1
|
Nayak TR, Chrastina A, Valencia J, Cordova-Robles O, Yedidsion R, Buss T, Cederstrom B, Koziol J, Levin MD, Olenyuk B, Schnitzer JE. Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01786-z. [PMID: 39379614 DOI: 10.1038/s41565-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/08/2024] [Indexed: 10/10/2024]
Abstract
Modern medicine seeks precision targeting, imaging and therapy to maximize efficacy and avoid toxicities. Nanoparticles (NPs) have tremendous yet unmet clinical potential to carry and deliver imaging and therapeutic agents systemically with tissue precision. But their size contributes to rapid scavenging by the reticuloendothelial system and poor penetration of key endothelial cell (EC) barriers, limiting target tissue uptake, safety and efficacy. Here we discover the ability of the EC caveolae pumping system to outpace scavenging and deliver NPs rapidly and specifically into the lungs. Gold and dendritic NPs are conjugated to antibodies targeting caveolae of the lung microvascular endothelium. SPECT-CT imaging and biodistribution analyses reveal that rat lungs extract most of the intravenous dose within minutes to achieve precision lung imaging and targeting with high lung concentrations exceeding peak blood levels. These results reveal how much ECs can both limit and promote tissue penetration of NPs and the power and size-dependent limitations of the caveolae pumping system. This study provides a new retargeting paradigm for NPs to avoid reticuloendothelial system uptake and achieve rapid precision nanodelivery for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Tapas R Nayak
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Jose Valencia
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Robert Yedidsion
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | | | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, CA, USA.
- Institute of Engineering in Medicine, UCSD, La Jolla, CA, USA.
| |
Collapse
|
2
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
3
|
Martin Říhová J, Gupta S, Nováková E, Hypša V. Fur microbiome as a putative source of symbiotic bacteria in sucking lice. Sci Rep 2024; 14:22326. [PMID: 39333204 PMCID: PMC11436785 DOI: 10.1038/s41598-024-73026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Symbiosis between insects and bacteria has been established countless times. While it is well known that the symbionts originated from a variety of different bacterial taxa, it is usually difficult to determine their environmental source and a route of their acquisition by the host. In this study, we address this question using a model of Neisseriaceae symbionts in rodent lice. These bacteria established their symbiosis independently with different louse taxa (Polyplax, Hoplopleura, Neohaematopinus), most likely from the same environmental source. We first applied amplicon analysis to screen for candidate source bacterium in the louse environment. Since lice are permanent ectoparasites, often specific to the particular host, we screened various microbiomes associated with three rodent species (Microtus arvalis, Clethrionomys glareolus, and Apodemus flavicollis). The analyzed samples included fur, skin, spleen, and other ectoparasites sampled from these rodents. The fur microbiome data revealed a Neisseriaceae bacterium, closely related to the known louse symbionts. The draft genomes of the environmental Neisseriaceae, assembled from all three rodent hosts, converged to a remarkably small size of approximately 1.4 Mbp, being even smaller than the genomes of the related symbionts. Our results suggest that the rodent fur microbiome can serve as a source for independent establishment of bacterial symbiosis in associated louse species. We further propose a hypothetical scenario of the genome evolution during the transition of a free-living bacterium to the member of the rodent fur-associated microbiome and subsequently to the facultative and obligate louse symbionts.
Collapse
Affiliation(s)
- Jana Martin Říhová
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Shruti Gupta
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, ASCR, v.v.i, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Zamora ME, Essien EO, Bhamidipati K, Murthy A, Liu J, Kim H, Patel MN, Nong J, Wang Z, Espy C, Chaudhry FN, Ferguson LT, Tiwari S, Hood ED, Marcos-Contreras OA, Omo-Lamai S, Shuvaeva T, Arguiri E, Wu J, Rauova L, Poncz M, Basil MC, Cantu E, Planer JD, Spiller K, Zepp J, Muzykantov VR, Myerson JW, Brenner JS. Marginated Neutrophils in the Lungs Effectively Compete for Nanoparticles Targeted to the Endothelium, Serving as a Part of the Reticuloendothelial System. ACS NANO 2024; 18:22275-22297. [PMID: 39105696 DOI: 10.1021/acsnano.4c06286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.
Collapse
Affiliation(s)
- Marco E Zamora
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Eno-Obong Essien
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Aditi Murthy
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Jing Liu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Hyunjun Kim
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Manthan N Patel
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jia Nong
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Carolann Espy
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Fatima N Chaudhry
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Laura T Ferguson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Sachchidanand Tiwari
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth D Hood
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A Marcos-Contreras
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Tea Shuvaeva
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Evguenia Arguiri
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jichuan Wu
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Lubica Rauova
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Mortimer Poncz
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Maria C Basil
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Edward Cantu
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Joseph D Planer
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| | - Kara Spiller
- Drexel University School of Biomedical Engineering, Philadelphia, Pennsylvania 19104, United States
| | - Jarod Zepp
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R Muzykantov
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob W Myerson
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Brenner
- Perelman School of Medicine Department of System Pharmacology and Translational Therapeutics, Philadelphia, Pennsylvania 19104, United States
- Perelman School of Medicine Department of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Yang Y, Ivanov DG, Levin MD, Olenyuk B, Cordova-Robles O, Cederstrom B, Schnitzer JE, Kaltashov IA. Characterization of Large Immune Complexes with Size Exclusion Chromatography and Native Mass Spectrometry Supplemented with Gas Phase Ion Chemistry. Anal Chem 2024. [PMID: 38319243 DOI: 10.1021/acs.analchem.3c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | - Michael D Levin
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Oscar Cordova-Robles
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, La Jolla, California 92037, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
6
|
Song N, Chu Y, Tang J, Yang D. Lipid-, Inorganic-, Polymer-, and DNA-Based Nanocarriers for Delivery of the CRISPR/Cas9 system. Chembiochem 2023; 24:e202300180. [PMID: 37183575 DOI: 10.1002/cbic.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (CRISPR/Cas9) system has been widely explored for the precise manipulation of target DNA and has enabled efficient genomic editing in cells. Recently, CRISPR/Cas9 has shown promising potential in biomedical applications, including disease treatment, transcriptional regulation and genome-wide screening. Despite these exciting achievements, efficient and controlled delivery of the CRISPR/Cas9 system has remained a critical obstacle to its further application. Herein, we elaborate on the three delivery forms of the CRISPR/Cas9 system, and discuss the composition, advantages and limitations of these forms. Then we provide a comprehensive overview of the carriers of the system, and focus on the nonviral nanocarriers in chemical methods that facilitate efficient and controlled delivery of the CRISPR/Cas9 system. Finally, we discuss the challenges and prospects of the delivery methods of the CRISPR/Cas9 system in depth, and propose strategies to address the intracellular and extracellular barriers to delivery in clinical applications.
