1
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
2
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
3
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
4
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Ghosh S, Sharma R, Bammidi S, Koontz V, Nemani M, Yazdankhah M, Kedziora KM, Stolz DB, Wallace CT, Yu-Wei C, Franks J, Bose D, Shang P, Ambrosino HM, Dutton JR, Geng Z, Montford J, Ryu J, Rajasundaram D, Hose S, Sahel JA, Puertollano R, Finkel T, Zigler JS, Sergeev Y, Watkins SC, Goetzman ES, Ferrington DA, Flores-Bellver M, Kaarniranta K, Sodhi A, Bharti K, Handa JT, Sinha D. The AKT2/SIRT5/TFEB pathway as a potential therapeutic target in non-neovascular AMD. Nat Commun 2024; 15:6150. [PMID: 39034314 PMCID: PMC11271488 DOI: 10.1038/s41467-024-50500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Non-neovascular or dry age-related macular degeneration (AMD) is a multi-factorial disease with degeneration of the aging retinal-pigmented epithelium (RPE). Lysosomes play a crucial role in RPE health via phagocytosis and autophagy, which are regulated by transcription factor EB/E3 (TFEB/E3). Here, we find that increased AKT2 inhibits PGC-1α to downregulate SIRT5, which we identify as an AKT2 binding partner. Crosstalk between SIRT5 and AKT2 facilitates TFEB-dependent lysosomal function in the RPE. AKT2/SIRT5/TFEB pathway inhibition in the RPE induced lysosome/autophagy signaling abnormalities, disrupted mitochondrial function and induced release of debris contributing to drusen. Accordingly, AKT2 overexpression in the RPE caused a dry AMD-like phenotype in aging Akt2 KI mice, as evident from decline in retinal function. Importantly, we show that induced pluripotent stem cell-derived RPE encoding the major risk variant associated with AMD (complement factor H; CFH Y402H) express increased AKT2, impairing TFEB/TFE3-dependent lysosomal function. Collectively, these findings suggest that targeting the AKT2/SIRT5/TFEB pathway may be an effective therapy to delay the progression of dry AMD.
Collapse
Affiliation(s)
- Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victoria Koontz
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mihir Nemani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna Beer Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cheng Yu-Wei
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Zhaohui Geng
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jair Montford
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiwon Ryu
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuri Sergeev
- Protein Biochemistry & Molecular Modeling Group, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deborah A Ferrington
- Doheny Eye Institute, Pasadena, CA, USA
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA, USA
| | - Miguel Flores-Bellver
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Akrit Sodhi
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Li Q, Peng G, Liu H, Wang L, Lu R, Li L. Molecular mechanisms of secretory autophagy and its potential role in diseases. Life Sci 2024; 347:122653. [PMID: 38663839 DOI: 10.1016/j.lfs.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.
Collapse
Affiliation(s)
- Qin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Guolong Peng
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Liwen Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China
| | - Ruirui Lu
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
7
|
Han D, Chang X, Xu D, Shen J, Fan A, Wang M, Li D, Chen X, Wang C, Wu Y, Yang Z, Li J, Wang S. Yi-Qi-Huo-Xue decoction alleviates intracerebral hemorrhage injury through inhibiting neuronal autophagy of ipsilateral cortex via BDNF/TrkB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155438. [PMID: 38537443 DOI: 10.1016/j.phymed.2024.155438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Yi-Qi-Huo-Xue Decoction (YQHXD), a traditional Chinese medicine formula, has demonstrated efficacy in the clinical treatment of intracerebral hemorrhage (ICH) for over a decade. Nevertheless, the precise pharmacotherapeutic compounds of YQHXD capable of penetrating into cerebral tissue and the pharmacological underpinnings of YQHXD remain ambiguous. METHODS The active components of YQHXD in rat brains was analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The potential targets, pathways and biological progresses of YQHXD ameliorating ICH induced injury was predicted by network pharmacology. Moreover, collagenase-induced ICH rat model, primary cortex neurons exposed to hemin and molecular docking were applied to validate the molecular mechanisms of YQHXD. RESULTS Eleven active components of YQHXD were identified within the brains. Employing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, our investigation concentrated on the roles of autophagy and the BDNF/TrkB signaling pathway in the pharmacological context. The pharmacological results revealed that YQHXD alleviated neurological dysfunction, brain water content, brain swelling, and pathological injury caused by ICH. Meanwhile, YQHXD inhibited autophagy influx and autophagosome in vivo, and regulated cortex neuronal autophagy and TrkB/BDNF pathway both in vivo and in vitro. Subsequently, N-acetyl serotonin (NAS), a selective TrkB agonist, was employed to corroborate the significance of the BDNF/TrkB pathway in this process. The combination of NAS and YQHXD did not further enhance the protective efficacy of YQHXD in ICH rats. Additionally, outcomes of molecular docking analysis revealed that nine compounds of YQHXD exhibited potential regulatory effects on TrkB. CONCLUSIONS Ipsilateral neuronal autophagy and BDNF/TrkB pathway were activated 72 h after ICH. YQHXD effectively resisted injury induced by ICH, which was related with suppression of ipsilateral neuronal autophagy via BDNF/TrkB pathway. This study provides novel insights into the therapeutic mechanisms of traditional Chinese medicine in the context of ICH treatment.
Collapse
Affiliation(s)
- Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Xinyue Chang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210000, Jiangsu, China
| | - Dan Xu
- Zonhon Biopharma Institute, inc., 518 Yunhe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Jizhong Shen
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Ali Fan
- TriApex Laboratories Co., Ltd, 9 Xinglong Road, Jiangbei District, Nanjing, 210000, Jiangsu, China
| | - Meihua Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Dingran Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210000, Jiangsu, China
| | - Xiangkai Chen
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210000, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, 21 Gehuzhong Road, Wujin District, Changzhou, 213000, Jiangsu, China
| | - Yi Wu
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, 210000, Jiangsu, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Gulou District, Nanjing, 210000, Jiangsu, China
| | - Jian Li
- Department of Neurosurgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, 210000, Jiangsu, China.
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China; Nanjing Medical Center for Clinical Pharmacy, 321 Zhongshan Road, Gulou District, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
8
|
Chang YC, Gao Y, Lee JY, Peng YJ, Langen J, Chang KT. Identification of secretory autophagy as a mechanism modulating activity-induced synaptic remodeling. Proc Natl Acad Sci U S A 2024; 121:e2315958121. [PMID: 38588427 PMCID: PMC11032469 DOI: 10.1073/pnas.2315958121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/10/2024] Open
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.
