1
|
Shoji M, Kanno E, Tanno H, Yamaguchi K, Ishi S, Takagi N, Kurosaka S, Sato K, Niiyama M, Ito A, Ishii K, Imai Y, Kawakami K, Tachi M. CARD9-Mediated Macrophage Responses and Collagen Fiber Capsule Formation Caused by Textured Breast Implants. Plast Reconstr Surg 2024; 154:906e-917e. [PMID: 37847583 DOI: 10.1097/prs.0000000000011152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
BACKGROUND An increasing number of women are undergoing breast implantation for cosmetic purposes or for reconstructive purposes after breast excision. The surface morphology of the breast implant is a key factor associated with the induction of capsule contraction. The effect of surface morphology on the inflammatory response after implant insertion remains unclear, however. The authors conducted comparative analyses to determine the effect of the textured and smooth surface morphology of silicone sheets. METHODS Each type of silicone sheet was inserted into the subcutaneous pocket below the panniculus carnosus in C57BL/6 mice and mice with genetic disruption of CARD9 , Dectin-1 , Dectin-2 , or Mincle . The authors analyzed collagen fiber capsule thickness, histologic findings, and macrophage inflammatory response, including transforming growth factor (TGF)-β synthesis. RESULTS The authors found that textured surface morphology contributed to the formation of collagen fiber capsules and the accumulation of fibroblasts and myofibroblasts, and was accompanied by the accumulation of TGF-β-expressing macrophages and foreign-body giant cells. CARD9 deficiency attenuated collagen fiber capsule formation, macrophage responses, and TGF-β synthesis, although the responsible C-type lectin receptors remain to be clarified. CONCLUSION These results suggest that CARD9 may have a strong impact on silicone sheet morphology through the regulation of macrophage responses. CLINICAL RELEVANCE STATEMENT Silicone breast implants have been widely used for postmastectomy and cosmetic augmentation mammaplasty breast reconstruction. The authors sought to elucidate the surface morphology of the breast implant as one of the key factors associated with the formation of collagen fiber capsules. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Miki Shoji
- From the Departments of Plastic and Reconstructive Surgery
| | | | | | | | - Sinyo Ishi
- From the Departments of Plastic and Reconstructive Surgery
| | - Naoyuki Takagi
- From the Departments of Plastic and Reconstructive Surgery
| | - Shiho Kurosaka
- From the Departments of Plastic and Reconstructive Surgery
| | - Ko Sato
- Medical Microbiology, Mycology and Immunology
| | | | - Akihiko Ito
- Graduate School of Environment and Information Sciences, Yokohama National University
| | - Keiko Ishii
- Medical Microbiology, Mycology and Immunology
| | | | - Kazuyoshi Kawakami
- Medical Microbiology, Mycology and Immunology
- Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine
| | - Masahiro Tachi
- From the Departments of Plastic and Reconstructive Surgery
| |
Collapse
|
2
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024:10.1038/s44319-024-00296-2. [PMID: 39482490 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Liu K, Grover M, Trusch F, Vagena-Pantoula C, Ippolito D, Barkoulas M. Paired C-type lectin receptors mediate specific recognition of divergent oomycete pathogens in C. elegans. Cell Rep 2024; 43:114906. [PMID: 39460939 DOI: 10.1016/j.celrep.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Innate immune responses can be triggered upon detection of pathogen- or damage-associated molecular patterns by host receptors that are often present on the surface of immune cells. While invertebrates like Caenorhabditis elegans lack professional immune cells, they still mount pathogen-specific responses. However, the identity of host receptors in the nematode remains poorly understood. Here, we show that C-type lectin receptors mediate species-specific recognition of divergent oomycetes in C. elegans. A CLEC-27/CLEC-35 pair is essential for recognition of the oomycete Myzocytiopsis humicola, while a CLEC-26/CLEC-36 pair is required for detection of Haptoglossa zoospora. Both clec pairs are transcriptionally regulated through a shared promoter by the conserved PRD-like homeodomain transcription factor CEH-37/OTX2 and act in sensory neurons and the anterior intestine to trigger a protective immune response in the epidermis. This system enables redundant tissue sensing of oomycete threats through canonical CLEC receptors and host defense via cross-tissue communication.
