1
|
Stevenson M, Hebron ML, Liu X, Balaraman K, Wolf C, Moussa C. c-KIT inhibitors reduce pathology and improve behavior in the Tg(SwDI) model of Alzheimer's disease. Life Sci Alliance 2024; 7:e202402625. [PMID: 39009412 PMCID: PMC11249953 DOI: 10.26508/lsa.202402625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Treatments for Alzheimer's disease have primarily focused on removing brain amyloid plaques to improve cognitive outcomes in patients. We developed small compounds, known as BK40143 and BK40197, and we hypothesize that these drugs alleviate microglial-mediated neuroinflammation and induce autophagic clearance of neurotoxic proteins to improve behavior in models of neurodegeneration. Specificity binding assays of BK40143 and BK40197 showed primary binding to c-KIT/Platelet Derived Growth Factor Receptors (PDGFR)α/β, whereas BK40197 also differentially binds to FYVE finger-containing phosphoinositide kinase (PIKFYVE). Both compounds penetrate the CNS, and treatment with these drugs inhibited the maturation of peripheral mast cells in transgenic mice, correlating with cognitive improvements on measures of memory and anxiety. In the brain, microglial activation was profoundly attenuated and amyloid-beta and tau were reduced via autophagy. Multi-kinase inhibition, including c-KIT, exerts multifunctional effects to reduce neurodegenerative pathology via autophagy and microglial activity and may represent a potential therapeutic option for neurodegeneration.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| | - Kaluvu Balaraman
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Christian Wolf
- Medicinal Chemistry Shared Resource, Department of Chemistry, Georgetown University Medical Center, Washington DC, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
2
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
3
|
Ohdachi T, Matsushima M, Ohara M, Kawashima H, Inoue G, Atsumi K, Tsubosaki Y, Takekoshi M, Ueyama J, Hashimoto N, Sato M, Hasegawa Y, Ishii M, Kawabe T. Degranulation and expression of cytokines were modulated by diazinon in activated mast cells. Toxicology 2024; 506:153882. [PMID: 38971550 DOI: 10.1016/j.tox.2024.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Diazinon is an organophosphorus (OP) insecticides used in agriculture, home gardening and indoor pest control in Japan. It can activate macrophages and induce pro-inflammatory responses and has been reported to cause airway hyper-reactivity, suggesting the possibility of asthma exacerbation from exposure to OP insecticides. Despite the correlation between insecticide use and the pathogenesis of allergic diseases, there have been no reports on the effects of diazinon on mast cell function. Therefore, in this study, we investigated the effects of diazinon on mast cell function in rat basophilic leukemia (RBL)-2H3 cells. Surprisingly, we found that diazinon inhibited mast cell activation, although the degree of inhibition varied with concentration. Diazinon induced reactive oxygen species (ROS) generation and HO-1 expression at a concentration of 150 µM without affecting cell viability. Diazinon inhibited A23187-mediated degranulation and Tnf and Il4 expression in RBL-2H3 cells but did not affect calcium influx. Suppression of degranulation by diazinon was reversed when the culture supernatant was removed. As a signaling event downstream of calcium influx, diazinon inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) induced by A23187, whereas the phosphorylation of p38 had little effect. IgE cross-linking-mediated degranulation as well as the induction of Tnf and IL4 expression was significantly inhibited by diazinon, while diazinon had little effect on calcium influx. In conclusion, diazinon inhibited mast cell activation, including degranulation and cytokine expression. When evaluating the in vivo effects of diazinon, its potential to inhibit mast cell activation should be considered in the pathophysiology and development of allergic diseases in terms of basic and clinical aspects, respectively, although the effect of diazinon varies depending on the cell type.
Collapse
Affiliation(s)
- Tomoko Ohdachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Miyoko Matsushima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan.
| | - Moeko Ohara
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Hina Kawashima
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Goki Inoue
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Kazuko Atsumi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yuka Tsubosaki
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Masahiro Takekoshi
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Jun Ueyama
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan; National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| | - Tsutomu Kawabe
- Division of Host Defense Sciences, Omics Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Tokai National Higher Education and Research System, Japan
| |
Collapse
|
4
|
Liang X, Li X, Sun S, Zhang H, Wang B, Xu F, Zhang Y, Liu Z. Effects and potential mechanisms of Saposhnikovia divaricata (Turcz.) Schischk. On type I allergy and pseudoallergic reactions in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116942. [PMID: 37487961 DOI: 10.1016/j.jep.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of allergic disease is constantly increasing, but its pathogenesis is not fully understood. Saposhnikovia divaricata (SD), called 'Fangfeng' in China, not only can be used for antipyretic, analgesic and anti-inflammatory as a traditional Chinese medicine, but also as an active ingredient in about 8% prescriptions. However, its effects on type I allergy and pseudoallergy have not been clarified. AIM OF THE STUDY To explore the treatment and potential mechanisms of SD and its major bioactive component Prim-O-glucosylcimifugin (POG) on type I allergy and pseudoallergy in vitro and in vivo. MATERIALS AND METHODS The inhibitory effect of SD decoction and POG on type I allergy and its possible mechanism were evaluated by using RBL-2H3 cells model in vitro and the passive cutaneous anaphylaxis (PCA) mouse model in vivo. The cell degranulation of RBL-2H3 cells induced by DNP-IgE/DNP-BSA and Compound 48/80 (C48/80) was investigated, and the molecules of degranulation related signaling pathway was further detected by qRT-PCR and Western Blot analysis. Meanwhile, therapeutic effect of SD Decoction and POG were evaluated using PCA models in vivo. The molecular docking technology was conducted to explore the potential mechanisms. RESULTS In cells model induced by DNP-IgE/DNP-BSA, the release rate of β-Hex in high dose of SD and POG groups were 43.79% and 57.01%, and the release amount of HA in high dose of SD and POG groups were 26.19 ng/mL and 24.20 ng/mL. They were significantly lower than that in the model group. Besides, SD decoction and POG could significantly inhibit intracellular Ca2+ increasing and cell apoptosis. But there is no obvious effect on cells degranulation induced by C48/80. The molecular docking results showed that 5-O-Methylvisamioside and POG could bind with FcεRI α with stronger binding ability, but weak binding ability to Mrgprx2. Moreover, qPCR and Western blot analyses indicated that SD could down-regulate Lyn/Syk/PLCγ, MAPK and PI3K/AKT/NF-κB signal pathway to inhibit IgE-dependent cell degranulation. In mice PCA model, both SD and POG could dose-dependently attenuate the Evans Blue extravasation, paw and ear swelling induced by DNP-IgE/DNP-BSA, but no significant inhibition under the PCA models induced by C48/80. CONCLUSION In conclusion, SD is effective for the therapeutic of type I allergies, suggesting that SD is a potential candidate for the treatment of type I allergy, and the underlying mechanism of these effects needs to be further studied.
Collapse
Affiliation(s)
- Xiangyu Liang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Shusen Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Han Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Bikun Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| | - Feng Xu
- Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China.
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
5
|
Park J, Cho Y, Yang D, Yang H, Lee D, Kubo M, Kang SJ. The transcription factor NFIL3/E4BP4 regulates the developmental stage-specific acquisition of basophil function. J Allergy Clin Immunol 2024; 153:132-145. [PMID: 37783432 DOI: 10.1016/j.jaci.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Basophils are rare but important effector cells in many allergic disorders. Contrary to their early progenitors, the terminal developmental processes of basophils in which they gain their unique functional properties are unknown. OBJECTIVE We sought to identify a novel late-stage basophil precursor and a transcription factor regulating the terminal maturation of basophils. METHODS Using flow cytometry, transcriptome analysis, and functional assays, we investigated the identification and functionality of the basophil precursors as well as basophil development. We generated mice with basophil-specific deletion of nuclear factor IL-3 (NFIL3)/E4BP4 and analyzed the functional impairment of NFIL3/E4BP4-deficient basophils in vitro and in vivo using an oxazolone-induced murine model of allergic dermatitis. RESULTS We report a new mitotic transitional basophil precursor population (referred to as transitional basophils) that expresses the FcεRIα chain at higher levels than mature basophils. Transitional basophils are less responsive to IgE-linked degranulation but produce more cytokines in response to IL-3, IL-33, or IgE cross-linking than mature basophils. In particular, we found that the expression of NFIL3/E4BP4 gradually rises as cells mature from the basophil progenitor stage. Basophil-specific deletion of NFIL3/E4BP4 reduces the expression of genes necessary for basophil function and impairs IgE receptor signaling, cytokine secretion, and degranulation in the context of murine atopic dermatitis. CONCLUSIONS We discovered transitional basophils, a novel late-stage mitotic basophil precursor cell population that exists between basophil progenitors and postmitotic mature basophils. We demonstrated that NFIL3/E4BP4 augments the IgE-mediated functions of basophils, pointing to a potential therapeutic regulator for allergic diseases.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yuri Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dongchan Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan; Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
6
|
Kondo D, Suzuki R, Matsumura A, Meguri H, Tanaka M, Itakura M, Hirashima N. Methiothepin downregulates SNAP-23 and inhibits degranulation of rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Eur J Immunol 2023; 53:e2250360. [PMID: 37736882 DOI: 10.1002/eji.202250360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
In the present study, we found that methiothepin (a nonselective 5-hydroxytryptamine [5-HT] receptor antagonist) inhibited antigen-induced degranulation in rat basophilic leukemia cells and mouse bone marrow-derived mast cells. Although antigen stimulation induces release of histamine and serotonin (5-HT) by exocytosis and mast cells express several types of 5-HT receptor, the detailed role of these receptors remains unclear. Here, pretreatment of cells with methiothepin attenuated increased intracellular Ca2+ concentration, phosphorylated critical upstream signaling components (Src family tyrosine kinases, Syk, and PLCγ1), and suppressed TNF-α secretion via inhibition of Akt (a Ser/Thr kinase activated by PI3K)and ERK phosphorylation. Furthermore, it inhibited PMA/ionomycin-induced degranulation; this finding suggested that methiothepin affected downstream signaling. IκB kinase β phosphorylates synaptosomal associated protein 23, which regulates the fusion events of the secretory granule/plasma membrane after mast cell activation, resulting in degranulation. We showed that methiothepin blocked PMA/ionomycin-induced phosphorylation of synaptosomal associated protein 23 by inhibiting its interaction with IκB kinase β. Together with the results of selective 5-HT antagonists, it is suggested that methiothepin inhibits mast cell degranulation by downregulating upstream signaling pathways and exocytotic fusion machinery through mainly 5-HT1A receptor. Our findings provide that 5-HT antagonists may be used to relieve allergic reactions.