Collapse
Affiliation(s)
- Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yiwen Chu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
7
|
Peng Y, Gao Z, Qiao B, Li D, Pang H, Lai X, Pu Q, Zhang R, Zhao X, Zhao G, Xu D, Wang Y, Ji Y, Pei H, Wu Q. Size-Controlled DNA Tile Self-Assembly Nanostructures Through Caveolae-Mediated Endocytosis for Signal-Amplified Imaging of MicroRNAs in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300614. [PMID: 37189216 PMCID: PMC10375201 DOI: 10.1002/advs.202300614] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Signal-amplified imaging of microRNAs (miRNAs) is a promising strategy at the single-cell level because liquid biopsy fails to reflect real-time dynamic miRNA levels. However, the internalization pathways for available conventional vectors predominantly involve endo-lysosomes, showing nonideal cytoplasmic delivery efficiency. In this study, size-controlled 9-tile nanoarrays are designed and constructed by integrating catalytic hairpin assembly (CHA) with DNA tile self-assembly technology to achieve caveolae-mediated endocytosis for the amplified imaging of miRNAs in a complex intracellular environment. Compared with classical CHA, the 9-tile nanoarrays possess high sensitivity and specificity for miRNAs, achieve excellent internalization efficiency by caveolar endocytosis, bypassing lysosomal traps, and exhibit more powerful signal-amplified imaging of intracellular miRNAs. Because of their excellent safety, physiological stability, and highly efficient cytoplasmic delivery, the 9-tile nanoarrays can realize real-time amplified monitoring of miRNAs in various tumor and identical cells of different periods, and imaging effects are consistent with the actual expression levels of miRNAs, ultimately demonstrating their feasibility and capacity. This strategy provides a high-potential delivery pathway for cell imaging and targeted delivery, simultaneously offering a meaningful reference for the application of DNA tile self-assembly technology in relevant fundamental research and medical diagnostics.
Collapse
Affiliation(s)
- Yanan Peng
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Zhijun Gao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Bin Qiao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Dongxia Li
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Huajie Pang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xiangde Lai
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiumei Pu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Rui Zhang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Xuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Guangyuan Zhao
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Dan Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of PharmacyHainan Medical UniversityHaikou571199P. R. China
| | - Yuanyuan Wang
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| | - Yuxiang Ji
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Hua Pei
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
| | - Qiang Wu
- The Second Affiliated HospitalSchool of Tropical MedicineHainan Medical UniversityHaikou571199P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of EducationResearch Unit of Island Emergency MedicineChinese Academy of Medical Sciences (No. 2019RU013)Hainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
8
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Li L, Jia F, Wang Y, Liu J, Tian Y, Sun X, Lei Y, Ji J. Trans-corneal drug delivery strategies in the treatment of ocular diseases. Adv Drug Deliv Rev 2023; 198:114868. [PMID: 37182700 DOI: 10.1016/j.addr.2023.114868] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The cornea is a remarkable tissue that possesses specialized structures designed to safeguard the eye against foreign objects. However, its unique properties also make it challenging to deliver drugs in a non-invasive manner. This review highlights recent advancements in achieving highly efficient drug transport across the cornea, focusing on nanomaterials. We have classified these strategies into three main categories based on their mechanisms and have analyzed their success and limitations in a systematic manner. The purpose of this review is to examine potential general principles that could improve drug penetration through the cornea and other natural barriers in the eye. We hope it will inspire the development of more effective drug delivery systems that can better treat ocular diseases.
Collapse
Affiliation(s)
- Liping Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China
| | - Jiamin Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Yi Tian
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China
| | - Xinghuai Sun
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Yuan Lei
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province, PR China.
| |
Collapse
|
10
|
Mfsd2a attenuated hypoxic-ischemic brain damage via protection of the blood-brain barrier in mfat-1 transgenic mice. Cell Mol Life Sci 2023; 80:71. [PMID: 36820986 PMCID: PMC9950179 DOI: 10.1007/s00018-023-04716-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Previous studies have shown that mfat-1 transgenic mice have protective effects against some central nervous system (CNS) disorders, owing to the high docosahexaenoic acid (DHA) content enriched in their brains. However, whether this protective effect is connected to the blood-brain barrier (BBB) remains unclear. This study aims to investigate the mechanisms of the protective effect against hypoxic-ischemic brain damage (HIBD) of mfat-1 transgenic mice. mfat-1 mice not only demonstrated a significant amelioration of neurological dysfunction and neuronal damage but also partly maintained the physiological permeability of the BBB after HIBD. We initially showed this was associated with elevated major facilitator superfamily domain-containing 2a (Mfsd2a) expression on the BBB, resulting from more lysophosphatidylcholine (LPC)-DHA entering the brain. Wild-type (WT) mice showed a similar Mfsd2a expression trend after long-term feeding with an LPC-DHA-rich diet. Knockdown of Mfsd2a by siRNA intra-cerebroventricular (ICV) injection neutralized the protective effect against HIBD-induced BBB disruption in mfat-1 mice, further validating the protective function of Mfsd2a on BBB. HIBD-induced BBB high permeability was attenuated by Mfsd2a, primarily through a transcellular pathway to decrease caveolae-like vesicle-mediated transcytosis. Taken together, these findings not only reveal that mfat-1 transgenic mice have higher expression of Mfsd2a on the BBB, which partly sustains BBB permeability via vesicular transcytosis to alleviate the severity of HIBD, but also suggest that dietary intake of LPC-DHA may upregulate Mfsd2a expression as a novel therapeutic strategy for BBB dysfunction and survival in HIBD patients.
