1
|
Macedo AC, Therriault J, Tissot C, Aumont É, Servaes S, Rahmouni N, Fernandez-Arias J, Lussier FZ, Wang YT, Ng KP, Vermeiren M, Bezgin G, Socualaya KQ, Stevenson J, Hosseini SA, Chamoun M, Ferrari-Souza JP, Ferreira PCL, Bellaver B, Leffa DT, Vitali P, Zimmer ER, Ismail Z, Pascoal TA, Gauthier S, Rosa-Neto P. Modeling the progression of neuropsychiatric symptoms in Alzheimer's disease with PET-based Braak staging. Neurobiol Aging 2024; 144:127-137. [PMID: 39326302 DOI: 10.1016/j.neurobiolaging.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/15/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
In Alzheimer's disease (AD), neuropsychiatric symptoms (NPS) correlate with tau deposition in the brain. Here, we investigated the association of PET-based Braak stages with NPS and assessed whether they predict annual changes in NPS. We evaluated 231 individuals in the aging and AD continuum. Participants were assigned a Braak stage at baseline and followed for 1.97 (s.d. 0.62) years. NPS were investigated using the Mild Behavioral Impairment Checklist (MBI-C) and the Neuropsychiatric Inventory Questionnaire severity (NPI-Q-S) and distress (NPI-Q-D) scales. Multiple linear regressions (MLR) assessed the association of Braak stages with baseline NPS and the annual change in NPS scores. At baseline, stages I-II, III-IV, and V-VI were associated with higher MBI-C, NPI-Q-S, and NPI-Q-D scores. Stages V-VI were associated with a significant annual increase in MBI-C scores. These findings suggest that tau accumulation may manifest clinically with an increase in NPS, which seems to be an early event in AD pathophysiology. Moreover, PET-based Braak staging appears to be a good predictor of NPS severity progression.
Collapse
Affiliation(s)
- Arthur C Macedo
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Étienne Aumont
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Psychology, University of Québec at Montréal, 100 Rue Sherbrooke O, Montréal, QC H2X 3P2, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore 308433, Singapore
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Kely Quispialaya Socualaya
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Seyyed Ali Hosseini
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Pâmela C L Ferreira
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Douglas Teixeira Leffa
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Paolo Vitali
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada
| | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics; and Biochemistry, Universidade Federal do Rio Grande do Sul, 2600 Ramiro Barcelo St, Porto Alegre, RS 90.035-003, Brazil; Brain Institute of Rio Grande do Sul, PUCRS, Av. Ipiranga, 6690, Porto Alegre, RS 90610-000, Brazil
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, Community Health Sciences, and Pathology, Hotchkiss Brain Institute and O'Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada; National Institute for Health and Care Research Exeter Biomedical Research Centre, University of Exeter, Exeter, UK
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, 3501 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health Institute, Montréal, 6875 LaSalle Blvd, Montréal, QC H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, 1033 Pine Avenue West, Montréal, QC H3A 1A1, Canada; Montreal Neurological Institute, 3801 University Street, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
2
|
Weymouth L, Smith AR, Lunnon K. DNA Methylation in Alzheimer's Disease. Curr Top Behav Neurosci 2024. [PMID: 39455499 DOI: 10.1007/7854_2024_530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
To date, DNA methylation is the best characterized epigenetic modification in Alzheimer's disease. Involving the addition of a methyl group to the fifth carbon of the cytosine pyrimidine base, DNA methylation is generally thought to be associated with the silencing of gene expression. It has been hypothesized that epigenetics may mediate the interaction between genes and the environment in the manifestation of Alzheimer's disease, and therefore studies investigating DNA methylation could elucidate novel disease mechanisms. This chapter comprehensively reviews epigenomic studies, undertaken in human brain tissue and purified brain cell types, focusing on global methylation levels, candidate genes, epigenome wide approaches, and recent meta-analyses. We discuss key differentially methylated genes and pathways that have been highlighted to date, with a discussion on how new technologies and the integration of multiomic data may further advance the field.
Collapse
Affiliation(s)
- Luke Weymouth
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Hou T, Liu K, Fa W, Liu C, Zhu M, Liang X, Ren Y, Xu S, Wang X, Tang S, Wang Y, Cong L, Tan Q, Du Y, Qiu C. Association of polygenic risk scores with Alzheimer's disease and plasma biomarkers among Chinese older adults: A community-based study. Alzheimers Dement 2024; 20:6669-6681. [PMID: 39171679 PMCID: PMC11485307 DOI: 10.1002/alz.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION We examined the associations of polygenic risk score (PRS) with Alzheimer's disease (AD) and plasma biomarkers in the Chinese population. METHODS This population-based study used baseline data from MIND-China (2018; n = 4873) and follow-up data from dementia-free individuals (2014-2018; n = 2117). We measured AD-related plasma biomarkers in a subsample (n = 1256). Data were analyzed using logistic and Cox regression models. RESULTS We developed PRS with (PRSAPOE) and without (PRSnon- APOE) apolipoprotein E (APOE) gene. In the longitudinal analysis, PRSAPOE was associated with a multivariable-adjusted hazards ratio of 1.91 (95% CI = 1.13-3.23) for AD. PRSAPOE in combination with demographics yielded discriminative (area under the curve [AUC]) and predictive(C-statistic) accuracy of 0.80 (95% confidence interval [CI] = 0.77-0.84) and 0.80 (0.77-0.82), respectively. PRSnon- APOE showed an association with AD risk similar to PRSAPOE. PRSAPOE, but not PRSnon- APOE, was associated with reduced plasma Aβ42/Aβ40 ratio and increased Neurofilament light chain (NfL) (p < 0.05). DISCUSSION The PRS with and without APOE gene, in combination with demographics, shows good discriminative and predictive ability for AD. The AD-related pathologies underlie AD risk associated with PRSAPOE. HIGHLIGHTS The PRSAPOE and PRSnon- APOE were associated with AD risk in the Chinese population. The PRSAPOE and PRSnon- APOE, in combination with demographics, showed good discriminative and predictive ability for AD. The AD-related pathologies underlie the AD risk associated with PRSAPOE but not PRSnon- APOE.
Collapse
Affiliation(s)
- Tingting Hou
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Keke Liu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Cuicui Liu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Min Zhu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Xiaoyan Liang
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
| | - Yifei Ren
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
| | - Shan Xu
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
| | - Xiang Wang
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
| | - Shi Tang
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Yongxiang Wang
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Department of NeurobiologyCare Sciences and Society, Aging Research Center and Center for Alzheimer ResearchKarolinska Institute‐Stockholm UniversitySolnaSweden
| | - Lin Cong
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
| | - Qihuan Tan
- Department of Public HealthEpidemiology and BiostatisticsUniversity of Southern DenmarkOdenseDenmark
| | - Yifeng Du
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Department of NeurologyShandong Provincial HospitalShandong UniversityJinanShandongP.R. China
- Shandong Provincial Clinical Research Centre for Neurological DiseasesJinanShandongP.R. China
- Department of Neurology, Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP.R. China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Department of NeurobiologyCare Sciences and Society, Aging Research Center and Center for Alzheimer ResearchKarolinska Institute‐Stockholm UniversitySolnaSweden
| |
Collapse
|
4
|
Juul Rasmussen I, Luo J, Frikke-Schmidt R. Lipids, lipoproteins, and apolipoproteins: Associations with cognition and dementia. Atherosclerosis 2024; 398:118614. [PMID: 39340935 DOI: 10.1016/j.atherosclerosis.2024.118614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Due to increasing lifespan and aging populations globally there has been a steep rise in late-life dementia, which is now the second most common cause of death in high-income countries. In general, dementia can be divided into two major groups: Alzheimer's disease (AD) and vascular-related dementia (VD). AD is pathologically characterised by senile plaques containing amyloid-β and neurofibrillary tangles composed of hyperphosphorylated tau, whereas VD is dominated by vascular pathology such as cerebral small vessel disease, major strokes, and white matter lesions. Recently, the importance of vascular components in AD is increasingly recognized and it is estimated that up to 45 % of all dementia cases can be prevented by preventing or treating midlife cardiovascular risk factors such as physical inactivity, diabetes, and hypertension. Even though the brain contains approximately 25 % of the total body cholesterol pool, and several genetic variants related to the lipid metabolism have been identified in genome-wide associations studies of AD, the role of lipids, lipoproteins, and apolipoproteins in dementia risk is less well-known. In this review, we go through the current literature on lipids, lipoproteins, and apolipoproteins and risk of dementia. We conclude that the evidence is primarily insufficient or conflicting, possibly due to nonoptimal study designs. The future calls for large, prospective studies of midlife measurements of lipids, lipoproteins, and apolipoproteins and one-sample, individual level data Mendelian randomization studies to overcome survival bias. However, the current literature suggests that it is safe to say that what is good for the heart is good for the brain.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark.
