1
|
Ren D, Liu S, Qin H, Huang M, Bai X, Han X, Zhang S, Mao J. Metagenomics-based insights into the microbial community dynamics and flavor development potentiality of artificial and natural pit mud. Food Microbiol 2025; 125:104646. [PMID: 39448156 DOI: 10.1016/j.fm.2024.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/25/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Strong-flavor Baijiu (SFB) production has relied on pit mud (PM) as a starter culture. The maturation time of natural PM (NPM) is about 30 years, so artificial PM (APM) with a shorter maturation time has attracted widespread attention. This study reveals the microbial and functional dissimilarities of APM and NPM, and helps to elucidate the different metabolic roles of microbes during substrate degradation and flavor formation. Significant differences in the microbial community were observed between APM and NPM, manifesting as variations in the abundance of core microorganisms. Total of 187 high-quality metagenome-assembled genomes (MAGs) were obtained based on the metagenomic binning technology, mainly including Firmicutes (n = 106), Bacteroidota (n = 15) and Chloroflexota (n = 14). Furthermore, the relative concentration of flavor compounds in 4-year APM was similar to those in 30-year NPM, but different from those in 100-year NPMs. Methanosarcina, Methanobacterium, Methanoculleus, Anaerolineae bacterium and Aminobacterium were the key bacteria responsible for the flavor differences. From a functional perspective, amino acid and carbohydrate metabolism were key functions of PM microbial, and showed differences between APM and NPM. Finally, substrate degradation and flavor generation pathways were found to exist in multiple microorganisms. Combine the relative abundance of microorganisms with the absolute abundance of enzymes, Clostridium, Lactobacillus, Petrimonas, Methanoculleus, Prevotella, Methanobacterium, Methanosarcina, Methanothrix, Proteiniphilum, Bellilinea, Anaerolinea, Anaeromassilibacillus, Syntrophomonas and Brevefilum were identified as the key microorganisms in APM and NPM.
Collapse
Affiliation(s)
- Dongliang Ren
- State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shuangping Liu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 312000, Zhejiang, China.
| | - Hui Qin
- National Engineering Research Center of Solid-state Brewing. Luzhou Laojiao Group Co. Ltd, Luzhou, 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-state Brewing. Luzhou Laojiao Group Co. Ltd, Luzhou, 646000, China
| | - Xiaolin Bai
- State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao Han
- State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 312000, Zhejiang, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-state Brewing. Luzhou Laojiao Group Co. Ltd, Luzhou, 646000, China.
| | - Jian Mao
- State Key Laboratory of Food Science and Resources, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 312000, China; National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
2
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
3
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024; 187:6327-6345.e20. [PMID: 39321800 PMCID: PMC11531382 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Xie J, Zhang X, Cheng L, Deng Y, Ren H, Mu M, Zhao L, Mu C, Chen J, Liu K, Ma R. Integrated multi-omics analysis of the microbial profile characteristics associated with pulmonary arterial hypertension in congenital heart disease. Microbiol Spectr 2024:e0180824. [PMID: 39470277 DOI: 10.1128/spectrum.01808-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Dysregulation of immune and inflammatory cells around blood vessels and metabolic dysfunction are key mechanisms in the development of pulmonary arterial hypertension (PAH). The homeostasis of the human microbiome plays a crucial role in regulating immune responses and the progression of diseases. For pulmonary arterial hypertension associated with congenital heart disease involving body-lung shunt (PAH-CHD), the potential impact of the microbiome on the "gut-lung axis" remains underexplored. This study recruited 15 healthy individuals and 15 patients with pulmonary arterial hypertension due to congenital heart disease from Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, and Kunming Children's Hospital. We performed differential analyses of metabolites and microbiota from both the gut and lower respiratory tract for these two groups. The goal was to investigate the "gut-lung axis" microbiome and metabolome profiles in children with PAH-CHD and to analyze the interrelationships between these profiles. Ultimately, we aim to propose the potential value of these profiles in aiding diagnosis. The results indicated that the gut and pulmonary microbiota of children with PAH-CHD are characterized by an increased abundance of beneficial symbionts, which are closely linked to changes in the metabolome. Metabolite functional enrichment analysis revealed energy metabolism reprogramming in the PAH-CHD group, with active metabolic pathways associated with bile acid secretion and carnitine homeostasis. Moreover, the differential expression of metabolites was correlated with right heart function and growth development.IMPORTANCEPrevious studies have primarily focused on the relationship between the gut microbiome and PAH. However, the impact of microbial homeostasis on the progression of PAH-CHD from the perspective of the gut-lung axis has not been adequately elucidated. Our study utilizes an integrated multi-omics approach to report on the differential characteristics of gut and lung microbiota between children with PAH-CHD and reference subjects. We found that microbiota influence the pathological changes and disease manifestations of PAH-CHD through their metabolic activity. Additionally, alterations in metabolites impact the microbial ecological structure. Our findings suggest that modulating the microbiome composition may have positive implications for maintaining and regulating the immune environment and pathological progression of PAH-CHD.
Collapse
Affiliation(s)
- Jiahui Xie
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiaoyu Zhang
- Department of Cardiothoracic Surgery, The first hospital of Kunming, Kunming, Yunnan Province, China
| | - Liming Cheng
- Department of Anesthesiology and Surgical Intensive Care Unit, Kunming Children's Hospital, Kunming, Yunnan Province, China
| | - Yao Deng
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Haobo Ren
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Minghua Mu
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Liang Zhao
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Chunjie Mu
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiaxiang Chen
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Kai Liu
- Comprehensive Pediatrics, Kunming Children's Hospital, Kunming, Yunnan Province, China
| | - Runwei Ma
- Department of Cardiovascular Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
5
|
Li F, Jia M, Chen H, Chen M, Su R, Usman S, Ding Z, Hao L, Franco M, Guo X. Responses of microbial community composition and CAZymes encoding gene enrichment in ensiled Elymus nutans to altitudinal gradients in alpine region. Appl Environ Microbiol 2024; 90:e0098624. [PMID: 39324818 DOI: 10.1128/aem.00986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
High-throughput metagenomic sequence technology was employed to evaluate changes in microbial community composition and carbohydrate-active enzymes encoding gene enrichment status in Elymus nutans silages to altitudinal gradients in the world's highest alpine region of Qinghai-Tibetan Plateau (QTP). E. nutans were collected from three different altitudes in QTP: 2,600 m (low altitude), 3600 m (moderate altitude), and 4,600 m [high (H) altitude], and ensiled for 7, 14, 30, and 60 d. Results indicated an improvement in silage quality with the increasing altitude, although the acetic acid concentration and dry matter loss were greater in H altitude silages after 30 d of ensiling. Harmful bacteria or potential pathogens predominated in the microbial community on d 7 and 14 of fermentation, while genera belonging to lactic acid bacteria gradually became the main microorganisms with the increasing altitude on d 30 and 60 of ensiling. The abundance of carbohydrate-active enzymes genes responsible for macromolecular carbohydrate degradation in silage increased with increasing altitude, and those genes were mainly carried by Lactiplantibacillus and Pediococcus at 30 and 60 d of ensiling. The abundance of key enzymatic genes associated with glycolysis and organic acid production in carbohydrate metabolism pathway was higher in H altitude silages, and Lactiplantibacillus and Pediococcus were also the main hosts after 30 d of silage fermentation, except for the fact that acetic acid production was also related to genera Leuconostoc, Latilactobacillus, and Levilactobacillus. IMPORTANCE The fermentation quality of Elymus nutans silage was getting better with the increase of altitude in the Qinghai-Tibetan Plateau. The abundance of hosts carrying carbohydrate-active enzymes genes and key enzyme genes related to organic acid production increased with increasing altitude during the later stages of fermentation. Lactiplantibacillus and Pediococcus were the core microorganisms responsible for both polysaccharide hydrolysis and silage fermentation in the late stage of ensiling. This study provided insights on the influence of different altitudes on the composition and function of silage microbiome in the Qinghai-Tibetan Plateau, and provided a reference approach for improving the quality and controllability of silage production in high altitude areas of the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Fuhou Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengya Jia
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hu Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rina Su
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Samaila Usman
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Marcia Franco
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Bao W, Zhang Y, Huang XJ, Gu N. The role of gut microbiome in mediating the effect of inflammatory bowel disease on hypertension: a two-step, two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1396973. [PMID: 39479396 PMCID: PMC11521848 DOI: 10.3389/fcvm.2024.1396973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Objective Investigating the causal connection that exists between inflammatory bowel disease (IBD) and hypertension (HT). To gain a deeper insight into the correlation among IBD, gut microbiota, and HT, we conducted a two-step, two-sample Mendelian randomization study. Methods An investigation of genome-wide association study (GWAS) summary-level data was utilized to conduct a two-sample Mendelian randomization (MR) analysis of genetically predicted inflammatory bowel disease: (12,882cases, 21,770controls) on Systolic/Diastolic blood pressure (N = 2,564). Subsequently, two-step MR analyses revealed that the relationship between IBD and SBP was partly mediated by Faecalicatena glycyrrhizinilyticum. The robustness of the findings was confirmed through several sensitivity assessments. Results This MR study showed that increase in genetically predicted IBD was associated with higher risk of genetically predicted SBP (OR: 1.08, 95% CI: 1.01-1.16, P < 0.05) and DBP (OR: 1.09, 95% CI: 1.02-1.17, P < 0.05), respectively. Inverse variance weighted (IVW) MR analysis also showed that increase in genetically predicted IBD was associated with higher abundance Faecalicatena glycyrrhizinilyticum (OR: 1.03, 95% CI: 1.01-1.04, P < 0.05), which subsequently associated with increased SBP risk (OR: 1.42, 95% CI: 1.06-1.9, P < 0.05). Faecalicatena glycyrrhizinilyticum abundance in stool was responsible for mediating 11% of the genetically predicted IBD on SBP. Conclusion The research proposed a causal link between Inflammatory Bowel Disease (IBD) and Hypertension (HT), with a little percentage of the impact being influenced by Faecalicatena glycyrrhizinilyticum in stool. Mitigating gut microbiome may decrease the heightened risk of hypertension in people with inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | - Ning Gu
- Department of Cardiovascular Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Wang X, Li J, Wang D, Sun C, Zhang X, Zhao J, Teng J, Wang Q. Unveiling microplastic's role in nitrogen cycling: Metagenomic insights from estuarine sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124591. [PMID: 39043311 DOI: 10.1016/j.envpol.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/30/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Marine microplastics (MPs) pollution, with rivers as a major source, leads to MPs accumulation in estuarine sediments, which are also nitrogen cycling hotspots. However, the impact of MPs on nitrogen cycling in estuarine sediments has rarely been documented. In this study, we conducted microcosm experiment to investigate the effects of commonly encountered polyethylene (PE) and polystyrene (PS) MPs, with two MPs concentrations (0.3% and 3% wet sediment weight) based on environmental concentration considerations and dose-response effects, on sediment dissolved oxygen (DO) diffusion capacity and microbial communities using microelectrode system and metagenomic analysis respectively. The results indicated that high concentrations of PE-MPs inhibited DO diffusion during the mid-phase of the experiment, an effect that dissipated in the later stages. Metagenomic analysis revealed that MP treatments reduced the relative abundance of dominant microbial colonies in the sediments. The PCoA results demonstrated that MPs altered the microbial community structure, particularly evident under high concentration PE-MPs treatments. Functional analysis related to the nitrogen cycle suggested that PS-MPs promoted the nitrification, denitrification, and DNRA processes, but inhibited the ANRA process, while PE-MPs had an inhibitory effect on the nitrate reduction process and the ANRA process. Additionally, the high concentration of PE-MPs treatment significantly stimulated the abundance of genus (Bacillus) by 34.1% and genes (lip, pnbA) by 100-187.5% associated with plastic degradation, respectively. Overall, in terms of microbial community structure and the abundance of nitrogen cycling functional genes, PE- and PS- MPs exhibit both similarities and differences in their impact on nitrogen cycling. Our findings highlight the complexity of MP effects on nitrogen cycling in estuarine sediments and high concentrations of PE-MP stimulated plastic-degrading genus and genes.