Collapse
Affiliation(s)
- Yen-Ching Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yuan Gao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Joo Yeun Lee
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Yi-Jheng Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Jennifer Langen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| |
Collapse
|
9
|
Tsimpolis A, Kalafatakis K, Charalampopoulos I. Recent advances in the crosstalk between the brain-derived neurotrophic factor and glucocorticoids. Front Endocrinol (Lausanne) 2024; 15:1362573. [PMID: 38645426 PMCID: PMC11027069 DOI: 10.3389/fendo.2024.1362573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key neurotrophin within the brain, by selectively activating the TrkB receptor, exerts multimodal effects on neurodevelopment, synaptic plasticity, cellular integrity and neural network dynamics. In parallel, glucocorticoids (GCs), vital steroid hormones, which are secreted by adrenal glands and rapidly diffused across the mammalian body (including the brain), activate two different groups of intracellular receptors, the mineralocorticoid and the glucocorticoid receptors, modulating a wide range of genomic, epigenomic and postgenomic events, also expressed in the neural tissue and implicated in neurodevelopment, synaptic plasticity, cellular homeostasis, cognitive and emotional processing. Recent research evidences indicate that these two major regulatory systems interact at various levels: they share common intracellular downstream pathways, GCs differentially regulate BDNF expression, under certain conditions BDNF antagonises the GC-induced effects on long-term potentiation, neuritic outgrowth and cellular death, while GCs regulate the intraneuronal transportation and the lysosomal degradation of BDNF. Currently, the BDNF-GC crosstalk features have been mainly studied in neurons, although initial findings show that this crosstalk could be equally important for other brain cell types, such as astrocytes. Elucidating the precise neurobiological significance of BDNF-GC interactions in a tempospatial manner, is crucial for understanding the subtleties of brain function and dysfunction, with implications for neurodegenerative and neuroinflammatory diseases, mood disorders and cognitive enhancement strategies.
Collapse
Affiliation(s)
- Alexandros Tsimpolis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Konstantinos Kalafatakis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Faculty of Medicine and Dentistry (Malta Campus), Queen Mary University of London, Victoria, Malta
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
10
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Hartmann J, Bajaj T, Otten J, Klengel C, Ebert T, Gellner AK, Junglas E, Hafner K, Anderzhanova EA, Tang F, Missig G, Rexrode L, Trussell DT, Li KX, Pöhlmann ML, Mackert S, Geiger TM, Heinz DE, Lardenoije R, Dedic N, McCullough KM, Próchnicki T, Rhomberg T, Martinelli S, Payton A, Robinson AC, Stein V, Latz E, Carlezon WA, Hausch F, Schmidt MV, Murgatroyd C, Berretta S, Klengel T, Pantazopoulos H, Ressler KJ, Gassen NC. SKA2 regulated hyperactive secretory autophagy drives neuroinflammation-induced neurodegeneration. Nat Commun 2024; 15:2635. [PMID: 38528004 PMCID: PMC10963788 DOI: 10.1038/s41467-024-46953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
High levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. Here we show that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function. Hippocampal Ska2 knockdown in male mice hyperactivates SA resulting in neuroinflammation, subsequent neurodegeneration and complete hippocampal atrophy within six weeks. The hyperactivation of SA increases IL-1β release, contributing to an inflammatory feed-forward vicious cycle including NLRP3-inflammasome activation and Gasdermin D-mediated neurotoxicity, which ultimately drives neurodegeneration. Results from protein expression and co-immunoprecipitation analyses of male and female postmortem human brains demonstrate that SA is hyperactivated in Alzheimer's disease. Overall, our findings suggest that SKA2-regulated, hyperactive SA facilitates neuroinflammation and is linked to Alzheimer's disease, providing mechanistic insight into the biology of neuroinflammation.
Collapse
Affiliation(s)
- Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Joy Otten
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Claudia Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Ellen Junglas
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Elmira A Anderzhanova
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Fiona Tang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Galen Missig
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Lindsay Rexrode
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Daniel T Trussell
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Katelyn X Li
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Max L Pöhlmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Sarah Mackert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
| | - Thomas M Geiger
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Roy Lardenoije
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nina Dedic
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Kenneth M McCullough
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
| | - Thomas Rhomberg
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Antony Payton
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, M6 8HD, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, 53127, Bonn, Germany
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), 10117, Berlin, Germany
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Sabina Berretta
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
| | - Torsten Klengel
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Harry Pantazopoulos
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, 02478, USA.
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, 53127, Bonn, Germany.
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany.
| |
Collapse
|
12
|
Zubkova E, Kalinin A, Bolotskaya A, Beloglazova I, Menshikov M. Autophagy-Dependent Secretion: Crosstalk between Autophagy and Exosome Biogenesis. Curr Issues Mol Biol 2024; 46:2209-2235. [PMID: 38534758 DOI: 10.3390/cimb46030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
The cellular secretome is pivotal in mediating intercellular communication and coordinating responses to stressors. Exosomes, initially recognized for their role in waste disposal, have now emerged as key intercellular messengers with significant therapeutic and diagnostic potential. Similarly, autophagy has transcended its traditional role as a waste removal mechanism, emerging as a regulator of intracellular communication pathways and a contributor to a unique autophagy-dependent secretome. Secretory authophagy, initiated by various stress stimuli, prompts the selective release of proteins implicated in inflammation, including leaderless proteins that bypass the conventional endoplasmic reticulum-Golgi secretory pathway. This reflects the significant impact of stress-induced autophagy on cellular secretion profiles, including the modulation of exosome release. The convergence of exosome biogenesis and autophagy is exemplified by the formation of amphisomes, vesicles that integrate autophagic and endosomal pathways, indicating their synergistic interplay. Regulatory proteins common to both pathways, particularly mTORC1, emerge as potential therapeutic targets to alter cellular secretion profiles involved in various diseases. This review explores the dynamic interplay between autophagy and exosome formation, highlighting the potential to influence the secretome composition. While the modulation of exosome secretion and cytokine preconditioning is well-established in regenerative medicine, the strategic manipulation of autophagy is still underexplored, presenting a promising but uncharted therapeutic landscape.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasya Bolotskaya
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
- Institute of Clinical Medicine, Sechenov University, 119435 Moscow, Russia
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia
| |
Collapse
|
13
|
AlRuwaili R, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GES. The Possible Role of Brain-derived Neurotrophic Factor in Epilepsy. Neurochem Res 2024; 49:533-547. [PMID: 38006577 PMCID: PMC10884085 DOI: 10.1007/s11064-023-04064-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Epilepsy is a neurological disease characterized by repeated seizures. Despite of that the brain-derived neurotrophic factor (BDNF) is implicated in the pathogenesis of epileptogenesis and epilepsy, BDNF may have a neuroprotective effect against epilepsy. Thus, the goal of the present review was to highlight the protective and detrimental roles of BDNF in epilepsy. In this review, we also try to find the relation of BDNF with other signaling pathways and cellular processes including autophagy, mTOR pathway, progranulin (PGN), and α-Synuclein (α-Syn) which negatively and positively regulate BDNF/tyrosine kinase receptor B (TrkB) signaling pathway. Therefore, the assessment of BDNF levels in epilepsy should be related to other neuronal signaling pathways and types of epilepsy in both preclinical and clinical studies. In conclusion, there is a strong controversy concerning the potential role of BDNF in epilepsy. Therefore, preclinical, molecular, and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
14
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
15
|
Lv S, Zhang G, Huang Y, Li J, Yang N, Lu Y, Ma H, Ma Y, Teng J. Antidepressant pharmacological mechanisms: focusing on the regulation of autophagy. Front Pharmacol 2023; 14:1287234. [PMID: 38026940 PMCID: PMC10665873 DOI: 10.3389/fphar.2023.1287234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The core symptoms of depression are anhedonia and persistent hopelessness. Selective serotonin reuptake inhibitors (SSRIs) and their related medications are commonly used for clinical treatment, despite their significant adverse effects. Traditional Chinese medicine with its multiple targets, channels, and compounds, exhibit immense potential in treating depression. Autophagy, a vital process in depression pathology, has emerged as a promising target for intervention. This review summarized the pharmacological mechanisms of antidepressants by regulating autophagy. We presented insights from recent studies, discussed current research limitations, and proposed new strategies for basic research and their clinical application in depression.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoteng Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
16
|
Chang YC, Gao Y, Lee JY, Langen J, Chang KT. Identification of secretory autophagy as a novel mechanism modulating activity-induced synaptic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.560931. [PMID: 38328055 PMCID: PMC10849665 DOI: 10.1101/2023.10.06.560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity from synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We further demonstrate that neuronal activity stimulates autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a novel trans-synaptic signaling mechanism modulating structural plasticity.