| | - Jiao Luo
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 1, DK-2730, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen, Denmark
| |
Collapse
|
5
|
Panizza E, Cerione RA. An interpretable deep learning framework identifies proteomic drivers of Alzheimer's disease. Front Cell Dev Biol 2024; 12:1379984. [PMID: 39355118 PMCID: PMC11442384 DOI: 10.3389/fcell.2024.1379984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024] Open
Abstract
Alzheimer's disease (AD) is the leading neurodegenerative pathology in aged individuals, but many questions remain on its pathogenesis, and a cure is still not available. Recent research efforts have generated measurements of multiple omics in individuals that were healthy or diagnosed with AD. Although machine learning approaches are well-suited to handle the complexity of omics data, the models typically lack interpretability. Additionally, while the genetic landscape of AD is somewhat more established, the proteomic landscape of the diseased brain is less well-understood. Here, we establish a deep learning method that takes advantage of an ensemble of autoencoders (AEs) - EnsembleOmicsAE-to reduce the complexity of proteomics data into a reduced space containing a small number of latent features. We combine brain proteomic data from 559 individuals across three AD cohorts and demonstrate that the ensemble autoencoder models generate stable latent features which are well-suited for downstream biological interpretation. We present an algorithm to calculate feature importance scores based on the iterative scrambling of individual input features (i.e., proteins) and show that the algorithm identifies signaling modules (AE signaling modules) that are significantly enriched in protein-protein interactions. The molecular drivers of AD identified within the AE signaling modules derived with EnsembleOmicsAE were missed by linear methods, including integrin signaling and cell adhesion. Finally, we characterize the relationship between the AE signaling modules and the age of death of the patients and identify a differential regulation of vimentin and MAPK signaling in younger compared with older AD patients.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Huang Q, Wu W, Wen Y, Lu S, Zhao C. Potential therapeutic natural compounds for the treatment of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155822. [PMID: 38909512 DOI: 10.1016/j.phymed.2024.155822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a complicated neurodegenerative disease with cognitive impairment occurring in the older people, in which extracellular accumulation of β-amyloid and intracellular aggregation of hyperphosphorylated tau are regarded as the prevailing theories. However, the exact AD mechanism has not been determined. Moreover, there is no effective treatment available in phase III trials to eradicate AD, which is imperative to explore novel treatments. PURPOSE A number of up-to-date pre-clinical studies on cognitive impairment is beneficial to clarify the pathology of AD. This review recapitulates several advances in AD pathobiology and discusses the neuroprotective effects of natural compounds, such as phenolic compounds, natural polysaccharides and oligosaccharides, peptide, and lipids, underscoring the therapeutic potential for AD. METHODS Electronic databases involving PubMed, Web of Science, and Google Scholar were searched up to October 2023. Articles were conducted using the keywords like Alzheimer's disease, pathogenic mechanisms, natural compounds, and neuroprotection. RESULT This review summarized several AD pathologies and the neuroprotective effects of natural compounds such as natural polysaccharides and oligosaccharides, peptide, and lipids. CONCLUSION We have discussed the pathogenic mechanisms of AD and the effect natural products on neurodegenerative diseases particularly in treating AD. Specifically, we investigated the molecular pathways and links between natural compounds and Alzheimer's disease such as through NF-κB, Nrf2, and mTOR pathway. Further investigation is necessary in exploring the bioactivity and effectiveness of natural compounds in clinical trials, which may provide a promising treatment for AD patients.
Collapse
Affiliation(s)
- Qihui Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, 36310 Vigo, Spain
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Wieg L, Ciola JC, Wasén CC, Gaba F, Colletti BR, Schroeder MK, Hinshaw RG, Ekwudo MN, Holtzman DM, Saito T, Sasaguri H, Saido TC, Cox LM, Lemere CA. Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice. Int J Mol Sci 2024; 25:9379. [PMID: 39273325 PMCID: PMC11394682 DOI: 10.3390/ijms25179379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Collapse
Affiliation(s)
- Laura Wieg
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jason C Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Caroline C Wasén
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fidelia Gaba
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brianna R Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maren K Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert G Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Millicent N Ekwudo
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Aichi, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan
| | - Laura M Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Hopkins PCR, Troakes C, King A, Tear G. Transmembrane and coiled-coil 2 associates with Alzheimer's disease pathology in the human brain. Brain Pathol 2024:e13290. [PMID: 39084860 DOI: 10.1111/bpa.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Transmembrane and coiled-coil 2 (TMCC2) is a human orthologue of the Drosophila gene dementin, mutant alleles of which cause neurodegeneration with features of Alzheimer's disease (AD). TMCC2 and Dementin further have an evolutionarily conserved interaction with the amyloid protein precursor (APP), a protein central to AD pathogenesis. To investigate if human TMCC2 might also participate in mechanisms of neurodegeneration, we examined TMCC2 expression in late onset AD human brain and age-matched controls, familial AD cases bearing a mutation in APP Val717, and Down syndrome AD. Consistent with previous observations of complex formation between TMCC2 and APP in the rat brain, the dual immunocytochemistry of control human temporal cortex showed highly similar distributions of TMCC2 and APP. In late onset AD cases stratified by APOE genotype, TMCC2 immunoreactivity was associated with dense core senile plaques and adjacent neuronal dystrophies, but not with Aβ surrounding the core, diffuse Aβ plaques or tauopathy. In Down syndrome AD, we observed in addition TMCC2-immunoreactive and methoxy-X04-positive pathological features that were morphologically distinct from those seen in the late onset and familial AD cases, suggesting enhanced pathological alteration of TMCC2 in Down syndrome AD. At the protein level, western blots of human brain extracts revealed that human brain-derived TMCC2 exists as at least three isoforms, the relative abundance of which varied between the temporal gyrus and cerebellum and was influenced by APOE and/or dementia status. Our findings thus implicate human TMCC2 in AD via its interactions with APP, its association with dense core plaques, as well as its alteration in Down syndrome AD.
Collapse
Affiliation(s)
- Paul C R Hopkins
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andrew King
- London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Guy Tear
- Centre for Developmental Neurobiology, King's College London, London, UK
| |
Collapse
|
9
|
Fortea J, Vaqué-Alcázar L, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Videla L, Gispert JD, Suárez-Calvet M, Johnson SC, Sperling R, Bejanin A, Lleó A, Montal V. Reply to: Challenges to identifying risk versus protective factors in Alzheimer's disease. Nat Med 2024:10.1038/s41591-024-03159-4. [PMID: 39025967 DOI: 10.1038/s41591-024-03159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Grants
- INT21/00073, PI20/01473 and PI23/01786 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CD23/00235 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI18/00435 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI22/00456 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CP20/00038, PI22/00307 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI20/01330 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- R01 AG056850; R21 AG056974, R01 AG061566, R01 AG081394 and R61AG066543 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 AG027161, R01 AG021155, R01 AG037639, R01 AG054059; P50 AG033514 and P30 AG062715 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- S10 OD025245, P30 AG062715, U54 HD090256, UL1 TR002373, P01 AG036694 and P50 AG005134 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- SLT006/17/00119 Generalitat de Catalunya (Government of Catalonia)
- SLT002/16/00408 Generalitat de Catalunya (Government of Catalonia)
- IIBSP-DOW-2020-151 Fundación Tatiana Pérez de Guzmán el Bueno (Tatiana Pérez Foundation of Guzmán el Bueno)
- H2020-SC1-BHC-2018-2020 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- AARF-22-924456 Alzheimer's Association
- AARG-22-923680 Alzheimer's Association
- Grant 2021 EC | EU Framework Programme for Research and Innovation H2020 | H2020 The European Institute of Innovation and Technology | EIT Digital (EIT Digital IVZW)
- LCF/PR/GN17/50300004 "la Caixa" Foundation (Caixa Foundation)
Collapse
Affiliation(s)
- Juan Fortea
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.
| | - Lídia Vaqué-Alcázar
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Neurosciences Programme, IMIM - Hospital del Mar Medical Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina. Instituto de Salud carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Neurosciences Programme, IMIM - Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Reisa Sperling
- Brigham and Women's Hospital Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Víctor Montal
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
10
|
Shippy DC, Evered AH, Ulland TK. Ketone body metabolism and the NLRP3 inflammasome in Alzheimer's disease. Immunol Rev 2024. [PMID: 38989642 DOI: 10.1111/imr.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a degenerative brain disorder and the most common form of dementia. AD pathology is characterized by senile plaques and neurofibrillary tangles (NFTs) composed of amyloid-β (Aβ) and hyperphosphorylated tau, respectively. Neuroinflammation has been shown to drive Aβ and tau pathology, with evidence suggesting the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome as a key pathway in AD pathogenesis. NLRP3 inflammasome activation in microglia, the primary immune effector cells of the brain, results in caspase-1 activation and secretion of IL-1β and IL-18. Recent studies have demonstrated a dramatic interplay between the metabolic state and effector functions of immune cells. Microglial metabolism in AD is of particular interest, as ketone bodies (acetone, acetoacetate (AcAc), and β-hydroxybutyrate (BHB)) serve as an alternative energy source when glucose utilization is compromised in the brain of patients with AD. Furthermore, reduced cerebral glucose metabolism concomitant with increased BHB levels has been demonstrated to inhibit NLRP3 inflammasome activation. Here, we review the role of the NLRP3 inflammasome and microglial ketone body metabolism in AD pathogenesis. We also highlight NLRP3 inflammasome inhibition by several ketone body therapies as a promising new treatment strategy for AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Mu X, Cui C, Liao J, Wu Z, Hu L. Regional changes in brain metabolism during the progression of mild cognitive impairment: a longitudinal study based on radiomics. EJNMMI REPORTS 2024; 8:19. [PMID: 38945980 PMCID: PMC11214937 DOI: 10.1186/s41824-024-00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND This study aimed to establish radiomics models based on positron emission tomography (PET) images to longitudinally predict transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS In our study, 278 MCI patients from the ADNI database were analyzed, where 60 transitioned to AD (pMCI) and 218 remained stable (sMCI) over 48 months. Patients were divided into a training set (n = 222) and a validation set (n = 56). We first employed voxel-based analysis of 18F-FDG PET images to identify brain regions that present significant SUV difference between pMCI and sMCI groups. Radiomic features were extracted from these regions, key features were selected, and predictive models were developed for individual and combined brain regions. The models' effectiveness was evaluated using metrics like AUC to determine the most accurate predictive model for MCI progression. RESULTS Voxel-based analysis revealed four brain regions implicated in the progression from MCI to AD. These include ROI1 within the Temporal lobe, ROI2 and ROI3 in the Thalamus, and ROI4 in the Limbic system. Among the predictive models developed for these individual regions, the model utilizing ROI4 demonstrated superior predictive accuracy. In the training set, the AUC for the ROI4 model was 0.803 (95% CI 0.736, 0.865), and in the validation set, it achieved an AUC of 0.733 (95% CI 0.559, 0.893). Conversely, the model based on ROI3 showed the lowest performance, with an AUC of 0.75 (95% CI 0.685, 0.809). Notably, the comprehensive model encompassing all identified regions (ROI total) outperformed the single-region models, achieving an AUC of 0.884 (95% CI 0.845, 0.921) in the training set and 0.816 (95% CI 0.705, 0.909) in the validation set, indicating significantly enhanced predictive capability for MCI progression to AD. CONCLUSION Our findings underscore the Limbic system as the brain region most closely associated with the progression from MCI to AD. Importantly, our study demonstrates that a PET brain radiomics model encompassing multiple brain regions (ROI total) significantly outperforms models based on single brain regions. This comprehensive approach more accurately identifies MCI patients at high risk of progressing to AD, offering valuable insights for non-invasive diagnostics and facilitating early and timely interventions in clinical settings.