Collapse
Affiliation(s)
- Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
8
|
Wei Q, Song Z, Chen Y, Yang H, Chen Y, Liu Z, Yu Y, Tu Q, Du J, Li H. Metagenomic Sequencing Elucidated the Microbial Diversity of Rearing Water Environments for Sichuan Taimen ( Hucho bleekeri). Genes (Basel) 2024; 15:1314. [PMID: 39457438 PMCID: PMC11507828 DOI: 10.3390/genes15101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sichuan taimen (Hucho bleekeri) is a fish species endemic to China's upper Yangtze River drainage and has significant value as an aquatic resource. It was listed as a first-class state-protected wild animal by the Chinese government due to its very limited distribution and wild population at present. METHODS To elucidate the diversity of microorganisms in rearing water environments for H. bleekeri, metagenomic sequencing was applied to water samples from the Maerkang and Jiguanshan fish farms, where H. bleekeri were reared. RESULTS The results revealed that Pseudomonadota was the dominant phylum in the microbial communities of the water samples. Among the shared bacterial groups, Cyanobacteriota, Actinomycetota, Planctomycetota, Nitrospirota, and Verrucomicrobiota were significantly enriched in the water environment of Jiguanshan (p < 0.01), while Bacteroidota was more enriched in that of Maerkang (p < 0.01). Additionally, the Shannon diversity and Simpson index of the microbial community in the water environment of Maerkang were lower than in that of Jiguanshan. CONCLUSIONS The present study demonstrated the similarities and differences in the microbial compositions of rearing water environments for H. bleekeri, which are expected to benefit the artificial breeding of H. bleekeri in the future.
Collapse
Affiliation(s)
- Qinyao Wei
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China;
| | - Yeyu Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Huanchao Yang
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yanling Chen
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Zhao Liu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Yi Yu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Quanyu Tu
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Jun Du
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| | - Hua Li
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China; (Q.W.); (Y.C.); (H.Y.); (Y.C.); (Z.L.); (Y.Y.); (Q.T.); (J.D.)
| |
Collapse
|
9
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Yan X, Zhang Y, He R, Chen X, Lin M. A bibliometric analysis of cerebral small vessel disease. Front Aging Neurosci 2024; 16:1400844. [PMID: 39435188 PMCID: PMC11492496 DOI: 10.3389/fnagi.2024.1400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) is a significant contributor to both stroke and dementia. While numerous studies on CSVD have been published, herein, we have conducted a bibliometric examination of the literature on CSVD, revealing its hot spots and emerging patterns. Methods We used the Web of Science Core Collection as our primary database and conducted a literature search from January 2008 to January 2023. CiteSpace, VOSviewer, online bibliometric platform, and R-bibliometrix were employed to conduct bibliometric analysis and network visualization, including the number of publications, countries, institutions, journals, citations, authors, references, and keywords. Results A total of 4891 publications on CSVD were published in 790 journals by 19,066 authors at 3,862 institutions from 84 countries. The United States produced the most written works and had a significant impact in this field of study. The University of Edinburgh had the highest publication count overall. The journal with the most publications and co-citations was Stroke. Wardlaw, Joanna was the most prolific author and commonly cited in the field. The current areas of research interest revolved around "MRI segmentation" and "Enlarged perivascular spaces in the basal ganglia." Conclusion We conducted a bibliometric analysis to examine the advancements, focal points, and cutting-edge areas in the field of CSVD to reveal potential future research opportunities. Research on CSVD is currently rapidly advancing, with a consistent rise in publications on the topic since 2008. At the same time, we identified leading countries, institutions, and leading scholars in the field and analyzed journals and representative literature. Keyword co-occurrence analysis and burst graph emergence detection identified MRI segmentation and Basal ganglia enlarged perivascular spaces as the most recent areas of research interest.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongyin Zhang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruqian He
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiachan Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mian Lin
- Department of Orthopedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Mansour H, Slika H, Nasser SA, Pintus G, Khachab M, Sahebkar A, Eid AH. Flavonoids, gut microbiota and cardiovascular disease: Dynamics and interplay. Pharmacol Res 2024; 209:107452. [PMID: 39383791 DOI: 10.1016/j.phrs.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of global morbidity and mortality. Extensive efforts have been invested to explicate mechanisms implicated in the onset and progression of CVD. Besides the usual suspects as risk factors (obesity, diabetes, and others), the gut microbiome has emerged as a prominent and essential factor in the pathogenesis of CVD. With its endocrine-like effects, the microbiome modulates many physiologic processes. As such, it is not surprising that dysbiosis-by generating metabolites, inciting inflammation, and altering secondary bile acid signaling- could predispose to or aggravate CVD. Nevertheless, various natural and synthetic compounds have been shown to modulate the microbiome. Prime among these molecules are flavonoids, which are natural polyphenols mainly present in fruits and vegetables. Accumulating evidence supports the potential of flavonoids in attenuating the development of CVD. The ascribed mechanisms of these compounds appear to involve mitigation of inflammation, alteration of the microbiome composition, enhancement of barrier integrity, induction of reverse cholesterol transport, and activation of farnesoid X receptor signaling. In this review, we critically appraise the methods by which the gut microbiome, despite being essential to the human body, predisposes to CVD. Moreover, we dissect the mechanisms and pathways underlying the cardioprotective effects of flavonoids.
Collapse
Affiliation(s)
- Hadi Mansour
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Maha Khachab
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
12
|
Xie K, Xiao C, Lin L, Li F, Hu W, Yang Y, Chen D, Miao Z, Sun TY, Yan Y, Zheng JS, Chen YM. Erythrocyte Very Long-Chain Saturated Fatty Acids, Gut Microbiota-Bile Acid Axis, and Incident Coronary Artery Disease in Adults: A Prospective Cohort Study. J Nutr 2024; 154:3019-3030. [PMID: 39128547 DOI: 10.1016/j.tjnut.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Prior research has highlighted inverse associations between concentrations of circulating very long-chain saturated fatty acids (VLCSFAs) and coronary artery disease (CAD). However, the intricate links involving VLCSFAs, gut microbiota, and bile acids remain underexplored. OBJECTIVES This study examined the association of erythrocyte VLCSFAs with CHD incidence, focusing on the mediating role of gut microbiota and fecal bile acids. METHODS This 10-y prospective study included 2383 participants without CHD at baseline. Erythrocyte VLCSFAs [arachidic acid (C20:0), behenic acid (C22:0), and lignoceric acid (C24:0)] were measured using gas chromatography at baseline, and 274 CHD incidents were documented in triennial follow-ups. Gut microbiota in 1744 participants and fecal bile acid metabolites in 945 participants were analyzed using 16S ribosomal ribonucleic acid sequencing and ultra-performance liquid chromatography-tandem mass spectrometry at middle-term. RESULTS The multivariable-adjusted hazard ratios (95% confidence interval) for CHD incidence in highest compared with lowest quartiles were 0.87 (0.61, 1.25) for C20:0, 0.63 (0.42, 0.96) for C22:0, 0.59 (0.41, 0.85) for C24:0, and 0.57 (0.39, 0.83) for total VLCSFAs. Participants with higher total VLCSFA concentrations exhibited increased abundances of Holdemanella, Coriobacteriales Incertae Sedis spp., Ruminococcaceae UCG-005 and UCG-010, and Lachnospiraceae ND3007 group. These 5 genera generated overlapping differential microbial scores (ODMSs) that accounted for 11.52% of the total VLCSFAs-CHD association (Pmediation = 0.018). Bile acids tauro_α_ and tauro_β_muricholic acid were inversely associated with ODMS and positively associated with incident CHD. Opposite associations were found for glycolithocholic acid and glycodeoxycholic acid. Mediation analyses indicated that glycolithocholic acid, glycodeoxycholic acid, and tauro_α_ and tauro_β_muricholic acid explained 56.40%, 35.19%, and 26.17% of the ODMS-CHD association, respectively (Pmediation = 0.002, 0.008, and 0.020). CONCLUSIONS Elevated erythrocyte VLCSFAs are inversely associated with CHD risk in the Chinese population, with gut microbiota and fecal bile acid profiles potentially mediating this association. The identified microbiota and bile acid metabolites may serve as potential intervention targets in future studies. This trial was registered at www. CLINICALTRIALS gov as NCT03179657.