Collapse
|
17
|
Chen G. Molecular basis of breast cancer with comorbid depression and the mechanistic insights of Xiaoyaosan in treating breast cancer-associated depression. Medicine (Baltimore) 2023; 102:e35157. [PMID: 37747031 PMCID: PMC10519572 DOI: 10.1097/md.0000000000035157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Depression and breast cancer (BC) have been found to have a shared genetic basis, multiple loci of effect, and a presumed causal relationship. The treatment of BC combined with depression poses significant challenges. This study aims to use bioinformatics and network pharmacology to explore the molecular basis of BC combined with depression and to elucidate the potential mechanisms of Xiaoyaosan (XYS) in treating this disease. The molecular background of BC complicated with depression was discovered via data mining and bioinformatics. The molecular mechanism of XYS in the treatment of BC with depression was investigated by network pharmacology. The binding affinity between targets and active compounds was evaluated by molecular docking. The impact of XYS on the gene and protein expression of matrix metallopeptidase 9 (MMP9) in microglial cells was assessed using RT-quantitative PCR and western blot analysis, respectively. Differential expression analysis was conducted to identify genes associated with BC, revealing that 2958 genes were involved, with 277 of these genes also being related to depression. XYS was found to contain 173 active compounds and 342 targets, with 44 of these targets being involved in regulating the progression of BC and depression. Enrichment analysis was performed to identify pathways associated with these targets, revealing that they were related to cell proliferation, catalytic activity, cell communication, and interleukin-18 signaling and LXR/RXR activation. Network analysis was conducted to identify key targets of Xiaoyaosan in treating BC combined with depression, with EGF, interleukin 6, epidermal growth factor receptor, and peroxisome proliferator activated receptor gamma being identified as important targets. Molecular docking was also performed to assess the binding affinity between key targets and active compounds, with puerarin showing the strongest affinity for MMP9. In microglial cells, XYS significantly enhances the gene and protein expression of MMP9. This study elucidated the pharmacological mechanism of co-treatment for BC patients complicated with depression and the pharmacological mechanism of XYS against BC plus depression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, Hangzhou Fuyang Women and Children Hospital, Hangzhou, China
| |
Collapse
|
18
|
Piletic K, Alsaleh G, Simon AK. Autophagy orchestrates the crosstalk between cells and organs. EMBO Rep 2023; 24:e57289. [PMID: 37465980 PMCID: PMC10481659 DOI: 10.15252/embr.202357289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Klara Piletic
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
| | - Ghada Alsaleh
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Botnar Institute for Musculoskeletal Sciences, NDORMSUniversity of OxfordOxfordUK
| | - Anna Katharina Simon
- Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
- Max Delbrück CenterBerlinGermany
| |
Collapse
|
19
|
Cui S, Liu X, Liu Y, Hu W, Ma K, Huang Q, Chu Z, Tian L, Meng S, Su J, Zhang W, Li H, Fu X, Zhang C. Autophagosomes Defeat Ferroptosis by Decreasing Generation and Increasing Discharge of Free Fe 2+ in Skin Repair Cells to Accelerate Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300414. [PMID: 37387572 PMCID: PMC10477857 DOI: 10.1002/advs.202300414] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Ferroptosis plays an essential role in the development of diabetes and its complications, suggesting potential therapeutic strategies targeting ferroptosis. Secretory autophagosomes (SAPs) carrying cytoplasmic cargoes have been recognized as novel nano-warrior to defeat diseases. Here, it is hypothesized that SAPs derived from human umbilical vein endothelial cells (HUVECs) can restore the function of skin repair cells by inhibiting ferroptosis to promote diabetic wound healing. High glucose (HG)-caused ferroptosis in human dermal fibroblasts (HDFs) is observed in vitro, which results in impaired cellular function. SAPs successfully inhibit ferroptosis in HG-HDFs, thereby improving their proliferation and migration. Further research show that the inhibitory effect of SAPs on ferroptosis resulted from a decrease in endoplasmic reticulum (ER) stress-regulated generation of free ferrous ions (Fe2+ ) in HG-HDFs and an increase in exosome release to discharge free Fe2+ from HG-HDFs. Additionally, SAPs promote the proliferation, migration, and tube formation of HG-HUVECs. Then the SAPs are loaded into gelatin-methacryloyl (GelMA) hydrogels to fabricate functional wound dressings. The results demonstrate the therapeutic effect of Gel-SAPs on diabetic wounds by restoring the normal behavior of skin repair cells. These findings suggest a promising SAP-based strategy for the treatment of ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Shengnan Cui
- Department of DermatologyChina Academy of Chinese Medical ScienceXiyuan HospitalBeijing100091China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Yong Liu
- Department of DermatologyShaanxi Provincial Hospital of Chinese MedicineXi'an710003China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Qilin Huang
- Department of the 4th Medical Center of Chinese PLA General HospitalTianjin Medical UniversityNo. 22, Qixiangtai Road, Heping DistrictTianjin300070China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
- Department of the 1th Medical Center of Chinese PLA General HospitalChinese PLA Medical School28 Fuxing Road, Haidian DistrictBeijing100853China
| | - Lige Tian
- Department of the 4th Medical Center of Chinese PLA General HospitalTianjin Medical UniversityNo. 22, Qixiangtai Road, Heping DistrictTianjin300070China
| | - Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Jianlong Su
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
| | - Haihong Li
- Department of Wound RepairInstitute of Wound Repair and Regeneration MedicineSouthern University of Science and Technology HospitalSouthern University of Science and Technology School of MedicineShenzhen518055China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
- Department of the 1th Medical Center of Chinese PLA General HospitalChinese PLA Medical School28 Fuxing Road, Haidian DistrictBeijing100853China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051, 51 Fucheng Road, Haidian DistrictBeijing100048China
- Beijing Key Research Laboratory of Skin InjuryRepair and Regeneration51 Fucheng Road, Haidian DistrictBeijing100048China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research DivisionThe 4th Medical Center of Chinese PLA General HospitalBeijing100048China
- Department of the 1th Medical Center of Chinese PLA General HospitalChinese PLA Medical School28 Fuxing Road, Haidian DistrictBeijing100853China
- Research Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051, 51 Fucheng Road, Haidian DistrictBeijing100048China
- Beijing Key Research Laboratory of Skin InjuryRepair and Regeneration51 Fucheng Road, Haidian DistrictBeijing100048China
| |
Collapse
|
20
|
Kyriazis M, Swas L, Orlova T. The Impact of Hormesis, Neuronal Stress Response, and Reproduction, upon Clinical Aging: A Narrative Review. J Clin Med 2023; 12:5433. [PMID: 37629475 PMCID: PMC10455615 DOI: 10.3390/jcm12165433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The primary objective of researchers in the biology of aging is to gain a comprehensive understanding of the aging process while developing practical solutions that can enhance the quality of life for older individuals. This involves a continuous effort to bridge the gap between fundamental biological research and its real-world applications. PURPOSE In this narrative review, we attempt to link research findings concerning the hormetic relationship between neurons and germ cells, and translate these findings into clinically relevant concepts. METHODS We conducted a literature search using PubMed, Embase, PLOS, Digital Commons Network, Google Scholar and Cochrane Library from 2000 to 2023, analyzing studies dealing with the relationship between hormetic, cognitive, and reproductive aspects of human aging. RESULTS The process of hormesis serves as a bridge between the biology of neuron-germ cell interactions on one hand, and the clinical relevance of these interactions on the other. Details concerning these processes are discussed here, emphasizing new research which strengthens the overall concept. CONCLUSIONS This review presents a scientifically and clinically relevant argument, claiming that maintaining a cognitively active lifestyle may decrease age-related degeneration, and improve overall health in aging. This is a totally novel approach which reflects current developments in several relevant aspects of our biology, technology, and society.