Collapse
Affiliation(s)
- Daisuke Kondo
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ruriko Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ayako Matsumura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hitomi Meguri
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masahiko Tanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
7
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
8
|
GEF-H1 Transduces FcεRI Signaling in Mast Cells to Activate RhoA and Focal Adhesion Formation during Exocytosis. Cells 2023; 12:cells12040537. [PMID: 36831204 PMCID: PMC9954420 DOI: 10.3390/cells12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
When antigen-stimulated, mast cells release preformed inflammatory mediators stored in cytoplasmic granules. This occurs via a robust exocytosis mechanism termed degranulation. Our previous studies revealed that RhoA and Rac1 are activated during mast cell antigen stimulation and are required for mediator release. Here, we show that the RhoGEF, GEF-H1, acts as a signal transducer of antigen stimulation to activate RhoA and promote mast cell spreading via focal adhesion (FA) formation. Cell spreading, granule movement, and exocytosis were all reduced in antigen-stimulated mast cells when GEF-H1 was depleted by RNA interference. GEF-H1-depleted cells also showed a significant reduction in RhoA activation, resulting in reduced stress fiber formation without altering lamellipodia formation. Ectopic expression of a constitutively active RhoA mutant restored normal morphology in GEF-H1-depleted cells. FA formation during antigen stimulation required GEF-H1, suggesting it is a downstream target of the GEF-H1-RhoA signaling axis. GEF-H1 was activated by phosphorylation in conjunction with antigen stimulation. Syk kinase is linked to the FcεRI signaling pathway and the Syk inhibitor, GS-9973, blocked GEF-H1 activation and also suppressed cell spreading, granule movement, and exocytosis. We concluded that during FcεRI receptor stimulation, GEF-H1 transmits signals to RhoA activation and FA formation to facilitate the exocytosis mechanism.
Collapse
|
9
|
Fujisawa S, Nagata Y, Suzuki R. Leukotriene D4 accelerates antigen-mediated mast cell responses via the cysteinyl leukotriene 1 receptor. Cell Immunol 2022; 382:104632. [PMID: 36274438 DOI: 10.1016/j.cellimm.2022.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 01/13/2023]
Abstract
Cysteinyl leukotrienes (CysLTs), released from mast cells (MCs), are important mediators in allergy. Type 1 receptors for CysLTs (CysLT1R) are involved in accelerating IgE-mediated MC activation. In this study, we aimed to elucidate the mechanisms underlying CysLT1R-mediated MC activation. The CysLT1R agonist/antagonist was applied to two types of major MC models-RBL-2H3 cells and bone marrow-derived MCs (BMMCs). The use of CysLT1R and CysLT2R inhibitors revealed that CysLT1R plays a major role in the acceleration of MC activation. The administration of the CysLT1R agonist leukotriene D4 upregulated IgE-mediated Akt and ERK phosphorylation and subsequently enhanced TNF-α expression, suggesting that CysLT1R regulates the downstream pathway of MC activation. However, these observations were not corroborated by CysLT1R knockdown using shRNA, suggesting a differential regulatory mechanism between the temporal and constitutive inhibitions of CysLT. In conclusion, CysLT1R enhances MC activation by accelerating IgE-induced signal transduction, which enables the co-regulation of rapid degranulation and delayed synthesis of inflammatory mediators in MCs.
Collapse
Affiliation(s)
- Sakura Fujisawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Yuka Nagata
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan.
| |
Collapse
|
10
|
Burchett JR, Dailey JM, Kee SA, Pryor DT, Kotha A, Kankaria RA, Straus DB, Ryan JJ. Targeting Mast Cells in Allergic Disease: Current Therapies and Drug Repurposing. Cells 2022; 11:3031. [PMID: 36230993 PMCID: PMC9564111 DOI: 10.3390/cells11193031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of allergic disease has grown tremendously in the past three generations. While current treatments are effective for some, there is considerable unmet need. Mast cells are critical effectors of allergic inflammation. Their secreted mediators and the receptors for these mediators have long been the target of allergy therapy. Recent drugs have moved a step earlier in mast cell activation, blocking IgE, IL-4, and IL-13 interactions with their receptors. In this review, we summarize the latest therapies targeting mast cells as well as new drugs in clinical trials. In addition, we offer support for repurposing FDA-approved drugs to target mast cells in new ways. With a multitude of highly selective drugs available for cancer, autoimmunity, and metabolic disorders, drug repurposing offers optimism for the future of allergy therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John J. Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
11
|
Kanagy WK, Cleyrat C, Fazel M, Lucero SR, Bruchez MP, Lidke KA, Wilson BS, Lidke DS. Docking of Syk to FcεRI is enhanced by Lyn but limited in duration by SHIP1. Mol Biol Cell 2022; 33:ar89. [PMID: 35793126 PMCID: PMC9582627 DOI: 10.1091/mbc.e21-12-0603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The high-affinity immunoglobulin E (IgE) receptor, FcεRI, is the primary immune receptor found on mast cells and basophils. Signal initiation is classically attributed to phosphorylation of FcεRI β− and γ-subunits by the Src family kinase (SFK) Lyn, followed by the recruitment and activation of the tyrosine kinase Syk. FcεRI signaling is tuned by the balance between Syk-driven positive signaling and the engagement of inhibitory molecules, including SHIP1. Here, we investigate the mechanistic contributions of Lyn, Syk, and SHIP1 to the formation of the FcεRI signalosome. Using Lyn-deficient RBL-2H3 mast cells, we found that another SFK can weakly monophosphorylate the γ-subunit, yet Syk still binds the incompletely phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs). Once recruited, Syk further enhances γ-phosphorylation to propagate signaling. In contrast, the loss of SHIP1 recruitment indicates that Lyn is required for phosphorylation of the β-subunit. We demonstrate two noncanonical Syk binding modes, trans γ-bridging and direct β-binding, that can support signaling when SHIP1 is absent. Using single particle tracking, we reveal a novel role of SHIP1 in regulating Syk activity, where the presence of SHIP1 in the signaling complex acts to increase the Syk:receptor off-rate. These data suggest that the composition and dynamics of the signalosome modulate immunoreceptor signaling activities.
Collapse
Affiliation(s)
- William K Kanagy
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Cédric Cleyrat
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Mohamadreza Fazel
- Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Shayna R Lucero
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131
| | - Marcel P Bruchez
- Department of Biological Sciences and Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Keith A Lidke
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131.,Department of Physics, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
12
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
13
|
Li R, Chen S, Gu X, An S, Wang Z. Role of the nuclear receptor subfamily 4a in mast cells in the development of irritable bowel syndrome. Comput Struct Biotechnol J 2022; 20:1198-1207. [PMID: 35317226 PMCID: PMC8907967 DOI: 10.1016/j.csbj.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022] Open
Abstract
The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic–pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.
Collapse
Affiliation(s)
| | | | | | - Shuhong An
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| | - Zhaojin Wang
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| |
Collapse
|
14
|
|
15
|
Sun J, Huang S, Qin Y, Zhang P, Li Z, Zhang L, Wang X, Wu R, Qin S, Huo J, Xiao K, Luo W. Anti-allergic actions of a Chinese patent medicine, huoxiangzhengqi oral liquid, in RBL-2H3 cells and in mice. PHARMACEUTICAL BIOLOGY 2021; 59:672-682. [PMID: 34078224 PMCID: PMC8183508 DOI: 10.1080/13880209.2021.1928242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Huoxiangzhengqi oral liquid (HXZQ-OL), a traditional Chinese medicine formula, has antibacterial, anti-inflammation and gastrointestinal motility regulation effects. OBJECTIVE The study investigates the anti-allergic activity and underlying mechanism of HXZQ-OL. MATERIALS AND METHODS IgE/Ag-mediated RBL-2H3 cells were used to evaluate the anti-allergic activity of HXZQ-OL (43.97, 439.7 and 4397 μg/mL) in vitro. The release of cytokines and eicosanoids were quantified using ELISA. RT-qPCR was used to measure the gene expression of cytokines. The level of intracellular Ca2+ was measured with Fluo 3/AM. Immunoblotting analysis was performed to investigate the mechanism of HXZQ-OL. In the passive cutaneous anaphylaxis (PCA), BALB/c mice (5 mice/group) were orally administrated with HXZQ-OL (263.8, 527.6 and 1055 mg/kg/d) or dexamethasone (5 mg/kg/d, positive control) for seven consecutive days. RESULTS HXZQ-OL not only inhibited degranulation of mast cells (IC50, 123 μg/mL), but also inhibited the generation and secretion of IL-4 (IC50, 171.4 μg/mL), TNF-α (IC50, 88.4 μg/mL), LTC4 (IC50, 52.9 μg/mL) and PGD2 (IC50, 195.8 μg/mL). Moreover, HXZQ-OL suppressed the expression of IL-4 and TNF-α mRNA, as well as the phosphorylation of Fyn, Lyn and multiple downstream signalling proteins including MAPK and PI3K/NF-κB pathways. In addition, HXZQ-OL (527.5 mg/kg) attenuated the IgE-mediated PCA with 55% suppression of Evans blue exudation in mice. CONCLUSIONS HXZQ-OL attenuated the activation of mast cell and PCA. Therefore, HXZQ-OL might be used as an alternative treatment for allergic diseases.