Collapse
|
11
|
Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Alleviating experimental pulmonary hypertension via co-delivering FoxO1 stimulus and apoptosis activator to hyperproliferating pulmonary arteries. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
14
|
Kadam AH, Kandasamy K, Buss T, Cederstrom B, Yang C, Narayanapillai S, Rodriguez J, Levin MD, Koziol J, Olenyuk B, Borok Z, Chrastina A, Schnitzer JE. Targeting caveolae to pump bispecific antibody to TGF-β into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS One 2022; 17:e0276462. [PMID: 36413536 PMCID: PMC9681080 DOI: 10.1371/journal.pone.0276462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (μg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-β signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.
Collapse
Affiliation(s)
- Anil H. Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Kathirvel Kandasamy
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Chun Yang
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Sreekanth Narayanapillai
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Juan Rodriguez
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Michael D. Levin
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Zea Borok
- Department of Medicine, UCSD School of Medicine, La Jolla, California, United States of America
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
- Institute for Engineering in Medicine, UCSD, La Jolla, California, United States of America
| |
Collapse
|
15
|
Zhou Q, Li J, Xiang J, Shao S, Zhou Z, Tang J, Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv Drug Deliv Rev 2022; 189:114480. [PMID: 35952830 DOI: 10.1016/j.addr.2022.114480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Extravasation is the first step for nanomedicines in circulation to reach targeted solid tumors. Traditional nanomedicines have been designed to extravasate into tumor interstitium through the interendothelial gaps previously assumed rich in tumor blood vessels, i.e., the enhanced permeability and retention (EPR) effect. While the EPR effect has been validated in animal xenograft tumor models, accumulating evidence implies that the EPR effect is very limited and highly heterogeneous in human tumors, leading to highly unpredictable and inefficient extravasation and thus limited therapeutic efficacy of nanomedicines, including those approved in clinics. Enabling EPR-independent extravasation is the key to develop new generation of nanomedicine with enhanced efficacy. Transcytosis of tumor endothelial cells can confer nanomedicines to actively extravasate into solid tumors without relying on the EPR effect. Here, we review and prospectthe development of transcytosis-inducing nanomedicines, in hope of providing instructive insights for design of nanomedicines that can undergo selective transcellular transport across tumor endothelial cells, and thus inspiring the development of next-generation nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Quan Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junjun Li
- Department of Cell Biology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Shiqun Shao
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianbin Tang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China.
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Wu JLY, Stordy BP, Nguyen LNM, Deutschman CP, Chan WCW. A proposed mathematical description of in vivo nanoparticle delivery. Adv Drug Deliv Rev 2022; 189:114520. [PMID: 36041671 DOI: 10.1016/j.addr.2022.114520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are promising vehicles for the precise delivery of molecular therapies to diseased sites. Nanoparticles interact with a series of tissues and cells before they reach their target, which causes less than 1% of administered nanoparticles to be delivered to these target sites. Researchers have been studying the nano-bio interactions that mediate nanoparticle delivery to develop guidelines for designing nanoparticles with enhanced delivery properties. In this review article, we describe these nano-bio interactions with a series of mathematical equations that quantitatively define the nanoparticle delivery process. We employ a compartment model framework to describe delivery where nanoparticles are either (1) at the site of administration, (2) in the vicinity of target cells, (3) internalized by the target cells, or (4) sequestered away in off-target sites or eliminated from the body. This framework explains how different biological processes govern nanoparticle transport between these compartments, and the role of intercompartmental transport rates in determining the final nanoparticle delivery efficiency. Our framework provides guiding principles to engineer nanoparticles for improved targeted delivery.
Collapse
Affiliation(s)
- Jamie L Y Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin P Stordy
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Luan N M Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Christopher P Deutschman
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Warren C W Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Materials Science & Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
17
|
Wang L, Dou J, Jiang W, Wang Q, Liu Y, Liu H, Wang Y. Enhanced Intracellular Transcytosis of Nanoparticles by Degrading Extracellular Matrix for Deep Tissue Radiotherapy of Pancreatic Adenocarcinoma. NANO LETTERS 2022; 22:6877-6887. [PMID: 36036792 DOI: 10.1021/acs.nanolett.2c01005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intracellular transcytosis can enhance the penetration of nanomedicines to deep avascular tumor tissues, but strategies that can improve transcytosis are limited. In this study, we discovered that pyknomorphic extracellular matrix (ECM) is a shield that impairs endocytosis of nanoparticles and their movement between adjacent cells and thus limits their active transcytosis in tumors. We further showed that degradation of pivotal constituent of ECM (i.e., collagen) effectively enhances intracellular transcytosis of nanoparticles. Specifically, a collagenase conjugating transcytosis nanoparticle (Col-TNP) can dissociate into collagenase and cationized gold nanoparticles in response to tumor acidity, which enables their ECM tampering ability and active transcytosis in tumors. The breakage of ECM further enhances the active transcytosis of cationized nanoparticles into deep tumor tissues as well as radiosensitization efficacy of pancreatic adenocarcinoma. Our study opens up new paths to enhance the active transcytosis of nanomedicines for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Li Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000, China
| | - Jiaxiang Dou
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Jiang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qin Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Liu
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hang Liu
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yucai Wang
- Department of Interventional Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Tang X, Du X, Yu Y, Qin M, Qian L, Zhang M, Yang Y, Yu Q, Gan Z. Deep-Penetrating Triple-Responsive Prodrug Nanosensitizer Actuates Efficient Chemoradiotherapy in Pancreatic Ductal Adenocarcinoma Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202834. [PMID: 35808966 DOI: 10.1002/smll.202202834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Chemoradiotherapy (CRT) is the most accepted treatment for locally advanced pancreatic ductal adenocarcinoma (PDAC) and can significantly improve the R0 resection rate. However, there are few long-term survivors after CRT. Although some polymer nanoparticles have shown potential in alleviating the dose-limiting toxicity and assisting the chemotherapy of PDAC, there are few efficient nanosensitizers (NS) available for CRT of this malignancy, especially in the context of its hypoxic nature. Herein, based on the biological features of PDAC, a γ-glutamyl transpeptidase (GGT)/glutathione (GSH)/hypoxia triple-responsive prodrug NS to overcome the biological barrier and microenvironmental limitations confronted by CRT in PDAC is developed. Due to triple-responsiveness, deep tumor penetration, GSH/hypoxia-responsive drug release/activation, and hypoxia-induced chemoradio-sensitization can be simultaneously achieved with this NS. As a result, tumor shrinkage after CRT with this NS can be observed in both subcutaneous and orthotopic PDAC models, foreshadowing its potential in clinical neoadjuvant CRT.
