lamellar-membrane matrix which repels harmful molecules while retaining solutes from subcutaneous tissues. Only certain bacterial and fungal taxa colonize skin surfaces. They have ways to use epidermal lipids as nutrients while resisting antimicrobial fatty acids. Skin microorganisms release lipophilic microbe-associated molecular pattern (MAMP) molecules which are largely retained by the epidermal lipid barrier. Skin barrier defects, as in atopic dermatitis, impair lamellar-membrane integrity, resulting in altered skin microbiomes, which then include the pathogen Staphylococcus aureus. The resulting increased penetration of MAMPs and toxins promotes skin inflammation. Elucidating how microorganisms manipulate the epidermal lipid barrier will be key for better ways of preventing inflammatory skin disorders.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Birgit Schittek
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; Dermatology Department, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Infection Biology Section, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), partner site Tübingen, Germany.
| |
Collapse
|
35
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
36
|
Swaney MH, Nelsen A, Sandstrom S, Kalan LR. Sweat and Sebum Preferences of the Human Skin Microbiota. Microbiol Spectr 2023; 11:e0418022. [PMID: 36602383 PMCID: PMC9927561 DOI: 10.1128/spectrum.04180-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.
Collapse
Affiliation(s)
- Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Amanda Nelsen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
37
|
Morio KA, Sternowski RH, Brogden KA. Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation. Antibiotics (Basel) 2023; 12:antibiotics12020361. [PMID: 36830272 PMCID: PMC9952314 DOI: 10.3390/antibiotics12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes.
Collapse
Affiliation(s)
| | | | - Kim A. Brogden
- College of Dentistry, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
38
|
Dou X, Yan D, Liu S, Gao N, Ma Z, Shi Z, Dong N, Shan A. Host Defense Peptides in Nutrition and Diseases: A Contributor of Immunology Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3125-3140. [PMID: 36753427 DOI: 10.1021/acs.jafc.2c08522] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host defense peptides (HDPs) are primary components of the innate immune system with diverse biological functions, such as antibacterial ability and immunomodulatory function. HDPs are produced and released by immune and epithelial cells against microbial invasion, which are widely distributed in humans, animals, plants, and microbes. Notably, there are great differences in endogenous HDP distribution and expression in humans and animals. Moreover, HDP expression could be regulated by exogenous substances, such as nutrients, and different physiological statuses in health and disease. In this review, we systematically assessed the regulation of expression and mechanism of endogenous HDPs from nutrition and disease perspectives, providing a basis to identify the specificity and regularity of HDP expression. Furthermore, the regulation mechanism of HDP expression was summarized systematically, and the differences in the regulation between nutrients and diseases were explored. From this review, we provide novel ideas targeted the immune regulation of HDPs for protecting host health in nutrition and practical and effective new ideas using the immune regulation theory for further research on protecting host health from pathogenic infection and excessive immunity diseases under the global challenge of the antibiotic-abuse-induced series of problems, including food security and microbial resistance.
Collapse
Affiliation(s)
- Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Di Yan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Siqi Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Nan Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zixuan Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
39
|
de Szalay S, Wertz PW. Protective Barriers Provided by the Epidermis. Int J Mol Sci 2023; 24:ijms24043145. [PMID: 36834554 PMCID: PMC9961209 DOI: 10.3390/ijms24043145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The skin is the largest organ of the body and consists of an epidermis, dermis and subcutaneous adipose tissue. The skin surface area is often stated to be about 1.8 to 2 m2 and represents our interface with the environment; however, when one considers that microorganisms live in the hair follicles and can enter sweat ducts, the area that interacts with this aspect of the environment becomes about 25-30 m2. Although all layers of the skin, including the adipose tissue, participate in antimicrobial defense, this review will focus mainly on the role of the antimicrobial factors in the epidermis and at the skin surface. The outermost layer of the epidermis, the stratum corneum, is physically tough and chemically inert which protects against numerous environmental stresses. It provides a permeability barrier which is attributable to lipids in the intercellular spaces between the corneocytes. In addition to the permeability barrier, there is an innate antimicrobial barrier at the skin surface which involves antimicrobial lipids, peptides and proteins. The skin surface has a low surface pH and is poor in certain nutrients, which limits the range of microorganisms that can survive there. Melanin and trans-urocanic acid provide protection from UV radiation, and Langerhans cells in the epidermis are poised to monitor the local environment and to trigger an immune response as needed. Each of these protective barriers will be discussed.