Collapse
Affiliation(s)
- Keliang Xie
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lishan Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Ting-Yu Sun
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; School of Medicine, Westlake University, Hangzhou, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Zhu F, Sun K, Zhang H, Lu J, Guo P, Zhang J, Xu Y, Lyu B. Comparative Analyses of Lycodon rufozonatus and Lycodon rosozonatus Gut Microbiota in Different Regions. Ecol Evol 2024; 14:e70480. [PMID: 39440211 PMCID: PMC11495892 DOI: 10.1002/ece3.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The interactions between hosts and the gut microbiota are intricate and can significantly affect the ecology and evolution of both parties. Various host traits, including taxonomy, diet, social behaviour, and external factors such as prey availability and the local environment, all play an important role in shaping composition and diversity of the gut microbiogta. In this study, we explored the impact of intestinal microorganisms on the host in adapting to their respective ecological niches in two species of snakes. We collected feces from Lycodon rufozonatus and Lycodon rosozonatus from different geographical locations and used 16S rRNA gene sequencing technology to sequence the v3-v4 region. The results revealed that there was no significant difference in the alpha diversity of intestinal microorganisms between L. rufozonatus and L. rosozonatus. The gut microbiota of all individuals comprised four main phyla: Pseudomonadota, Bacteroidota, Bacillota, and Actinomycetota. At the genus level, the genus Salmonella dominated the enterobacterial microbiota in the samples from Hainan, while there was no obvious dominant genus in the enterobacterial microbiota of the samples from the other four localities. Comparative analysis of enzyme families annotated to the gut microbiota between L. rufozonatus and L. rosozonatus from the four sampling regions by CAZy carbohydrate annotation revealed that nine enzyme families differed significantly in terms of glycoside hydrolases (GHs). In addition, we compared the composition of gut microbial communities between L. rufozonatus and L. rosozonatus and investigated the impact of the differences on their functions. Our results will provide insights into the coevolution of host and gut microbes.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Ke Sun
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - He Zhang
- Guizhou Academy of ForestryGuiyangGuizhouChina
| | - Jing Lu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Jiaqi Zhang
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| |
Collapse
|
14
|
Smith TKT, Ghorbani P, LeBlond ND, Nunes JRC, O'Dwyer C, Ambursley N, Fong-McMaster C, Minarrieta L, Burkovsky LA, El-Hakim R, Trzaskalski NA, Locatelli CAA, Stotts C, Pember C, Rayner KJ, Kemp BE, Loh K, Harper ME, Mulvihill EE, St-Pierre J, Fullerton MD. AMPK-mediated regulation of endogenous cholesterol synthesis does not affect atherosclerosis in a murine Pcsk9-AAV model. Atherosclerosis 2024; 397:117608. [PMID: 38880706 DOI: 10.1016/j.atherosclerosis.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND AND AIMS Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.
Collapse
Affiliation(s)
- Tyler K T Smith
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nicholas D LeBlond
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia R C Nunes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Conor O'Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Nia Ambursley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Lucía Minarrieta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Leah A Burkovsky
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rama El-Hakim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Natasha A Trzaskalski
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cassandra A A Locatelli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Cameron Stotts
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ciara Pember
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Kim Loh
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Fitzroy, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Morgan D Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada; Centre for Catalysis Research and Innovation, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024:e0030224. [PMID: 39347570 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
16
|
Zhao Y, Qiu P, Shen T. Gut microbiota and eye diseases: A review. Medicine (Baltimore) 2024; 103:e39866. [PMID: 39331938 PMCID: PMC11441905 DOI: 10.1097/md.0000000000039866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Recent studies reveal that alterations in gut microbiota play a significant role in the progression of various diseases, including those affecting the eyes. The association between gut microbiota and eye health is an emerging focus of research. This review seeks to summarize the connection between the gut microbiome and specific eye conditions, such as ocular surface diseases, funduscopic disorders and immune-mediated eye diseases. Gut microbiota may influence these conditions by regulating the immune system or altering metabolites, thereby contributing to disease development. Strategies like probiotics, antibiotics, dietary modifications, and fecal transplants show promise in addressing these issues. This review examines how the gut microbiome may be linked to the pathogenesis of eye diseases, providing fresh therapeutic perspectives for ophthalmology.
Collapse
Affiliation(s)
- Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Peijin Qiu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Shen
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Eroglu A, Wang G, Crook N, Bohn T. Carotenoids. Adv Nutr 2024; 15:100304. [PMID: 39299471 PMCID: PMC11490753 DOI: 10.1016/j.advnut.2024.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Thomas Edison, Strassen, Luxembourg.
| |
Collapse
|
18
|
Khuu MP, Paeslack N, Dremova O, Benakis C, Kiouptsi K, Reinhardt C. The gut microbiota in thrombosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01070-6. [PMID: 39289543 DOI: 10.1038/s41569-024-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.
Collapse
Affiliation(s)
- My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
19
|
Guo P, Tao F, Ma C, Bi X, Zhu A, Wang W, Yang H. Gut microbiota and myocardial infarction: A bibliometric analysis from 2004 to 2023. Heliyon 2024; 10:e37139. [PMID: 39296144 PMCID: PMC11408004 DOI: 10.1016/j.heliyon.2024.e37139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Background In recent years, numerous studies have suggested that the gut microbiota and its metabolites are closely related to myocardial infarction. Utilizing insights from these research findings may be advantageous in the prevention, treatment, and prognosis of myocardial infarction. We have employed bibliometric methodology to summarize the progress made in this research area over the past 20 years, identify the hotspots, and highlight the developmental tendencies, providing a reference for future research in this field. Methods We searched the content related to this field in the Web of Science Core Collection database, with a time range from 2001 to 2023. We used VOSviewer, CiteSpace, and Scimago Graphica software to visualize the search results. Results We included 889 reports in this study. The country with the most publications was China, while the country with the greatest influence was the United States. An analysis of institutions showed that the Chinese Academy of Medical Sciences had the largest volume of publications, whereas the Cleveland Clinic had the most influential ones. An author analysis showed Stanley L Hazen to have published the most and to also have been the most influential researcher. An analysis of all the journals publishing articles related to the search terms showed that PLoS One journal had the highest number of publications (18 articles), while Atherosclerosis journal had the most influential articles. The results of our reference analysis showed a strong association between Trimethylamine N-oxide and myocardial infarction. We found that increased intestinal permeability may be related to the progression of cardiovascular diseases, a high-fiber diet may help in the prevention of diseases such as myocardial infarction, and populations with a high intake of red meat may have an increased risk of myocardial infarction. Keyword analysis suggested that 'cardiac fibrosis' and 'major bleeding' were promising research directions in the future, and supplementing food intake with short-chain fatty acids was looked upon as a promising approach to treating coronary heart disease. Conclusion The gut microbiota are closely related to myocardial infarction, and investigating this relationship is crucial for the prevention and treatment of myocardial infarction, where interdisciplinary research and international cooperation are indispensable.
Collapse
Affiliation(s)
- Pan Guo
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Fang Tao
- Medical Department, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Chunpeng Ma
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Xile Bi
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Aihong Zhu
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Wenguang Wang
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| | - Hongmei Yang
- Department of Cardiology, Qinhuangdao First Hospital, Qinhuangdao, Hebei Province, 066000, China
| |
Collapse
|
20
|
Etlin S, Rose J, Bielski L, Walter C, Kleinman AS, Mason CE. The human microbiome in space: parallels between Earth-based dysbiosis, implications for long-duration spaceflight, and possible mitigation strategies. Clin Microbiol Rev 2024; 37:e0016322. [PMID: 39136453 PMCID: PMC11391694 DOI: 10.1128/cmr.00163-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
SUMMARYThe human microbiota encompasses the diverse communities of microorganisms that reside in, on, and around various parts of the human body, such as the skin, nasal passages, and gastrointestinal tract. Although research is ongoing, it is well established that the microbiota exert a substantial influence on the body through the production and modification of metabolites and small molecules. Disruptions in the composition of the microbiota-dysbiosis-have also been linked to various negative health outcomes. As humans embark upon longer-duration space missions, it is important to understand how the conditions of space travel impact the microbiota and, consequently, astronaut health. This article will first characterize the main taxa of the human gut microbiota and their associated metabolites, before discussing potential dysbiosis and negative health consequences. It will also detail the microbial changes observed in astronauts during spaceflight, focusing on gut microbiota composition and pathogenic virulence and survival. Analysis will then turn to how astronaut health may be protected from adverse microbial changes via diet, exercise, and antibiotics before concluding with a discussion of the microbiota of spacecraft and microbial culturing methods in space. The implications of this review are critical, particularly with NASA's ongoing implementation of the Moon to Mars Architecture, which will include weeks or months of living in space and new habitats.
Collapse
Affiliation(s)
- Sofia Etlin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Julianna Rose
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Luca Bielski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
| | - Claire Walter
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Department of Biology, Cornell University, Ithaca, New York, USA
- BioAstra Inc., New York, New York, USA
| | - Ashley S Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- BioAstra Inc., New York, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Tri-Institutional Biology and Medicine program, Weill Cornell Medicine, New York, New York, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Yang L, Wu Y, Yang J, Li Y, Zhao X, Liang T, Li L, Jiang T, Zhang T, Zhang J, Zhong H, Xie X, Wu Q. Lactiplantibacillus plantarum P470 Isolated from Fermented Chinese Chives Has the Potential to Improve In Vitro the Intestinal Microbiota and Biological Activity in Feces of Coronary Heart Disease (CHD) Patients. Nutrients 2024; 16:2945. [PMID: 39275259 PMCID: PMC11397641 DOI: 10.3390/nu16172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Traditional fermented foods are known to offer cardiovascular health benefits. However, the potential of fermented Chinese chives (FCC) in reducing coronary heart disease (CHD) remains unclear. This study employed anaerobic fermentation to investigate Lactiplantibacillus plantarum (L. plantarum) P470 from FCC. The results indicated that L. plantarum P470 enhanced hydroxyl radical scavenging and exhibited anti-inflammatory effects on RAW264.7 macrophages in the fecal fermentation supernatant of CHD patients. These effects were attributed to the modulation of gut microbiota and metabolites, including short-chain fatty acids (SCFAs). Specifically, L. plantarum P470 increased the abundance of Bacteroides and Lactobacillus while decreasing Escherichia-Shigella, Enterobacter, Veillonella, Eggerthella, and Helicobacter in CHD patient fecal samples. Furthermore, L. plantarum P470 regulated the biosynthesis of unsaturated fatty acids and linoleic acid metabolism. These findings suggest that L. plantarum P470 from FCC can improve the fecal physiological status in patients with CHD by modulating intestinal microbiota, promoting SCFA production, and regulating lipid metabolism.