Collapse
Affiliation(s)
- Xuxu Mu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Caozhe Cui
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jue Liao
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhifang Wu
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lingzhi Hu
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
12
|
Wefel JS, Deshmukh S, Brown PD, Grosshans DR, Sulman EP, Cerhan JH, Mehta MP, Khuntia D, Shi W, Mishra MV, Suh JH, Laack NN, Chen Y, Curtis AA, Laba JM, Elsayed A, Thakrar A, Pugh SL, Bruner DW. Impact of Apolipoprotein E Genotype on Neurocognitive Function in Patients With Brain Metastases: An Analysis of NRG Oncology's RTOG 0614. Int J Radiat Oncol Biol Phys 2024; 119:846-857. [PMID: 38101486 PMCID: PMC11162903 DOI: 10.1016/j.ijrobp.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Snehal Deshmukh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | | | | - Erik P Sulman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone, New York, New York
| | | | - Minesh P Mehta
- Baptist Hospital of Miami and Florida International University, Miami, Florida
| | | | - Wenyin Shi
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Mark V Mishra
- University of Maryland Medical Systems, Baltimore, Maryland
| | - John H Suh
- Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Amarinthia Amy Curtis
- Spartanburg Medical Center, Accruals for Upstate Carolina NCORP-Gibbs Regional Cancer Center, Spartanburg, South Carolina
| | - Joanna M Laba
- London Regional Cancer Program, Accruals for University of Western Ontario, London, Ontario, Canada
| | - Ahmed Elsayed
- Toledo Community Hospital Oncology Program CCOP, Toledo, Ohio
| | - Anu Thakrar
- John H. Stroger Jr Hospital of Cook County MBCCOP, Chicago, Illinois
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | |
Collapse
|
13
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
14
|
Ataei B, Hokmabadi M, Asadi S, Asadifard E, Aghaei Zarch SM, Najafi S, Bagheri-Mohammadi S. A review of the advances, insights, and prospects of gene therapy for Alzheimer's disease: A novel target for therapeutic medicine. Gene 2024; 912:148368. [PMID: 38485038 DOI: 10.1016/j.gene.2024.148368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD) are still an important issue for scientists because it is difficult to cure with the available molecular medications and conventional treatments. Due to the complex nature of the brain structures and heterogeneous morphological and physiological properties of neuronal cells, interventions for cerebral-related disorders using surgical approaches, and classical and ongoing treatments remain hard for physicians. Furthermore, the development of newly designed medications attempts to target AD are not successful in improving AD, because abnormalities of tau protein, aggregation of amyloid β (Aβ) peptide, inflammatory responses, etc lead to advanced neurodegeneration processes that conventional treatments cannot stop them. In recent years, novel diagnostic strategies and therapeutic approaches have been developed to identify and cure early pathological events of AD. Accordingly, many gene-based therapies have been developed and introduce the therapeutic potential to prevent and cure AD. On the other hand, genetic investigations and postmortem assessments have detected a large number of factors associated with AD pathology. Also, genetically diverse animal models of AD help us to detect and prioritize novel resilience mechanisms. Hence, gene therapy can be considered an effective and powerful tool to identify and treat human diseases. Ultimately, gene study and gene-based therapy with a critical role in the detection and cure of various human disorders will have a fundamental role in our lives forever. This scientific review paper discusses the present status of different therapeutic strategies, particularly gene-based therapy in treating AD, along with its challenges.
Collapse
Affiliation(s)
- Bahar Ataei
- Department of Genetics, Faculty of Basic Science, Shahrekord University, Shahrekord, Iran
| | - Mahsa Hokmabadi
- Department of Molecular Diagnosis, Armin Pathobiology and Medical Genetics Laboratory, Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elnaz Asadifard
- Medical Genomics Research Center, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
15
|
Ning Z, Liu Y, Wan M, Zuo Y, Chen S, Shi Z, Xu Y, Li H, Ko H, Zhang J, Xiao S, Guo D, Tang Y. APOE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell Mol Biol Lett 2024; 29:87. [PMID: 38867189 PMCID: PMC11170814 DOI: 10.1186/s11658-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease and apolipoprotein E (APOE) genotypes (APOE2, APOE3, and APOE4) show different AD susceptibility. Previous studies indicated that individuals carrying the APOE2 allele reduce the risk of developing AD, which may be attributed to the potential neuroprotective role of APOE2. However, the mechanisms underlying the protective effects of APOE2 is still unclear. METHODS We analyzed single-nucleus RNA sequencing and bulk RNA sequencing data of APOE2 and APOE3 carriers from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort. We validated the findings in SH-SY5Y cells and AD model mice by evaluating mitochondrial functions and cognitive behaviors respectively. RESULTS The pathway analysis of six major cell types revealed a strong association between APOE2 and cellular stress and energy metabolism, particularly in excitatory and inhibitory neurons, which was found to be more pronounced in the presence of beta-amyloid (Aβ). Moreover, APOE2 overexpression alleviates Aβ1-42-induced mitochondrial dysfunction and reduces the generation of reactive oxygen species in SH-SY5Y cells. These protective effects may be due to ApoE2 interacting with estrogen-related receptor alpha (ERRα). ERRα overexpression by plasmids or activation by agonist was also found to show similar mitochondrial protective effects in Aβ1-42-stimulated SH-SY5Y cells. Additionally, ERRα agonist treatment improve the cognitive performance of Aβ injected mice in both Y maze and novel object recognition tests. ERRα agonist treatment increased PSD95 expression in the cortex of agonist-treated-AD mice. CONCLUSIONS APOE2 appears to enhance neural mitochondrial function via the activation of ERRα signaling, which may be the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zhiyuan Ning
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Ying Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Mengyao Wan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - You Zuo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Siqi Chen
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Daji Guo
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
16
|
Mick P, Kabir R, Karunatilake M, Kathleen Pichora-Fuller M, Young TL, Sosero Y, Gan-Or Z, Wittich W, Phillips NA. APOE-ε4 is not associated with pure-tone hearing thresholds, visual acuity or cognition, cross-sectionally or over 3 years of follow up in the Canadian Longitudinal Study on Aging. Neurobiol Aging 2024; 138:72-82. [PMID: 38547662 DOI: 10.1016/j.neurobiolaging.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Hearing loss and diminished visual acuity are associated with poorer cognition, but the underlying mechanisms are not understood. The apolipoprotein (APOE) ε4 allelic variant may drive the associations. We tested whether APOE-ε4 allele count (0, 1, or 2) was associated with declines in memory, executive function, pure-tone hearing threshold averages, and pinhole-corrected visual acuity among participants in the Canadian Longitudinal Study on Aging (CLSA). METHODS Multivariable linear mixed regression models were utilized to assess associations between APOE-ε4 allele count and each of the outcome variables. For each main effects model, interactions between APOE-ε4 and sex and age group (45-54-, 55-64-, 65-74-, and 75-85 years) respectively, were analyzed. RESULTS Significant associations were not observed in main effects models. Models including APOE-ε4 * age (but not APOE-ε4 * sex) interaction terms better fit the data compared to main effects models. In age group-stratified models, however, there were minimal differences in effect estimates according to allele count. CONCLUSION APOE-ε4 allele count does not appear to be a common cause of sensory-cognitive associations in this large cohort.