Collapse
Affiliation(s)
- Kenneth Liu
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Manish Grover
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | - Franziska Trusch
- Department of Life Sciences, Imperial College, SW7 2AZ London, UK
| | | | | | | |
Collapse
|
4
|
Yang YH, Xie KF, Yang S, Wang H, Ma HH, Zhou M, Wang ZW, Gu Y, Jia XM. BLNK negatively regulates innate antifungal immunity through inhibiting c-Cbl-mediated macrophage migration. Proc Natl Acad Sci U S A 2024; 121:e2400920121. [PMID: 39413134 PMCID: PMC11513953 DOI: 10.1073/pnas.2400920121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
B cell linker protein (BLNK) is crucial for orchestrating B cell receptor-associated spleen tyrosine kinase (Syk) signaling. However, the role of BLNK in Syk-coupled C-type lectin receptor (CLR) signaling in macrophages remains unclear. Here, we delineate that CLRs govern the Syk-mediated activation of BLNK, thereby impeding macrophage migration by disrupting podosome ring formation upon stimulation with fungal β-glucans or α-mannans. Mechanistically, BLNK instigates its association with casitas B-lineage lymphoma (c-Cbl), competitively impeding the interaction between c-Cbl and Src-family kinase Fyn. This interference disrupts Fyn-mediated phosphorylation of c-Cbl and subsequent c-Cbl-associated F-actin assembly. Consequently, BLNK deficiency intensifies CLR-mediated recruitment of the c-Cbl/phosphatidylinositol 3-kinase complex to the F-actin cytoskeleton, thereby enhancing macrophage migration. Notably, mice with monocyte-specific BLNK deficiency exhibit heightened resistance to infection with Candida albicans, a prominent human fungal pathogen. This resistance is attributed to the increased infiltration of Ly6C+ macrophages into renal tissue. These findings unveil a previously unrecognized role of BLNK for the negative regulation of macrophage migration through inhibiting CLR-mediated podosome ring formation during fungal infections.
Collapse
Affiliation(s)
- Yi-Heng Yang
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Ke-Fang Xie
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing211198, China
| | - Shuai Yang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Hui-Hui Ma
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Min Zhou
- Department of Periodontology, Stemmatological Hospital, Tongji University, Shanghai200072, China
| | - Zhong-Wei Wang
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| | - Xin-Ming Jia
- Department of Infection and Immunity, Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai200072, China
| |
Collapse
|
5
|
Wolters-Eisfeld G, Oliveira-Ferrer L. Glycan diversity in ovarian cancer: Unraveling the immune interplay and therapeutic prospects. Semin Immunopathol 2024; 46:16. [PMID: 39432076 PMCID: PMC11493797 DOI: 10.1007/s00281-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Ovarian cancer remains a formidable challenge in oncology due to its late-stage diagnosis and limited treatment options. Recent research has revealed the intricate interplay between glycan diversity and the immune microenvironment within ovarian tumors, shedding new light on potential therapeutic strategies. This review seeks to investigate the complex role of glycans in ovarian cancer and their impact on the immune response. Glycans, complex sugar molecules decorating cell surfaces and secreted proteins, have emerged as key regulators of immune surveillance in ovarian cancer. Aberrant glycosylation patterns can promote immune evasion by shielding tumor cells from immune recognition, enabling disease progression. Conversely, certain glycan structures can modulate the immune response, leading to either antitumor immunity or immune tolerance. Understanding the intricate relationship between glycan diversity and immune interactions in ovarian cancer holds promise for the development of innovative therapeutic approaches. Immunotherapies that target glycan-mediated immune evasion, such as glycan-based vaccines or checkpoint inhibitors, are under investigation. Additionally, glycan profiling may serve as a diagnostic tool for patient stratification and treatment selection. This review underscores the emerging importance of glycan diversity in ovarian cancer, emphasizing the potential for unraveling immune interplay and advancing tailored therapeutic prospects for this devastating disease.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
6
|
Noriega M, Corey RA, Haanappel E, Demange P, Czaplicki G, Atkinson RA, Chavent M. Coarse-Graining the Recognition of a Glycolipid by the C-Type Lectin Mincle Receptor. J Phys Chem B 2024; 128:9935-9946. [PMID: 39368102 DOI: 10.1021/acs.jpcb.4c03242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Macrophage inducible Ca2+-dependent lectin (Mincle) receptor recognizes Mycobacterium tuberculosis glycolipids to trigger an immune response. This host membrane receptor is thus a key player in the modulation of the immune response to infection by M. tuberculosis and has emerged as a promising target for the development of new vaccines against tuberculosis. The recent development of the Martini 3 force field for coarse-grained (CG) molecular modeling allows the study of interactions of soluble proteins with small ligands which was not typically modeled well with the previous Martini 2 model. Here, we present a refined approach detailing a protocol for modeling interactions between a glycolipid and its receptor at a CG level using the Martini 3 force field. Using this approach, we studied Mincle and identified critical parameters governing ligand recognition, such as loop flexibility and the regulation of hydrophobic groove formation by calcium ions. In addition, we assessed ligand affinity using free energy perturbation calculations. Our results offer mechanistic insight into the interactions between Mincle and glycolipids, providing a basis for the rational design of molecules targeting this type of membrane receptors.