Collapse
|
21
|
Ghosh S, Sharma R, Bammidi S, Koontz V, Nemani M, Yazdankhah M, Kedziora KM, Wallace CT, Yu-Wei C, Franks J, Bose D, Rajasundaram D, Hose S, Sahel JA, Puertollano R, Finkel T, Zigler JS, Sergeev Y, Watkins SC, Goetzman ES, Flores-Bellver M, Kaarniranta K, Sodhi A, Bharti K, Handa JT, Sinha D. The AKT2/SIRT5/TFEB pathway as a potential therapeutic target in atrophic AMD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552343. [PMID: 37609254 PMCID: PMC10441325 DOI: 10.1101/2023.08.08.552343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Age-related macular degeneration (AMD), the leading cause of geriatric blindness, is a multi-factorial disease with retinal-pigmented epithelial (RPE) cell dysfunction as a central pathogenic driver. With RPE degeneration, lysosomal function is a core process that is disrupted. Transcription factors EB/E3 (TFEB/E3) tightly control lysosomal function; their disruption can cause aging disorders, such as AMD. Here, we show that induced pluripotent stem cells (iPSC)-derived RPE cells with the complement factor H variant [ CFH (Y402H)] have increased AKT2, which impairs TFEB/TFE3 nuclear translocation and lysosomal function. Increased AKT2 can inhibit PGC1α, which downregulates SIRT5, an AKT2 binding partner. SIRT5 and AKT2 co-regulate each other, thereby modulating TFEB-dependent lysosomal function in the RPE. Failure of the AKT2/SIRT5/TFEB pathway in the RPE induced abnormalities in the autophagy-lysosome cellular axis by upregulating secretory autophagy, thereby releasing a plethora of factors that likely contribute to drusen formation, a hallmark of AMD. Finally, overexpressing AKT2 in RPE cells in mice led to an AMD-like phenotype. Thus, targeting the AKT2/SIRT5/TFEB pathway could be a potential therapy for atrophic AMD.
Collapse
|
22
|
Huang Q, Jiang C, Xia X, Wang Y, Yan C, Wang X, Lei T, Yang X, Yang W, Cheng G, Gao H. Pathological BBB Crossing Melanin-Like Nanoparticles as Metal-Ion Chelators and Neuroinflammation Regulators against Alzheimer's Disease. RESEARCH (WASHINGTON, D.C.) 2023; 6:0180. [PMID: 37363131 PMCID: PMC10289297 DOI: 10.34133/research.0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Inflammatory responses, manifested in excessive oxidative stress and microglia overactivation, together with metal ion-triggered amyloid-beta (Aβ) deposition, are critical hallmarks of Alzheimer's disease (AD). The intricate pathogenesis causes severe impairment of neurons, which, in turn, exacerbates Aβ aggregation and facilitates AD progression. Herein, multifunctional melanin-like metal ion chelators and neuroinflammation regulators (named PDA@K) were constructed for targeted treatment of AD. In this platform, intrinsically bioactive material polydopamine nanoparticles (PDA) with potent metal ion chelating and ROS scavenging effects were decorated with the KLVFF peptide, endowing the system with the capacity of enhanced pathological blood-brain barrier (BBB) crossing and lesion site accumulation via Aβ hitchhiking. In vitro and in vivo experiment revealed that PDA@K had high affinity toward Aβ and were able to hitch a ride on Aβ to achieve increased pathological BBB crossing. The engineered PDA@K effectively mitigated Aβ aggregate and alleviated neuroinflammation. The modulated inflammatory microenvironment by PDA@K promoted microglial polarization toward the M2-like phenotype, which restored their critical functions for neuron care and plaque removal. After 3-week treatment of PDA@K, spatial learning and memory deficit as well as neurologic changes of FAD4T transgenic mice were largely rescued. Transcriptomics analysis further revealed the therapeutic mechanism of PDA@K. Our study provided an appealing paradigm for directly utilizing intrinsic properties of nanomaterials as therapeutics for AD instead of just using them as nanocarriers, which largely widen the application of nanomaterials in AD therapy.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chaoqing Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xue Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Yufan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Chenxing Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital,
Sichuan University, Chengdu 610041, P.R. China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
23
|
Xie H, Hu J, Wang Y, Wang X. Identification of the matrix metalloproteinase (MMP) gene family in Japanese flounder (Paralichthys olivaceus): Involved in immune response regulation to temperature stress and Edwardsiella tarda infection. FISH & SHELLFISH IMMUNOLOGY 2023:108878. [PMID: 37271328 DOI: 10.1016/j.fsi.2023.108878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
The Matrix metalloproteinase (MMP) gene family is responsible for regulating the degradation of Extra Cellular Matrix (ECM) proteins, which are important for physiological processes such as wound healing, tissue remodeling, and stress response. Although MMPs have been studied in many species, their role in immune response in Japanese flounder (Paralichthys olivaceus) is still not fully understood. This study conducted a comprehensive analysis of MMPs in flounder, including gene structures, evolutionary relationships, conserved domains, molecular evolution, and expression patterns. Analysis revealed that MMP genes could be grouped into 17 subfamilies and were evolutionarily conserved and functionally-constrained. Meanwhile, MMP genes were found to express in different embryonic and larval stages and might play the role of sentinel in healthy tissues. Furthermore, expression profiling showed that MMPs had diverse functions in environmental stress, with 60% (9/15) and 73% (11/15) of MMPs showing differential expression patterns under temperature stress and Edwardsiella tarda (E. tarda) infection, respectively. These findings provide a useful resource for understanding the immune functions of MMP genes in Japanese flounder.