Collapse
Affiliation(s)
- Paul Mick
- University of Saskatchewan, College of Medicine, Department of Surgery, Canada.
| | | | - Malshi Karunatilake
- University of Alberta, College of Health Sciences, Department of Ophthalmology and Visual Sciences, Canada
| | - M Kathleen Pichora-Fuller
- Professor emeritus, University of Toronto, Faculty of Arts and Sciencies, Department of Psychology, Canada
| | - Terry-Lyn Young
- Memorial University of Newfoundland, Faculty of Medicine, Canada
| | - Yuri Sosero
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | - Ziv Gan-Or
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | | | - Natalie A Phillips
- Concordia University, Faculty of Arts and Sciences, Department of Psychology, Canada
| |
Collapse
|
17
|
Gouveia Roque C, Phatnani H, Hengst U. The broken Alzheimer's disease genome. CELL GENOMICS 2024; 4:100555. [PMID: 38697121 PMCID: PMC11099344 DOI: 10.1016/j.xgen.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Nicolas G. Lessons from genetic studies in Alzheimer disease. Rev Neurol (Paris) 2024; 180:368-377. [PMID: 38429159 DOI: 10.1016/j.neurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/27/2023] [Indexed: 03/03/2024]
Abstract
Research on Alzheimer disease (AD) genetics has provided critical advances to the knowledge of AD pathophysiological mechanisms. The etiology of AD can be divided into monogenic (autosomal dominant inheritance) and complex (multifactorial determinism). In monogenic AD, recent advances mainly concern mutation-associated mechanisms, presymptomatic clinical studies, and the search for modifiers of ages of onset that are still ongoing. In complex AD, genetic factors can be further categorized into three classes: (i) the APOE-ɛ4 and ɛ2 common alleles that represent a category by themselves as they are both common and with a strong impact on AD risk; (ii) common variants with a modest effect, identified in genome-wide association studies (GWAS); and (iii) rare variants with a moderate-to-strong effect, identified in case-control sequencing studies. Regarding APOE, odds ratios, available in multiple ethnicities, can now be converted into penetrance curves, although such curves remain to be performed in diverse ethnicities. In addition, advances in the understanding of mechanisms have been recently reported and rare APOE variants add to the complexity. In the GWAS category, novel loci have been discovered thanks to larger studies, doubling the number of hits as compared to the previous reference meta-analysis. However, such modest risk factors cannot be used in the clinic, neither individually, nor in genetic risk scores. In the category of rare variants, two novel genes, ABCA1 and ATP8B4 now add to the three main ones, TREM2, SORL1, and ABCA7. The study of such rare variants suggests oligogenic inheritance in some families, as also suggested by digenic penetrance curves for SORL1 loss-of-function variants with APOE-ɛ4. Cumulate frequencies of definite (so-called) rare risk factors are 2.3% to 3.6% (depending on thresholds on odds ratios) in control databases and many more remain to be classified and identified, showing how important these risk factors may be as part of the complex determinism of AD. A better understanding of these rare risk factors and their combined effects on each other, with common variants, and with environmental factors, should allow for a prediction of AD risk and, eventually, preventive medicine. Taken together, most genetic determinants of AD, in monogenic and in complex forms, point toward the aggregation of Aβ as a pivotal triggering factor, such that targeting it may be efficient as prevention in at-risk individuals. The role of neuroinflammation, microglia, and Tau pathology modulation are important sources of research for disease modification.
Collapse
Affiliation(s)
- G Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, 76000 Rouen, France.
| |
Collapse
|
19
|
Xu Q, Liang Z, Huang Y. APOE4 homozygosity is a new genetic form of Alzheimer's disease. Nat Med 2024; 30:1241-1242. [PMID: 38710949 DOI: 10.1038/s41591-024-02923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Affiliation(s)
- Qin Xu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
- Departments of Neurology and Pathology, University of California, San Francisco, CA, USA.
| |
Collapse
|
20
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
21
|
Fortea J, Pegueroles J, Alcolea D, Belbin O, Dols-Icardo O, Vaqué-Alcázar L, Videla L, Gispert JD, Suárez-Calvet M, Johnson SC, Sperling R, Bejanin A, Lleó A, Montal V. APOE4 homozygozity represents a distinct genetic form of Alzheimer's disease. Nat Med 2024; 30:1284-1291. [PMID: 38710950 DOI: 10.1038/s41591-024-02931-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.
Collapse
Affiliation(s)
- Juan Fortea
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain.
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Oriol Dols-Icardo
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Neurosciences Programme, IMIM - Hospital del Mar Medical Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina. Instituto de Salud carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Neurosciences Programme, IMIM - Hospital del Mar Medical Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina. Instituto de Salud carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Reisa Sperling
- Brigham and Women's Hospital Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain
| | - Víctor Montal
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Barcelona, Spain.
- Barcelona Supercomputing Center, Barcelona, Spain.
| |
Collapse
|
22
|
Lee D, Antonsdottir IM, Clark ED, Porsteinsson AP. Review of valiltramiprosate (ALZ-801) for the treatment of Alzheimer's disease: a novel small molecule with disease modifying potential. Expert Opin Pharmacother 2024; 25:791-799. [PMID: 38814590 DOI: 10.1080/14656566.2024.2360069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative condition characterized by progressive cognitive deterioration, functional impairments, and neuropsychiatric symptoms. Valiltramiprosate is a tramiprosate prodrug being investigated as a novel treatment for AD. AREAS COVERED The online databases PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov were searched using the terms 'ALZ-801' or 'valiltramiprosate.' Alzheon press releases were reviewed for emerging clinical information. Valiltramiprosate is an oral, well-tolerated synthetic valine-conjugate prodrug of tramiprosate. Valiltramiprosate's active metabolite include tramiprosate and 3-sulfopropanoic acid. Proposed mechanism of action is multiligand binding to Aβ42 which stabilizes amyloid monomers to prevent peptide aggregation and oligomerization. Pharmacokinetic studies show 52% oral bioavailability, rapid absorption, approximately 40% brain-drug exposure, and near complete renal clearance. Compared to tramiprosate, valiltramiprosate extends plasma tramiprosate half-life and improves interindividual pharmacokinetic variability. Interim analyses from valiltramiprosate's phase II biomarker trial show: (1) significant reductions in plasma p-tau181 and related AD fluid biomarkers; (2) brain structure preservation and reduced hippocampal atrophy by MRI; and (3) improvements on cognitive assessments at multiple timepoints. Its phase III clinical trial in ApoE ε4 homozygotes is near completion. EXPERT OPINION Valiltramiprosate's clinical trial data show early indications of efficacy with potential disease modifying effect in AD.
Collapse
Affiliation(s)
- Daniel Lee
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Inga M Antonsdottir
- Johns Hopkins School of Nursing, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Emily D Clark
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Anton P Porsteinsson
- Alzheimer's Disease Care, Research and Education (AD-CARE), Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
23
|
Ismail AB, Dundar MS, Erguzeloglu CO, Ergoren MC, Alemdar A, Ozemri Sag S, Temel SG. Alzheimer Disease Associated Loci: APOE Single Nucleotide Polymorphisms in Marmara Region. Biomedicines 2024; 12:968. [PMID: 38790930 PMCID: PMC11118074 DOI: 10.3390/biomedicines12050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is a major global health challenge, especially among individuals aged 65 or older. According to population health studies, Turkey has the highest AD prevalence in the Middle East and Europe. To accurately determine the frequencies of common and rare APOE single nucleotide polymorphisms (SNPs) in the Turkish population residing in the Marmara Region, we conducted a retrospective study analyzing APOE variants in 588 individuals referred to the Bursa Uludag University Genetic Diseases Evaluation Center. Molecular genotyping, clinical exome sequencing, bioinformatics analysis, and statistical evaluation were employed to identify APOE polymorphisms and assess their distribution. The study revealed the frequencies of APOE alleles as follows: ε4 at 9.94%, ε2 at 9.18%, and ε3 at 80.68%. The gender-based analysis in our study uncovered a tendency for females to exhibit a higher prevalence of mutant genotypes across various SNPs. The most prevalent haplotype observed was ε3/ε3, while rare APOE SNPs were also identified. These findings align with global observations, underscoring the significance of genetic diversity and gender-specific characteristics in comprehending health disparities and formulating preventive strategies.
Collapse
Affiliation(s)
- Aya Badeea Ismail
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus; (A.B.I.); (M.C.E.)
| | - Mehmet Sait Dundar
- Department of Electrıcal and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, 38000 Kayseri, Türkiye;
- Halil Bayraktar Health Services Vocational School, Erciyes University, 38030 Kayseri, Türkiye
| | - Cemre Ornek Erguzeloglu
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus; (A.B.I.); (M.C.E.)