Collapse
Affiliation(s)
- Maxime Noriega
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Robin A Corey
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pascal Demange
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - R Andrew Atkinson
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
| | - Matthieu Chavent
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077 Toulouse, Cedex 4, France
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
7
|
Healey HM, Penn HB, Small CM, Bassham S, Goyal V, Woods MA, Cresko WA. Single Cell Sequencing Provides Clues about the Developmental Genetic Basis of Evolutionary Adaptations in Syngnathid Fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588518. [PMID: 38645265 PMCID: PMC11030337 DOI: 10.1101/2024.04.08.588518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provide the opportunity for detailed genetic analyses. We created a single cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how their novelties evolved.
Collapse
Affiliation(s)
- Hope M Healey
- Institute of Ecology and Evolution, University of Oregon
| | - Hayden B Penn
- Institute of Ecology and Evolution, University of Oregon
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon
- School of Computer and Data Science, University of Oregon
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon
| | - Vithika Goyal
- Institute of Ecology and Evolution, University of Oregon
| | - Micah A Woods
- Institute of Ecology and Evolution, University of Oregon
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon
- Knight Campus for Accelerating Scientific Impact, University of Oregon
| |
Collapse
|
8
|
Li Y, Ye Y, Zhu X, Liu X, Li X, Zhao Y, Che X. Transcriptomic analysis reveals nanoplastics-induced apoptosis, autophagy and immune response in Litopenaeus vannamei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174360. [PMID: 38960190 DOI: 10.1016/j.scitotenv.2024.174360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Increasing attention is being paid to the toxic physiological effects of nanoplastics (NPs) on aquatic organisms. However, few studies have systematically evaluated the regulatory mechanisms of NPs on immune response in crustaceans. In this study, a 28-day chronic exposure experiment was conducted in which shrimps were exposed to various 80-nm polystyrene NPs concentrations (0, 0.1, 1, 5 and 10 mg/L). Transcriptomic analysis was used to investigate the regulatory mechanisms of NPs in immune response of Litopenaeus vannamei. With increasing NPs concentration, the total hemocyte count (THC) content decreased, while phagocytosis rate (PR) and respiratory burst (RB) showed trends of first rising and then falling. High concentration (10 mg/L) of NPs caused the destruction of hepatopancreas tissue structure, the shedding of microvilli, the increase number of hepatocyte apoptosis and autophagy structure. With increasing NPs concentration, the lysozyme (Lys), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities first increased and then decrease, while contents of lipid peroxidation and malondialdehyde increased; the expression levels of Toll, MyD88, GPx, SOD, proPO, Lys, and ALF generally increased at first and then decreased. Transcriptional sequencing analysis showed that the pathway of differentially expressed genes in KEGG enrichment mainly included lysosome (ko04142), apoptosis (ko04210) pathways, indicating that the NPs mainly affected the immune regulatory mechanism. Further analysis by Gene Set Enrichment Analysis (GSEA) showed that the up-regulation pathways of NPs activation mainly included immune response-related pathways such as mitochondrial autophagy, DNA repair, autophagosomes signaling pathway. Our results indicated that NPs exposure induced oxidative stress, apoptosis and autophagy in shrimps. This study provides a basis for further understanding of the mechanisms of antioxidant immune regulation by NPs in shrimp and may serve as a reference for healthy ecological culture of shrimp.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xiaoyi Zhu
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
9
|