Collapse
Affiliation(s)
- Xiaohu Tang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaomeng Du
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, P. R. China
| | - Yanting Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Qin
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lili Qian
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meng Zhang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yan Yang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
19
|
The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat Cell Biol 2022; 24:1226-1238. [PMID: 35817960 DOI: 10.1038/s41556-022-00953-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Physiological blood flow induces the secretion of vasoactive compounds, notably nitric oxide, and promotes endothelial cell elongation and reorientation parallel to the direction of applied shear. How shear is sensed and relayed to intracellular effectors is incompletely understood. Here, we demonstrate that an apical spectrin network is essential to convey the force imposed by shear to endothelial mechanosensors. By anchoring CD44, spectrins modulate the cell surface density of hyaluronan and sense and translate shear into changes in plasma membrane tension. Spectrins also regulate the stability of apical caveolae, where the mechanosensitive PIEZO1 channels are thought to reside. Accordingly, shear-induced PIEZO1 activation and the associated calcium influx were absent in spectrin-deficient cells. As a result, cell realignment and flow-induced endothelial nitric oxide synthase stimulation were similarly dependent on spectrin. We conclude that the apical spectrin network is not only required for shear sensing but also transmits and distributes the resulting tensile forces to mechanosensors that elicit protective and vasoactive responses.
Collapse
|
20
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
21
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
22
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
23
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
24
|
Teng C, Li B, Lin C, Xing X, Huang F, Yang Y, Li Y, Azevedo HS, He W. Targeted delivery of baicalein-p53 complex to smooth muscle cells reverses pulmonary hypertension. J Control Release 2021; 341:591-604. [PMID: 34896449 DOI: 10.1016/j.jconrel.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon and deadly cardiopulmonary disease. PAH stems essentially from pulmonary artery (PA) remodeling induced predominantly by over-proliferation of PA smooth muscle cells (PASMCs) and inflammation. However, effective treatments are still missing in the clinic because the available drugs consisting of vasodilators are aimed to attenuate PAH symptoms rather than inhibit the remodeling process. Here, we aimed to specifically co-deliver apoptotic executor gene p53 and anti-inflammatory baicalein to PASMCs to alleviate PAH. The targeted co-delivery system was prepared through a carrier-free approach, which was prepared by loading the conjugate, NLS (nuclear localization signal) peptide-p53 gene, onto the baicalein pure crystals, followed by coating with glucuronic acid (GA) for targeting the glucose transport-1 (GLUT-1). The co-delivery system developed has a 200-nm diameter with a rod shape and a drug-loading capacity of 62% (w/w). The prepared system was shown to target PASMCs in vitro and enabled effective gene transfection, efficient apoptosis, and inflammation suppression. In vivo, via targeting the axis lung-PAs-PASMCs, the co-delivery reversed monocrotaline-induced PAH by reducing pulmonary artery pressure, downregulating the proinflammatory cytokine TNF-α, and inhibiting remodeling of both PAs and right ventricular. The potent efficacy may closely correlate with the activation of the signaling axis Bax/Bcl-2/Cas-3. Overall, our results indicate that the co-delivery system holds a significant potential to target the axis of lung-PAs-PASMCs and treat PAH.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bingbing Li
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuyang Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feifei Huang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, London E1 4NS, UK
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
25
|
Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS NANO 2021; 15:17124-17136. [PMID: 34714050 PMCID: PMC9050969 DOI: 10.1021/acsnano.1c04707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted delivery of therapeutics through the use of nanoparticles (NPs) has emerged as a promising method that increases their efficacy and reduces their side effects. NPs can be tailored to localize to selective tissues through conjugation to ligands that bind cell-specific receptors. Although the vast majority of nanodelivery platforms have focused on cancer therapy, efforts have begun to introduce nanotherapeutics to the fields of immunology as well as transplantation. In this review, we provide an overview from a clinician's perspective of current nanotherapeutic strategies to treat solid organ transplants with NPs during the time interval between organ harvest from the donor and placement into the recipient, an innovative technology that can provide major benefits to transplant patients. The use of ex vivo normothermic machine perfusion (NMP), which is associated with preserving the function of the organ following transplantation, also provides an ideal opportunity for a localized, sustained, and controlled delivery of nanotherapeutics to the organ during this critical time period. Here, we summarize previous endeavors to improve transplantation outcomes by treating the organ with NPs prior to placement in the recipient. Investigations in this burgeoning field of research are promising, but more extensive studies are needed to overcome the physiological challenges to achieving effective nanotherapeutic delivery to transplanted organs discussed in this review.
Collapse
Affiliation(s)
- Bilal Hussain
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joren C. Madsen
- Department of Surgery and Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan Bromberg
- Departments of Surgery and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center and Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
26
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
27
|
Simonneau C, Duschmalé M, Gavrilov A, Brandenberg N, Hoehnel S, Ceroni C, Lassalle E, Kassianidou E, Knoetgen H, Niewoehner J, Villaseñor R. Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays. Fluids Barriers CNS 2021; 18:43. [PMID: 34544422 PMCID: PMC8454074 DOI: 10.1186/s12987-021-00276-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.