Collapse
Affiliation(s)
- Jianbin Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| | - Sixing Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| | - Yao Qin
- Taiji Group, Chongqing, PR China
| | - Ping Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Li Zhang
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| | - Xin Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| | | | | | - Jiayong Huo
- Taiji Group Chongqing Fulling Pharmaceutical Co., Ltd, Chongqing, PR China
| | | | - Weizao Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
- CONTACT Weizao Luo Chongqing Academy of Chinese Materia Medica, Chongqing, PR China
| |
Collapse
|
16
|
Pathak MP, Patowary P, Das A, Goyary D, Karmakar S, Bhutia YD, Roy PK, Das S, Chattopadhyay P. Crosstalk between AdipoR1/AdipoR2 and Nrf2/HO-1 signal pathways activated by β-caryophyllene suppressed the compound 48/80 induced pseudo-allergic reactions. Clin Exp Pharmacol Physiol 2021; 48:1523-1536. [PMID: 34314522 DOI: 10.1111/1440-1681.13555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Mast cell activation is initiated by two signalling pathways: immunoglobulin E (IgE)-dependent and IgE-independent pathway. It is reported that the IgE-independent type or pseudo-allergy pathway gets activated by G-protein-dependent activation of the mast cell. Recently, adiponectin (APN) receptors, AdipoR1, and AdipoR2 have been identified as G-protein-coupled receptors (GPCRs). Interestingly, APN replenishment is reported to activate the Nrf2/HO-1 signalling axis. However, no study has been performed interlinking the role of APN and the Nrf2/HO-1 signalling axis in pseudo-allergic reaction. In the present study, we evaluated the anti-pseudo-allergic effects of β-caryophyllene, an FDA-approved food additive, in activating AdipoR1/AdipoR2 and Nrf2/HO-1 axis signalling pathway. Compound 48/80 (C48/80)-induced systemic and cutaneous anaphylaxis-like shock in BALB/c mice was performed to assess the efficacy of β-caryophyllene (BCP). To assess the effect of BCP in anaphylactic hypotension, mean arterial pressure was measured in Wistar rats. Inhibitory properties of BCP in mast cell degranulation were estimated in rat peritoneal mast cells (RPMCs). ELISA was performed to estimate interleukin (IL)-6, tumour necrosis factor (TNF), IL-1β, IgE, ovalbumin (OVA)-IgE and APN and western blotting for protein expression of Nrf2/HO-1 and AdipoR1-AdipoR2. BCP dose-dependently inhibited systemic and cutaneous anaphylaxis-like shock induced by C48/80. BCP dose-dependently inhibited the mast cell degranulation followed by inhibition of histamine release. Also BCP dose-dependently activated the Nrf2/HO-1 and AdipoR1-AdipoR2 signalling axis pathway. Moreover, BCP reversed the drop in blood pressure when the haemodynamic parameters were accessed. Our findings suggest that BCP is a potent AdipoR1/AdipoR2-Nrf2/HO-1 axis pathway agonist that may suppress the IgE-independent pathway towards allergic response to secretagogues.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Danswrang Goyary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Sanjeev Karmakar
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Yangchen D Bhutia
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
| | - Probin Kumar Roy
- Department of Pharmaceutics, Regional Institute of Paramedical and Nursing Sciences, Aizawl, Mizoram, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India
- Pharmaceutical & Fine Chemical Division, Department of Chemical Technology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
17
|
Propolis suppresses cytokine production in activated basophils and basophil-mediated skin and intestinal allergic inflammation in mice. Allergol Int 2021; 70:360-367. [PMID: 33279402 DOI: 10.1016/j.alit.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Propolis is a resinous mixture produced by honey bees that contains cinnamic acid derivatives and flavonoids. Although propolis has been reported to inhibit mast cell functions and mast cell-dependent allergic responses, the effect of propolis on basophil biology remains unknown. This study aimed to investigate the inhibitory effect of propolis on FcεRI-mediated basophil activation. METHODS To determine the inhibitory effect of propolis on basophil activation in vitro, cytokine production and FcεRI signal transduction were analyzed by ELISA and western blotting, respectively. To investigate the inhibitory effect of propolis in vivo, IgE-CAI and a food allergy mouse model were employed. RESULTS Propolis treatment resulted in the suppression of IgE/antigen-induced production of IL-4, IL-6 and IL-13 in basophils. Phosphorylation of FcεRI signaling molecules Lyn, Akt and ERK was inhibited in basophils treated with propolis. While propolis did not affect the basophil population in the treated mice, propolis did inhibit IgE-CAI. Finally, ovalbumin-induced intestinal anaphylaxis, which involves basophils and basophil-derived IL-4, was attenuated in mice prophylactically treated with propolis. CONCLUSIONS Taken together, these results demonstrate the ability of propolis to suppress IgE-dependent basophil activation and basophil-dependent allergic inflammation. Therefore, prophylactic treatment with propolis may be useful for protection against food allergic reactions in sensitive individuals.
Collapse
|
18
|
Zhao Y, Li X, Chu J, Shao Y, Sun Y, Zhang Y, Liu Z. Inhibitory effect of paeoniflorin on IgE-dependent and IgE-independent mast cell degranulation in vitro and vivo. Food Funct 2021; 12:7448-7468. [PMID: 34195738 DOI: 10.1039/d1fo01421h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The incidence of allergic diseases has increased to such a point that they have become common and have reached epidemic levels. However, their pathogenesis is not fully understood. Paeoniae Radix Rubra is a traditional Chinese medicine that is also used as a dietary supplement. Its main active ingredient is paeoniflorin. Paeoniflorin has good anti-inflammatory, immunomodulation, and antitumor effects. It is utilized in the treatment of various diseases in clinical settings. However, its effects on type I allergies and pseudoallergic reactions have not been comprehensively studied. In this study, we aimed to use DNP-IgE/DNP-BSA and C48/80 to simulate type I allergies and pseudoallergic reactions to evaluate the therapeutic effects of paeoniflorin to these diseases and identify its molecular mechanisms in cell degranulation both in vivo and in vitro. Results showed that paeoniflorin inhibited the degranulation of RBL-2H3 cells induced by these two stimuli (IgE-dependent and IgE-independent stimuli) in a dose-dependent manner. Moreover, qPCR and western blot analyses indicated that paeoniflorin may regulate the IgE/FcεR I, MRGPRB3, and downstream signal transduction pathways to exert its therapeutic effects on type I allergies and pseudoallergic reactions. In addition, DNP-IgE/DNP-BSA and compound 48/80 were used to induce the establishment of a passive cutaneous anaphylaxis mouse model. Paeoniflorin was found to suppress the extravasation of Evans Blue and tissue edema in the ears, back skin, and paws of the mice. This result further confirmed that paeoniflorin has a notable therapeutic effect on type I allergies and pseudoallergic reactions. Therefore, paeoniflorin could potentially be used as a drug for the treatment of type I allergies and pseudoallergic reactions. This study provides new insights into expanding the treatment range of paeoniflorin and its pharmacological mechanism.
Collapse
Affiliation(s)
- Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
20
|
Kondreddy V, Magisetty J, Keshava S, Rao LVM, Pendurthi UR. Gab2 (Grb2-Associated Binder2) Plays a Crucial Role in Inflammatory Signaling and Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1987-2005. [PMID: 33827252 PMCID: PMC8147699 DOI: 10.1161/atvbaha.121.316153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/21/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vijay Kondreddy
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
21
|
Blank U, Huang H, Kawakami T. The high affinity IgE receptor: a signaling update. Curr Opin Immunol 2021; 72:51-58. [PMID: 33838574 DOI: 10.1016/j.coi.2021.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Here we update receptor proximal and distant signaling events of the mast cell high affinity IgE receptor (FcεRI) launching immediate type I hypersensitivity and an inflammatory cytokine-chemokine cascade. Different physiologic antigen concentrations, their affinity, and valency for the IgE ligand produce distinct intracellular signaling events with different outcomes. Investigating mast cell degranulation has revealed a complex molecular machinery that relays proximal signaling to cytoskeletal reorganization, granule transport and membrane fusion. Several new phosphorylation- and calcium-responsive effectors have been described. FcεRI signaling also promotes de novo gene transcription. Recent progress has identified enhancers at genes that are upregulated in mast cells after stimulation through FcεRI using next generation sequencing methods. Enhancers at genes that respond to antigenic stimulation in human mast cells revealed Ca2+-dependency. Stimulation-responsive super enhancers in mouse mast cells have also been identified. Mast cell lineage-determining transcription factor GATA2 primes these enhancers to respond to antigenic stimulation.