Collapse
Affiliation(s)
- Huihui Xie
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China
| | - Jiabao Hu
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China
| | - Yajun Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| | - Xubo Wang
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
24
|
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Friend or foe: role of pathological tau in neuronal death. Mol Psychiatry 2023; 28:2215-2227. [PMID: 36918705 DOI: 10.1038/s41380-023-02024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Bing Bao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Dongling Li
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China.
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Wen J, Zellner A, Braun NC, Bajaj T, Gassen NC, Peitz M, Brüstle O. Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity. Transl Psychiatry 2023; 13:143. [PMID: 37137886 PMCID: PMC10156752 DOI: 10.1038/s41398-023-02432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jianbin Wen
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Zellner
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Gassen
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Yang S, Yi L, Xia X, Chen X, Hou X, Zhang L, Yang F, Liao J, Han Z, Fu Y. Transcriptome comparative analysis of amygdala-hippocampus in depression: A rat model induced by chronic unpredictable mild stress (CUMS). J Affect Disord 2023; 334:258-270. [PMID: 37105469 DOI: 10.1016/j.jad.2023.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Depression is a common and complex mental disease, and its pathogenesis involves several brain regions. Abnormalities in the amygdala-hippocampal neural circuits have been shown to be involved in depression. However, the underlying molecular mechanisms remain unclear. METHODS A rat model was used to determine the transcriptome changes in the amygdala-hippocampal neural network under chronic unpredictable mild stress (CUMS). Depression-related modules in this neural network were identified using weighted gene co-expression network analysis (WGCNA). Difference and enrichment analyses were used to determine differential gene expression in the two brain regions. RESULTS The modules in the amygdala and hippocampus associated with depression-like behavior contained 363 and 225 genes, respectively. Forty-two differentially expressed genes were identified in the amygdala candidate module and 37 in the hippocampus. Enrichment analysis showed that candidate genes in the amygdala were associated with neuronal myelination and candidate genes in the hippocampus were associated with synaptic transmission. Finally, based on module hub gene statistics, differential gene expression, and protein-protein interaction networks, 11 central genes were found in the amygdala candidate module, and one central gene was found in the hippocampal module. LIMITATIONS Our study was based on a rat CUMS model. Further evidence is needed to prove that our results are applicable to patients with depression. CONCLUSION This study identified critical modules and central genes involved in the amygdala-hippocampal circuit in the context of depression, and may provide further understanding of the pathogenesis of depression and help identify potential targets for antidepressant therapy.
Collapse
Affiliation(s)
- Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Yi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolu Chen
- The First Branch, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiao Hou
- Department of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Longjie Zhang
- Department of Pharmacy, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fang Yang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
27
|
Lee AY, Kong D, Cho H, Choi E, Hwang S, Song Y, Choi EK, Kim YB, Geum DH, Kim HY, Cho GJ, Ahn K, Oh MJ, Kim HJ, Hong SC. Investigating the regenerative effects of folic acid on human amniotic epithelial stem cells and amniotic pore culture technique (APCT) model in vitro using an integrated pharmacological-bioinformatic approach. Placenta 2023; 138:60-67. [PMID: 37196582 DOI: 10.1016/j.placenta.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/02/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
INTRODUCTION Disruption of fetal membranes before the onset of labor is referred to as premature rupture of membranes (PROM). Lack of maternal folic acid (FA) supplementation reportedly leads to PROM. However, there is a lack of information on the location of FA receptors in the amniotic tissue. Additionally, the regulatory role and potential molecular targets of FA in PROM in vitro have rarely been investigated. METHODS The three FA receptors (folate receptor α isoform [FRα], transporter of reduced folate [RFC], and proton-coupled folate transporter [PCFT]) in human amniotic epithelial stem cells (hAESCs) and amniotic tissue were localized using immunohistochemistry and immunocytochemistry staining. Effect and mechanism analyses of FA were performed in hAESCs and amniotic pore culture technique (APCT) models. An integrated pharmacological-bioinformatics approach was utilized to explore the potential targets of FA for the treatment of PROM. RESULTS The three FA receptors were widely expressed in human amniotic tissue, especially in the hAESC cytoplasm. FA stimulated the amnion regeneration in the in vitro APCT model. This mimics the PROM status, in which cystathionine-β-synthase, an FA metabolite enzyme, may play an important role. The top ten hub targets (STAT1, mTOR, PIK3R1, PTPN11, PDGFRB, ABL1, CXCR4, NFKB1, HDAC1, and HDAC2) of FA for preventing PROM were identified using an integrated pharmacological-bioinformatic approach. DISCUSSION FRα, RFC, and PCFT are widely expressed in human amniotic tissue and hAESCs. FA aids the healing of ruptured membrane.
Collapse
Affiliation(s)
- Ah-Young Lee
- Korea University College of Medicine, Seoul, Republic of Korea; College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| | - Deqi Kong
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Heeryun Cho
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Eunsaem Choi
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soowon Hwang
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Yuni Song
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Republic of Korea.
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea.
| | - Dong Ho Geum
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Ho Yeon Kim
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Geum Joon Cho
- Korea University College of Medicine, Seoul, Republic of Korea.
| | - Kihoon Ahn
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Soon-Cheol Hong
- Korea University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Wu SY, Wu HT, Wang YC, Chang CJ, Shan YS, Wu SR, Chiu YC, Hsu CL, Juan HF, Lan KY, Chu CW, Lee YR, Lan SH, Liu HS. Secretory autophagy promotes RAB37-mediated insulin secretion under glucose stimulation both in vitro and in vivo. Autophagy 2023; 19:1239-1257. [PMID: 36109708 PMCID: PMC10012902 DOI: 10.1080/15548627.2022.2123098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic β-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in β-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from β-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.
Collapse
Affiliation(s)
- Shan-Ying Wu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chi Chiu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Lang Hsu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Ying Lan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Wen Chu
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center for Cancer Research, Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS, Martinelli S, Kaul D, Bartlett R, Curry AR, Gassen NC, Hafner K, Müller NS, Worf K, Rehawi G, Nagy C, Halldorsdottir T, Cruceanu C, Gagliardi M, Gerstner N, Ködel M, Murek V, Ziller MJ, Scarr E, Tao R, Jaffe AE, Arzberger T, Falkai P, Kleinmann JE, Weinberger DR, Mechawar N, Schmitt A, Dean B, Turecki G, Hyde TM, Binder EB. Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol 2023; 145:439-459. [PMID: 36729133 PMCID: PMC10020280 DOI: 10.1007/s00401-023-02541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia.