Collapse
Affiliation(s)
- Claire Simonneau
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Martina Duschmalé
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Alina Gavrilov
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | | | - Sylke Hoehnel
- SUN bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Camilla Ceroni
- SUN bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | - Evodie Lassalle
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Elena Kassianidou
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Hendrik Knoetgen
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities, Roche Innovation Center Munich, Munich, Germany
| | - Jens Niewoehner
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities, Roche Innovation Center Munich, Munich, Germany
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
28
|
Zhou Y, Ariotti N, Rae J, Liang H, Tillu V, Tee S, Bastiani M, Bademosi AT, Collins BM, Meunier FA, Hancock JF, Parton RG. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J Cell Biol 2021; 220:211716. [PMID: 33496726 PMCID: PMC7844427 DOI: 10.1083/jcb.202005138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Nicholas Ariotti
- University of New South Wales Sydney, Mark Wainwright Analytical Center, Sydney, New South Wales, Australia.,University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Vikas Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Shern Tee
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Adekunle T Bademosi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - Frederic A Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX.,Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Nie JH, Shen Y, Roshdy M, Cheng X, Wang G, Yang X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology 2021; 15:885-904. [PMID: 34087085 DOI: 10.1080/17435390.2021.1930228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing evidence demonstrated that bioaccumulation of polystyrene nanoplastics (PS-NPs) in various organisms including human beings caused destructive effects on health. Nanoplastics may adversely affect fetal development potentially since they can pass through the placental barrier. However, very little has been known about the embryonic toxicity of polystyrene nanoplastics, especially in embryonic neurulation, the early developmental stage of the fetus, as well as the corresponding mechanisms. In this study, we first observed that 60- or 900-nm PS-NPs (especially 60-nm PS-NPs) could cross mouse placentas and affect developing mice fetuses. To avoid the indirect adverse effects derived from the restricted placenta, we employed early chick embryos as a developmental model to evaluate direct adverse effects of PS-NPs on embryo/fetal development, revealing suppressive effects on embryo development and an increased frequency of congenital abnormalities (especially in the nervous system), including neural tube defects. Thus, we focused on the potential negative effects of PS-NPs on neurulation, the earliest stage of nervous system development. Using caveolin-1 immunofluorescent staining of SH-SY5Y cells exposed to PS-NPs-GFP, we demonstrated that PS-NPs were internalized by SH-SY5Y cells via caveolae-mediated endocytosis. Transmission electron microscopy; LC3B immunofluorescent staining; and Atg7, Atg5, p62 and LC3B western blot results revealed that autophagy was activated in SH-SY5Y cells exposed to PS-NPs. However, PS-NPs were not degraded by the autophagic-lysosomal system given the lack of LAMP1 changes and minimal PS-NPs-GFP and LAMP1 colocalization. Furthermore, the cytoplasmic accumulation of PS-NPs caused faulty apoptotic cell death in SH-SY5Y cells and the developing neural tube as revealed by c-caspase3 immunofluorescent staining. Thus, defective neural tube morphogenesis, as demonstrated by neural tube defects, occurred during embryogenesis in the context of PS-NP exposure.
Collapse
Affiliation(s)
- Jia-Hui Nie
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yao Shen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,Department of Microbiology and Immunology, Medical College, Jinan University, Guangzhou, Guangdong, China
| | - Mohamed Roshdy
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, Guangdong, China.,International Joint Laboratory for Embryonic Development & Prenatal Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
31
|
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007363. [PMID: 37197212 PMCID: PMC10187772 DOI: 10.1002/adfm.202007363] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 05/19/2023]
Abstract
Nanoparticle transport across tumor blood vessels is a key step in nanoparticle delivery to solid tumors. However, the specific pathways and mechanisms of this nanoparticle delivery process are not fully understood. Here, the biological and physical characteristics of the tumor vasculature and the tumor microenvironment are explored and how these features affect nanoparticle transport across tumor blood vessels is discussed. The biological and physical methods to deliver nanoparticles into tumors are reviewed and paracellular and transcellular nanoparticle transport pathways are explored. Understanding the underlying pathways and mechanisms of nanoparticle tumor delivery will inform the engineering of safer and more effective nanomedicines for clinical translation.
Collapse
Affiliation(s)
- Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, 173 Felgar St, Norman, OK 73019, USA
| |
Collapse
|
32
|
Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. JOURNAL OF BIOPHOTONICS 2021; 14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
33
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
34
|
Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama S, Nonaka M, Fukuda MN, Ohyama C. Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer 2021; 21:72. [PMID: 33446132 PMCID: PMC7809749 DOI: 10.1186/s12885-020-07760-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
Background p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). Methods (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. Results Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10–20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. Conclusions We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07760-x.
Collapse
Affiliation(s)
- Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, 90 Kozawa Yamazaki, Hirosaki, 036-8243, Japan
| | - Taku Yoshiya
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tsuyoshi Uemura
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Takehiro Ishizu
- Peptide Institute Inc., 7-2-9 Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Shingo Hachinohe
- Aomori Prefecture Quantum Science Center (QSC), 2-190 Omotedate, Obuchi, Rokkasho-mura, Kamikita-gun, 039-3212, Japan
| | - Shintaro Ishiyama
- Faculty of Science and Technology, Hirosaki University Graduate School of Science and Technology, 1-Bunkyo-cho, Hirosaki, 036-8562, Japan
| | - Motohiro Nonaka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michiko N Fukuda
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, 5-Zaifu-cho, Hirosaki, 036-8562, Japan.
| |
Collapse
|
35
|
Huang T, Li S, Fang J, Li F, Tu S. Antibody-activated trans-endothelial delivery of mesoporous organosilica nanomedicine augments tumor extravasation and anti-cancer immunotherapy. Bioact Mater 2021; 6:2158-2172. [PMID: 33511314 PMCID: PMC7815474 DOI: 10.1016/j.bioactmat.2020.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022] Open
Abstract
Tumor vasculature constitutes a formidable hurdle for the efficient delivery of cancer nanomedicine into tumors. The leverage of passive pathway through inter-endothelial gaps in tumor blood vessels might account for limited extravasation of nanomedicine into tumor microenvironment (TME). Herein, Annexin A1 antibody-installed mesoporous organosilica nanoplatforms carrying immunotherapeutics of anti-PD-L1 antibody (aPD-L1) and Indoximod are developed to target at caveolar Annexin-A1 protein of luminal endothelial cells and to trigger the active trans-endothelial transcytosis of nanomedicine mediated by caveolae. Such strategy enables rapid nanomedicine extravasation across tumor endothelium and relatively extensive accumulation in tumor interstitium. aPD-L1 and Indoximod release from aPD/IND@MON-aANN in a reduction-responsive manner and synergistically facilitate the intratumoral infiltration of cytotoxic T lymphocytes and reverse the immunosuppressive TME, thus demonstrating substantial anti-tumor efficacy in subcutaneous 4T1 breast tumors and remarkable anti-metastatic capacity to extend the survival of 4T1 tumor metastasis model. Moreover, aPD/IND@MON-aANN nanomedicine also exhibits distinct superiority over the combination therapy of free drugs to potently attenuate the progression of urethane-induced orthotopic lung cancers. Collectively, aPD/IND@MON-aANN nanoplatforms with boosted delivery efficiency via antibody-activated trans-endothelial pathway and enhanced immunotherapeutic efficacy provides perspectives for the development of cancer nanomedicines. The nanomedicine overcomes tumor vascular barrier by active transcytosis via caveolae initiated by the conjugated aANXA1. The nanoplatform responsively releases aPD-L1 and Indoximod to synergistically improve the efficacy of immunotherapy. The nanomedicine shows anti-tumor capacity in mice breast cancers and lung cancers.