Collapse
Affiliation(s)
- Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France; Laboratoire d'Excellence Inflamex, Paris, France.
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal Transport, Reorganization, and Fusion Regulation in Mast Cell-Stimulus Secretion Coupling. Front Cell Dev Biol 2021; 9:652077. [PMID: 33796537 PMCID: PMC8007931 DOI: 10.3389/fcell.2021.652077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 01/16/2023] Open
Abstract
Mast cells are well known for their role in allergies and many chronic inflammatory diseases. They release upon stimulation, e.g., via the IgE receptor, numerous bioactive compounds from cytoplasmic secretory granules. The regulation of granule secretion and its interaction with the cytoskeleton and transport mechanisms has only recently begun to be understood. These studies have provided new insight into the interaction between the secretory machinery and cytoskeletal elements in the regulation of the degranulation process. They suggest a tight coupling of these two systems, implying a series of specific signaling effectors and adaptor molecules. Here we review recent knowledge describing the signaling events regulating cytoskeletal reorganization and secretory granule transport machinery in conjunction with the membrane fusion machinery that occur during mast cell degranulation. The new insight into MC biology offers novel strategies to treat human allergic and inflammatory diseases targeting the late steps that affect harmful release from granular stores leaving regulatory cytokine secretion intact.
Collapse
Affiliation(s)
- Gaël Ménasché
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Cyril Longé
- Laboratory of Molecular Basis of Altered Immune Homeostasis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Manuela Bratti
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| | - Ulrich Blank
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Paris, France.,Laboratoire d'Excellence Inflamex, Université de Paris, Paris, France
| |
Collapse
|
23
|
Ding Y, Wang Y, Li C, Zhang Y, Hu S, Gao J, Liu R, An H. α-Linolenic acid attenuates pseudo-allergic reactions by inhibiting Lyn kinase activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153391. [PMID: 33113502 DOI: 10.1016/j.phymed.2020.153391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pseudo-allergic reactions are potentially fatal hypersensitivity responses caused by mast cell activation. α-linolenic acid (ALA) is known for its anti-allergic properties. However, its potential anti-pseudo-allergic effects were not much investigated. PURPOSE To investigate the inhibitory effects of ALA on IgE-independent allergy in vitro, and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS The anti-anaphylactoid activity of ALA was evaluated in passive cutaneous anaphylaxis reaction (PCA) and systemic anaphylaxis models. Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. RESULTS ALA (0, 1.0, 2.0, and 4.0 mg/kg) dose-dependently reduced serum histamine, chemokine release, vasodilation, eosinophil infiltration, and the percentage of degranulated mast cells in C57BL/6 mice. In addition, ALA (0, 50, 100, and 200 μM) reduced Compound 48/80 (C48/80) (30 μg/ml)-or Substance P (SP) (4 μg/ml)-induced calcium influx, mast cell degranulation and cytokines and chemokine release in Laboratory of Allergic Disease 2 (LAD2) cells via Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. Moreover, ALA (0, 50, 100, and 200 μM) inhibited C48/80 (30 μg/ml)- and SP (4 μg/ml)-induced calcium influx in Mas-related G-protein coupled receptor member X2 (MrgX2)-HEK293 cells and in vitro kinase assays confirmed that ALA inhibited the activity of Lyn kinase. In response to 200 μM of ALA, the activity of Lyn kinase by (7.296 ± 0.03751) × 10-5 units/μl and decreased compared with C48/80 (30 μg/ml) by (8.572 ± 0.1365) ×10-5 units/μl. CONCLUSION Our results demonstrate that ALA might be a potential Lyn kinase inhibitor, which could be used to treat pseudo-allergic reaction-related diseases such as urticaria.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 China; College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Yuejin Wang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Chaomei Li
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Yongjing Zhang
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Shiling Hu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Jiapan Gao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Rui Liu
- College of Pharmacy, Xi'an Jiaotong University, Xi'an 710061 China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
24
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
25
|
Lee D, Park YH, Lee JE, Kim HS, Min KY, Jo MG, Kim HS, Choi WS, Kim YM. Dasatinib Inhibits Lyn and Fyn Src-Family Kinases in Mast Cells to Suppress Type I Hypersensitivity in Mice. Biomol Ther (Seoul) 2020; 28:456-464. [PMID: 32268657 PMCID: PMC7457176 DOI: 10.4062/biomolther.2020.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. in vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.
Collapse
Affiliation(s)
- Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.,College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon 6419, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
26
|
Paranjape A, Haque TT, Kiwanuka KN, Qayum AA, Barnstein BO, Finkelman FD, Nigrovic PA, Ryan JJ. The Fyn-Stat5 cascade is required for Fcγ receptor-mediated mast cell function. Cell Immunol 2020; 356:104134. [PMID: 32862025 DOI: 10.1016/j.cellimm.2020.104134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Mast cells, well established effectors in allergic disease, can be activated by numerous stimuli. We previously found that the Fyn-Stat5B pathway is critical for FcεRI-stimulated mast cell function. Because IgG receptors employ similar signaling pathways, we investigated Fyn-Stat5B function downstream of FcγR. We report that FcγR elicits Fyn-dependent Stat5B tyrosine phosphorylation in mast cells. As we previously found for Fyn kinase, Stat5B is indispensable for IgG-mediated mast cell cytokine expression and secretion. However, Stat5B KO macrophages responded normally to FcγR signaling, indicating a lineage-restricted role for Stat5B. This was consistent in vivo, since passive FcγR activation induced anaphylaxis in a macrophage-dominated response even when Stat5B was deleted. We further investigated this lineage restriction using the K/BxN model of inflammatory arthritis. This model exhibits a rapid and transient mast cell-dependent joint inflammation followed days later by a macrophage- and neutrophil-dependent response. Consistent with our hypothesis, Fyn or Stat5B deficiency did not protect mice from late joint swelling, but greatly reduced the early mast cell-dependent response. This was associated with decreased joint and plasma histamine. We conclude that Fyn-Stat5B is a linage-restricted pathway critical for IgG-mediated mast cell responses.
Collapse
Affiliation(s)
- Anuya Paranjape
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Kasalina N Kiwanuka
- Department of Biochemistry, Virginia Commonwealth University, Box 980614, Richmond, VA 23298-0614, USA
| | - Amina Abdul Qayum
- Department of Microbiology and Immunology, Virginia Commonwealth University, Box 980678, Richmond, VA 23298-0678, USA
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Box 842012, Richmond, VA 23284-2012, USA
| | - Fred D Finkelman
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Box 842012, Richmond, VA 23284-2012, USA.
| |
Collapse
|
27
|
FcεRI Signaling in the Modulation of Allergic Response: Role of Mast Cell-Derived Exosomes. Int J Mol Sci 2020; 21:ijms21155464. [PMID: 32751734 PMCID: PMC7432241 DOI: 10.3390/ijms21155464] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) are immune cells that act as environment resident sentinels playing a crucial role in Th2-mediated immune responses, including allergic reactions. Distinguishing features of MCs are the presence of numerous cytoplasmic granules that encapsulate a wide array of preformed bio-active molecules and the constitutive expression of the high affinity receptor of IgE (FcεRI). Upon FcεRI engagement by means of IgE and multivalent antigens, aggregated receptors trigger biochemical pathways that ultimately lead to the release of granule-stored and newly synthesized pro-inflammatory mediators. Additionally, MCs are also able to release exosomes either constitutively or upon stimulation. Exosomes are nanosized vesicles of endocytic origin endowed with important immunoregulatory properties, and represent an additional way of intercellular communication. Interestingly, exosomes generated upon FcεRI engagement contain co-stimulatory and adhesion molecules, lipid mediators, and MC-specific proteases, as well as receptor subunits together with IgE and antigens. These findings support the notion that FcεRI signaling plays an important role in influencing the composition and functions of exosomes derived by MCs depending on their activation status.
Collapse
|
28
|
Voisset E, Brenet F, Lopez S, de Sepulveda P. SRC-Family Kinases in Acute Myeloid Leukaemia and Mastocytosis. Cancers (Basel) 2020; 12:cancers12071996. [PMID: 32708273 PMCID: PMC7409304 DOI: 10.3390/cancers12071996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 11/16/2022] Open
Abstract
Protein tyrosine kinases have been recognized as important actors of cell transformation and cancer progression, since their discovery as products of viral oncogenes. SRC-family kinases (SFKs) play crucial roles in normal hematopoiesis. Not surprisingly, they are hyperactivated and are essential for membrane receptor downstream signaling in hematological malignancies such as acute myeloid leukemia (AML) and mastocytosis. The precise roles of SFKs are difficult to delineate due to the number of substrates, the functional redundancy among members, and the use of tools that are not selective. Yet, a large num ber of studies have accumulated evidence to support that SFKs are rational therapeutic targets in AML and mastocytosis. These two pathologies are regulated by two related receptor tyrosine kinases, which are well known in the field of hematology: FLT3 and KIT. FLT3 is one of the most frequently mutated genes in AML, while KIT oncogenic mutations occur in 80-90% of mastocytosis. Studies on oncogenic FLT3 and KIT signaling have shed light on specific roles for members of the SFK family. This review highlights the central roles of SFKs in AML and mastocytosis, and their interconnection with FLT3 and KIT oncoproteins.