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Katrina Z Edmond
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Anna S Fröhlich
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Dominic Kaul
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Amber R Curry
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Neurohomeostasis Research Group, Institute of Psychiatry, Clinical Centre, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karolina Worf
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ghalia Rehawi
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nathalie Gerstner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael J Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Peter Falkai
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Joel E Kleinmann
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, 05453-010, Brazil
| | - Brian Dean
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
30
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2023:10.1002/jcb.30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
31
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
32
|
Mahapatra KK, Patra S, Mishra SR, Behera BP, Patil S, Bhutia SK. Autophagy for secretory protein: Therapeutic targets in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:159-180. [PMID: 36707200 DOI: 10.1016/bs.apcsb.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.
Collapse
Affiliation(s)
- Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States.
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
33
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
34
|
Grochecki P, Smaga I, Wydra K, Marszalek-Grabska M, Slowik T, Kedzierska E, Listos J, Gibula-Tarlowska E, Filip M, Kotlinska JH. Impact of Mephedrone on Fear Memory in Adolescent Rats: Involvement of Matrix Metalloproteinase-9 (MMP-9) and N-Methyl-D-aspartate (NMDA) Receptor. Int J Mol Sci 2023; 24:ijms24031941. [PMID: 36768263 PMCID: PMC9915535 DOI: 10.3390/ijms24031941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Treatment of Post-Traumatic Stress Disorder (PTSD) is complicated by the presence of drug use disorder comorbidity. Here, we examine whether conditioned fear (PTSD model) modifies the rewarding effect of mephedrone and if repeated mephedrone injections have impact on trauma-related behaviors (fear sensitization, extinction, and recall of the fear reaction). We also analyzed whether these trauma-induced changes were associated with exacerbation in metalloproteinase-9 (MMP-9) and the GluN2A and GluN2B subunits of N-methyl-D-aspartate (NMDA) glutamate receptor expression in such brain structures as the hippocampus and basolateral amygdala. Male adolescent rats underwent trauma exposure (1.5 mA footshock), followed 7 days later by a conditioned place preference training with mephedrone. Next, the post-conditioning test was performed. Fear sensitization, conditioned fear, anxiety-like behavior, extinction acquisition and relapse were then assessed to evaluate behavioral changes. MMP-9, GluN2A and GluN2B were subsequently measured. Trauma-exposed rats subjected to mephedrone treatment acquired a strong place preference and exhibited impairment in fear extinction and reinstatement. Mephedrone had no effect on trauma-induced MMP-9 level in the basolateral amygdala, but decreased it in the hippocampus. GluN2B expression was decreased in the hippocampus, but increased in the basolateral amygdala of mephedrone-treated stressed rats. These data suggest that the modification of the hippocampus and basolateral amygdala due to mephedrone use can induce fear memory impairment and drug seeking behavior in adolescent male rats.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
35
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
36
|
Huang P, Yan L, Li Z, Zhao S, Feng Y, Zeng J, Chen L, Huang A, Chen Y, Lei S, Huang X, Deng Y, Xie D, Guan H, Peng W, Yu L, Chen B. Potential shared gene signatures and molecular mechanisms between atherosclerosis and depression: Evidence from transcriptome data. Comput Biol Med 2023; 152:106450. [PMID: 36565484 DOI: 10.1016/j.compbiomed.2022.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis and depression contribute to each other; however, mechanisms linking them at the genetic level remain unexplored. This study aimed to identify shared gene signatures and related pathways between these comorbidities. METHODS Atherosclerosis-related datasets were downloaded from the Gene Expression Omnibus database. Differential and weighted gene co-expression network analyses were employed to identify atherosclerosis-related genes. Depression-related genes were downloaded from the DisGeNET database, and the overlaps between atherosclerosis-related genes and depression-related genes were characterized as crosstalk genes. The functional enrichment analysis and protein-protein interaction network were performed in these gene sets. Subsequently, the Boruta algorithm and Recursive Feature Elimination algorithm were performed to identify feature-selection genes. A support vector machine was constructed to measure the accuracy of calculations, and two external validation sets were included to verify the results. RESULTS Based on two atherosclerosis-related datasets (GSE28829 and GSE43292), 165 genes were determined as atherosclerosis-related genes. Meanwhile, 1478 depression-related genes were obtained. After intersecting, 24 crosstalk genes were identified, and two pathways, "lipid and atherosclerosis" and "tryptophan metabolism," were revealed as mutual pathways according to the enrichment analysis results. Through the protein-protein interaction network, Molecular Complex Detection plugin, and cytoHubba plugin, PTPRC and MMP9 were identified as the hub gene. Moreover, SLC22A3, CASP1, AMPD3, and PIK3CG were recognized as feature-selection genes. Based on two external validation sets, CASP1 and MMP9 were finally determined as the critical crosstalk genes. CONCLUSIONS "Lipid and atherosclerosis" and "tryptophan metabolism" were possibly the pathways of atherosclerosis secondary to depression and depression due to atherosclerosis, respectively. CASP1 and MMP9 were revealed as the most pivotal candidates linking atherosclerosis and depression by mediating these two pathways. Further experimentation is needed to confirm these conclusions.
Collapse
Affiliation(s)
- Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Yan
- Department of Neurosurgery of Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Zhishang Li
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Jing Zeng
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Afang Huang
- Departments of Laboratory Medicine of Foshan Forth People's Hospital, Foshan, China
| | - Yan Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sisi Lei
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Deng
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Dan Xie
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hansu Guan
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihang Peng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Yu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China; Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
37
|
Reid SE, Kolapalli SP, Nielsen TM, Frankel LB. Canonical and non-canonical roles for ATG8 proteins in autophagy and beyond. Front Mol Biosci 2022; 9:1074701. [PMID: 36601581 PMCID: PMC9806848 DOI: 10.3389/fmolb.2022.1074701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
During autophagy, the ATG8 family proteins have several well-characterized roles in facilitating early, mid, and late steps of autophagy, including autophagosome expansion, cargo recruitment and autophagosome-lysosome fusion. Their discovery has importantly allowed for precise experimental monitoring of the pathway, bringing about a huge expansion of research in the field over the last decades. In this review, we discuss both canonical and non-canonical roles of the autophagic lipidation machinery, with particular focus on the ATG8 proteins, their post-translational modifications and their increasingly uncovered alternative roles mediated through their anchoring at different membranes. These include endosomes, macropinosomes, phagosomes and the plasma membrane, to which ATG8 proteins can bind through canonical or alternative lipidation. Beyond new ATG8 binding partners and cargo types, we also explore several open questions related to alternative outcomes of autophagic machinery engagement beyond degradation. These include their roles in plasma membrane repair and secretion of selected substrates as well as the physiological implications hereof in health and disease.