| | - Adem Alemdar
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye;
| | - Sehime Gulsun Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye;
- Department of Histology & Embryology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| |
Collapse
|
24
|
Bhattarai P, Gunasekaran TI, Belloy ME, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Turgutalp B, Sukumar G, Alba C, McGrath EM, Hupalo DN, Bacikova D, Le Guen Y, Lantigua R, Medrano M, Rivera D, Recio P, Nuriel T, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Greicius M, Dalgard CL, Zody M, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta Neuropathol 2024; 147:70. [PMID: 38598053 PMCID: PMC11006751 DOI: 10.1007/s00401-024-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Tamil Iniyan Gunasekaran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dörthe Jülich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Hüseyin Tayran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bengisu Turgutalp
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Camille Alba
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Elisa Martinez McGrath
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Daniel N Hupalo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Dagmar Bacikova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Lantigua
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Patricia Recio
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Scott Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Zody
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, NY, 10032, USA
| | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Wolf EJ, Miller MW, Zhang R, Sherva R, Harrington KM, Fonda JR, Daskalakis NP, Gaziano JM, Logue MW. No Replication of Alzheimer's Disease Genetics as a Moderator of Combat Exposure's Association with PTSD risk in 138,592 Combat Veterans. NATURE. MENTAL HEALTH 2024; 2:553-561. [PMID: 39247144 PMCID: PMC11378975 DOI: 10.1038/s44220-024-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/01/2024] [Indexed: 09/10/2024]
Abstract
Large-scale cohort and epidemiological studies suggest that posttraumatic stress disorder (PTSD) confers risk for late-onset Alzheimer's disease (AD) and related dementias (ADRD); however, the basis for this association remains unclear. Several prior studies of military Veterans have reported that carriers of the apolipoprotein E (APOE) ε4 gene variant are at heightened risk for the development of PTSD following combat exposure, suggesting that PTSD and ADRD may share some genetic risk. This cohort study was designed to further examine the hypothesis that ADRD genetic risk also confers risk for PTSD. To do so, we examined APOE ε4 and ε2 genotypes, an AD polygenic risk score (PRS), and other Veteran-relevant risk factors for PTSD in age-stratified groups of individuals of European (n = 123,372) and African (n = 15,220) ancestry in the US Department of Veterans Affairs' Million Veteran Program. Analyses revealed no significant main effect associations between the APOE ε4 (or ε2) genotype or the AD PRS on PTSD severity or diagnosis. There were also no significant interactions between measures of AD genetic risk and either combat exposure severity or history of head injury in association with PTSD in any age group. We conclude that the association between PTSD and the primary ADRD genetic risk factor, APOE ε4, that was reported previously was not replicable in the largest relevant dataset in the world. Thus, the epidemiological association between PTSD and ADRD is not likely to be driven by the major genetic factors underlying ADRD risk.
Collapse
Affiliation(s)
- Erika J Wolf
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| | - Mark W Miller
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
| | - Rui Zhang
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Richard Sherva
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics, Boston, MA, 02118, USA
| | - Kelly M Harrington
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Jennifer R Fonda
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, 02130, USA
- Harvard Medical School, Department of Psychiatry, Boston, MA, 02215, USA
| | - Nikolaos P Daskalakis
- Harvard Medical School, Department of Psychiatry, Boston, MA, 02215, USA
- McLean Hospital, Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, 02130, USA
- Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Mark W Logue
- National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System, Boston, MA, 02130, USA
- Boston University Chobanian & Avedisian School of Medicine, Department of Psychiatry, Boston, MA, 02118, USA
- Boston University Chobanian & Avedisian School of Medicine, Biomedical Genetics, Boston, MA, 02118, USA
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, 02118, USA
| |
Collapse
|
26
|
Nicolas G. Recent advances in Alzheimer disease genetics. Curr Opin Neurol 2024; 37:154-165. [PMID: 38235704 DOI: 10.1097/wco.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Genetics studies provide important insights into Alzheimer disease (AD) etiology and mechanisms. Critical advances have been made recently, mainly thanks to the access to novel techniques and larger studies. RECENT FINDINGS In monogenic AD, progress has been made with a better understanding of the mechanisms associated with pathogenic variants and the input of clinical studies in presymptomatic individuals. In complex AD, increasing sample sizes in both DNA chip-based (genome-wide association studies, GWAS) and exome/genome sequencing case-control studies unveiled novel common and rare risk factors, while the understanding of their combined effect starts to suggest the existence of rare families with oligogenic inheritance of early-onset, nonmonogenic, AD. SUMMARY Most genetic risk factors with a known consequence designate the aggregation of the Aβ peptide as a core etiological factor in complex AD thus confirming that the research based on monogenic AD - where the amyloid cascade seems more straightforward - is relevant to complex AD as well. Novel mechanistic insights and risk factor studies unveiling novel factors and attempting to combine the effect of common and rare variants will offer promising perspectives for future AD prevention, at least regarding early-onset AD, and probably in case of later onset as well.
Collapse
Affiliation(s)
- Gaël Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000 Rouen, France
| |
Collapse
|
27
|
Kulminski AM, Jain‐Washburn E, Philipp I, Loika Y, Loiko E, Culminskaya I. TOMM40 and APOC1 variants differentiate the impacts of the APOE ε4 allele on Alzheimer's disease risk across sexes, ages, and ancestries. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12600. [PMID: 38912305 PMCID: PMC11193136 DOI: 10.1002/dad2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The variability in apolipoprotein E (APOE) ε4-attributed susceptibility to Alzheimer's disease (AD) across ancestries, sexes, and ages may stem from the modulating effects of other genetic variants. METHODS We examined associations of compound genotypes (CompGs) comprising the ε4-encoding rs429358, TOMM40 rs2075650, and APOC1 rs12721046 polymorphisms with AD in White (7181/16,356 AD-affected/unaffected), Hispanic/Latino (2305/2921), and Black American (547/1753) participants across sexes and ages. RESULTS The absence and presence of the rs2075650 and/or rs12721046 minor alleles in the ε4-bearing CompGs define lower- and higher-AD-risk profiles, respectively, in White participants. They differentially impact AD risks in men and women of different ancestries, exhibiting an increasing, decreasing, flat, and nonlinear-with lower risks at ages younger than 65/70 years and older than 85 years compared to the ages in between-patterns across ages. DISCUSSION The ε4-bearing CompGs have a potential to differentiate biological mechanisms of sex-, age-, and ancestry-specific AD risks and serve as AD biomarkers. Highlights Younger White women carrying the lower-risk (LR) CompG are at small risk of AD.Black carriers of the LR CompG are at negligible risk of AD at 85 years and older.The higher-risk (HR) CompGs confer high AD risk in Whites and Blacks at 70 to 85 years.AD risk decreases with age for Hispanic/Lation women carrying the HR CompGs.Hispanic/Lation carriers of the LR CompG but not HR CompGs have higher AD risk than Blacks.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Ethan Jain‐Washburn
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Ian Philipp
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Yury Loika
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Elena Loiko
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Irina Culminskaya
- Biodemography of Aging Research UnitSocial Science Research Institute, Duke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
28
|
Mekkes NJ, Groot M, Hoekstra E, de Boer A, Dagkesamanskaia E, Bouwman S, Wehrens SMT, Herbert MK, Wever DD, Rozemuller A, Eggen BJL, Huitinga I, Holtman IR. Identification of clinical disease trajectories in neurodegenerative disorders with natural language processing. Nat Med 2024; 30:1143-1153. [PMID: 38472295 PMCID: PMC11031398 DOI: 10.1038/s41591-024-02843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Neurodegenerative disorders exhibit considerable clinical heterogeneity and are frequently misdiagnosed. This heterogeneity is often neglected and difficult to study. Therefore, innovative data-driven approaches utilizing substantial autopsy cohorts are needed to address this complexity and improve diagnosis, prognosis and fundamental research. We present clinical disease trajectories from 3,042 Netherlands Brain Bank donors, encompassing 84 neuropsychiatric signs and symptoms identified through natural language processing. This unique resource provides valuable new insights into neurodegenerative disorder symptomatology. To illustrate, we identified signs and symptoms that differed between frequently misdiagnosed disorders. In addition, we performed predictive modeling and identified clinical subtypes of various brain disorders, indicative of neural substructures being differently affected. Finally, integrating clinical diagnosis information revealed a substantial proportion of inaccurately diagnosed donors that masquerade as another disorder. The unique datasets allow researchers to study the clinical manifestation of signs and symptoms across neurodegenerative disorders, and identify associated molecular and cellular features.
Collapse
Affiliation(s)
- Nienke J Mekkes
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Machine Learning Lab, Data Science Center in Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Minke Groot
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Hoekstra
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alyse de Boer
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ekaterina Dagkesamanskaia
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander Bouwman
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sophie M T Wehrens
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Megan K Herbert
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Dennis D Wever
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge Huitinga
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge R Holtman
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Machine Learning Lab, Data Science Center in Health, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Popescu DL, Lee AK, Arthur E, Thompson LI, Alber J. APOE Genotype Disclosure Influences Decisions About Future Planning but not Adoption of Healthy Lifestyle Changes in Cognitively Unimpaired Individuals. J Geriatr Psychiatry Neurol 2024:8919887241237224. [PMID: 38459948 DOI: 10.1177/08919887241237224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
BACKGROUND Studies have shown apolipoprotein E (APOE) genotype disclosure to be safe and well-tolerated in cognitively unimpaired (CU) older adults. This study aimed to examine the effect of the disclosure process on decisions about future directives and health behaviors in community-dwelling CU older adults from the Butler Alzheimer's Prevention Registry (BAPR). METHODS CU APOE E4 non-carriers (n = 106) and carriers (n = 80) aged 58-78 completed in-person psychological readiness screening to undergo APOE disclosure. Follow-up assessments were completed online 3 days, 6 weeks, and 6 months post-disclosure. The primary outcomes were future directives, dietary habits, and physical activity scores. RESULTS Disclosure was associated with decision making on future directives in E4 carriers (t = 3.59, P = .01) at 6 months compared to baseline, but not non-carriers. Family history of memory impairment, SCD endorsement, and education consistently predicted scores on future directives. A significant interaction between E4+ and SCD endorsement on future directive scores was noted (OR = 163.06, 9.5-2,799.8). E4 + carrier status was associated with physical activity (W = 60,148, P = .005) but not dietary habits scores. CONCLUSIONS Our findings indicate that disclosure led to a change in future directives but not protective health behaviors, specifically in E4 carriers. Future work will explore whether pairing disclosure with education about the role of lifestyle factors in AD risk and providing guidelines on making risk-lowering lifestyle modifications as an intervention approach leads to positive change.