Collapse
|
29
|
Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. Eur J Pharmacol 2020; 881:173259. [PMID: 32565338 DOI: 10.1016/j.ejphar.2020.173259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023]
Abstract
Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1β messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.
Collapse
|
30
|
Zhang L, Wang J, Wang J, Yang B, He Q, Weng Q. Role of DJ-1 in Immune and Inflammatory Diseases. Front Immunol 2020; 11:994. [PMID: 32612601 PMCID: PMC7308417 DOI: 10.3389/fimmu.2020.00994] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
The DJ-1 protein, known as an oxidative stress sensor, participates in the onset of oxidative stress-related diseases such as cancer, neurodegenerative disorders, type 2 diabetes, and male infertility. Although DJ-1 has been extensively studied for more than two decades, evidence has only recently emerged that it plays a key role in immune and inflammatory disorders. The immune regulatory function of DJ-1 is achieved by modulating the activation of several immune cells including macrophages, mast cells, and T cells via reactive oxygen species (ROS)-dependent and/or ROS-independent mechanisms. This review describes the current knowledge on DJ-1, focusing on its immune and inflammatory regulatory roles, and highlights the significance of DJ-1 as a novel therapeutic target for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lulu Zhang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Pérez-Rodríguez MJ, Ibarra-Sánchez A, Román-Figueroa A, Pérez-Severiano F, González-Espinosa C. Mutant Huntingtin affects toll-like receptor 4 intracellular trafficking and cytokine production in mast cells. J Neuroinflammation 2020; 17:95. [PMID: 32220257 PMCID: PMC7102443 DOI: 10.1186/s12974-020-01758-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is caused by the expression of a mutated variant of Huntingtin (mHtt), which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses. While the neuronal effects of mHtt expression have been extensively studied, its effects on the physiology of immune cells have not been fully described. Mast cells (MCs) are unique tissue-resident immune cells whose activation has been linked to protective responses against parasites and bacteria, but also to deleterious inflammatory allergic reactions and, recently, to neurodegenerative diseases. METHODS Bone marrow-derived mast cells (BMMCs) were obtained from wild-type (WT-) and mHtt-expressing (R6/1) mice to evaluate the main activation parameters triggered by the high-affinity IgE receptor (FcεRI) and the Toll-like receptor (TLR) 4. Degranulation was assessed by measuring the secretion of β-hexosaminidase, MAP kinase activation was detected by Western blot, and cytokine production was determined by RT-PCR and ELISA. TLR-4 receptor and Htt vesicular trafficking was analyzed by confocal microscopy. In vivo, MC-deficient mice (c-KitWsh/Wsh) were intraperitonally reconstituted with WT or R6/1 BMMCs and the TLR4-induced production of the tumor necrosis factor (TNF) was determined by ELISA. A survival curve of mice treated with a sub-lethal dose of bacterial lipopolysaccharide (LPS) was constructed. RESULTS R6/1 BMMCs showed normal β-hexosaminidase release levels in response to FcεRI, but lower cytokine production upon LPS stimulus. Impaired TLR4-induced TNF production was associated to the lack of intracellular dynamin-dependent TLR-4 receptor trafficking to perinuclear regions in BMMCs, a diminished ERK1/2 and ELK-1 phosphorylation, and a decrease in c-fos and TNF mRNA accumulation. R6/1 BMMCs also failed to produce TLR4-induced anti-inflammatory cytokines (like IL-10 and TGF-β). The detected defects were also observed in vivo, in a MCs-dependent model of endotoxemia. R6/1 and c-KitWsh/Wsh mice reconstituted with R6/1 BMMCs showed a decreased TLR4-induced TNF production and lower survival rates to LPS challenge than WT mice. CONCLUSIONS Our data show that mHtt expression causes an impaired production of pro- and anti-inflammatory mediators triggered by TLR-4 receptor in MCs in vitro and in vivo, which could contribute to the aberrant immunophenotype observed in HD.
Collapse
Affiliation(s)
- Marian Jesabel Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Calzada de los Tenorios 235, Granjas Coapa, Tlalpan, 14330, Mexico City, Mexico
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Calzada de los Tenorios 235, Granjas Coapa, Tlalpan, 14330, Mexico City, Mexico
| | - Abraham Román-Figueroa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Calzada de los Tenorios 235, Granjas Coapa, Tlalpan, 14330, Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Calzada de los Tenorios 235, Granjas Coapa, Tlalpan, 14330, Mexico City, Mexico.
| |
Collapse
|
32
|
Kim MJ, Je IG, Song J, Fei X, Lee S, Yang H, Kang W, Jang YH, Seo SY, Kim SH. SG-SP1 Suppresses Mast Cell-Mediated Allergic Inflammation via Inhibition of FcεRI Signaling. Front Immunol 2020; 11:50. [PMID: 32063904 PMCID: PMC6998798 DOI: 10.3389/fimmu.2020.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: As the number of allergic disease increases, studies to identify new treatments take on new urgency. Epigallocatechin gallate (EGCG), a major component of green tea, has been shown to possess a wide range of pharmacological properties, including anti-inflammation and anti-viral infection. In previous study, gallic acid (GA), a part of EGCG, has shown anti-allergic inflammatory effect. To improve on preliminary evidence that GA has allergy mitigating effect, we designed SG-SP1 based on GA, and aimed to assess the effects of SG-SP1 on mast cell-mediated allergic inflammation using various animal and in vitro models. Methods: For in vitro experiments, various types of IgE-stimulated mast cells (RBL-2H3: mast cell-like basophilic leukemia cells, and primary cultured peritoneal and bone marrow-derived mast cells) were used to determine the role of SG-SP1 (0.1–1 nM). Immunoglobulin (Ig) E-induced passive cutaneous anaphylaxis and ovalbumin-induced systemic anaphylaxis, standard animal models for immediate-type hypersensitivity were also used. Results: For in vitro, SG-SP1 reduced degranulation of mast cells by down-regulating intracellular calcium levels in a concentration-dependent manner. SG-SP1 decreased expression and secretion of inflammatory cytokines in activated mast cells. This suppressive effect was associated with inhibition of the phosphorylation of Lyn, Syk and Akt, and the nuclear translocation of nuclear factor-κB. Due to the strong inhibitory effect of SG-SP1 on Lyn, the known upstream signaling to FcεRI-dependent pathway, we confirmed the direct binding of SG-SP1 to FcεRI, a high affinity IgE receptor by surface plasmon resonance experiment. Oral administration of SG-SP1 hindered allergic symptoms of both anaphylaxis models evidenced by reduction of hypothermia, serum IgE, ear thickness, and tissue pigmentation. This inhibition was mediated by the reductions in serum histamine and interleukin-4. Conclusions: We determined that SG-SP1 directly interacts with FcεRI and propose SG-SP1 as a therapeutic candidate for mast cell-mediated allergic inflammatory disorders via inhibition of FcεRI signaling.
Collapse
Affiliation(s)
- Min-Jong Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - In-Gyu Je
- Research Laboratories, ILDONG Pharmaceutical Co. Ltd., Hwaseong, South Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Xiang Fei
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Huiseon Yang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
33
|
Nakajima S, Ishimaru K, Kobayashi A, Yu G, Nakamura Y, Oh-Oka K, Suzuki-Inoue K, Kono K, Nakao A. Resveratrol inhibits IL-33-mediated mast cell activation by targeting the MK2/3-PI3K/Akt axis. Sci Rep 2019; 9:18423. [PMID: 31804564 PMCID: PMC6895112 DOI: 10.1038/s41598-019-54878-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin-33 (IL-33)/ST2-mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2-mediated mast cell activation. Resveratrol suppressed IL-33-induced IL-6, IL-13, and TNF-α production in mouse bone marrow-derived mast cells (BMMCs), mouse fetal skin-derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33-mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38-MAPK-activated protein kinase-2/3 (MK2/3)-PI3K/Akt pathway, and resveratrol clearly inhibited IL-33-induced activation of the MK2/3-PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3-PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2-mediated and IgE-dependent mast cell activation principally by targeting the MK2/3-PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.