Collapse
Affiliation(s)
- Lingshuang Yang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Yang
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Longyan Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tong Jiang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tiantian Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510060, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
22
|
Safdar M, Ullah M, Hamayun S, Wahab A, Khan SU, Abdikakhorovich SA, Haq ZU, Mehreen A, Naeem M, Mustopa AZ, Hasan N. Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease. Curr Probl Cardiol 2024; 49:102686. [PMID: 38830479 DOI: 10.1016/j.cpcardiol.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Cardiovascular diseases (CVDs) represent a significant global health challenge, underscoring the need for innovative approaches to prevention and treatment. Recent years have seen a surge in interest in unraveling the complex relationship between the gut microbiome and cardiovascular health. This article delves into current research on the composition, diversity, and impact of the gut microbiome on CVD development. Recent advancements have elucidated the profound influence of the gut microbiome on disease progression, particularly through key mediators like Trimethylamine-N-oxide (TMAO) and other microbial metabolites. Understanding these mechanisms reveals promising therapeutic targets, including interventions aimed at modulating the gut microbiome's interaction with the immune system and its contribution to endothelial dysfunction. Harnessing this understanding, personalized medicine strategies tailored to individuals' gut microbiome profiles offer innovative avenues for reducing cardiovascular risk. As research in this field continues to evolve, there is vast potential for transformative advancements in cardiovascular medicine, paving the way for precision prevention and treatment strategies to address this global health challenge.
Collapse
Affiliation(s)
- Mishal Safdar
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | | | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research, and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar 90245, Republic of Indonesia.
| |
Collapse
|
23
|
Archana, Gupta AK, Noumani A, Panday DK, Zaidi F, Sahu GK, Joshi G, Yadav M, Borah SJ, Susmitha V, Mohan A, Kumar A, Solanki PR. Gut microbiota derived short-chain fatty acids in physiology and pathology: An update. Cell Biochem Funct 2024; 42:e4108. [PMID: 39228159 DOI: 10.1002/cbf.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.
Collapse
Affiliation(s)
- Archana
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Abhijeet Kumar Gupta
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Ashab Noumani
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Dharmendra Kumar Panday
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Fareen Zaidi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Kumar Sahu
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Gunjan Joshi
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Manisha Yadav
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Shikha Jyoti Borah
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Vanne Susmitha
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| | - Pratima R Solanki
- Nano-Bio Laboratory, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
25
|
Zhu J, Yu Z, He L, Cao X, Wang W, Song X. Phycosphere bacterial composition and function in colony and solitary Phaeocystis globosa strains providing novel insights into the algal blooms. MARINE POLLUTION BULLETIN 2024; 206:116700. [PMID: 39002214 DOI: 10.1016/j.marpolbul.2024.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Phycosphere bacteria can regulate the dynamics of different algal blooms that impact marine ecosystems. Phaeocystis globosa can alternate between solitary free-living cells and colonies and the latter morphotype is dominate during blooms. The mechanisms underlying the formation of these blooms have received much attention. High throughput sequencing results showed that the bacterial community composition differed significantly between colony and solitary strains in bacterial composition and function. It was found that the genera SM1A02 and Haliea were detected only among the colony strains and contribute to ammonium accumulation in colonies, and the genus Sulfitobacter was abundant among the colony strains that were excellent at producing DMS. In addition, the bacterial communities of the two colony strains exhibited stronger abilities for carbon and sulfur metabolism, energy metabolism, vitamin B synthesis, and signal transduction, providing inorganic and organic nutrients and facilitating tight communication with the host algae, thereby promoting growth and bloom development.
Collapse
Affiliation(s)
- Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Wang A, Cui X, Shi C. Metagenomic analysis of rats with diarrhea treated with mixed probiotics: response to consecutive and alternate-hour supplementation. Transl Pediatr 2024; 13:1336-1358. [PMID: 39263297 PMCID: PMC11384429 DOI: 10.21037/tp-24-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Diarrhea is the leading contributory factor of sickness and mortality among children under five and an economic burden for families. This study aimed to investigate the effects of mixed probiotics supplementation at different times (consecutive and alternate-hour) on intestinal microecology in Sprague-Dawley (SD) rats with acute diarrhea. Methods A total of 40 SD rats were randomly assigned to four groups, including the control group, model group, probiotic group A, and probiotic group B. An acute diarrhea model was induced by administration of 5% dextran sulfate sodium. Rats in probiotic group A and probiotic group B were fed with Clostridium butyricum (C. butyricum), Bifidobacterium infantis (B. infantis), and Saccharomyces boulardii (S. boulardii) for a total of 7 days. Probiotic group A was fed with all probiotics simultaneously. Probiotic group B was fed with C. butyricum and B. infantis simultaneously, and then after a 2-hour interval, with S. boulardii. Metagenomic next-generation sequencing was used to analyze the fecal samples from every rat. The metagenomic sequencing used in this experiment was used to evaluate the effect of probiotics on the composition as well as function of the gut microbiota in order to gain a deeper comprehension of probiotic-host interactions on health and disease. Results The structure of the gut microbiota in probiotic group A showed significant changes. Compared to the model group, the abundance of some beneficial bacteria had increased, including Actinobacteria (P=0.048), Lactobacillus (P=0.050), and Lactobacillus johnsonii (P=0.042), and many opportunistic pathogenic bacteria has decreased, such as Ruminococcus (P=0.001). Compared to the control group, the abundance of some beneficial bacteria had increased, including Fusobacteria (P=0.02) and Phascolarium (P=0.002), and there was a reduction in the abundance of many opportunistic pathogenic bacteria such as Roseburia (P=0.03), Lachnoclosterium (P=0.009), and Oscillibacter_sp_1-3 (P=0.002). In addition, metagenomic analysis showed that as well as an up-regulation of glycoside hydrolase expression, amino acid and inorganic ion transport, and metabolism-related pathways, there was a down-regulation of cell motility. Conclusions Simultaneous administration of probiotics may have more positive implications in improving the gut microbiota of acute diarrhea rats.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pediatric, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohui Cui
- Department of Pediatric, Jiaozuo Women's and Children's Hospital, Jiaozuo, China
| | - Changsong Shi
- Department of Pediatric, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Pediatric, People's Hospital of Zheng Zhou University, Zhengzhou, China
| |
Collapse
|
27
|
Su W, Gong C, Zhong H, Yang H, Chen Y, Wu X, Jin J, Xi H, Zhao J. Vaginal and endometrial microbiome dysbiosis associated with adverse embryo transfer outcomes. Reprod Biol Endocrinol 2024; 22:111. [PMID: 39198832 PMCID: PMC11351450 DOI: 10.1186/s12958-024-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Assisted reproductive technology (ART) is the most effective method to treat infertility and the pathogenesis of implantation failure after in vitro fertilization-embryo transfer (IVF-ET) is a challenging filed in infertility. Microbes in the female reproductive tract are considered to be associated with gynecological and obstetric diseases. However, its effects on embryo implantation failure are unsured. PURPOSE This study aimed to investigate reproductive tract dysbiosis, identify different bacteria in reproductive tract as potential biomarkers of embryo implantation failure and demonstrate the pathogenesis through metabolites analysis. METHODS We compared the data from 16S rRNA gene and metagenome in reproductive tracts through QIIME2 and HUMAnN2 by the times of embryo implantation failure on 239 infertile patients and 17 healthy women. RESULTS Our study revealed a strong positive correlation between Lactobacillus abundance and embryo implantation success (IS) after IVF-ET. The microbial community composition and structure in reproductive tract showed substantially difference between the embryo implantation failure (IF) and healthy control. Moreover, we established a diagnostic model through receiver operating characteristic (ROC) with 0.913 area under curve (AUC) in IS and multiple implantation failures (MIF), verified its effectiveness with an AUC = 0.784 demonstrating microbial community alterations could efficiently discriminate MIF patients. Metagenome functional analyses of vaginal samples from another independent infertile patients after IVF-ET revealed the L-lysine synthesis pathway enriched in IF patients, along with ascended vaginal pH and decreased Lactobacillus abundance. CONCLUSIONS This study clarifies several independent relationships of bacteria in vagina and endometrial fluid on embryo implantation failure and undoubtedly broadens the understanding about female reproductive health.
Collapse
Affiliation(s)
- Weijue Su
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chaochao Gong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Haoyue Zhong
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huaqing Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yuyan Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoyuan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Haitao Xi
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Junzhao Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Arapidi GP, Urban AS, Osetrova MS, Shender VO, Butenko IO, Bukato ON, Kuznetsov AA, Saveleva TM, Nos GA, Ivanova OM, Lopukhov LV, Laikov AV, Sharova NI, Nikonova MF, Mitin AN, Martinov AI, Grigorieva TV, Ilina EN, Ivanov VT, Govorun VM. Non-human peptides revealed in blood reflect the composition of intestinal microbiota. BMC Biol 2024; 22:178. [PMID: 39183269 PMCID: PMC11346180 DOI: 10.1186/s12915-024-01975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis. RESULTS Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota. Absolute quantitation by multiple reaction monitoring has confirmed the presence of bacterial peptides in the blood plasma and serum in the range of approximately 0.1 nM to 1 μM. The abundance of microbiota peptides reaches its maximum about 5 h after a meal. Most of the peptides correlate with the bacterial composition of the small intestine and are likely obtained by hydrolysis of membrane proteins with trypsin, chymotrypsin and pepsin - the main proteases of the gastrointestinal tract. The peptides have physicochemical properties that likely allow them to selectively pass the intestinal mucosal barrier and resist fibrinolysis. CONCLUSIONS The proposed approach to the identification of microbiota peptides in the blood, after additional validation, may be useful for determining the microbiota composition of hard-to-reach intestinal areas and monitoring the permeability of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation.