Collapse
Affiliation(s)
- Tinglei Huang
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuang Li
- Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianchen Fang
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fuli Li
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuiping Tu
- Department of Oncology, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Corresponding author.
| |
Collapse
|
36
|
Potje SR, Paula TDC, Paulo M, Bendhack LM. The Role of Glycocalyx and Caveolae in Vascular Homeostasis and Diseases. Front Physiol 2021; 11:620840. [PMID: 33519523 PMCID: PMC7838704 DOI: 10.3389/fphys.2020.620840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
This review highlights recent findings about the role that endothelial glycocalyx and caveolae play in vascular homeostasis. We describe the structure, synthesis, and function of glycocalyx and caveolae in vascular cells under physiological and pathophysiological conditions. Special focus will be given in glycocalyx and caveolae that are associated with impaired production of nitric oxide (NO) and generation of reactive oxygen species (ROS). Such alterations could contribute to the development of cardiovascular diseases, such as atherosclerosis, and hypertension.
Collapse
Affiliation(s)
- Simone Regina Potje
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago Dal-Cin Paula
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Liu M, Wen J, Sharma M. Solid Lipid Nanoparticles for Topical Drug Delivery: Mechanisms, Dosage Form Perspectives, and Translational Status. Curr Pharm Des 2021; 26:3203-3217. [PMID: 32452322 DOI: 10.2174/1381612826666200526145706] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/09/2020] [Indexed: 11/22/2022]
Abstract
Solid lipid nanoparticles (SLNs) have shown potential as a novel lipid-based drug delivery system for the topical applications of innumerable therapeutic compounds. However, the mechanisms governing the absorption and cellular uptake of SLNs through topical route, along with the mechanism of drug release from SLNs are still ambiguous, and require further investigation. In addition, the selection of an appropriate dosage form/formulation base is essential for ease of application of SLNs and to enhance dermal and transdermal delivery. Upscaling and regulatory approvals are other challenges that may impede the clinical translation of SLNs. Therefore, this review focusses on different mechanisms involved in skin penetration and cellular uptake of SLNs. This is followed by a comprehensive discussion on the physicochemical properties of SLNs including various formulation and dosage form factors, which might influence the absorption of SLNs through the skin. Finally, translational status with respect to scale-up and regulatory aspects are also discussed. This review will be useful to researchers with an interest in topical applications of SLNs for the efficient delivery of drugs and cosmetics.
Collapse
Affiliation(s)
- Mengyang Liu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Jia F, Li L, Fang Y, Song M, Man J, Jin Q, Lei Y, Ji J. Macromolecular Platform with Super-Cation Enhanced Trans-Cornea Infiltration for Noninvasive Nitric Oxide Delivery in Ocular Therapy. ACS NANO 2020; 14:16929-16938. [PMID: 33289535 DOI: 10.1021/acsnano.0c05977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cornea provides important protection for human eyes from invasion of alien substances. However, its blockage on the infiltration of molecules also constitutes a great challenge for noninvasive trans-cornea delivery of drugs. Here we report polyamino acid-based S-nitrosothiols with high cationic charge density as a NO carrier to overcome cornea associated blockage in ophthalmological therapy. Our results demonstrate that the cationic nature of the polymer promoted transcytosis, which greatly enhances the trans-cornea delivery of the NO donor and bypasses cornea barriers on passive drug diffusion. The combination of super cation and glutathione responsiveness synergistically enhanced intraocular delivery of topically administered poly(2-acetamido-N-triethylenetetramine-3-nitrosothiol-3-methylbutanamide)aspartamide, effectively alleviating high intraocular pressure in mice with glaucoma. Such a noninvasive "barrier hopping" approach not only serves as an inspiration in improving the efficiency of trans-cornea drug delivery but also has great potential in overcoming drug transporting barriers in other biomedical applications.
Collapse
Affiliation(s)
- Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Liping Li
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Yu Fang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Maomao Song
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jiaping Man
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| | - Yuan Lei
- Shanghai Key Laboratory of Visual Impairment and Restoration, Key Laboratory of Myopia of Ministry of Health, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang Province, P.R. China
| |
Collapse
|
39
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Del Pozo MA, Lolo FN, Echarri A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr Opin Cell Biol 2020; 68:113-123. [PMID: 33188985 DOI: 10.1016/j.ceb.2020.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
41
|
Nonaka M, Suzuki-Anekoji M, Nakayama J, Mabashi-Asazuma H, Jarvis DL, Yeh JC, Yamasaki K, Akama TO, Huang CT, Campos AR, Nagaoka M, Sasai T, Kimura-Takagi I, Suwa Y, Yaegashi T, Shibata TK, Sugihara K, Nishizawa-Harada C, Fukuda M, Fukuda MN. Overcoming the blood-brain barrier by Annexin A1-binding peptide to target brain tumours. Br J Cancer 2020; 123:1633-1643. [PMID: 32921792 PMCID: PMC7686308 DOI: 10.1038/s41416-020-01066-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
Background Annexin A1 is expressed specifically on the tumour vasculature surface. Intravenously injected IF7 targets tumour vasculature via annexin A1. We tested the hypothesis that IF7 overcomes the blood–brain barrier and that the intravenously injected IF7C(RR)-SN38 eradicates brain tumours in the mouse. Methods (1) A dual-tumour model was generated by inoculating luciferase-expressing melanoma B16 cell line, B16-Luc, into the brain and under the skin of syngeneic C57BL/6 mice. IF7C(RR)-SN38 was injected intravenously daily at 7.0 μmoles/kg and growth of tumours was assessed by chemiluminescence using an IVIS imager. A similar dual-tumour model was generated with the C6-Luc line in immunocompromised SCID mice. (2) IF7C(RR)-SN38 formulated with 10% Solutol HS15 was injected intravenously daily at 2.5 μmoles/kg into two brain tumour mouse models: B16-Luc cells in C57BL/6 mice, and C6-Luc cells in nude mice. Results (1) Daily IF7C(RR)-SN38 injection suppressed tumour growth regardless of cell lines or mouse strains. (2) Daily injection of Solutol-formulated IF7C(RR)-SN38 led into complete disappearance of B16-Luc brain tumour in C57BL/6 mice, whereas this did not occur in C6-Luc in nude mice. Conclusions IF7C(RR)-SN38 crosses the blood–brain barrier and suppresses growth of brain tumours in mouse models. Solutol HS15-formulated IF7C(RR)-SN38 may have promoted an antitumour immune response.