Collapse
Affiliation(s)
- Shotaro Nakajima
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan. .,Department of Gastrointestinal Tract Surgery, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan. .,Department of Progressive DOHaD Research, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan. .,Department of Progressive DOHaD Research, Department of Gastrointestinal Tract Surgery, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Kayoko Ishimaru
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Anna Kobayashi
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Guannan Yu
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yuki Nakamura
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kyoko Oh-Oka
- Department of Immunology, Faculty of Medicine, Tukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
34
|
Park YH, Kim DK, Kim HS, Lee D, Lee MB, Min KY, Jo MG, Lee JE, Kim YM, Choi WS. WZ3146 inhibits mast cell Lyn and Fyn to reduce IgE-mediated allergic responses in vitro and in vivo. Toxicol Appl Pharmacol 2019; 383:114763. [PMID: 31526816 DOI: 10.1016/j.taap.2019.114763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) play an important role as effector cells that cause allergic responses in allergic diseases. For these reasons, MC is considered an attractive therapeutic target for allergic disease treatment. In this study, we investigated the inhibitory effect of WZ3146, N-[3-[5-chloro-2-[4-(4-methylpiperazin-1-yl)anilino]pyrimidin-4-yl]oxyphenyl]prop-2-enamide, and the mechanisms of its actions on the MC activation and IgE-mediated allergic response by using three types of MCs such as rat basophilic leukemia (RBL)-2H3 cells, mouse bone marrow mast cells (BMMCs), and human Laboratory of Allergic Diseases 2 (LAD2) cells. WZ3146 inhibited antigen-stimulated degranulation in a dose-dependent manner (IC50, ~ 0.35 μM for RBL-2H3 cells; ~ 0.39 μM for BMMCs; ~ 0.41 for LAD2 cells). WZ3146 also suppressed the production of histamine, tumor necrosis factor (TNF)-α and interleukin (IL)-6, which mediate various allergic responses, in a dose-dependent manner. As the mechanism of WZ3146 to inhibit MCs, it inhibited the activation of spleen tyrosine kinase (Syk) and the downstream signaling proteins of Syk such as linker for activation of T cell (LAT) and phospholipase (PL) Cγ1 in the signaling pathway of FcεRI. In addition, WZ3146 inhibited the activation of Akt, extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). However, WZ3146 did not inhibit degranulation of MCs by thapsigargin or ionomycin, which increase calcium concentration in cytosol. Notably, WZ3146 inhibited the activity of Lyn and Fyn, but not Syk. In an following animal experiment, WZ3146 inhibited IgE-dependent passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (ED50, ~ 20 mg/kg). Taken together, in this study we show that the pyrimidine derivative, WZ3146, inhibits the IgE-mediated allergic response by inhibiting Lyn and Fyn Src-family kinases, which are initially activated by antigen stimulation in MCs. Therefore, we propose that WZ3146 could be used as a new therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Do Kyun Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
35
|
Huang X, Li Z, Sun R. High-dose levocetirizine for the treatment of refractory chronic spontaneous urticaria and the effect on the serum inositol triphosphate level. J Int Med Res 2019; 47:4374-4379. [PMID: 31342821 PMCID: PMC6753569 DOI: 10.1177/0300060519857768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective The second messenger inositol triphosphate (IP3) is involved in
signal transduction in multiple cell types. We evaluated the
effects of high-dose levocetirizine on chronic spontaneous
urticaria (CSU) and examined the significance of serum IP3 level
in the pathogenesis of CSU. Methods Fifteen patients with refractory CSU were given oral levocetirizine
at a dose of 15 mg once daily for 7 days, and treatment efficacy
was determined using the Urticaria Activity Score and by
evaluating wheal-and-erythema reactions and itching. The serum
concentration of IP3 at specific time points was determined by
enzyme-linked immunosorbent assay. Results The mean serum concentration of IP3 was 43.54 ± 41.97 pg/mL prior
to treatment, 18.40 ± 17.53 pg/mL after treatment, and
1.31 ± 0.92 pg/mL in a healthy control group. The mean
concentration of IP3 was significantly higher before treatment
than after treatment, and the level of IP3 in the patient group
before and after treatment was significantly higher than that in
the control group. Conclusion High-dose levocetirizine was shown to be effective in the treatment
of CSU. The level of serum IP3 was positively correlated with
CSU activity, indicating that IP3 may play an important role in
the pathogenesis of this condition.
Collapse
Affiliation(s)
- Xianqiong Huang
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Zhaoyang Li
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Renshan Sun
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
36
|
Laforgia M, Marech I, Nardulli P, Calabrò C, Gadaleta CD, Ranieri G. An evaluation of masitinib for treating systemic mastocytosis. Expert Opin Pharmacother 2019; 20:1539-1550. [PMID: 31381378 DOI: 10.1080/14656566.2019.1645121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Systemic Mastocytosis (SM) is a complex family of rare diseases, against which pharmacological therapies are still very few. It is a c-kit driven disease, whose disregulation leads to uncontrolled activation and proliferation of mast cells (MCs) with consequent release of effector molecules which are responsible for its clinical manifestations. Areas covered: Masitinib is a relatively new potential drug against SM and its chemical structure strictly derives from imatinib, the first tyrosine kinase inhibitor which entered the pharmaceutical market about 15 years ago. In this review, the authors present masitinib in all its properties, from chemistry to pharmacology and toxicity to its potential clinical application in SM, focusing the discussion on the few clinical trials in which it has been involved, with a particular attention on the still open challenge to determine how to measure the response to therapy. Expert opinion: In spite of their similarity in chemistry and biological activity against submolecular targets, masitinib is much more selective towards c-kit receptors than other tyrosine kinases, such as Bcl-Abl. Furthermore, its ability to inhibit degranulation, cytokine production and MCs migration from bone marrow gives it a great chance to become an important therapeutic option for selected SM patients.
Collapse
Affiliation(s)
| | - Ilaria Marech
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori "G. Paolo II" , Bari , Italy
| | | | - Concetta Calabrò
- Pharmacy Unit, IRCCS Istituto Tumori "G. Paolo II" , Bari , Italy
| | - Cosimo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori "G. Paolo II" , Bari , Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori "G. Paolo II" , Bari , Italy
| |
Collapse
|
37
|
Dhakal H, Lee S, Kim EN, Choi JK, Kim MJ, Kang J, Choi YA, Baek MC, Lee B, Lee HS, Shin TY, Jeong GS, Kim SH. Gomisin M2 Inhibits Mast Cell-Mediated Allergic Inflammation via Attenuation of FcεRI-Mediated Lyn and Fyn Activation and Intracellular Calcium Levels. Front Pharmacol 2019; 10:869. [PMID: 31427975 PMCID: PMC6688163 DOI: 10.3389/fphar.2019.00869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mast cells are effector cells that induce allergic inflammation by secreting inflammatory mediators. Gomisin M2 (G.M2) is a lignan isolated from Schisandra chinensis (Turcz). Baill. exhibiting anti-cancer activities. We aimed to investigate the anti-allergic effects and the underlying mechanism of G.M2 in mast cell–mediated allergic inflammation. For the in vitro study, we used mouse bone marrow–derived mast cells, RBL-2H3, and rat peritoneal mast cells. G.M2 inhibited mast cell degranulation upon immunoglobulin E (IgE) stimulation by suppressing the intracellular calcium. In addition, G.M2 inhibited the secretion of pro-inflammatory cytokines. These inhibitory effects were dependent on the suppression of FcεRI-mediated activation of signaling molecules. To confirm the anti-allergic effects of G.M2 in vivo, IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models were utilized. Oral administration of G.M2 suppressed the PCA reactions in a dose-dependent manner. In addition, G.M2 reduced the ASA reactions, including hypothermia, histamine, interleukin-4, and IgE production. In conclusion, G.M2 exhibits anti-allergic effects through suppression of the Lyn and Fyn pathways in mast cells. According to these findings, we suggest that G.M2 has potential as a therapeutic agent for the treatment of allergic inflammatory diseases via suppression of mast cell activation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jinjoo Kang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun-Shik Lee
- School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, South Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
38
|
Qian F, Zhang L, Lu S, Mao G, Guo F, Liu P, Xu J, Li Y. Scrodentoid A Inhibits Mast Cell-Mediated Allergic Response by Blocking the Lyn-FcεRIβ Interaction. Front Immunol 2019; 10:1103. [PMID: 31156646 PMCID: PMC6532554 DOI: 10.3389/fimmu.2019.01103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Mast cells are considered an attractive therapeutic target for treating allergic diseases, and the Lyn–FcεRIβ interaction is essential for mast cell activation. This study investigated the antiallergic effect of scrodentoid A (SA) on mast cells and mast cell–mediated anaphylaxis. Methods: For in vitro experiments, mast cells were treated with SA. Cell proliferation was tested using the XTT assay. The mRNA expression of various cytokines and chemokines was measured using qPCR. The levels of histamine, eicosanoids (PGD2, LTC4), and cytokines were measured using enzyme immunoassay kits. Signaling was investigated using Western blotting and immunoprecipitation. For in vivo experiments, the antiallergic activity of SA was evaluated using two mouse models of passive anaphylaxis as passive cutaneous and systemic anaphylaxis. The mechanism was investigated through immunohistochemistry and immunofluorescence. Results: SA considerably inhibited immunoglobulin (Ig) E-mediated mast cell activation, including β-hexosaminidase release, mRNA and protein expression of various cytokines, and PGD2 and LTC4 release. Oral administration of SA effectively and dose-dependently suppressed mast cell–mediated passive cutaneous and systemic anaphylaxis. SA significantly attenuated the activation of Lyn, Syk, LAT, PLCγ, JNK, Erk1/2, and Ca2+ mobilization without Fyn, Akt, and P38 activation by blocking the Lyn–FcεRIβ interaction. Conclusions: SA suppresses mast cell–mediated allergic response by blocking the Lyn–FcεRIβ interaction in vitro and in vivo. SA may be a promising therapeutic agent for allergic and other mast cell–related diseases.