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Maria S Osetrova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Alexandr A Kuznetsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Tatjana M Saveleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Grigorii A Nos
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Leonid V Lopukhov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Alexander V Laikov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Nina I Sharova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Margarita F Nikonova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander N Mitin
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander I Martinov
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Tatiana V Grigorieva
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Elena N Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Vadim M Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| |
Collapse
|
29
|
Bencivenni S, Roggiani S, Zannoni A, Conti G, Fabbrini M, Cotugno M, Stanzione R, Pietrangelo D, Litterio M, Forte M, Busceti CL, Fornai F, Volpe M, Turroni S, Brigidi P, Forni M, Rubattu S, D'Amico F. Early and late gut microbiota signatures of stroke in high salt-fed stroke-prone spontaneously hypertensive rats. Sci Rep 2024; 14:19575. [PMID: 39179705 PMCID: PMC11343747 DOI: 10.1038/s41598-024-69961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The high salt-fed stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable tool to study the mechanisms underlying stroke pathogenesis. Salt intake modifies the gut microbiota (GM) in rats and humans and alterations of the GM have previously been associated with increased stroke occurrence. We aimed to characterize the GM profile in SHRSPs fed a high-salt stroke-permissive diet (Japanese diet, JD), compared to the closely related stroke-resistant control (SHRSR), to identify possible changes associated with stroke occurrence. SHRSPs and SHRSRs were fed a regular diet or JD for 4 weeks (short-term, ST) or a maximum of 10 weeks (long-term, LT). Stroke occurred in SHRSPs on JD-LT, preceded by proteinuria and diarrhoea. The GM of JD-fed SHRSPs underwent early and late compositional changes compared to SHRSRs. An overrepresentation of Streptococcaceae and an underrepresentation of Lachnospiraceae were observed in SHRSPs JD-ST, while in SHRSPs JD-LT short-chain fatty acid producers, e.g. Lachnobacterium and Faecalibacterium, decreased and pathobionts such as Coriobacteriaceae and Desulfovibrio increased. Occludin gene expression behaved differently in SHRSPs and SHRSRs. Calprotectin levels were unchanged. In conclusion, the altered GM in JD-fed SHRSPs may be detrimental to gut homeostasis and contribute to stroke occurrence.
Collapse
Affiliation(s)
- Silvia Bencivenni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Gabriele Conti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Fabbrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Donatella Pietrangelo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
30
|
Mboumba Bouassa RS, Giorgini G, Silvestri C, Muller C, Nallabelli N, Alexandrova Y, Durand M, Tremblay C, El-Far M, Chartrand-Lefebvre C, Messier-Peet M, Margolese S, Flamand N, Costiniuk CT, Di Marzo V, Jenabian MA. Plasma endocannabinoidome and fecal microbiota interplay in people with HIV and subclinical coronary artery disease: Results from the Canadian HIV and Aging Cohort Study. iScience 2024; 27:110456. [PMID: 39156649 PMCID: PMC11326910 DOI: 10.1016/j.isci.2024.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Chronic HIV infection is associated with accelerated coronary artery disease (CAD) due to chronic inflammation. The expanded endocannabinoid system (eCBome) and gut microbiota modulate each other and are key regulators of cardiovascular functions and inflammation. We herein investigated the interplay between plasma eCBome mediators and gut microbiota in people with HIV (PWH) and/or subclinical CAD versus HIV-uninfected individuals. CAD was determined by coronary computed tomography (CT) angiography performed on all participants. Plasma eCBome mediator and fecal microbiota composition were assessed by tandem mass spectrometry and 16S rDNA sequencing, respectively. HIV infection was associated with perturbed plasma eCBome mediators characterized by an inverse relationship between anandamide and N-acyl-ethanolamines (NAEs) versus 2-AG and 2-monoacylglycerols (MAGs). Plasma triglyceride levels were positively associated with MAGs. Several fecal bacterial taxa were altered in HIV-CAD+ versus controls and correlated with plasma eCBome mediators. CAD-associated taxonomic alterations in fecal bacterial taxa were not found in PWH.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Giada Giorgini
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Cristoforo Silvestri
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec City, QC, Canada
| | - Chanté Muller
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Nayudu Nallabelli
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Mohamed El-Far
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | | | - Marc Messier-Peet
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
| | - Nicolas Flamand
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Vincenzo Di Marzo
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
| |
Collapse
|
31
|
Guo L, Zhou J, Xie F, Lang Q, Xu Y, Chen L, Xue Z, Mao Y, Wang R. The profile of oral microbiome in Chinese elderly population associated with aging and systemic health status. BMC Oral Health 2024; 24:895. [PMID: 39103866 PMCID: PMC11299356 DOI: 10.1186/s12903-024-04676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
OBJECTIVE The health of oral cavity is considered as an important indicator of aging. Oral microbiota is highly associated with the oral health, while the variation of oral microbiome in elderly population and characteristic microbes associated with aging remain unclear. SUBJECTS AND METHODS In this study, 130 elderly subjects were recruited and divided into 3 groups according to their age: Stage I group (65 ≤ years < 70), Stage II group (70 ≤ years < 75), and Stage III group (75 ≤ years < 80). Their physiological indices were analyzed with using Illumina MiSeq platform and the oral microbiome was determined by high-throughput sequencing. RESULTS Along with aging, the level of fasting blood glucose, systolic pressure and monocytes are significantly increased. No significant difference was detected on the whole structure of the oral microbiome among groups. While using Metastats and Spearman's correlation analysis, specific bacteria were identified as potential age- or health index-related bacterial genera including Fusobacterium, Parvimonas, Porphyromonas, Aminobacter, Collinsella, Clostridium and Acinetobacter. CONCLUSION Our study revealed that the composition structure of salivary microbiota in elderly population was relatively stable while specific bacteria were correlated with age and health status, which is promising to be served as health indicators of the elderly after further exploration.
Collapse
Affiliation(s)
- Liqiang Guo
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhou
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Xie
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Qing Lang
- Beicai Community Health Service Center of Pudong New District, No. 271 Lianyuan Road, Shanghai, China
| | - Yuesong Xu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luping Chen
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengsheng Xue
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China
| | - Yuejian Mao
- China Mengniu Dairy Company LimitedGlobal R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Hohhot, 011500, China.
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
32
|
Xiong X, Lan Y, Wang Z, Xu J, Gong J, Chai X. Bacteroidales reduces growth rate through serum metabolites and cytokines in Chinese Ningdu yellow chickens. Poult Sci 2024; 103:103905. [PMID: 38870614 PMCID: PMC11225896 DOI: 10.1016/j.psj.2024.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Increasing evidence has indicated that the gut microbiome plays an important role in chicken growth traits. However, the cecal microbial taxa associated with the growth rates of the Chinese Ningdu yellow chickens are unknown. In this study, shotgun metagenomic sequencing was used to identify cecal bacterial species associated with the growth rate of the Chinese Ningdu yellow chickens. We found that nine cecal bacterial species differed significantly between high and low growth rate chickens, including three species (Succinatimonas hippei, Phocaeicola massiliensis, and Parabacteroides sp. ZJ-118) that were significantly enriched in high growth rate chickens. We identified six Bacteroidales that were significantly enriched in low growth rate chickens, including Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium which were key biomarkers in differentiating high and low growth rate chickens and were associated with alterations in the functional taxa of the cecal microbiome. Untargeted serum metabolome analysis revealed that 8 metabolites showing distinct enrichment patterns between high and low growth rate chickens, including triacetate lactone and N-acetyl-a-neuraminic acid, which were at higher concentrations in low growth rate chickens and were positively and significantly correlated with Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium. Furthermore, the results suggest that serum cytokines, such as IL-5, may reduce growth rate and are related to changes in serum metabolites and gut microbes (e.g., Barnesiella sp. An22 and Barnesiella sp. ET7). These results provide important insights into the effects of the cecal microbiome, serum metabolism and cytokines in Ningdu yellow chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China.
| | - Yuehang Lan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Zhangfeng Wang
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jishang Gong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Xuewen Chai
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| |
Collapse
|
33
|
Trehan S, Singh G, Bector G, Jain P, Mehta T, Goswami K, Chawla A, Jain A, Puri P, Garg N. Gut Dysbiosis and Cardiovascular Health: A Comprehensive Review of Mechanisms and Therapeutic Potential. Cureus 2024; 16:e67010. [PMID: 39280497 PMCID: PMC11402436 DOI: 10.7759/cureus.67010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Recent research has identified gut dysbiosis - an imbalance in the gut microbiota - as a significant factor in the development of CVDs. This complex relationship between gut microbiota and cardiovascular health involves various mechanisms, including the production of metabolites such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs). These metabolites influence lipid metabolism, inflammation, and blood pressure regulation. In addition, the gut-brain axis and neurohormonal pathways play crucial roles in cardiovascular function. Epidemiological studies have linked gut dysbiosis to various cardiovascular conditions, highlighting the potential for therapeutic interventions. Dietary changes, probiotics, and prebiotics have shown promise in modulating gut microbiota and reducing cardiovascular risk factors. This underscores the critical role of gut health in preventing and treating CVDs. However, further research is needed to develop targeted therapies that can enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubam Trehan
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Gurjot Singh
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Gaurav Bector
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Prateek Jain
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Tejal Mehta
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Kanishka Goswami
- Internal Medicine, Maharaj Sawan Singh Charitable Hospital, Beas, IND
| | - Avantika Chawla
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Aayush Jain
- Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, IND
| | - Piyush Puri
- Internal Medicine, Icahn School of Medicine at Mount Sinai, Queens Hospital Center, New York, USA
| | - Nadish Garg
- Division of Cardiology, Memorial Hermann Pearland Hospital, Pearland, USA
- Division of Cardiology, Memorial Hermann Southeast Hospital, Houston, USA
| |
Collapse
|
34
|
Amaral Raposo M, Sousa Oliveira E, Dos Santos A, Guadagnini D, El Mourabit H, Housset C, Lemoinne S, Abdalla Saad MJ. Impact of cholecystectomy on the gut-liver axis and metabolic disorders. Clin Res Hepatol Gastroenterol 2024; 48:102370. [PMID: 38729564 DOI: 10.1016/j.clinre.2024.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Cholecystectomy is considered as a safe procedure to treat patients with gallstones. However, epidemiological studies highlighted an association between cholecystectomy and metabolic disorders, such as type 2 diabetes mellitus and metabolic dysfunction-associated steatotic liver disease (MASLD), independently of the gallstone disease. Following cholecystectomy, bile acids flow directly from the liver into the intestine, leading to changes in the entero-hepatic circulation of bile acids and their metabolism. The changes in bile acids metabolism impact the gut microbiota. Therefore, cholecystectomized patients display gut dysbiosis characterized by a reduced diversity, a loss of bacteria producing short-chain fatty acids and an increase in pro-inflammatory bacteria. Alterations of both bile acids metabolism and gut microbiota occurring after cholecystectomy can promote the development of metabolic disorders. In this review, we discuss the impact of cholecystectomy on bile acids and gut microbiota and its consequences on metabolic functions.