Collapse
Affiliation(s)
- Sarah de Szalay
- Sarah de Szalay Consulting, LLC, Wesy Milford, NJ 07480, USA
| | - Philip W. Wertz
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
40
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
41
|
Lee YD, Yang JK, Han S, Kim BR, Shin JW, Bang J, Kim S. Topical methylene blue nanoformulation for the photodynamic therapy of acne vulgaris. Arch Dermatol Res 2022; 315:885-893. [PMID: 36376760 DOI: 10.1007/s00403-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Acne vulgaris is a common skin disease caused by multifactorial reasons involving excessive sebum secretion and inflammation by Cutibacterium acnes (C. acnes). Various conventional therapies are available for the treatment of acne vulgaris; however, topical photodynamic therapy (PDT) has attracted much attention because of its great potential for sebum-reducing, anti-inflammatory, and antimicrobial activities. Although 5-aminolevulinic acid (ALA) has been broadly used as a photosensitizer for topical PDT, it has several limitations such as long incubation time, pain, and post-inflammatory hyperpigmentation. Here, we report a biocompatible nanoformulation consisting of methylene blue and salicylic acid (MBSD), as a potent PDT and acne therapeutics, enclosed within oleic acid. Photoactivated MBSD showed antimicrobial activity against C. acnes along with long-term stability. When 24 patients with acne were treated with MBSD and light irradiation 5 times at 1-week intervals, MBSD-based PDT exhibited a remarkable reduction in acne lesions and sebum production. In addition, the therapeutic procedure was painless and safe, without any adverse events. Therefore, MBSD is a promising topical PDT agent for biocompatible, safe, and effective acne treatment.
Collapse
Affiliation(s)
- Yong-Deok Lee
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Research & Development Division, D.R.NANO Co., Ltd., Seoul, 02708, Republic of Korea
| | - Jin-Kyoung Yang
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sunmi Han
- Research & Development Division, D.R.NANO Co., Ltd., Seoul, 02708, Republic of Korea
| | - Bo Ri Kim
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Sehoon Kim
- Chemical & Biological integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
42
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Lee HJ, Kim M. Skin Barrier Function and the Microbiome. Int J Mol Sci 2022; 23:13071. [PMID: 36361857 PMCID: PMC9654002 DOI: 10.3390/ijms232113071] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Human skin is the largest organ and serves as the first line of defense against environmental factors. The human microbiota is defined as the total microbial community that coexists in the human body, while the microbiome refers to the collective genome of these microorganisms. Skin microbes do not simply reside on the skin but interact with the skin in a variety of ways, significantly affecting the skin barrier function. Here, we discuss recent insights into the symbiotic relationships between the microbiome and the skin barrier in physical, chemical, and innate/adaptive immunological ways. We discuss the gut-skin axis that affects skin barrier function. Finally, we examine the effects of microbiome dysbiosis on skin barrier function and the role of these effects in inflammatory skin diseases, such as acne, atopic dermatitis, and psoriasis. Microbiome cosmetics can help restore skin barrier function and improve these diseases.