Collapse
Affiliation(s)
- Motohiro Nonaka
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Laboratory for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan.,Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Misa Suzuki-Anekoji
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | | | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jiunn-Chern Yeh
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Chun-Teng Huang
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Alexandre Rosa Campos
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Masato Nagaoka
- Yakult Central Institute, Kunitachi, Tokyo, 186-8650, Japan
| | - Toshio Sasai
- Yakult Central Institute, Kunitachi, Tokyo, 186-8650, Japan
| | | | - Yoichi Suwa
- Yakult Central Institute, Kunitachi, Tokyo, 186-8650, Japan
| | | | - Toshiaki K Shibata
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.,Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Kazuhiro Sugihara
- Department of Gynecology and Obstetrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Chizuko Nishizawa-Harada
- Laboratory for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Minoru Fukuda
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Michiko N Fukuda
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,Laboratory for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
42
|
Manthe RL, Loeck M, Bhowmick T, Solomon M, Muro S. Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme. J Control Release 2020; 324:181-193. [PMID: 32389778 PMCID: PMC7720842 DOI: 10.1016/j.jconrel.2020.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
The interaction of drug delivery systems with tissues is key for their application. An example is drug carriers targeted to endothelial barriers, which can be transported to intra-endothelial compartments (lysosomes) or transcellularly released at the tissue side (transcytosis). Although carrier targeting valency influences this process, the mechanism is unknown. We studied this using polymer nanocarriers (NCs) targeted to intercellular adhesion molecule-1 (ICAM-1), an endothelial-surface glycoprotein whose expression is increased in pathologies characterized by inflammation. A bell-shaped relationship was found between NC targeting valency and the rate of transcytosis, where high and low NC valencies rendered less efficient transcytosis rates than an intermediate valency formulation. In contrast, an inverted bell-shape relationship was found for NC valency and lysosomal trafficking rates. Data suggested a model where NC valency plays an opposing role in the two sub-processes involved in transcytosis: NC binding-uptake depended directly on valency and exocytosis-detachment was inversely related to this parameter. This is because the greater the avidity of the NC-receptor interaction the more efficient uptake becomes, but NC-receptor detachment post-transport is more compromised. Cleavage of the receptor at the basolateral side of endothelial cells facilitated NC transcytosis, likely by helping NC detachment post-transport. Since transcytosis encompasses both sets of events, the full process finds an optimum at the intersection of these inverted relationships, explaining the bell-shaped behavior. NCs also trafficked to lysosomes from the apical side and, additionally, from the basolateral side in the case of high valency NCs which are slower at detaching from the receptor. This explains the opposite behavior of NC valency for transcytosis vs. lysosomal transport. Anti-ICAM NCs were verified to traffic into the brain after intravenous injection in mice, and both cellular and in vivo data showed that intermediate valency NCs resulted in higher delivery of a therapeutic enzyme, acid sphingomyelinase, required for types A and B Niemann-Pick disease.
Collapse
Affiliation(s)
- Rachel L Manthe
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Tridib Bhowmick
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research (IBBR) and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA; Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Institution of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08910, Spain.
| |
Collapse
|
43
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
44
|
Wang Z, Liu CH, Huang S, Fu Z, Tomita Y, Britton WR, Cho SS, Chen CT, Sun Y, Ma JX, He X, Chen J. Wnt signaling activates MFSD2A to suppress vascular endothelial transcytosis and maintain blood-retinal barrier. SCIENCE ADVANCES 2020; 6:eaba7457. [PMID: 32923627 PMCID: PMC7455181 DOI: 10.1126/sciadv.aba7457] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/15/2020] [Indexed: 05/15/2023]
Abstract
Breakdown of the blood-retinal barrier (BRB) causes retinal edema and vision loss. We investigated the role of Wnt signaling in maintaining the BRB by limiting transcytosis. Mice lacking either the Wnt co-receptor low-density lipoprotein receptor-related protein 5 (Lrp5-/- ) or the Wnt ligand Norrin (Ndpy/- ) exhibit increased retinal vascular leakage and enhanced endothelial transcytosis. Wnt signaling directly controls the transcription of an endothelium-specific transcytosis inhibitor, major facilitator superfamily domain-containing protein 2a (MFSD2A), in a β-catenin-dependent manner. MFSD2A overexpression reverses Wnt deficiency-induced transcytosis in endothelial cells and in retinas. Moreover, Wnt signaling mediates MFSD2A-dependent vascular endothelium transcytosis through a caveolin-1 (CAV-1)-positive caveolae pathway. In addition, levels of omega-3 fatty acids are also decreased in Wnt signaling-deficient retinas, reflecting the basic function of MFSD2A as a lipid transporter. Our findings uncovered the Wnt/β-catenin/MFSD2A/CAV-1 axis as a key pathway governing endothelium transcytosis and inner BRB integrity.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - William R. Britton
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Steve S. Cho
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chuck T. Chen
- Section on Nutritional Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 3N-01, North Bethesda, MD 20852, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jian-xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xi He
- The F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
45
|
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020; 157:96-117. [PMID: 32579890 PMCID: PMC7306214 DOI: 10.1016/j.addr.2020.06.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| | - Jacob W Myerson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Raisa Y Kiseleva
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
46
|
Lysyy T, Bracaglia LG, Qin L, Albert C, Pober JS, Tellides G, Saltzman WM, Tietjen GT. Ex vivo isolated human vessel perfusion system for the design and assessment of nanomedicines targeted to the endothelium. Bioeng Transl Med 2020; 5:e10154. [PMID: 32440561 PMCID: PMC7237142 DOI: 10.1002/btm2.10154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells play a central role in the process of inflammation. Their biologic relevance, as well as their accessibility to IV injected therapeutics, make them a strong candidate for treatment with molecularly-targeted nanomedicines. Typically, the properties of targeted nanomedicines are first optimized in vitro in cell culture and then in vivo in rodent models. While cultured cells are readily available for study, results obtained from isolated cells can lack relevance to more complex in vivo environments. On the other hand, the quantitative assays needed to determine the impact of nanoparticle design on targeting efficacy are difficult to perform in animal models. Moreover, results from animal models often translate poorly to human systems. To address the need for an improved testing platform, we developed an isolated vessel perfusion system to enable dynamic and quantitative study of vascular-targeted nanomedicines in readily obtainable human vessels isolated from umbilical cords or placenta. We show that this platform technology enables the evaluation of parameters that are critical to targeting efficacy (including flow rate, selection of targeting molecule, and temperature). Furthermore, biologic replicates can be easily produced by evaluating multiple vessel segments from the same human donor in independent, modular chambers. The chambers can also be adapted to house vessels of a variety of sizes, allowing for the subsequent study of vessel segments in vivo following transplantation into immunodeficient mice. We believe this perfusion system can help to address long-standing issues in endothelial targeted nanomedicines and thereby enable more effective clinical translation.