Collapse
Affiliation(s)
- Dominique L Popescu
- Center for Health Outcomes and Interdisciplinary Research, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Athene K Lee
- Memory and Aging Program, Butler Hospital , Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Edmund Arthur
- School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Louisa I Thompson
- Memory and Aging Program, Butler Hospital , Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jessica Alber
- Memory and Aging Program, Butler Hospital , Providence, RI, USA
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
30
|
Xie J, Rao J, Xie J, Zhao H, Yang Y. Predicting disease-gene associations through self-supervised mutual infomax graph convolution network. Comput Biol Med 2024; 170:108048. [PMID: 38310804 DOI: 10.1016/j.compbiomed.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Illuminating associations between diseases and genes can help reveal the pathogenesis of syndromes and contribute to treatments, but a large number of associations remained unexplored. To identify novel disease-gene associations, many computational methods have been developed using disease and gene-related prior knowledge. However, these methods remain of relatively inferior performance due to the limited external data sources and the inevitable noise among the prior knowledge. In this study, we have developed a new method, Self-Supervised Mutual Infomax Graph Convolution Network (MiGCN), to predict disease-gene associations under the guidance of external disease-disease and gene-gene collaborative graphs. The noises within the collaborative graphs were eliminated by maximizing the mutual information between nodes and neighbors through a graphical mutual infomax layer. In parallel, the node interactions were strengthened by a novel informative message passing layer to improve the learning ability of graph neural network. The extensive experiments showed that our model achieved performance improvement over the state-of-art method by more than 8 % on AUC. The datasets, source codes and trained models of MiGCN are available at https://github.com/biomed-AI/MiGCN.
Collapse
Affiliation(s)
- Jiancong Xie
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Junjie Xie
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China
| | - Huiying Zhao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
31
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
32
|
Lombardi G, Pancani S, Bagnoli S, Vannetti F, Nacmias B, Sorbi S, Cecchi F, Macchi C. Understanding the interplay between APO E polymorphism and cognition in the Italian oldest old: results from the "Mugello study". Neurol Sci 2024; 45:539-546. [PMID: 37710144 DOI: 10.1007/s10072-023-07073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Recent data suggest that the deleterious effect on general health and cognition of ε4 allele of Apolipoprotein E (ApoE) observed in the elderly population, may attenuate in extreme aging. This study aimed to describe the ApoE genotype distribution and its relationship with cognition in a group of nonagenarians living in the Mugello area, Italy. MATERIAL AND METHODS Cognition was evaluated using the Mini-Mental-State-Examination (MMSE). DNA was extracted from blood samples to determine ApoE genotyping. Participants were classified into three ApoE groups (ε2, ε3, ε4). Logistic and linear regression models were created, to assess the relationship between ApoE genotype group and dementia diagnosis and cognitive performance, respectively. RESULTS 169 subjects were included. ApoE ε3 was the most prevalent genotype (76.3%). Dementia prevalence was 26.6% and it was not associated with the presence of ApoE ε4. Participants of ε4 group were significantly more likely to have lower cognitive performances than ε2 and ε3, independently of a dementia diagnosis. DISCUSSION Results support that ApoE genotype no longer plays a role in the health condition of the oldest old, however, an interaction is detectable between ApoE polymorphism and cognitive performances at this extreme age.
Collapse
Affiliation(s)
- Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
| | - Silvia Pancani
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy.
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
| | - Federica Vannetti
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
| | - Francesca Cecchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Claudio Macchi
- IRCCS Fondazione Don Carlo Gnocchi Onlus, Via Di Scandicci 269, 50143, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
33
|
Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 2024; 25:91-110. [PMID: 38191720 PMCID: PMC11073858 DOI: 10.1038/s41583-023-00776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell - including astrocytes, neurons, microglia, oligodendrocytes and vascular cells - has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.
Collapse
Affiliation(s)
- Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Reas ET, Triebswetter C, Banks SJ, McEvoy LK. Effects of APOE2 and APOE4 on brain microstructure in older adults: modification by age, sex, and cognitive status. Alzheimers Res Ther 2024; 16:7. [PMID: 38212861 PMCID: PMC10782616 DOI: 10.1186/s13195-023-01380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND APOE4 is the strongest genetic risk factor for sporadic Alzheimer's disease (AD), whereas APOE2 confers protection. However, effects of APOE on neurodegeneration in cognitively intact individuals, and how these associations evolve with cognitive decline, are unclear. Furthermore, few studies have evaluated whether effects of APOE on neurodegenerative changes are modified by other AD key risk factors including age and sex. METHODS Participants included older adults (57% women; 77 ± 7 years) from the Rancho Bernardo Study of Health Aging and the University of California San Diego Alzheimer's Disease Research Center, including 192 cognitively normal (CN) individuals and 33 with mild cognitive impairment. Participants underwent diffusion MRI, and multicompartment restriction spectrum imaging (RSI) metrics were computed in white matter, gray matter, and subcortical regions of interest. Participants were classified as APOE4 carriers, APOE2 carriers, and APOE3 homozygotes. Analysis of covariance among CN (adjusting for age, sex, and scanner) assessed differences in brain microstructure by APOE, as well as interactions between APOE and sex. Analyses across all participants examined interactions between APOE4 and cognitive status. Linear regressions assessed APOE by age interactions. RESULTS Among CN, APOE4 carriers showed lower entorhinal cortex neurite density than non-carriers, whereas APOE2 carriers showed lower cingulum neurite density than non-carriers. Differences in entorhinal microstructure by APOE4 and in entorhinal and cingulum microstructure by APOE2 were present for women only. Age correlated with lower entorhinal restricted isotropic diffusion among APOE4 non-carriers, whereas age correlated with lower putamen restricted isotropic diffusion among APOE4 carriers. Differences in microstructure between cognitively normal and impaired participants were stronger for APOE4-carriers in medial temporal regions, thalamus, and global gray matter, but stronger for non-carriers in caudate. CONCLUSIONS The entorhinal cortex may be an early target of neurodegenerative changes associated with APOE4 in presymptomatic individuals, whereas APOE2 may support beneficial white matter and entorhinal microstructure, with potential sex differences that warrant further investigation. APOE modifies microstructural patterns associated with aging and cognitive impairment, which may advance the development of biomarkers to distinguish microstructural changes characteristic of normal brain aging, APOE-dependent pathways, and non-AD etiologies.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA.
| | - Curtis Triebswetter
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, Mail Code 0841, UCSD,9500 Gilman Dr., La Jolla, San Diego, CA, 92093-0841, USA
| | - Linda K McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| |
Collapse
|
35
|
Timmi A, Morin A, Guillin O, Nicolas G. One Train May Hide Another: Two Cases of Co-Occurring Primary Familial Brain Calcification and Alzheimer's Disease. J Mol Neurosci 2024; 74:2. [PMID: 38180527 DOI: 10.1007/s12031-023-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
Primary familial brain calcification (PFBC) is a rare disorder that can manifest with a wide spectrum of motor, cognitive, and psychiatric symptoms or even remain asymptomatic. Alzheimer disease (AD) is a common condition that typically starts as a progressive amnestic disorder and progresses to major cognitive impairment. Accurately attributing an etiology to cognitive impairment can sometimes be challenging, especially when multiple pathologies with potentially overlapping symptomatology contribute to the clinical phenotype. Here, we present the case of two patients with autosomal dominant PFBC and non-monogenic AD. Cerebrospinal fluid (CSF) biomarker analysis combined with genetic testing permitted the dual diagnosis. We emphasize the importance of thoroughly characterizing the patient's phenotype at onset and during the follow-up. Particular attention is placed on psychiatric symptoms given that both patients had a history of mood disorder, a frequent condition in the general population and in neurological diseases. We also discuss and challenge the paradigm of seeking a single diagnosis explaining all symptoms, remembering the possibility of a rare disease co-occurring with a common one.
Collapse
Affiliation(s)
- Andrea Timmi
- Department of Psychiatry, Rouvray Hospital, Univ Rouen Normandie, F-76000, Rouen, France
| | - Alexandre Morin
- Department of Psychiatry, Rouvray Hospital, Univ Rouen Normandie, F-76000, Rouen, France
- Univ Rouen Normandie, Normandie Univ and CHU Rouen, Department of Neurology, F-76000, Rouen, France
| | - Olivier Guillin
- Department of Psychiatry, Rouvray Hospital, Univ Rouen Normandie, F-76000, Rouen, France
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Psychiatry, F-76000, Rouen, France
| | - Gaël Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France.