Collapse
Affiliation(s)
- Mariana Amaral Raposo
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Emília Sousa Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Andrey Dos Santos
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Sara Lemoinne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA) and Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.
| | - Mário José Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas - São Paulo, Brazil.
| |
Collapse
|
35
|
I Fernández-Avila A, Gutiérrez-Ibanes E, Martín de Miguel I, Sanz-Ruiz R, Gabaldón Á, Fernández-Avilés F, Gómez-Lara J, Fernández-Castillo M, Vázquez-Cuesta S, Martínez-Legazpi P, Lozano-Garcia N, Blázquez-López E, Yotti R, López-Cade I, Reigadas E, Muñoz P, Elízaga J, Correa R, Bermejo J. One-year longitudinal changes of peripheral CD4+ T-lymphocyte counts, gut microbiome, and plaque vulnerability after an acute coronary syndrome. IJC HEART & VASCULATURE 2024; 53:101438. [PMID: 38912228 PMCID: PMC11190720 DOI: 10.1016/j.ijcha.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Background Longitudinal changes in gut microbiome and inflammation may be involved in the evolution of atherosclerosis after an acute coronary syndrome (ACS). We aimed to characterize repeated profiles of gut microbiota and peripheral CD4+ T lymphocytes during the first year after an ACS, and to address their relationship with atherosclerotic plaque changes. Methods Over one year we measured the microbiome, peripheral counts of CD4+ T populations and cytokines in 67 patients shortly after a first ACS. We compared baseline measurements to those of a matched population of 40 chronic patients. A subgroup of 20 ACS patients underwent repeated assessment of fibrous cap thickness (FCT) of a non-culprit lesion. Results At admission, ACS patients showed gut dysbiosis compared with the chronic group, which was rapidly reduced and remained low at 1-year. Also, their Th1 and Th2 CD4+ T counts were increased but decreased over time. The CD4+ T counts were related to ongoing changes in gut microbiome. Unsupervised clustering of repeated CD4+ Th0, Th1, Th2, Th17 and Treg counts in ACS patients identified two different cell trajectory patterns, related to cytokines. The group of patients following a high-CD4+ T cell trajectory showed a one-year reduction in their FCT [net effect = -24.2 µm; p = 0.016]. Conclusions Patients suffering an ACS show altered profiles of microbiome and systemic inflammation that tend to mimic values of chronic patients after 1-year. However, in one-third of patients, this inflammatory state remains particularly dysregulated. This persistent inflammation is likely related to plaque vulnerability as evident by fibrous cap thinning (Clinical Trial NCT03434483).
Collapse
Affiliation(s)
- Ana I Fernández-Avila
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Enrique Gutiérrez-Ibanes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Irene Martín de Miguel
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Álvaro Gabaldón
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Josep Gómez-Lara
- Department of Cardiology, Hospital Universitario de Bellvitge, and CIBERCV, Barcelona, Spain
| | - Marta Fernández-Castillo
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Silvia Vázquez-Cuesta
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Nuria Lozano-Garcia
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Elena Blázquez-López
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Igor López-Cade
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERES, Madrid, Spain
| | - Jaime Elízaga
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| | - Rafael Correa
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Madrid, Spain
| |
Collapse
|
36
|
Corrigan A, McCooey P, Taylor-Pickard J, Stockdale S, Murphy R. Breaking the Cycle: A Yeast Mannan-Rich Fraction Beneficially Modulates Egg Quality and the Antimicrobial Resistome Associated with Layer Hen Caecal Microbiomes under Commercial Conditions. Microorganisms 2024; 12:1562. [PMID: 39203404 PMCID: PMC11356413 DOI: 10.3390/microorganisms12081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Antibiotics and antibiotic growth promoters have been extensively employed in poultry farming to enhance growth performance, maintain bird health, improve nutrient uptake efficiency, and mitigate enteric diseases at both sub-therapeutic and therapeutic doses. However, the extensive use of antimicrobials in poultry farming has led to the emergence of antimicrobial resistance (AMR) in microbial reservoirs, representing a significant global public health concern. In response, non-antibiotic dietary interventions, such as yeast mannan-rich fraction (MRF), have emerged as a promising alternative to modulate the gut microbiota and combat the AMR crisis. This study investigated whether a yeast mannan-rich fraction containing feed supplement impacted the performance of laying hens, their microbiomes, and the associated carriage of antimicrobial resistance genes under commercial conditions. High-throughput DNA sequencing was utilised to profile the bacterial community and assess changes in the antibiotic resistance genomes detected in the metagenome, the "resistome", in response to MRF supplementation. It was found that supplementation favourably influenced laying hen performance and microbial composition. Notably, there was a compositional shift in the MRF supplemented group associated with a lower relative abundance of pathobionts, e.g., Escherichia, Brachyspira and Trueperella, and their AMR-encoded genes, relative to beneficial microbes. Overall, the findings further demonstrate the ability of prebiotics to improve laying hen performance through changes associated with their microbiome and resistome.
Collapse
Affiliation(s)
- Aoife Corrigan
- Alltech Bioscience Centre, A86 X006 Dunboyne, Co. Meath, Ireland; (P.M.); (R.M.)
| | - Paula McCooey
- Alltech Bioscience Centre, A86 X006 Dunboyne, Co. Meath, Ireland; (P.M.); (R.M.)
| | | | - Stephen Stockdale
- Novogene (UK) Company Ltd., 25 Cambridge Science Park, Cambridge CB4 0FW, UK;
- BioFigR, Ballyvoloon, P24 N524 Cobh, Cork, Ireland
| | - Richard Murphy
- Alltech Bioscience Centre, A86 X006 Dunboyne, Co. Meath, Ireland; (P.M.); (R.M.)
| |
Collapse
|
37
|
Li Y, Yao M, Xie F, Qiu Y, Zhao X, Li R. Gut microbiota as a residual risk factor causally influencing cardiac structure and function: Mendelian randomization analysis and biological annotation. Front Microbiol 2024; 15:1410272. [PMID: 39132134 PMCID: PMC11316272 DOI: 10.3389/fmicb.2024.1410272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Background The gut microbiota (GM) is widely acknowledged to have a significant impact on cardiovascular health and may act as a residual risk factor affecting cardiac structure and function. However, the causal relationship between GM and cardiac structure and function remains unclear. Objective This study aims to employ a two-sample Mendelian randomization (MR) approach to investigate the causal association between GM and cardiac structure and function. Methods Data on 119 GM genera were sourced from a genome-wide association study (GWAS) meta-analysis (13,266 European participants) conducted by the MiBioGen consortium, while data on 16 parameters of cardiac structure and function were obtained from the UK Biobank's GWAS of cardiac magnetic resonance imaging (up to 41,135 European participants). Inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods were utilized for causal association assessments, with sensitivity analyses conducted to reinforce the findings. Finally, biological annotation was performed on the GWAS data of GM and cardiac phenotypes with causal associations to explore potential mechanisms. Results The MR analysis, predominantly based on the IVW model, revealed 93 causal associations between the genetically predicted abundance of 44 GM genera and 16 cardiac structure and function parameters. These associations maintained consistent directions in MR-Egger and WM models, with no evidence of pleiotropy detected. Biological annotations suggest that GM may influence cardiac structure and function through pathways involved in myocardial cell development, cardiac contractility, and apoptosis. Conclusion The MR analysis supports a causal association between certain abundances of genetically predicted GM and cardiac structure and function, suggesting that GM could be a residual risk factor impacting cardiac phenotypes.
Collapse
Affiliation(s)
- Yihua Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meidan Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- National Key Laboratory of Chinese Medicine Evidence, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinjun Zhao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
39
|
Ouyang W, Tang B, He Y, Wu H, Yang P, Yin L, Li X, Li Y, Huang X. Mediation effect of gut microbiota on the relationship between physical activity and carotid plaque. Front Microbiol 2024; 15:1432008. [PMID: 39056008 PMCID: PMC11269180 DOI: 10.3389/fmicb.2024.1432008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Background Physical activity has been shown to have an effect on Carotid plaque (CP) which is a predictor of Cardiovascular disease (CVD). Studies have shown that physical activity can alter the composition of gut microbiota, whether its influence on CP was mediated by gut microbiota has yet to be proved. Methods We conducted a case-control study involving 30 CP patients and 31 controls. Logistic regression was used to analyze the association between CP and physical activity. LefSe was used to explore the association between gut microbiota and physical activity as well as CP, and PhyloMed was used to examine the mediating effect of gut microbiota in the association between physical activity and CP. Results After adjusting for potential confounders, adequate physical activity showed a significant association with a decreased risk of CP (ORadj: 0.25, 95%CI: 0.06, 0.97). CP was associated with enrichment in the order Bacteroidales within the phylum Bacteroidetes and the predominant microbiota in individuals without plaque was the order Clostridiales (LDA scores >3). Individuals with adequate physical activity had a higher abundance of the order Clostridiales, while the order Bacteroidetes was enriched in individuals with inadequate physical activity (LDA scores >3). The PhyloMed revealed a significant mediation effect of gut microbiota in the association between physical activity and CP (p = 0.03). Conclusion Adequate physical activity was significantly associated with a decreased risk of CP, and this association was mediated by an increase in the abundance of gut microbiota in the order Clostridiales.