Collapse
Affiliation(s)
- Fei Qian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaodong Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaohui Mao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinwen Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Park YH, Kim HW, Kim HS, Nam ST, Lee D, Lee MB, Min KY, Koo J, Kim SJ, Kim YM, Kim HS, Choi WS. An Anti-Cancer Drug Candidate CYC116 Suppresses Type I Hypersensitive Immune Responses through the Inhibition of Fyn Kinase in Mast Cells. Biomol Ther (Seoul) 2019; 27:311-317. [PMID: 30332888 PMCID: PMC6513188 DOI: 10.4062/biomolther.2018.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023] Open
Abstract
Mast cells are the most prominent effector cells of Type 1 hypersensitivity immune responses. CYC116 [4-(2-amino-4-methyl-1,3-thiazol-5-yl)-N-[4-(morpholin-4-yl)phenyl] pyrimidin-2-amine] is under development to be used as an anti-cancer drug, but the inhibitory effects of CYC116 on the activation of mast cells and related allergy diseases have not reported as of yet. In this study, we demonstrated, for the first time, that CYC116 inhibited the degranulation of mast cells by antigen stimulation (IC50, ∼1.42 µM). CYC116 also inhibited the secretion of pro-inflammatory cytokines including TNF-α (IC50, ∼1.10 µM), and IL-6 (IC50, ∼1.24 µM). CYC116 inhibited the mast cell-mediated allergic responses, passive cutaneous anaphylaxis (ED50, ∼22.5 mg/kg), and passive systemic anaphylaxis in a dose-dependent manner in laboratory experiments performed on mice. Specifically, CYC116 inhibited the activity of Fyn in mast cells and inhibited the activation of Syk and Syk-dependent signaling proteins including LAT, PLCγ, Akt, and MAP kinases. Our results suggest that CYC116 could be used as an alternative therapeutic medication for mast cell-mediated allergic disorders, such as atopic dermatitis and allergic rhinitis.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyun Woo Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung Taek Nam
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jimo Koo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Su Jeong Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
40
|
Hada M, Nishi K, Ishida M, Onda H, Nishimoto S, Sugahara T. Inhibitory effect of aqueous extract of Cuminum cyminum L. seed on degranulation of RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. Cytotechnology 2019; 71:599-609. [PMID: 30905011 DOI: 10.1007/s10616-019-00309-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Cuminum cyminum L. (cumin) seed is used as a spice in various countries. Although several functions of the components in cumin seed have been reported, the anti-allergic effect of the water-soluble component in cumin seed has not been reported yet. In this study, we focused on the suppressive effect of cumin seed aqueous extract on degranulation in order to reveal the anti-allergic effect of cumin. Cumin seed aqueous extract significantly suppressed the antigen-induced degranulation of rat basophilic leukemia cell line RBL-2H3 cells in a dose-dependent manner without cytotoxicity. The extract also inhibited the elevation of the intracellular calcium ion concentration induced by antigen. Immunoblot analysis revealed that the extract suppresses phosphorylation of phosphatidylinositol 3-kinase, Bruton's tyrosine kinase, phospholipase C-γ1/2, and Akt in the signaling pathways activated by antigen induction via FcεRI. Furthermore, the extract suppressed microtubule formation induced by antigen. In addition, oral administration of cumin seed aqueous extract significantly suppressed the passive cutaneous anaphylaxis reaction in BALB/c mice. Our findings suggest that cumin seed contains water-soluble components with the anti-allergic effect. Therefore, cumin seed has potential as anti-allergic functional food.
Collapse
Affiliation(s)
- Makoto Hada
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Kosuke Nishi
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan.,Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Momoko Ishida
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Hiroyuki Onda
- Central Research Institute, S&B Foods Incorporated, Itabashi-ku, Tokyo, 174-8651, Japan
| | - Sogo Nishimoto
- Department of Food Science, Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Takuya Sugahara
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan. .,Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
41
|
Gomez G. Current Strategies to Inhibit High Affinity FcεRI-Mediated Signaling for the Treatment of Allergic Disease. Front Immunol 2019; 10:175. [PMID: 30792720 PMCID: PMC6374298 DOI: 10.3389/fimmu.2019.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Allergies and asthma are a major cause of chronic disease whose prevalence has been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria, anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells and circulating basophils. Although these cells can be activated in different ways, allergic reactions are normally associated with the crosslinking of the high affinity Fc receptor for Immunoglobulin E, FcεRI, with multivalent antigen. Inflammatory mediators released from cytoplasmic granules, or biosynthesized de novo, following FcεRI crosslinking induce immediate hypersensitivity reactions, including life-threatening anaphylaxis, and contribute to prolonged inflammation leading to chronic diseases like asthma. Thus, inappropriate or unregulated activation of mast cells and basophils through antigenic crosslinking of FcεRI can have deleterious, sometimes deadly, consequences. Accordingly, FcεRI has emerged as a viable target for the development of biologics that act to inhibit or attenuate the activation of mast cells and basophils. At the forefront of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which has the secondary effect of reducing FcεRI surface expression, (2) Designed Ankyrin Repeat Proteins (DARPins), which take advantage of the most common structural motifs in nature involved in protein-protein interactions, to inhibit FcεRI-IgE interactions, and (3) Fusion proteins to co-aggregate FcεRI with the inhibitory FcγRIIb. This review presents the published research studies that support omalizumab, DARPins, and fusion proteins as, arguably, the three most currently viable strategies for inhibiting the expression and activation of the high affinity FcεRI on mast cells and basophils.
Collapse
Affiliation(s)
- Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
42
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
43
|
Potuckova L, Draberova L, Halova I, Paulenda T, Draber P. Positive and Negative Regulatory Roles of C-Terminal Src Kinase (CSK) in FcεRI-Mediated Mast Cell Activation, Independent of the Transmembrane Adaptor PAG/CSK-Binding Protein. Front Immunol 2018; 9:1771. [PMID: 30116247 PMCID: PMC6082945 DOI: 10.3389/fimmu.2018.01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/17/2018] [Indexed: 01/21/2023] Open
Abstract
C-terminal Src kinase (CSK) is a major negative regulator of Src family tyrosine kinases (SFKs) that play critical roles in immunoreceptor signaling. CSK is brought in contiguity to the plasma membrane-bound SFKs via binding to transmembrane adaptor PAG, also known as CSK-binding protein. The recent finding that PAG can function as a positive regulator of the high-affinity IgE receptor (FcεRI)-mediated mast cell signaling suggested that PAG and CSK have some non-overlapping regulatory functions in mast cell activation. To determine the regulatory roles of CSK in FcεRI signaling, we derived bone marrow-derived mast cells (BMMCs) with reduced or enhanced expression of CSK from wild-type (WT) or PAG knockout (KO) mice and analyzed their FcεRI-mediated activation events. We found that in contrast to PAG-KO cells, antigen-activated BMMCs with CSK knockdown (KD) exhibited significantly higher degranulation, calcium response, and tyrosine phosphorylation of FcεRI, SYK, and phospholipase C. Interestingly, FcεRI-mediated events in BMMCs with PAG-KO were restored upon CSK silencing. BMMCs with CSK-KD/PAG-KO resembled BMMCs with CSK-KD alone. Unexpectedly, cells with CSK-KD showed reduced kinase activity of LYN and decreased phosphorylation of transcription factor STAT5. This was accompanied by impaired production of proinflammatory cytokines and chemokines in antigen-activated cells. In line with this, BMMCs with CSK-KD exhibited enhanced phosphorylation of protein phosphatase SHP-1, which provides a negative feedback loop for regulating phosphorylation of STAT5 and LYN kinase activity. Furthermore, we found that in WT BMMCs SHP-1 forms complexes containing LYN, CSK, and STAT5. Altogether, our data demonstrate that in FcεRI-activated mast cells CSK is a negative regulator of degranulation and chemotaxis, but a positive regulator of adhesion to fibronectin and production of proinflammatory cytokines. Some of these pathways are not dependent on the presence of PAG.
Collapse
Affiliation(s)
- Lucie Potuckova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Tomas Paulenda
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
44
|
Park YH, Kim DK, Kim HW, Kim HS, Lee D, Lee MB, Min KY, Koo J, Kim SJ, Kang C, Kim YM, Kim HS, Choi WS. Repositioning of anti-cancer drug candidate, AZD7762, to an anti-allergic drug suppressing IgE-mediated mast cells and allergic responses via the inhibition of Lyn and Fyn. Biochem Pharmacol 2018; 154:270-277. [PMID: 29777684 DOI: 10.1016/j.bcp.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 01/26/2023]
Abstract
Mast cells are critical effector cells in IgE-mediated allergic responses. The aim of this study was to investigate the anti-allergic effects of 3-[(aminocarbonyl)amino]-5-(3-fluorophenyl)-N-(3S)-3-piperidinyl-2-thiophenecarboxamide (AZD7762) in vitro and in vivo. AZD7762 inhibited the antigen-stimulated degranulation from RBL-2H3 (IC50, ∼27.9 nM) and BMMCs (IC50, ∼99.3 nM) in a dose-dependent manner. AZD7762 also inhibited the production of TNF-α and IL-4. As the mechanism of its action, AZD7762 inhibited the activation of Syk and its downstream signaling proteins, such as Linker of activated T cells (LAT), phospholipase (PL) Cγ1, Akt, and mitogen-activated protein (MAP) kinases (Erk1/2, p38, and JNK) in mast cells. In in vitro protein kinase assay, AZD7762 inhibited the activity of Lyn and Fyn kinases, which are important for the activation of Syk in mast cells. Furthermore, AZD7762 also suppressed the degranulation of LAD2 human mast cells (IC50, ∼49.9 nM) and activation of Syk in a dose-dependent manner. As observed in experiments with mast cells in vitro, AZD7762 inhibited antigen-mediated passive cutaneous anaphylaxis in mice (ED50, ∼35.8 mg/kg). Altogether, these results suggest that AZD7762 could be used as a new therapeutic agent for mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Hyun Woo Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jimo Koo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Su Jeong Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Changhee Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
45
|
Bais S, Kumari R, Prashar Y, Gill NS. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes Metab Syndr 2017; 11 Suppl 2:S1001-S1007. [PMID: 28778429 DOI: 10.1016/j.dsx.2017.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 01/02/2023]
Abstract
Mast cells are stimulatory factors in prognosis of various immunogenic and allergic diseases in human body. These cells play an important role in various immunological and metabolic diseases. The aim of present article is to explore the molecular targets to suppress the over expression of mast cells in obesity. The last 20 years literature were searched by various bibliographic data bases like Pubmed, google Scholar, Scopus and web of Science. The data were collected by keywords like "Mast Cell" "obesity" and "role of mast cell or role in obesity". Articles and their abstract were reviewed with a counting of 827 publications, in which 87 publications were considered for study and remaining was excluded because of its specificity to the subject. This review explains the characteristics, molecular targets and role of mast cells in obesity and existing research with mast cells to the area of metabolic diseases.