Weng M, Zhang R, Zhang Z, Wu J, Zheng W, Lu Q, Long S, Liu R, Wang Z, Cui J. A Novel Trichinella spiralis Galectin Strengthens the Macrophage ADCC Killing of Larvae via Driving M1 Polarization. Int J Mol Sci 2024; 25:10920. [PMID: 39456703 PMCID: PMC11506943 DOI: 10.3390/ijms252010920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Galectin recognizes β-galactosides through its carbohydrate recognition domains (CRDs). This study aimed to determine the biological features of a novel Trichinella spiralis galectin (galactoside-binding lectin family protein, TsGLFP) and its role in driving macrophage M1 polarization and enhancing ADCC killing of larvae. TsGLFP belongs to the galectin family and has two CRDs. The complete TsGLFP cDNA sequence was cloned and then expressed in Escherichia coli BL21. The results of qPCR, Western blot, and indirect immunofluorescence tests (IIFTs) revealed that TsGLFP was expressed in various stages of T. spiralis worms and principally localized at the cuticle and around the female embryos of the nematode. rTsGLFP had the function of agglutinating mouse erythrocytes, and this agglutination activity could be inhibited by lactose. After the mouse macrophage RAW264.7 was incubated with rTsGLFP, the expression level of the M1 genes (iNOS, IL-6, and TNF-α) and NO production were obviously increased. After incubating macrophages with rTsGLFP, there was a noticeable rise in the expression levels of p-IκB-α and p-NF-κB p65. Additionally, rTsGLFP enhanced the macrophage's ability to kill newborn larvae by ADCC cytotoxicity. When the macrophages were pretreated with the specific p-NF-κB p65 inhibitor PDTC, and then stimulated with rTsGLFP, the expression levels of iNOS, NO, and p-NF-κB p65 and the macrophages' ADCC cytotoxicity were distinctly decreased. These findings indicated that rTsGLFP enhanced the macrophage ADCC killing of larvae by driving M1 polarization through activating the NF-κB pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongquan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.W.); (R.Z.); (Z.Z.); (J.W.); (W.Z.); (Q.L.); (S.L.); (R.L.)
| |
Collapse
|
10
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2024:S1359-6101(24)00080-7. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
11
|
Stauber JM. Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition. Angew Chem Int Ed Engl 2024; 63:e202408751. [PMID: 38829965 DOI: 10.1002/anie.202408751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Multivalency is a fundamental principle in nature that leads to high-affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin-carbohydrate interactions that participate in many essential biological processes. Designing high-affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self-assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well-defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure-function relationships governing lectin-saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.
Collapse
Affiliation(s)
- Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, La Jolla, 92092, San Diego, California, United States
| |
Collapse
|
12
|
Alghamdi M, AL-Eitan L, Aljamal H, Abu Kharmah H. Genetic Polymorphisms of Immunity Regulatory Genes and Alopecia Areata Susceptibility in Jordanian Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1611. [PMID: 39459398 PMCID: PMC11509463 DOI: 10.3390/medicina60101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Alopecia areata (AA) is a tissue-specific immune-mediated disorder that affects hair follicles and the nail apparatus. Due to the collapse of hair follicle immune privilege in AA, hair loss ranges in severity from small, localized patches on the scalp to the loss of entire body hair. Although AA is of uncertain etiology, the disease has a common genetic basis with a number of other autoimmune diseases. Materials and Methods: To identify candidate genes that confer susceptibility to AA in the Jordanian population and further understand the disease background, we performed DNA genotyping using case-control samples of 152 patients and 150 healthy subjects. Results: While no significant result was observed in the ten single-nucleotide polymorphisms (SNPs), CLEC4D rs4304840 variants showed significant associations with AA development within our cohort (p = 0.02). The strongest associations were for the codominant and recessive forms of rs4304840 (p = 0.023 and p = 0.0061, respectively). Conclusions: These findings suggest that CLEC4D gene variants may contribute to AA pathogenesis among Jordanians. Further advanced genetic analysis and functional investigations are required to elucidate the genetic basis of the disease.