Collapse
Affiliation(s)
- Wenbin Ouyang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Bei Tang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| | - Yongmei He
- Department of Health Management, Aerospace Center Hospital, Beijing, China
| | - Hao Wu
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pingting Yang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Yin
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Ying Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Huang
- Department of Epidemiology, Hunan Normal University School of Medicine, Changsha, China
| |
Collapse
|
40
|
Guo Y, Garber PA, Yang Y, Wang S, Zhou J. The Conservation Implications of the Gut Microbiome for Protecting the Critically Endangered Gray Snub-Nosed Monkey ( Rhinopithecus brelichi). Animals (Basel) 2024; 14:1917. [PMID: 38998029 PMCID: PMC11240530 DOI: 10.3390/ani14131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The gut microbiota plays a crucial role in regulating energy metabolism, facilitating nutrient absorption, and supporting immune function, thereby assisting the host in adapting to seasonal dietary changes. Here, we compare the gut microbiome composition of wild gray snub-nosed monkeys during winter (from October to December) and spring (from January to March) to understand differences in seasonal nutrient intake patterns. Snub-nosed monkeys are foregut fermenters and consume difficult-to-digest carbohydrates and lichen. To examine the digestive adaptations of gray snub-nosed monkeys, we collected 14 fresh fecal samples for DNA analysis during the winter and spring. Based on 16S rRNA sequencing, metagenomic sequencing, and functional metagenomic analyses, we identified that Firmicutes, Actinobacteria, Verrucomicrobia, and Bacteroidetes constitute a keystone bacterial group in the gut microbiota during winter and spring and are responsible for degrading cellulose. Moreover, the transition in dietary composition from winter to spring was accompanied by changes in gut microbiota composition, demonstrating adaptive responses to varying food sources and availability. In winter, the bacterial species of the genera Streptococcus were found in higher abundance. At the functional level, these bacteria are involved in fructose and mannose metabolism and galactose metabolism c-related pathways, which facilitate the breakdown of glycogen, starch, and fiber found in fruits, seeds, and mature leaves. During spring, there was an increased abundance of bacteria species from the Prevotella and Lactobacillus genera, which aid the digestion of protein-rich buds. Combined, these findings reveal how the gut microbiota adjusts to fluctuations in energy balance and nutrient intake across different seasons in this critically endangered species. Moreover, we also identified Pseudomonas in two samples; the presence of potential pathogens within the gut could pose a risk to other troop members. Our findings highlight the necessity of a conservation plan that focuses on protecting vegetation and implementing measures to prevent disease transmission for this critically endangered species.
Collapse
Affiliation(s)
- Yanqing Guo
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Paul A Garber
- Program in Ecology, Evolution and Conservation Biology, Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali 671000, China
| | - Yijun Yang
- College of Life Sciences, Northwest University, Xi'an 710072, China
| | - Siwei Wang
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| | - Jiang Zhou
- School of Karst Science, Guizhou Normal University, Guiyang 550003, China
| |
Collapse
|
41
|
Martins D, Silva C, Ferreira AC, Dourado S, Albuquerque A, Saraiva F, Batista AB, Castro P, Leite-Moreira A, Barros AS, Miranda IM. Unravelling the Gut Microbiome Role in Cardiovascular Disease: A Systematic Review and a Meta-Analysis. Biomolecules 2024; 14:731. [PMID: 38927134 PMCID: PMC11201797 DOI: 10.3390/biom14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
A notable shift in understanding the human microbiome's influence on cardiovascular disease (CVD) is underway, although the causal association remains elusive. A systematic review and meta-analysis were conducted to synthesise current knowledge on microbial taxonomy and metabolite variations between healthy controls (HCs) and those with CVD. An extensive search encompassing three databases identified 67 relevant studies (2012-2023) covering CVD pathologies from 4707 reports. Metagenomic and metabolomic data, both qualitative and quantitative, were obtained. Analysis revealed substantial variability in microbial alpha and beta diversities. Moreover, specific changes in bacterial populations were shown, including increased Streptococcus and Proteobacteria and decreased Faecalibacterium in patients with CVD compared with HC. Additionally, elevated trimethylamine N-oxide levels were reported in CVD cases. Biochemical parameter analysis indicated increased fasting glucose and triglycerides and decreased total cholesterol and low- and high-density lipoprotein cholesterol levels in diseased individuals. This study revealed a significant relationship between certain bacterial species and CVD. Additionally, it has become clear that there are substantial inconsistencies in the methodologies employed and the reporting standards adhered to in various studies. Undoubtedly, standardising research methodologies and developing extensive guidelines for microbiome studies are crucial for advancing the field.
Collapse
Affiliation(s)
- Diana Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sara Dourado
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Albuquerque
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Saraiva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Beatriz Batista
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Pedro Castro
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Neurology, São João Hospital Center, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - António S. Barros
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M. Miranda
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
42
|
He Y, Chen S, Xue Y, Lu H, Li Z, Jia X, Ning Y, Yuan Q, Wang S. Analysis of Alterations in Intestinal Flora in Chinese Elderly with Cardiovascular Disease and Its Association with Trimethylamine. Nutrients 2024; 16:1864. [PMID: 38931219 PMCID: PMC11206853 DOI: 10.3390/nu16121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
To investigate the changes in the intestinal flora in the Chinese elderly with cardiovascular disease (CVD) and its correlation with the metabolism of trimethylamine (TMA), the intestinal flora composition of elderly individuals with CVD and healthy elderly individuals was analyzed using 16S rRNA sequencing, the TMA levels in the feces of elderly were detected using headspace-gas chromatography (HS-GC), and four kinds of characterized TMA-producing intestinal bacteria in the elderly were quantified using real-time fluorescence quantitative polymerase chain reaction (qPCR). The results showed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Verrucomicrobia are the dominant microorganisms of the intestinal flora in the Chinese elderly. And there were significant differences in the intestinal bacteria composition between healthy elderly individuals and those with CVD, accompanied by a notable difference in the TMA content. The richness and diversity of the intestinal flora in the elderly with CVD were higher than those in the healthy elderly. Correlation analysis indicated that certain significantly different intestinal flora were associated with the TMA levels. Our findings showed a significant difference in TMA-producing intestinal flora between healthy elderly individuals and those with CVD. The TMA levels were found to be positively and significantly correlated with Klebsiella pneumoniae, suggesting that this bacterium is closely linked to the production of TMA in the elderly gut. This may have implications for the development and progression of CVD in the elderly population.
Collapse
Affiliation(s)
- Yannan He
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Song Chen
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Han Lu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Ziteng Li
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yibing Ning
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| | - Shijie Wang
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China; (Y.H.); (S.C.); (H.L.); (Z.L.)
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China; (Y.X.); (Y.N.); (Q.Y.)
| |
Collapse
|
43
|
Raghani N, Postwala H, Shah Y, Chorawala M, Parekh P. From Gut to Brain: Unraveling the Intricate Link Between Microbiome and Stroke. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10295-3. [PMID: 38831225 DOI: 10.1007/s12602-024-10295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a neurological disorder, is intricately linked to the gut microbiota, influencing microbial composition and elevating the risk of ischemic stroke. The neuroprotective impact of short-chain fatty acids (SCFAs) derived from dietary fiber fermentation contrasts with the neuroinflammatory effects of lipopolysaccharide (LPS) from gut bacteria. The pivotal role of the gut-brain axis, facilitating bidirectional communication between the gut and the brain, is crucial in maintaining gastrointestinal equilibrium and influencing cognitive functions. An in-depth understanding of the interplay among the gut microbiota, immune system, and neurological outcomes in stroke is imperative for devising innovative preventive and therapeutic approaches. Strategies such as dietary adjustments, probiotics, prebiotics, antibiotics, or fecal transplantation offer promise in modulating stroke outcomes. Nevertheless, comprehensive research is essential to unravel the precise mechanisms governing the gut microbiota's involvement in stroke and to establish effective therapeutic interventions. The initiation of large-scale clinical trials is warranted to assess the safety and efficacy of interventions targeting the gut microbiota in stroke management. Tailored strategies that reinstate eubiosis and foster a healthy gut microbiota hold potential for both stroke prevention and treatment. This review underscores the gut microbiota as a promising therapeutic target in stroke and underscores the need for continued research to delineate its precise role and develop microbiome-based interventions effectively.
Collapse
Affiliation(s)
- Neha Raghani
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, Gujarat, India.
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| |
Collapse
|
44
|
Prins FM, Collij V, Groot HE, Björk JR, Swarte JC, Andreu-Sánchez S, Jansen BH, Fu J, Harmsen HJM, Zhernakova A, Lipsic E, van der Harst P, Weersma RK, Gacesa R. The gut microbiome across the cardiovascular risk spectrum. Eur J Prev Cardiol 2024; 31:935-944. [PMID: 38060843 DOI: 10.1093/eurjpc/zwad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 06/04/2024]
Abstract
AIMS Despite treatment advancements, cardiovascular disease remains a leading cause of death worldwide. Identifying new targets is crucial for enhancing preventive and therapeutic strategies. The gut microbiome has been associated with coronary artery disease (CAD), however our understanding of specific changes during CAD development remains limited. We aimed to investigate microbiome changes in participants without clinically manifest CAD with different cardiovascular risk levels and in patients with ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS In this cross-sectional study, we characterized the gut microbiome using metagenomics of 411 faecal samples from individuals with low (n = 130), intermediate (n = 130), and high (n = 125) cardiovascular risk based on the Framingham score, and STEMI patients (n = 26). We analysed diversity, and differential abundance of species and functional pathways while accounting for confounders including medication and technical covariates. Collinsella stercoris, Flavonifractor plautii, and Ruthenibacterium lactatiformans showed increased abundances with cardiovascular risk, while Streptococcus thermophilus was negatively associated. Differential abundance analysis revealed eight species and 49 predicted metabolic pathways that were differently abundant among the groups. In the gut microbiome of STEMI patients, there was a depletion of pathways linked to vitamin, lipid, and amino acid biosynthesis. CONCLUSION We identified four microbial species showing a gradual trend in abundance from low-risk individuals to those with STEMI, and observed differential abundant species and pathways in STEMI patients compared to those without clinically manifest CAD. Further investigation is warranted to gain deeper understanding of their precise role in CAD progression and potential implications, with the ultimate goal of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Femke M Prins
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Valerie Collij
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Hilde E Groot
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Johannes R Björk
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - J Casper Swarte
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Bernadien H Jansen
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection prevention, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Erik Lipsic
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rinse K Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ranko Gacesa
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| |
Collapse
|
45
|
Mao Y, Kong C, Zang T, You L, Wang L, Shen L, Ge J. Impact of the gut microbiome on atherosclerosis. MLIFE 2024; 3:167-175. [PMID: 38948150 PMCID: PMC11211673 DOI: 10.1002/mlf2.12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 07/02/2024]
Abstract
Atherosclerosis is a chronic inflammatory metabolic disease with a complex pathogenesis. However, the exact details of its pathogenesis are still unclear, which limits effective clinical treatment of atherosclerosis. Recently, multiple studies have demonstrated that the gut microbiota plays a pivotal role in the onset and progression of atherosclerosis. This review discusses possible treatments for atherosclerosis using the gut microbiome as an intervention target and summarizes the role of the gut microbiome and its metabolites in the development of atherosclerosis. New strategies for the treatment of atherosclerosis are needed. This review provides clues for further research on the mechanisms of the relationship between the gut microbiota and atherosclerosis.