Collapse
Affiliation(s)
| | | | | | - Lisa B. Frankel
- Danish Cancer Society Research Center, Copenhagen, Denmark,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Lisa B. Frankel,
| |
Collapse
|
38
|
Secretory autophagy promotes Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1. J Biomed Sci 2022; 29:103. [PMID: 36457117 PMCID: PMC9717497 DOI: 10.1186/s12929-022-00886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rab37-mediated exocytosis of tissue inhibitor of metalloproteinase 1 (TIMP1), an inflammatory cytokine, under serum-depleted conditions which leads to suppression of lung cancer cell metastasis has been reported. Starvation is also a stimulus of autophagic activity. Herein, we reveal that starvation activates Rab37 and induces autophagy. METHODS We used an overexpression/knockdown system to determine the relationship between autophagy and Rab37 in vitro and in vivo. The autophagy activity was detected by immunoblotting, transmission electron microscope, autophagosome purification, and immunofluorescence under the confocal microscope. Lung-to-lung metastasis mouse model was used to clarify the role of autophagy and Rab37 in lung cancer. Clinical lung cancer patient specimens and an online big database were analyzed. RESULTS Initially, we demonstrated that active-form Rab37 increased LC3-II protein level (the marker of autophagosome) and TIMP1 secretion. Accordingly, silencing of Rab37 gene expression alleviated Rab37 and LC3-II levels as well as TIMP1 secretion, and induction of autophagy could not increase TIMP1 exocytosis under such conditions. Moreover, silencing the Atg5 or Atg7 gene of lung cancer cells harboring active-mutant Rab37 (Q89L) led to decreased autophagy activity and TIMP1 secretion. In the lung-to-lung metastasis mouse model, increased TIMP1 expression accompanied by amiodarone-induced autophagy led to decreased tumor nodules and cancer cell metastasis. These phenomena were reversed by silencing the Atg5 or Atg7 gene. Notably, increasing autophagy activity alone showed no effect on TIMP1 secretion under either Rab37 or Sec22b silencing conditions. We further detected colocalization of LC3 with either Rab37 or TIMP1, identified Rab37 and Sec22b proteins in the purified autophagosomes of the lung cancer cells harboring the active-form Rab37 gene, and confirmed that these proteins are involved in the secretion of TIMP1. We reveal that autophagic activity was significantly lower in the tumors compared to the non-tumor parts and was associated with the overall lung cancer patient survival rate. CONCLUSIONS We are the first to report that autophagy plays a promoting role in TIMP1 secretion and metastasis in a Rab37-dependent manner in lung cancer cells and the lung-to-lung mouse model.
Collapse
|
39
|
Vargas P, Scheffel TB, Diz FM, Rockenbach L, Grave N, Cappellari AR, Kist LW, Bogo MR, Thomé MP, Leal GF, de Fraga Dias A, Figueiró F, Filippi-Chiela EC, Lenz G, Morrone FB. P2Y 12 receptor antagonism inhibits proliferation, migration and leads to autophagy of glioblastoma cells. Purinergic Signal 2022; 18:481-494. [PMID: 35939198 PMCID: PMC9832208 DOI: 10.1007/s11302-022-09888-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal among the primary brain tumors, with a low survival rate and resistance to radio and chemotherapy. The P2Y12 is an adenosine diphosphate (ADP) purinergic chemoreceptor, found mainly in platelets. In cancer cells, its activation has been described to induce proliferation and metastasis. Bearing in mind the need to find new treatments for GBM, this study aimed to investigate the role of the P2Y12R in the proliferation and migration of GBM cells, as well as to evaluate the expression of this receptor in patients' data obtained from the TCGA data bank. Here, we used the P2Y12R antagonist, ticagrelor, which belongs to the antiplatelet agent's class. The different GBM cells (cell line and patient-derived cells) were treated with ticagrelor, with the agonist, ADP, or both, and the effects on cell proliferation, colony formation, ADP hydrolysis, cell cycle and death, migration, and cell adhesion were analyzed. The results showed that ticagrelor decreased the viability and the proliferation of GBM cells. P2Y12R antagonism also reduced colony formation and migration potentials, with alterations on the expression of metalloproteinases, and induced autophagy in GBM cells. Changes were observed at the cell cycle level, and only the U251 cell line showed a significant reduction in the ADP hydrolysis profile. TCGA data analysis showed a higher expression of P2Y12R in gliomas samples when compared to the other tumors. These data demonstrate the importance of the P2Y12 receptor in gliomas development and reinforce its potential as a pharmacological target for glioma treatment.
Collapse
Affiliation(s)
- Pedro Vargas
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Thamiris Becker Scheffel
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernando Mendonça Diz
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Liliana Rockenbach
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Nathália Grave
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Angélica Regina Cappellari
- grid.412519.a0000 0001 2166 9094Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Luiza Wilges Kist
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Maurício Reis Bogo
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil ,grid.412519.a0000 0001 2166 9094Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Marcos Paulo Thomé
- grid.8532.c0000 0001 2200 7498Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Gabriel Fernandes Leal
- grid.412519.a0000 0001 2166 9094Programa de Pós-Graduação em Ciência da Computação, Escola Politécnica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Amanda de Fraga Dias
- grid.8532.c0000 0001 2200 7498Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Fabrício Figueiró
- grid.8532.c0000 0001 2200 7498Departamento de Bioquímica, Instituto de Ciências Básica da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Eduardo Cremonese Filippi-Chiela
- grid.8532.c0000 0001 2200 7498Departmento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS Brazil
| | - Guido Lenz
- grid.8532.c0000 0001 2200 7498Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
40
|
Wang C, Li Y, Yi Y, Liu G, Guo R, Wang L, Lan T, Wang W, Chen X, Chen S, Yu SY. Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats. J Neuroinflammation 2022; 19:283. [PMID: 36434679 PMCID: PMC9694101 DOI: 10.1186/s12974-022-02645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Neuronal injury is considered a critical risk factor in the pathogenesis of most neurological and neuropsychiatric diseases. However, the underlying molecular mechanisms and identification of potential therapeutic targets for preventing neuronal injury associated with brain function remain largely uncharacterized. Therefore, identifying neural mechanisms would put new insights into the progression of this condition and provide novel therapeutic strategies for the treatment of these diseases. METHODS Stereotactic injection of AAV virus was used to knock-down the miR-26a-3p within hippocampus of rats. Behavioral changes was detected by open field test (OFT), elevated plus maze (EPM), forced swim test (FST) and sucrose preference test (SPT). The inflammatory cytokines and related proteins were verified by real-time quantitative PCR, immunoblotting or immunofluorescence assay. Golgi staining and electron microscopy analysis was used to observe the dendritic spine, synapse and ultrastructural pathology. SB203580 (0.5 mg/kg) were administered daily to prevent p38 MAPK via an intraperitoneal (i.p.) injection. Finally, electrophysiological method was used to examine the synaptic transmission via whole-cell patch-clamp recording. RESULTS Here, we showed that miR-26a-3p deficiency within hippocampal regions leads to the activation of microglia, increased level of pro-inflammatory cytokines and behavioral disorders in rats, effects which appear to be mediated by directly targeting the p38 mitogen-activated protein kinase (MAPK)-NF-κB signaling pathway. Specifically, we found that the enhanced glia-activation may consequently result in neuronal deterioration that mainly presented as the dysregulation of structural and functional plasticity in hippocampal neurons. In contrast, preventing p38 pathway by SB203580 significantly ameliorated abnormal behavioral phenotypes and neuronal jury resulting from miR-26a-3p knock-down. CONCLUSION These results suggest that the normal expression of miR-26a-3p exerts neuroprotective effects via suppressing neural abnormality and maintaining neuroplasticity to against behavioral disorders in rats. These effects appear to involve a down-regulation of p38 MAPK-NF-κB signaling within the hippocampal region. Taken together, these findings provide evidence that miR-26a-3p can function as a critical factor in regulating neural activity and suggest that the maintaining of normal structure and function of neurons might be a potential therapeutic strategy in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Changmin Wang
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Ye Li
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Yuhang Yi
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Guiyu Liu
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Ruojing Guo
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Liyan Wang
- grid.27255.370000 0004 1761 1174Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Tian Lan
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Wenjing Wang
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Xiao Chen
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| | - Shihong Chen
- grid.27255.370000 0004 1761 1174Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033 Shandong People’s Republic of China
| | - Shu Yan Yu
- grid.27255.370000 0004 1761 1174Department of Physiology, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China ,Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, 250012 Shandong People’s Republic of China
| |
Collapse
|
41
|
Savic G, Stevanovic I, Mihajlovic D, Jurisevic M, Gajovic N, Jovanovic I, Ninkovic M. MMP-9/BDNF ratio predicts more severe COVID-19 outcomes. Int J Med Sci 2022; 19:1903-1911. [PMID: 36438922 PMCID: PMC9682503 DOI: 10.7150/ijms.75337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 01/24/2023] Open
Abstract
COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.