| |
Collapse
|
36
|
Bhattarai P, Gunasekaran TI, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Lantigua R, Medrano M, Rivera D, Recio P, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in Fibronectin 1 ( FN1 ) protects against APOEe4 in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573895. [PMID: 38260431 PMCID: PMC10802344 DOI: 10.1101/2024.01.02.573895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
|
37
|
Han Y, Huang C, Pan Y, Gu X. Single Cell Sequencing Technology and Its Application in Alzheimer's Disease. J Alzheimers Dis 2024; 97:1033-1050. [PMID: 38217599 DOI: 10.3233/jad-230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Alzheimer's disease (AD) involves degeneration of cells in the brain. Due to insidious onset and slow progression, AD is often not diagnosed until it gets progressed to a more severe stage. The diagnosis and treatment of AD has been a challenge. In recent years, high-throughput sequencing technologies have exhibited advantages in exploring the pathogenesis of diseases. However, the types of cells of the central nervous system are complex and traditional bulk sequencing cannot reflect their heterogeneity. Single-cell sequencing technology enables study at the individual cell level and has an irreplaceable advantage in the study of complex diseases. In recent years, this field has expanded rapidly and several types of single-cell sequencing technologies have emerged, including transcriptomics, epigenomics, genomics and proteomics. This review article provides an overview of these single-cell sequencing technologies and their application in AD.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Congying Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuhui Pan
- Center for Disease Control and Prevention of Harbin, Harbin, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Ricci F, Martorana A, Bonomi CG, Serafini C, Mercuri NB, Koch G, Motta C. Effect of Vascular Risk Factors on Blood-Brain Barrier and Cerebrospinal Fluid Biomarkers Along the Alzheimer's Disease Continuum: A Retrospective Observational Study. J Alzheimers Dis 2024; 97:599-607. [PMID: 38160356 DOI: 10.3233/jad-230792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Blood-brain barrier (BBB) dysfunction could favor the pathogenesis and progression of Alzheimer's disease (AD). Vascular risk factors (VRF) could worsen BBB integrity, thus promoting neurode generation. OBJECTIVE To investigate BBB permeability and its relation with VRF along the AD continuum (ADc). Cerebrospinal fluid (CSF) Amyloid (A) and p-tau (T) levels were used to stratify patients. METHODS We compared CSF/plasma albumin ratio (QAlb) of 131 AD patients and 24 healthy controls (HC). APOE genotype and VRF were evaluated for each patient. Spearman's Rho correlation was used to investigate the associations between Qalb and CSF AD biomarkers. Multivariate regression analyses were conducted to explore the relationship between Qalb and AD biomarkers, sex, age, cognitive status, and VRF. RESULTS QAlb levels did not show significant difference between ADc patients and HC (p = 0.984). However, QAlb was significantly higher in A + T-compared to A + T+ (p = 0.021). In ADc, CSF p-tau demonstrated an inverse correlation with QAlb, a finding confirmed in APOE4 carriers (p = 0.002), but not in APOE3. Furthermore, in APOE4 carriers, sex, hypertension, and hypercholesterolemia were associated with QAlb (p = 0.004, p = 0.038, p = 0.038, respectively), whereas only sex showed an association in APOE3 carriers (p = 0.026). CONCLUSIONS BBB integrity is preserved in ADc. Among AT categories, A + T-have a more permeable BBB than A + T+. In APOE4 carriers, CSF p-tau levels display an inverse association with BBB permeability, which in turn, seems to be affected by VRF. These data suggest a possible relationship between BBB efficiency, VRF and CSF p-tau levels depending on APOE genotype.
Collapse
Affiliation(s)
- Francesco Ricci
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara G Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Serafini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola B Mercuri
- Neurology Unit, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS SantaLucia, Rome, Italy
- Department of Neuroscience and Rehabilitation, Human Physiology Unit, University of Ferrara, Ferrara, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
39
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
40
|
Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:102-121. [PMID: 36740795 DOI: 10.2174/1871527322666230203140805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome interacts with the brain bidirectionally through the microbiome-gutbrain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease via inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of poststroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Human Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
41
|
Kovalenko EA, Makhnovich EV, Bogolepova AN, Osinovskaya NA, Beregov MM. [Features of the clinical and neuroimaging picture in patients with early-onset Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:56-63. [PMID: 38696152 DOI: 10.17116/jnevro202412404256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The most common cause of severe cognitive impairment in adults is Alzheimer's disease (AD). Depending on the age of onset, AD is divided into early (<65 years) and late (≥65 years) forms. Early-onset AD (EOAD) is significantly less common than later-onset AD (LOAD) and accounts for only about 5-10% of cases. However, its medical and social significance, as a disease leading to loss of ability to work and legal capacity, as well as premature death in patients aged 40-64 years, is extremely high. Patients with EOAD compared with LOAD have a greater number of atypical clinical variants - 25% and 6-12.5%, respectively, which complicates the differential diagnosis of EOAD with other neurodegenerative diseases. However, the typical classical amnestic variant predominates in both EOAD and LOAD. Also, patients with EOAD have peculiarities according to neuroimaging data: when performing MRI of the brain, patients with EOAD often have more pronounced parietal atrophy and less pronounced hippocampal atrophy compared to patients with LOAD. The article pays attention to the features of the clinical and neuroimaging data in patients with EOAD; a case of a patient with EOAD is presented.
Collapse
Affiliation(s)
- E A Kovalenko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - E V Makhnovich
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A N Bogolepova
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - N A Osinovskaya
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - M M Beregov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
42
|
Sigala RE, Lagou V, Shmeliov A, Atito S, Kouchaki S, Awais M, Prokopenko I, Mahdi A, Demirkan A. Machine Learning to Advance Human Genome-Wide Association Studies. Genes (Basel) 2023; 15:34. [PMID: 38254924 PMCID: PMC10815885 DOI: 10.3390/genes15010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Machine learning, including deep learning, reinforcement learning, and generative artificial intelligence are revolutionising every area of our lives when data are made available. With the help of these methods, we can decipher information from larger datasets while addressing the complex nature of biological systems in a more efficient way. Although machine learning methods have been introduced to human genetic epidemiological research as early as 2004, those were never used to their full capacity. In this review, we outline some of the main applications of machine learning to assigning human genetic loci to health outcomes. We summarise widely used methods and discuss their advantages and challenges. We also identify several tools, such as Combi, GenNet, and GMSTool, specifically designed to integrate these methods for hypothesis-free analysis of genetic variation data. We elaborate on the additional value and limitations of these tools from a geneticist's perspective. Finally, we discuss the fast-moving field of foundation models and large multi-modal omics biobank initiatives.
Collapse
Affiliation(s)
- Rafaella E. Sigala
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Vasiliki Lagou
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Aleksey Shmeliov
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
| | - Sara Atito
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Samaneh Kouchaki
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Muhammad Awais
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
- Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Inga Prokopenko
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
| | - Adam Mahdi
- Oxford Internet Institute, University of Oxford, Oxford OX1 3JS, Oxfordshire, UK;
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Guildford GU2 7XH, Surrey, UK; (R.E.S.); (V.L.); (A.S.); (I.P.)
- Surrey Institute for People-Centred Artificial Intelligence, University of Surrey, Guildford GU2 7XH, Surrey, UK; (S.A.); (S.K.); (M.A.)
| |
Collapse
|
43
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Bellomo A, Solfrizzi V, Panza F. The Impact of Apolipoprotein E ( APOE) Epigenetics on Aging and Sporadic Alzheimer's Disease. BIOLOGY 2023; 12:1529. [PMID: 38132357 PMCID: PMC10740847 DOI: 10.3390/biology12121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Sporadic Alzheimer's disease (AD) derives from an interplay among environmental factors and genetic variants, while epigenetic modifications have been expected to affect the onset and progression of its complex etiopathology. Carriers of one copy of the apolipoprotein E gene (APOE) ε4 allele have a 4-fold increased AD risk, while APOE ε4/ε4-carriers have a 12-fold increased risk of developing AD in comparison with the APOE ε3-carriers. The main longevity factor is the homozygous APOE ε3/ε3 genotype. In the present narrative review article, we summarized and described the role of APOE epigenetics in aging and AD pathophysiology. It is not fully understood how APOE variants may increase or decrease AD risk, but this gene may affect tau- and amyloid-mediated neurodegeneration directly or indirectly, also by affecting lipid metabolism and inflammation. For sporadic AD, epigenetic regulatory mechanisms may control and influence APOE expression in response to external insults. Diet, a major environmental factor, has been significantly associated with physical exercise, cognitive function, and the methylation level of several cytosine-phosphate-guanine (CpG) dinucleotide sites of APOE.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Rodolfo Sardone
- Local Healthcare Authority of Taranto, 74121 Taranto, Italy;
| | - Fabio Castellana
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Roberta Zupo
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Luisa Lampignano
- Local Healthcare Authority of Bari, ASL Bari, 70132 Bari, Italy;
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzo Solfrizzi
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Francesco Panza
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| |
Collapse
|
44
|
Paitel ER, Nielson KA. Cerebellar EEG source localization reveals age-related compensatory activity moderated by genetic risk for Alzheimer's disease. Psychophysiology 2023; 60:e14395. [PMID: 37493042 DOI: 10.1111/psyp.14395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
The apolipoprotein-E (APOE) ε4 allele is the greatest genetic risk factor for late-onset Alzheimer's disease (AD), but alone it is not sufficiently predictive. Because neuropathological changes associated with AD begin decades before cognitive symptoms, neuroimaging of healthy, cognitively intact ε4 carriers (ε4+) may enable early characterization of patterns associated with risk for future decline. Research in the cerebral cortex highlights a period of compensatory recruitment in elders and ε4+, which serves to maintain cognitive functioning. Yet, AD-related changes may occur even earlier in the cerebellum. Advances in electroencephalography (EEG) source localization now allow effective modeling of cerebellar activity. Importantly, healthy aging and AD are associated with declines in both cerebellar functions and executive functioning (EF). However, it is not known whether cerebellar activity can detect pre-symptomatic AD risk. Thus, the current study analyzed cerebellar EEG source localization during an EF-dependent stop-signal task (i.e., inhibitory control) in healthy, intact older adults (Mage = 80 years; 20 ε4+, 25 ε4-). Task performance was comparable between groups. Older age predicted greater activity in left crus II and lobule VIIb during the P300 window (i.e., performance evaluation), consistent with age-related compensation. Age*ε4 moderations specifically showed that compensatory patterns were evident only in ε4-, suggesting that cerebellar compensatory resources may already be depleted in healthy ε4+ elders. Thus, the posterolateral cerebellum is sensitive to AD-related neural deficits in healthy elders. Characterization of these patterns may be essential for the earliest possible detection of AD risk, which would enable critical early intervention prior to symptom onset.