Collapse
Affiliation(s)
- Yuqin Mao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Chao Kong
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Tongtong Zang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Lingsen You
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Li‐Shun Wang
- Center for Traditional Chinese Medicine and Gut Microbiota, Minhang HospitalFudan UniversityShanghaiChina
| | - Li Shen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| | - Jun‐Bo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
| |
Collapse
|
46
|
Saadh MJ, Bazghandi B, Jamialahmdi H, Rahimzadeh-Bajgiran F, Forouzanfar F, Esmaeili SA, Saburi E. Therapeutic potential of lipid-lowering probiotics on the atherosclerosis development. Eur J Pharmacol 2024; 971:176527. [PMID: 38554932 DOI: 10.1016/j.ejphar.2024.176527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Hypercholesterolemia is a critical risk factor for atherosclerosis, mostly attributed to lifestyle behavior such as diet. Recent advances have emphasized the critical effects of gastrointestinal bacteria in the pathology of hypercholesterolemia and atherosclerosis, suggesting that the gastrointestinal microbiome can therefore provide efficient therapeutic targets for preventing and treating atherosclerosis. Thus, interventions, such as probiotic therapy, aimed at altering the bacterial composition introduce a promising therapeutic procedure. In the current review, we will provide an overview of anti-atherogenic probiotics contributing to lipid-lowering, inhibiting atherosclerotic inflammation, and suppressing bacterial atherogenic metabolites.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Behina Bazghandi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| | - Hamid Jamialahmdi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran.
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
de Wit S, Geerlings L, Shi C, Dronkers J, Schouten EM, Blancke G, Andries V, Yntema T, Meijers WC, Koonen DPY, Vereecke L, Silljé HHW, Aboumsallem JP, de Boer RA. Heart failure-induced microbial dysbiosis contributes to colonic tumour formation in mice. Cardiovasc Res 2024; 120:612-622. [PMID: 38400709 DOI: 10.1093/cvr/cvae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/18/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Lotte Geerlings
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
| | - Just Dronkers
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Gillian Blancke
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Vanessa Andries
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Tess Yntema
- Department of Paediatrics, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Wouter C Meijers
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Debby P Y Koonen
- Department of Paediatrics, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Lars Vereecke
- Department of Internal Medicine and Paediatrics, Ghent University, 9000, Ghent, Belgium
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, 9052, Ghent, Belgium
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Joseph-Pierre Aboumsallem
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Rudolf A de Boer
- Thorax Center, Department of Cardiology, Erasmus MC, Cardiovascular Institute, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands
- Department of Cardiology, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
48
|
Bo F, Teng H, Shi J, Luo Z, Xu Y, Pan R, Xia Y, Zhu S, Zhang Y, Zhang W. Exploring the causal relationship between gut microbiota and frailty: a two-sample mendelian randomization analysis. Front Med (Lausanne) 2024; 11:1354037. [PMID: 38765250 PMCID: PMC11099276 DOI: 10.3389/fmed.2024.1354037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Background Frailty is a complex geriatric syndrome that seriously affects the quality of life of older adults. Previous observational studies have reported a strong relationship of frailty with the gut microbiota; however, further studies are warranted to establish a causal link. Accordingly, we aimed to conduct a bidirectional Mendelian randomization study to assess the causal relationship between frailty, as measured by the frailty index, and gut microbiota composition. Methods Instrumental variables for the frailty index (N = 175, 226) and 211 gut bacteria (N = 18,340) were obtained through a genome-wide association study. A two-sample Mendelian randomization analysis was performed to assess the causal relationship of gut microbiota with frailty. Additionally, we performed inverse Mendelian randomization analyses to examine the direction of causality. Inverse variance weighting was used as the primary method in this study, which was supplemented by horizontal pleiotropy and sensitivity analyses to increase confidence in the results. Results Bacteroidia (b = -0.041, SE = 0.017, p = 0.014) and Eubacterium ruminantium (b = -0.027, SE = 0.012, p = 0.028) were protective against frailty amelioration. Additionally, the following five bacteria types were associated with high frailty: Betaproteobacteria (b = 0.049, SE = 0.024, p = 0.042), Bifidobacterium (b = 0.042, SE = 0.016, p = 0.013), Clostridium innocuum (b = 0.023, SE = 0.011, p = 0.036), E. coprostanoligenes (b = 0.054, SE = 0.018, p = 0.003), and Allisonella (b = 0.032, SE = 0.013, p = 0.012). Contrastingly, frailty affected Butyrivibrio in the gut microbiota (b = 1.225, SE = 0.570, p = 0.031). The results remained stable within sensitivity and validation analyses. Conclusion Our findings strengthen the evidence of a bidirectional causal link between the gut microbiota and frailty. It is important to elucidate this relationship to optimally enhance the care of older adults and improve their quality of life.
Collapse
Affiliation(s)
- Fuduo Bo
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Teng
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jianwei Shi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhengxiang Luo
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Xu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ruihan Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xia
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuaishuai Zhu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Wang R, Li X, Lv F, He J, Lv R, Wei L. Sesame bacterial wilt significantly alters rhizosphere soil bacterial community structure, function, and metabolites in continuous cropping systems. Microbiol Res 2024; 282:127649. [PMID: 38402727 DOI: 10.1016/j.micres.2024.127649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Bacterial wilt is the leading disease of sesame and alters the bacterial community composition, function, and metabolism of sesame rhizosphere soil. However, its pattern of change is unclear. Here, the purpose of this study was to investigate how these communities respond to three differing severities of bacterial wilt in mature continuously cropped sesame plants by metagenomic and metabolomic techniques, namely, absence (WH), moderate (WD5), and severe (WD9) wilt. The results indicated that bacterial wilt could significantly change the bacterial community structure in the rhizosphere soil of continuously cropped sesame plants. The biomarker species with significant differences will also change with increasing disease severity. In particular, the gene expression levels of Ralstonia solanacearum in the WD9 and WD5 treatments increased by 25.29% and 33.61%, respectively, compared to those in the WH treatment (4.35 log10 copies g-1). The occurrence of bacterial wilt significantly altered the functions of the bacterial community in rhizosphere soil. KEEG and CAZy functional annotations revealed that the number of significantly different functions in WH was greater than that in WD5 and WD9. Bacterial wilt significantly affected the relative content of metabolites, especially acids, in the rhizosphere soil, and compared with those in the rhizosphere soil from WH, 10 acids (including S-adenosylmethionine, N-acetylleucine, and desaminotyrosine, etc.) in the rhizosphere soil from WD5 or WD9 significantly increased. In comparison, the changes in the other 10 acids (including hypotaurine, erucic acid, and 6-hydroxynicotinic acid, etc.) were reversed. The occurrence of bacterial wilt also significantly inhibited metabolic pathways such as ABC transporter and amino acid biosynthesis pathways in rhizosphere soil and had a significant impact on two key enzymes (1.1.1.11 and 2.6.1.44). In conclusion, sesame bacterial wilt significantly alters the rhizosphere soil bacterial community structure, function, and metabolites. This study enhances the understanding of sesame bacterial wilt mechanisms and lays the groundwork for future prevention and control strategies against this disease.
Collapse
Affiliation(s)
- Ruiqing Wang
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China.
| | - Xinsheng Li
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi Province 330200, PR China
| | - Fengjuan Lv
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Junhai He
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Rujie Lv
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China
| | - Lingen Wei
- Soil Fertilizer and Resource Environment Institute, Jiangxi Academy of Agricultural Sciences, No. 602, Nanlian Road, Nanchang, Jiangxi Province 330200, PR China; Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, PR China; National Engineering Technology Research Center for Red Soil Improvement, PR China; National Agricultural Experimental Station for Agricultural Environment Yichun, PR China.
| |
Collapse
|
50
|
Jiang L, Song C, Ai C, Wen C, Song S. Modulation effect of sulfated polysaccharide from Sargassum fusiforme on gut microbiota and their metabolites in vitro fermentation. Front Nutr 2024; 11:1400063. [PMID: 38751743 PMCID: PMC11094809 DOI: 10.3389/fnut.2024.1400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The present study demonstrated the digestion behavior and fermentation characteristics of a sulfated polysaccharide from Sargassum fusiforme (SFSP) in the simulated digestion tract environment. The results showed that the molecular weight of two components in SFSP could not be changed by simulated digestion, and no free monosaccharide was produced. This indicates that most of SFSP can reach the colon as prototypes. During the fermentation with human intestinal flora in vitro, the higher-molecular-weight component of SFSP was utilized, the total sugar content decreased by 16%, the reducing sugar content increased, and the galactose content in monosaccharide composition decreased relatively. This indicates that SFSP can be selectively utilized by human intestinal flora. At the same time, SFSP also changed the structure of intestinal flora. Compared with the blank group, SFSP significantly increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes. At the genus level, the abundances of Bacteroides and Megamonas increased, while the abundances of Shigella, Klebsiella, and Collinsella decreased. Moreover, the concentrations of total short-chain fatty acids (SCFAs), acetic, propionic and n-butyric acids significantly increased compared to the blank group. SFSP could down-regulate the contents of trimethylamine, piperidone and secondary bile acid in fermentation broth. The contents of nicotinic acid, pantothenic acid and other organic acids were increased. Therefore, SFSP shows significant potential to regulate gut microbiota and promote human health.
Collapse
Affiliation(s)
| | | | | | | | - Shuang Song
- SKL of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|