Collapse
Affiliation(s)
| | - Miri Kim
- Department of Dermatology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, #10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea
| |
Collapse
|
44
|
Mayfosh AJ, Day ZI, Unsworth NB, Liu CQ, Gupta R, Haynes S, Abraham R, Abraham S, Shaw ZL, Walia S, Elbourne A, Hulett MD, Rau TF. GS-2: A Novel Broad-Spectrum Agent for Environmental Microbial Control. Biomolecules 2022; 12:biom12091293. [PMID: 36139131 PMCID: PMC9496126 DOI: 10.3390/biom12091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The environmental control of microbial pathogens currently relies on compounds that do not exert long-lasting activity on surfaces, are impaired by soil, and contribute to the growing problem of antimicrobial resistance. This study presents the scientific development and characterization of GS-2, a novel, water-soluble ammonium carboxylate salt of capric acid and L-arginine that demonstrates activity against a range of bacteria (particularly Gram-negative bacteria), fungi, and viruses. In real-world surface testing, GS-2 was more effective than a benzalkonium chloride disinfectant at reducing the bacterial load on common touch-point surfaces in a high-traffic building (average 1.6 vs. 32.6 CFUs recovered from surfaces 90 min after application, respectively). Toxicology testing in rats confirmed GS-2 ingredients were rapidly cleared and posed no toxicities to humans or animals. To enhance the time-kill against Gram-positive bacteria, GS-2 was compounded at a specific ratio with a naturally occurring monoterpenoid, thymol, to produce a water-based antimicrobial solution. This GS-2 with thymol formulation could generate a bactericidal effect after five minutes of exposure and a viricidal effect after 10 min of exposure. Further testing of the GS-2 and thymol combination on glass slides demonstrated that the compound retained bactericidal activity for up to 60 days. Based on these results, GS-2 and GS-2 with thymol represent a novel antimicrobial solution that may have significant utility in the long-term reduction of environmental microbial pathogens in a variety of settings.
Collapse
Affiliation(s)
| | - Zoe I. Day
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Plenty Rd, Bundoora, VIC 3086, Australia
| | - Nathan B. Unsworth
- Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Chun-Qiang Liu
- Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Ruchi Gupta
- Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, VIC 3207, Australia
| | - Soraya Haynes
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Zo L. Shaw
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Mark D. Hulett
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Plenty Rd, Bundoora, VIC 3086, Australia
| | - Thomas F. Rau
- Ten Carbon Chemistry, PO Box 4317, Hawker, ACT 2614, Australia
- Correspondence:
| |
Collapse
|
45
|
Prawira AY, Farida WR, Darusman HS, Novelina S, Agungpriyono S. Fatty acid composition profiling in the dorsal skin of Sunda porcupine (Hystrix javanica). J Vet Med Sci 2022; 84:1230-1236. [PMID: 35851265 PMCID: PMC9523308 DOI: 10.1292/jvms.22-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fatty acid composition in the skin of Sunda porcupine (Hystrix javanica) is an interesting topic due to the special features of quills, especially in the dorsal region.
Therefore, this study aims to analyze the composition of fatty acids in the dorsal region of Sunda porcupine skin. It was conducted using skin samples of the thoracodorsal and lumbosacral
regions taken by biopsies and from frozen specimens. The skin lipid was extracted and then derivatized into fatty acid methyl ester before analyzing with gas chromatography mass
spectrometry. The results showed that the skin is composed of up to 25 fatty acids ranging from C12 to C25 with various types but only 16 were found in both regions and sexes. Fatty acids
with an antibacterial effect were found abundantly, such as oleic, palmitic, stearic, and linoleic acids. The total abundance in the thoracodorsal region was higher than lumbosacral, while
the composition in male was higher than in female. Based on the results, the fatty acid composition in the dorsal skin region of Sunda porcupine consists of at least 16 types ranging from
C12-C25. Additionally, the region and sex were observed to contribute significantly to the variation in skin fatty acid composition.
Collapse
Affiliation(s)
- Andhika Yudha Prawira
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University.,Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
| | - Wartika Rosa Farida
- Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN)
| | - Huda Salahudin Darusman
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University.,Primate Research Center, IPB University
| | - Savitri Novelina
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University
| | - Srihadi Agungpriyono
- Department of Anatomy Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University
| |
Collapse
|
46
|
Al-tameemi S, Abid Z, Chen W, Alshammri F, Abid H. Calprotectin may be positively associated with the severity of acne vulgaris. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i02.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and objective: Acne vulgaris (AV) is a common skin disease of sebaceous hair follicles. Many factors are associated with the occurrence and severity of acne, while the exact etiology remains incompletely understood. The current study was aimed to investigate the association between the severity of acne and serum zinc, copper, and calprotectin.