Collapse
Affiliation(s)
- Taras Lysyy
- Department of SurgeryYale School of MedicineNew HavenConnecticut
| | | | - Lingfeng Qin
- Department of SurgeryYale School of MedicineNew HavenConnecticut
| | - Claire Albert
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticut
| | - Jordan S. Pober
- Department of ImmunobiologyYale School of MedicineNew HavenConnecticut
| | - George Tellides
- Department of SurgeryYale School of MedicineNew HavenConnecticut
| | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticut
- Department of Chemical EngineeringYale UniversityNew HavenConnecticut
| | - Gregory T. Tietjen
- Department of SurgeryYale School of MedicineNew HavenConnecticut
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticut
| |
Collapse
|
47
|
Wang Z, Zheng Y, Wang F, Zhong J, Zhao T, Xie Q, Zhu T, Ma F, Tang Q, Zhou B, Zhu J. Mfsd2a and Spns2 are essential for sphingosine-1-phosphate transport in the formation and maintenance of the blood-brain barrier. SCIENCE ADVANCES 2020; 6:eaay8627. [PMID: 32523984 PMCID: PMC7259944 DOI: 10.1126/sciadv.aay8627] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/18/2020] [Indexed: 05/21/2023]
Abstract
To maintain brain homeostasis, a unique interface known as the blood-brain barrier (BBB) is formed between the blood circulation and the central nervous system (CNS). Major facilitator superfamily domain-containing 2a (Mfsd2a) is a specific marker of the BBB. However, the mechanism by which Mfsd2a influences the BBB is poorly understood. In this study, we demonstrated that Mfsd2a is essential for sphingosine-1-phosphate (S1P) export from endothelial cells in the brain. We found that Mfsd2a and Spinster homolog 2 (Spns2) form a protein complex to ensure the efficient transport of S1P. Furthermore, the S1P-rich microenvironment in the extracellular matrix (ECM) in the vascular endothelium dominates the formation and maintenance of the BBB. We demonstrated that different concentrations of S1P have different effects on BBB integrity. These findings help to unravel the mechanism by which S1P regulates BBB and also provide previously unidentified insights into the delivery of neurological drugs in the CNS.
Collapse
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Yongtao Zheng
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fan Wang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tong Zhao
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qiang Xie
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Fukai Ma
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), University of CAS, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Institute of Brain Science, State Key laboratory of Medical Neurobiology, Shanghai Key Laboratory of Brain Function and Regeneration, Shanghai Medical College, Fudan University, No.12 Urumqi Mid Road, Shanghai 200040, China
| |
Collapse
|
48
|
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-Triggered Transcytosis of Dendrimer-Drug Conjugate for Deep Penetration into Pancreatic Tumors. ACS NANO 2020; 14:4890-4904. [PMID: 32286784 DOI: 10.1021/acsnano.0c00974] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dense fibrotic stroma in pancreatic ductal adenocarcinoma (PDA) resists drug diffusion into the tumor and leads to an unsatisfactory prognosis. To address this problem, we demonstrate a dendrimer-camptothecin (CPT) conjugate that actively penetrates deep into PDA tumors through γ-glutamyl transpeptidase (GGT)-triggered cell endocytosis and transcytosis. The dendrimer-drug conjugate was synthesized by covalent attachment of CPT to polyamidoamine (PAMAM) dendrimers through a reactive oxygen species (ROS)-sensitive linker followed with surface modification with glutathione. Once the conjugate was delivered to the PDA tumor periphery, the overexpressed GGT on the vascular endothelial cell or tumor cell triggers the γ-glutamyl transfer reactions of glutathione to produce primary amines. The positively charged conjugate was rapidly internalized via caveolae-mediated endocytosis and followed by vesicle-mediated transcytosis, augmenting its deep penetration within the tumor parenchyma and releasing active CPT throughout the tumor after cleavage by intracellular ROS. The dendrimer-drug conjugate exhibited high antitumor activity in multiple mice tumor models, including patient-derived PDA xenograft and orthotopic PDA cell xenograft, compared to the standard first-line chemotherapeutic drug (gemcitabine) for advanced pancreatic cancer. This study demonstrates the high efficiency of an active tumor-penetrating dendrimer-drug conjugate via transcytotic transport with ROS-responsive drug release for PDA therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Sheng Yan
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
49
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
50
|
Järvinen TA, Pemmari T. Systemically Administered, Target-Specific, Multi-Functional Therapeutic Recombinant Proteins in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E226. [PMID: 32013041 PMCID: PMC7075297 DOI: 10.3390/nano10020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system ("vascular zip codes") within the vasculature. These target-specific "vascular zip codes" can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique "vascular zip codes" after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be "packaged" together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine.
Collapse
Affiliation(s)
- Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, FI-33014 Tampere, Finland & Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|