Collapse
Affiliation(s)
- Souravh Bais
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India.
| | - Reena Kumari
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - Yash Prashar
- Department of Pharmacology, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| | - N S Gill
- Department of Pharmaceutical Chemistry, Rayat Institute of Pharmacy, Railmajra, SBS Nagar District, Punjab 144506, India
| |
Collapse
|
46
|
Kim DK, Beaven MA, Metcalfe DD, Olivera A. Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. J Allergy Clin Immunol 2017; 142:195-206.e8. [PMID: 29031599 DOI: 10.1016/j.jaci.2017.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/28/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND DJ-1 is a redox-sensitive protein with multiple roles in cell homeostasis, levels of which are altered in patients with mast cell (MC)-related disorders. However, whether DJ-1 can regulate human MC function is unknown. OBJECTIVE We sought to investigate the potential role of DJ-1 in the responses of human MCs to antigen stimulation. METHODS DJ-1 was silenced in human CD34+-derived MCs and in the LAD2 MC line by using lentiviral short hairpin RNA constructs. Release of β-hexosaminidase, prostaglandin D2, and GM-CSF and changes in reactive oxygen species levels were measured after FcεRI engagement. Enzymatic assays, sucrose density gradient centrifugation, immunoprecipitation, dot and Western blotting, and confocal imaging were performed for signaling, cellular localization, and coassociation studies. RESULTS DJ-1 knockdown substantially reduced mediator release, as well as Lyn kinase and spleen tyrosine kinase activation and signaling through mechanisms that appeared largely unrelated to DJ-1 antioxidant activity. Following FcεRI activation, nonoxidized rather than oxidized DJ-1 translocated to lipid rafts, where it associated with Lyn, an interaction that appeared critical for maximal Lyn activation and initiation of signaling. Using purified recombinant proteins, we demonstrated that DJ-1 directly bound to Lyn but not to other Src kinases, and this interaction was specific for human but not mouse proteins. In addition, DJ-1 reduced Src homology 2 domain-containing phosphatase 2 phosphatase activity by scavenging reactive oxygen species, thus preventing spleen tyrosine kinase dephosphorylation and perpetuating MC signaling. CONCLUSION We demonstrate a novel role for DJ-1 in the early activation of Lyn by FcεRI, which is essential for human MC responses and provides the basis for an alternative target in allergic disease therapy.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Md.
| |
Collapse
|
47
|
Jiang JZ, Ye J, Jin GY, Piao HM, Cui H, Zheng MY, Yang JS, Che N, Choi YH, Li LC, Yan GH. Asiaticoside Mitigates the Allergic Inflammation by Abrogating the Degranulation of Mast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8128-8135. [PMID: 28891650 DOI: 10.1021/acs.jafc.7b01590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of asiaticoside (AS) on allergic responses mediated by mast cells were investigated. AS showed no obvious cytotoxicity on RPMCs (rat peritoneal mast cells). AS reduced the intracellular calcium in RPMCs and deprived the histamine release and degranulation. AS also decreased the generation of antigen-induced tumor necrosis factor α, interleukin (IL)-4, IL-8, and IL-1β in RBL-2H3 cells sensitized by IgE. The suppression of AS on pro-inflammatory cytokines was related with the activation of the intracellular FcεRI and the inhibition of the nuclear factor-κB signaling pathway. In addition, AS disabled the phosphorylation of antigen-induced Syk, Lyn, Gab2, and PLCγ1, thus suppressing the downstream Akt phosphorylation and MAPKs pathways. It also increased HO-1 and Nrf2 expression time dependently. In summary, we demonstrate that AS suppresses the allergic inflammation mediated by mast cells and this effect might be mediated by FcεRI-dependent signaling pathways.
Collapse
Affiliation(s)
- Jing Zhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Jing Ye
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Yu Jin
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Mei Piao
- Department of Respiratory Medicine, Yanbian University Hospital , Yanji 133000, Jilin China
| | - Hong Cui
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Ming Yu Zheng
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Jin Shi Yang
- College of Pharmacy, Yanbian University , Yanji 133002, Jilin, China
| | - Nan Che
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Yun Ho Choi
- Department of Anatomy, Medical School of Institute of Medical Sciences, Chonbuk National University , Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Liang Chang Li
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| | - Guang Hai Yan
- Department of Anatomy, Histology and Embryology, Medical College of Yanbian University , Yanji 133002, Jilin, China
| |
Collapse
|
48
|
Mkaddem SB, Murua A, Flament H, Titeca-Beauport D, Bounaix C, Danelli L, Launay P, Benhamou M, Blank U, Daugas E, Charles N, Monteiro RC. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat Commun 2017; 8:246. [PMID: 28811476 PMCID: PMC5557797 DOI: 10.1038/s41467-017-00294-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoreceptors can transduce either inhibitory or activatory signals depending on ligand avidity and phosphorylation status, which is modulated by the protein kinases Lyn and Fyn. Here we show that Lyn and Fyn control immune receptor signaling status. SHP-1 tyrosine 536 phosphorylation by Lyn activates the phosphatase promoting inhibitory signaling through the immunoreceptor. By contrast, Fyn-dependent phosphorylation of SHP-1 serine 591 inactivates the phosphatase, enabling activatory immunoreceptor signaling. These SHP-1 signatures are relevant in vivo, as Lyn deficiency exacerbates nephritis and arthritis in mice, whereas Fyn deficiency is protective. Similarly, Fyn-activating signature is detected in patients with lupus nephritis, underlining the importance of this Lyn-Fyn balance. These data show how receptors discriminate negative from positive signals that respectively result in homeostatic or inflammatory conditions.Src-family kinases Fyn and Lyn are signaling components downstream of ITAM-bearing antigen receptors. Here the authors show that by phosphorylating SHP-1 at different residues, Lyn and Fyn can have opposing regulatory effects on ITAM receptors.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.
- CNRS ERL8252, Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
| | - Amaya Murua
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Héloise Flament
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France
| | - Dimitri Titeca-Beauport
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Carine Bounaix
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Luca Danelli
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Pierre Launay
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Marc Benhamou
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Ulrich Blank
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Eric Daugas
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
- Service de Néphrologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Charles
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Renato C Monteiro
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.
- CNRS ERL8252, Paris, France.
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
- Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France.
| |
Collapse
|
49
|
Ramírez-Valadez KA, Vázquez-Victorio G, Macías-Silva M, González-Espinosa C. Fyn kinase mediates cortical actin ring depolymerization required for mast cell migration in response to TGF-β in mice. Eur J Immunol 2017; 47:1305-1316. [PMID: 28586109 DOI: 10.1002/eji.201646876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/13/2017] [Accepted: 06/03/2017] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent mast cell (MC) chemoattractant able to modulate local inflammatory reactions. The molecular mechanism leading to TGF-β-directed MC migration is not fully described. Here we analyzed the role of the Src family protein kinase Fyn on the main TGF-β-induced cytoskeletal changes leading to MC migration. Utilizing bone marrow-derived mast cells (BMMCs) from WT and Fyn-deficient mice we found that BMMC migration to TGF-β was impaired in the absence of the kinase. TGF-β caused depolymerization of the cortical actin ring and changes on the phosphorylation of cofilin, LIMK and CAMKII only in WT cells. Defective cofilin activation and phosphorylation of regulatory proteins was detected in Fyn-deficient BMMCs and this finding correlated with a lower activity of the catalytic subunit of the phosphatase PP2A. Diminished TGF-β-induced chemotaxis of Fyn-deficient cells was also observed in an in vivo model of MC migration (bleomycin-induced scleroderma). Our results show that Fyn kinase is an important positive effector of TGF-β-induced chemotaxis through the control of PP2A activity and this is relevant to pathological processes that are related to TGF-β-dependent mast cell migration.
Collapse
Affiliation(s)
- Karla A Ramírez-Valadez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, México
| | - Genaro Vázquez-Victorio
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Marina Macías-Silva
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | | |
Collapse
|
50
|
Ascensión AM, Arrospide-Elgarresta M, Izeta A, Araúzo-Bravo MJ. NaviSE: superenhancer navigator integrating epigenomics signal algebra. BMC Bioinformatics 2017; 18:296. [PMID: 28587674 PMCID: PMC5461685 DOI: 10.1186/s12859-017-1698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. Results We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an ‘epigenomics signal algebra’ that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2 and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes. Conclusions NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation, requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are available at: https://sourceforge.net/projects/navise-superenhancer/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Mikel Arrospide-Elgarresta
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|