Methods: Fifty patients with AV were recruited in the study as well as 25 healthy age and sex-matched individuals as controls. The acne severity was classified into mild (n=21), moderate (n=16), and severe acne (n=14) according to the global acne grading system (GAGS). Serum levels of zinc, acne and calprotectin were evaluated by enzyme-linked immunosorbent assay (ELISA). The gained data were analyzed using GraphPad Prism software.
Results: Insignificant difference was found in zinc and copper levels between controls and AV patients, except in severe AV, where the patients displayed significant elevation in serum copper level (p<0.05) as compared to that of mild AV. The calprotectin concentration was significantly higher (p<0.001) in all AV patients, when compared with healthy subjects, which was positively correlated with the disease severity. No gender difference was noted for all measured biomarkers.
Conclusions: Our study suggests a possible association between calprotectin and acne inflammation, which requires validation in large-scale studies.
Collapse
|
47
|
Acne, Microbiome, and Probiotics: The Gut–Skin Axis. Microorganisms 2022; 10:microorganisms10071303. [PMID: 35889022 PMCID: PMC9318165 DOI: 10.3390/microorganisms10071303] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this narrative review was to check the influence of the human microbiota in the pathogenesis of acne and how the treatment with probiotics as adjuvant or alternative therapy affects the evolution of acne vulgaris. Acne is a chronic inflammatory skin disease involving the pilosebaceous units. The pathogenesis of acne is complex and multifactorial involving genetic, metabolic, and hormonal factors in which both skin and gut microbiota are implicated. Numerous studies have shown the bidirectionality between the intestinal microbiota and skin homeostasis, a communication mainly established by modifying the immune system. Increased data on the mechanisms of action regarding the relevance of Cutibacterium acnes, as well as the importance of the gut–skin axis, are becoming known. Diverse and varied in vitro studies have shown the potential beneficial effects of probiotics in this context. Clinical trials with both topical and oral probiotics are scarce, although they have shown positive results, especially with oral probiotics through the modulation of the intestinal microbiota, generating an anti-inflammatory response and restoring intestinal integrity, or through metabolic pathways involving insulin-like growth factor I (IGF-1). Given the aggressiveness of some standard acne treatments, probiotics should continue to be investigated as an alternative or adjuvant therapy.
Collapse
|
48
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
49
|
Abstract
Human skin forms a protective barrier against the external environment and is our first line of defense against toxic, solar, and pathogenic insults. Our skin also defines our outward appearance, protects our internal tissues and organs, acts as a sensory interface, and prevents dehydration. Crucial to the skin's barrier function is the colonizing microbiota, which provides protection against pathogens, tunes immune responses, and fortifies the epithelium. Here we highlight recent advances in our understanding of how the microbiota mediates multiple facets of skin barrier function. We discuss recent insights into pathological host-microbiota interactions and implications for disorders of the skin and distant organs. Finally, we examine how microbiota-based mechanisms can be targeted to prevent or manage skin disorders and impaired wound healing.
Collapse
Affiliation(s)
- Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth A Grice
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD, Rossi AB. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID INNOVATIONS 2022; 2:100131. [PMID: 36059592 PMCID: PMC9428921 DOI: 10.1016/j.xjidi.2022.100131] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host-environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic anti‒type 2 inflammation therapies may improve dysfunctional skin barrier in AD.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- CLDN, claudin
- FFA, free fatty acid
- ILC2, type 2 innate lymphoid cell
- Jaki, Jak inhibitor
- K, keratin
- KC, keratinocyte
- MMP, matrix metalloproteinase
- NMF, natural moisturizing factor
- PAR, protease-activated receptor
- PDE-4, phosphodiesterase-4
- SC, stratum corneum
- SG, stratum granulosum
- TCI, topical calcineurin inhibitor
- TCS, topical corticosteroid
- TEWL, transepidermal water loss
- TJ, tight junction
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor alpha
- TYK, tyrosine kinase
- Th, T helper
- ZO, zona occludens
- hBD, human β-defensin
Collapse
Affiliation(s)
- Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA,Correspondence: Lisa A. Beck, Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, New York 14642, USA.
| | - Michael J. Cork
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease (IICD), The University of Sheffield, The Medical School, Sheffield, United Kingdom
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|