Collapse
Affiliation(s)
- Goran Savic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| | - Dusan Mihajlovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Milena Jurisevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Nevena Gajovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Milica Ninkovic
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
- Institute of Medical Research, Military Medical Academy, Crnotravska 17, Belgrade, Serbia
| |
Collapse
|
42
|
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets? Expert Opin Ther Targets 2022; 26:883-895. [PMID: 36529978 DOI: 10.1080/14728222.2022.2157260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis. AREAS COVERED SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis. EXPERT OPINION Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
43
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
44
|
Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals (Basel) 2022; 15:ph15101203. [PMID: 36297314 PMCID: PMC9611768 DOI: 10.3390/ph15101203] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder, that adversely impacts an individual’s quality of life, but its diagnosis and treatment are not accurately executed and a symptom-based approach is utilized in most cases, due to the lack of precise knowledge regarding the pathophysiology. So far, the first-line treatments are still based on monoamine neurotransmitters. Even though there is a lot of progress in this field, the mechanisms seem to get more and more confusing, and the treatment is also getting more and more controversial. In this study, we try to review the broad advances of monoamine neurotransmitters in the field of MDD, and update its effects in many advanced neuroscience studies. We still propose the monoamine hypothesis but paid special attention to their effects on the new pathways for MDD, such as inflammation, oxidative stress, neurotrophins, and neurogenesis, especially in the glial cells, which have recently been found to play an important role in many neurodegenerative disorders, including MDD. In addition, we will extend the monoamine hypothesis to basic emotions; as suggested in our previous reports, the three monoamine neurotransmitters play different roles in emotions: dopamine—joy, norepinephrine—fear (anger), serotonins—disgust (sadness). Above all, this paper tries to give a full picture of the relationship between the MDD and the monoamine neurotransmitters such as DA, NE, and 5-HT, as well as their contributions to the Three Primary Color Model of Basic Emotions (joy, fear, and disgust). This is done by explaining the contribution of the monoamine from many sides for MDD, such the digestive tract, astrocytes, microglial, and others, and very briefly addressing the potential of monoamine neurotransmitters as a therapeutic approach for MDD patients and also the reasons for its limited clinical efficacy, side effects, and delayed onset of action. We hope this review might offer new pharmacological management of MDD.
Collapse
|
45
|
Systemic Beta-Hydroxybutyrate Affects BDNF and Autophagy into the Retina of Diabetic Mice. Int J Mol Sci 2022; 23:ijms231710184. [PMID: 36077579 PMCID: PMC9455989 DOI: 10.3390/ijms231710184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Diabetic retinopathy (DR) is a neurovascular disease, characterized by a deficiency of brain-derived neurotrophic factor (BDNF), a regulator of autophagy. Beta-hydroxybutyrate (BHB), previously reported as a protective agent in DR, has been associated with BDNF promotion. Here, we investigated whether systemic BHB affects the retinal levels of BDNF and local autophagy in diabetic mice with retinopathy; Methods: C57BL/6J mice were administered with intraperitoneal (i.p.) streptozotocin (STZ) (75 mg/kg) injection to develop diabetes. After 2 weeks, they received i.p. injections of BHB (25−50−100 mg/kg) twice a week for 10 weeks. Retinal samples were collected in order to perform immunofluorescence, Western blotting, and ELISA analysis; Results: BHB 50 mg/kg and 100 mg/kg significantly improved retinal BDNF levels (p < 0.01) in diabetic mice. This improvement was negatively associated with autophagosome−lysosome formations (marked by LC3B and ATG14) and to higher levels of connexin 43 (p < 0.01), a marker of cell integrity. Moreover, BHB administration significantly reduced M1 microglial activation and autophagy (p < 0.01); Conclusions: The systemic administration of BHB in mice with DR improves the retinal levels of BDNF, with the consequent reduction of the abnormal microglial autophagy. This leads to retinal cell safety through connexin 43 restoration.
Collapse
|
46
|
Control of Unconventional Secretion By The Autophagy Machinery. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery. Nat Commun 2022; 13:3720. [PMID: 35764633 PMCID: PMC9240011 DOI: 10.1038/s41467-022-31213-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
PINK1-Parkin mediated mitophagy, a selective form of autophagy, represents one of the most important mechanisms in mitochondrial quality control (MQC) via the clearance of damaged mitochondria. Although it is well known that the conjugation of mammalian ATG8s (mATG8s) to phosphatidylethanolamine (PE) is a key step in autophagy, its role in mitophagy remains controversial. In this study, we clarify the role of the mATG8-conjugation system in mitophagy by generating knockouts of the mATG8-conjugation machinery. Unexpectedly, we show that mitochondria could still be cleared in the absence of the mATG8-conjugation system, in a process independent of lysosomal degradation. Instead, mitochondria are cleared via extracellular release through a secretory autophagy pathway, in a process we define as Autophagic Secretion of Mitochondria (ASM). Functionally, increased ASM promotes the activation of the innate immune cGAS-STING pathway in recipient cells. Overall, this study reveals ASM as a mechanism in MQC when the cellular mATG8-conjugation machinery is dysfunctional and highlights the critical role of mATG8 lipidation in suppressing inflammatory responses. The mechanisms underlying mitochondrial quality control are not fully understood. Here the authors identify a switch from degradative to secretory autophagy in the absence of the mATG8-conjugation system, termed Autophagic Secretion of Mitochondria.
Collapse
|
48
|
Yap CC, Mason AJ, Winckler B. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr Opin Neurobiol 2022; 74:102537. [DOI: 10.1016/j.conb.2022.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
|
49
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
50
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|