Collapse
Affiliation(s)
- Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia;
- Genomics and Personalized Medicine Unit, The Centre for Medical and Health Research, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Laith AL-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (H.A.K.)
| | - Hanan Aljamal
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (H.A.K.)
| | - Hana Abu Kharmah
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (H.A.K.)
| |
Collapse
|
13
|
Huo W, Qin L, Guo W, Zhang X, Xia X. Characteristics and functional analysis of a novel mannose receptor in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109820. [PMID: 39117127 DOI: 10.1016/j.fsi.2024.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
The mannose receptor (MR) plays a key role in the innate immune system as a pattern recognition receptor. Here, a novel type of mannose receptor, named PvMR2, was identified from Penaeus vannamei (P. vannamei). The PvMR2 coding sequence (CDS) obtained was 988 base pairs in length, encoding a protein consisting of 328 amino acids. This protein includes a signal peptide and two classical C-type lectin domains (CTLD). Quantitative real-time PCR showed that PvMR2 was distributed in all detected tissues, with the highest levels in the intestines and stomach. Following a bacterial challenge with Vibrio anguillarum (V. anguillarum), PvMR2 showed significant up-regulation in both the intestines and stomach of shrimp. To validate the function of PvMR2, recombinant proteins were extracted and purified using a His-tag. The resulting rPvMR2 demonstrated binding capability with lipopolysaccharides (LPS) and peptidoglycan (PGN) in a dose-dependent manner, affirming its binding affinity. The purified rPvMR2 demonstrated calcium-independent binding activity towards both Gram-positive bacteria (V. anguilliarum and Vibrio parahaemolyticus) and Gram-negative bacteria (Escherichia coli and Aeromonas Veronii). Antibacterial assays confirmed that rPvMR2 inhibits bacterial growth. Intestinal adhesion and adhesion inhibition experiments confirmed that the rPvMR2 can be used to reduce the adhesion capacity of harmful bacteria in the gut. Phagocytosis experiments have shown that rPvMR2 promotes phagocytosis in hemocytes and protects the host from external infection. Treatment with recombinant PvMR2 significantly bolstered bacterial clearance within the hemolymph and markedly augmented shrimp survival post-infection with V. anguillarum. These results suggest that PvMR2 has agglutination, growth inhibition, adhesion inhibition, clearance promotion, and phagocytosis effects on harmful bacteria, and plays a crucial role in the antimicrobial immune response of P. vannamei.
Collapse
Affiliation(s)
- Weiran Huo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lu Qin
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanwan Guo
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaowen Zhang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaohua Xia
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
14
|
You J, Maksimovic K, Metri MN, Schoeppe A, Chen K, Lee J, Santos JR, Youssef MM, Salter MW, Park J. Knockout of Dectin-1 does not modify disease onset or progression in a MATR3 S85C knock-in mouse model of ALS. Heliyon 2024; 10:e37926. [PMID: 39323783 PMCID: PMC11422021 DOI: 10.1016/j.heliyon.2024.e37926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
Microglia have been increasingly implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Dectin-1, encoded by the Clec7a gene, is highly upregulated in a specific microglial response state called disease-associated microglia (DAM) in various neurodegenerative conditions. However, the role of Dectin-1 in ALS is undetermined. Here, we show that Clec7a mRNA upregulation occurs in central nervous system (CNS) regions that exhibit neurodegeneration in a MATR3 S85C knock-in mouse model (Matr3 S85C/S85C ) of ALS. Furthermore, a significant increase in the number of Dectin-1+ microglia coincides with the onset of motor deficits, and this number increases with disease progression. We demonstrate that the knockout of Dectin-1 does not affect survival, motor function, neurodegeneration, or microglial responses in Matr3 S85C/S85C mice. These findings suggest that Dectin-1 does not play a role in modifying ALS onset or progression.