Collapse
Affiliation(s)
- Elizabeth R Paitel
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
| | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, Wisconsin, USA
- Department of Neurology, Center for Imaging Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
45
|
Culleton S, Niu M, Alexander M, McNally JS, Yuan C, Parker D, Baradaran H. Extracranial carotid artery atherosclerotic plaque and APOE polymorphisms: a systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1155916. [PMID: 38034385 PMCID: PMC10683092 DOI: 10.3389/fcvm.2023.1155916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Carotid atherosclerotic plaque is an important independent risk factor for stroke. Apolipoprotein E (APOE) influences cholesterol levels and certain isoforms are associated with increased carotid atherosclerosis, though the exact association between APOE and carotid plaque is uncertain. The study aimed to evaluate the association between APOE and carotid plaque. Methods A systematic review was performed to retrieve all studies which examined the association between carotid plaque and APOE. This study was conducted in accordance with the PRISMA guidelines. Independent readers extracted the relevant data from each study including the type of imaging assessment, plaque definition, frequency of APOE E4 carrier status and type of genotyping. Meta-analyses with an assessment of study heterogeneity and publication bias were performed. Results were presented in a forest plot and summarized using a random-effects model. Results After screening 838 studies, 17 studies were included for systematic review. A meta-analysis of 5 published studies showed a significant association between ε4 homozygosity and carotid plaque [odds ratio (OR), 1.53; 95% CI, 1.16, 2.02; p = .003]. Additionally, there was a significant association between patients possessing at least one ε4 allele, heterozygotes or homozygotes, and carotid plaque (OR, 1.25; 95% CI, 1.03, 1.52; p = .03). Lastly, there was no association between ε4 heterozygosity and carotid plaque (OR, 1.08; 95% CI, 0.93, 1.26; p = .30). Conclusion APOE ε4 allele is significantly associated with extracranial carotid atherosclerotic plaque, especially for homozygous individuals.
Collapse
Affiliation(s)
- Sinéad Culleton
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| | - Mary Niu
- Department of Pediatrics, University of Utah, Salt Lake, UT, United States
| | - Matthew Alexander
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| | - J. Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| | - Chun Yuan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| | - Hediyeh Baradaran
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake, UT, United States
| |
Collapse
|
46
|
Ferrari-Souza JP, Bellaver B, Ferreira PCL, Benedet AL, Povala G, Lussier FZ, Leffa DT, Therriault J, Tissot C, Soares C, Wang YT, Chamoun M, Servaes S, Macedo AC, Vermeiren M, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Cohen A, Lopez OL, Klunk WE, Soucy JP, Gauthier S, Souza DO, Triana-Baltzer G, Saad ZS, Kolb HC, Karikari TK, Villemagne VL, Tudorascu DL, Ashton NJ, Zetterberg H, Blennow K, Zimmer ER, Rosa-Neto P, Pascoal TA. APOEε4 potentiates amyloid β effects on longitudinal tau pathology. NATURE AGING 2023; 3:1210-1218. [PMID: 37749258 PMCID: PMC10592050 DOI: 10.1038/s43587-023-00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-β (Aβ) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aβ ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aβ effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aβ effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aβ downstream effects on the aggregation of phosphorylated tau in the living human brain.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pâmela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Douglas T Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Cécile Tissot
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Carolina Soares
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Artificial Intelligence and Computational Neurosciences Laboratory, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ziad S Saad
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, Lopez OL, Feingold E, Kamboh MI. Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer's disease risk. Mol Psychiatry 2023; 28:4451-4462. [PMID: 37666928 PMCID: PMC10827653 DOI: 10.1038/s41380-023-02170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 09/06/2023]
Abstract
The APOE 2/3/4 polymorphism is the greatest genetic risk factor for Alzheimer's disease (AD). This polymorphism is also associated with variation in plasma ApoE level; while APOE*4 lowers, APOE*2 increases ApoE level. Lower plasma ApoE level has also been suggested to be a risk factor for incident dementia. To our knowledge, no large genome-wide association study (GWAS) has been reported on plasma ApoE level. This study aimed to identify new genetic variants affecting plasma ApoE level as well as to test if baseline ApoE level is associated with cognitive function and incident dementia in a longitudinally followed cohort of the Ginkgo Evaluation of Memory (GEM) study. Baseline plasma ApoE concentration was measured in 3031 participants (95.4% European Americans (EAs)). GWAS analysis was performed on 2580 self-identified EAs where both genotype and plasma ApoE data were available. Lower ApoE concentration was associated with worse cognitive function, but not with incident dementia. As expected, the risk for AD increased from E2/2 through to E4/4 genotypes (P for trend = 4.8E-75). In addition to confirming the expected and opposite associations of APOE*2 (P = 4.73E-79) and APOE*4 (P = 8.73E-12) with ApoE level, GWAS analysis revealed nine additional independent signals in the APOE region, and together they explained about 22% of the variance in plasma ApoE level. We also identified seven new loci on chromosomes 1, 4, 5, 7, 11, 12 and 20 (P range = 5.49E-08 to 5.36E-10) that explained about 9% of the variance in ApoE level. Plasma ApoE level-associated independent variants, especially in the APOE region, were also associated with AD risk and amyloid deposition in the brain, indicating that genetically determined ApoE level variation may be a risk factor for developing AD. These results improve our understanding of the genetic determinants of plasma ApoE level and their potential value in affecting AD risk.
Collapse
Affiliation(s)
- M Muaaz Aslam
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth Lawrence
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Margaret Anne Bedison
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- McKnight Brain Institute and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
de Jesus JR, de Araujo Andrade T, de Figueiredo EC. Biomarkers in psychiatric disorders. Adv Clin Chem 2023; 116:183-208. [PMID: 37852719 DOI: 10.1016/bs.acc.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Psychiatric disorders represent a significant socioeconomic and healthcare burden worldwide. Of these, schizophrenia, bipolar disorder, major depressive disorder and anxiety are among the most prevalent. Unfortunately, diagnosis remains problematic and largely complicated by the lack of disease specific biomarkers. Accordingly, much research has focused on elucidating these conditions to more fully understand underlying pathophysiology and potentially identify biomarkers, especially those of early stage disease. In this chapter, we review current status of this endeavor as well as the potential development of novel biomarkers for clinical applications and future research study.
Collapse
Affiliation(s)
| | | | - Eduardo Costa de Figueiredo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
49
|
Palmer JM, Huentelman M, Ryan L. More than just risk for Alzheimer's disease: APOE ε4's impact on the aging brain. Trends Neurosci 2023; 46:750-763. [PMID: 37460334 DOI: 10.1016/j.tins.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The apolipoprotein ε4 (APOE ε4) allele is most commonly associated with increased risk for late-onset Alzheimer's disease (AD). However, recent longitudinal studies suggest that these risks are overestimated; most ε4 carriers will not develop dementia in their lifetime. In this article, we review new evidence regarding the impact of APOE ε4 on cognition among healthy older adults. We discuss emerging work from animal models suggesting that ε4 impacts brain structure and function in multiple ways that may lead to age-related cognitive impairment, independent from AD pathology. We discuss the importance of taking an individualized approach in future studies by incorporating biomarkers and neuroimaging methods that may better disentangle the phenotypic influences of APOE ε4 on the aging brain from prodromal AD pathology.
Collapse
Affiliation(s)
- Justin M Palmer
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Lee Ryan
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
50
|
Ekblad LL, Tuisku J, Koivumäki M, Helin S, Rinne JO, Snellman A. Insulin resistance and body mass index are associated with TSPO PET in cognitively unimpaired elderly. J Cereb Blood Flow Metab 2023; 43:1588-1600. [PMID: 37113066 PMCID: PMC10414007 DOI: 10.1177/0271678x231172519] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Metabolic risk factors are associated with peripheral low-grade inflammation and an increased risk for dementia. We evaluated if metabolic risk factors i.e. insulin resistance, body mass index (BMI), serum cholesterol values, or high sensitivity C-reactive protein associate with central inflammation or beta-amyloid (Aβ) accumulation in the brain, and if these associations are modulated by APOE4 gene dose. Altogether 60 cognitively unimpaired individuals (mean age 67.7 years (SD 4.7); 63% women; 21 APOE3/3, 20 APOE3/4 and 19 APOE4/4) underwent positron emission tomography with [11C]PK11195 targeting TSPO (18 kDa translocator protein) and [11C]PIB targeting fibrillar Aβ. [11C]PK11195 distribution value ratios and [11C]PIB standardized uptake values were calculated in a cortical composite region of interest typical for Aβ accumulation in Alzheimer's disease. Associations between metabolic risk factors, [11C]PK11195, and [11C]PIB uptake were evaluated with linear models adjusted for age and sex. Higher logarithmic HOMA-IR (standardized beta 0.40, p = 0.002) and BMI (standardized beta 0.27, p = 0.048) were associated with higher TSPO availability. Voxel-wise analyses indicated that this association was mainly seen in the parietal cortex. Higher logarithmic HOMA-IR was associated with higher [11C]PIB (standardized beta 0.44, p = 0.02), but only in APOE4/4 homozygotes. BMI and HOMA-IR seem to influence TSPO availability in the brain.
Collapse
Affiliation(s)
- Laura L Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Koivumäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- InFLAMES Reseach Flagship Center, University of Turku, Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|