Collapse
Affiliation(s)
- Justin You
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Katarina Maksimovic
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mark N. Metri
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Anneka Schoeppe
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Karin Chen
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Jooyun Lee
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Jhune Rizsan Santos
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Mohieldin M.M. Youssef
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michael W. Salter
- Neuroscience & Mental Health Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, ON, M5S 1A8, Canada
| | - Jeehye Park
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
15
|
Xiong J, Zhou Z, Jiang Y, Li Q, Geng Z, Guo J, Yan C, Zhang J. Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m 6A methylation drives breast cancer progression and metastasis. Oncogene 2024:10.1038/s41388-024-03180-4. [PMID: 39341989 DOI: 10.1038/s41388-024-03180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Dysregulated N6-methyladenosine (m6A) modification has been associated with breast cancer pathogenesis. Hypoxia which characterizes solid tumors is known to reprogram the m6A epitranscriptome, but the underlying mechanisms of how this process contributes to breast cancer progression remain poorly understood. Through integrative analyses of m6A-RIP sequencing and RNA sequencing databases, we reveal a cluster of mRNAs with upregulated m6A methylation and expression under hypoxia, that are enriched by many oncogenic pathways, including PI3K-Akt signaling. Furthermore, we identify the mRNA, RIPOR3, as a target of METTL3-mediated m6A methylation in response to hypoxia. We find that m6A methylation stabilizes RIPOR3, increasing its protein expression in a METTL3 catalytic activity-dependent manner, and consequently driving breast tumor growth and metastasis. RIPOR3 is found to be overexpressed in breast cancer cell lines and tumor tissues from breast cancer patients, in whom elevated RIPOR3 is associated with a worse prognosis. Mechanistically, we show that RIPOR3 interacts with EGFR and is essential for the PI3K-Akt pathway activation. In conclusion, we identify RIPOR3 as a hypoxia-stabilized oncogenic driver via METTL3-mediated m6A methylation, thus provide a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jingjing Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zirui Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yulong Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qifang Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zuhan Geng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chaojun Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Jing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Vito O, Psarras S, Syggelou A, Wright VJ, Amanatidou V, Newton SM, Shailes H, Trochoutsou K, Tsagaraki M, Levin M, Kaforou M, Tsolia M. Novel RNA biomarkers improve discrimination of children with tuberculosis disease from those with non-TB pneumonia after in vitro stimulation. Front Immunol 2024; 15:1401647. [PMID: 39391304 PMCID: PMC11464340 DOI: 10.3389/fimmu.2024.1401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
The diagnosis of pediatric tuberculosis (TB) poses a challenge for clinical teams worldwide. TB-mediated changes in the expression of host genes in the peripheral blood can serve as diagnostic biomarkers and can provide better insights into the host immune mechanisms of childhood TB. Peripheral blood mononuclear cells (PBMCs) from children (n=102) with microbiologically confirmed TB disease, TB infection (TBI), pneumonia, and healthy controls (HC) were stimulated with either the Purified Protein Derivative (PPD) or the Early Secretory Antigen 6kDa-Culture Filtrate Protein 10 (ESAT6-CFP10) complex of Mycobacterium tuberculosis (Mtb). RNA was extracted and quantified using gene expression microarrays. Differential expression analysis was performed comparing microbiologically confirmed TB to the other diagnostic groups for the stimulated and unstimulated samples. Using variable selection, we identified sparse diagnostic gene signatures; one gene (PID1) was able to distinguish TB from pneumonia after ESAT6-CFP10 stimulation with an AUC of 100% in the test set, while a combination of two genes (STAT1 and IFI44) achieved an AUC of 91.7% (CI95% 75.0%-100%) in the test set after PPD stimulation. The number of significantly differentially expressed (SDE) genes was higher when contrasting TB to pneumonia or HC in stimulated samples, compared to unstimulated ones, leading to a larger pool of candidate diagnostic biomarkers. Our approach provides enlightened aspects of peripheral TB-specific responses and can form the basis for a point of care test meeting the World Health Organization (WHO) Target Product Profile (TPP) for pediatric TB.
Collapse
Affiliation(s)
- Ortensia Vito
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens , Athens, Greece
| | - Angeliki Syggelou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Victoria J. Wright
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Virginia Amanatidou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Sandra M. Newton
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Hannah Shailes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Katerina Trochoutsou
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Maria Tsagaraki
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| | - Michael Levin
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Myrsini Kaforou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre for Pediatrics and Child Health, Imperial College London, London, United Kingdom
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, P. and A. Kyriakou Children’s Hospital, Athens, Greece
| |
Collapse
|
17
|
Jun J, Kim EJ, Jeon D, Yang J, Jeong HG, Jung H, Kim T, Eyun SI. Comparative genomic analysis of copepod humoral immunity genes with sex-biased expression in Labidocera rotunda. J Invertebr Pathol 2024; 207:108198. [PMID: 39313092 DOI: 10.1016/j.jip.2024.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Studies of innate immune system function in invertebrates have contributed significantly to our understanding of the mammalian innate immune system. However, in-depth research on innate immunity in marine invertebrates remains sparse. We generated the first de novo genome and transcriptome sequences of copepod Labidocera rotunda using Illumina paired-end data and conducted a comparative genome analysis including five crustaceans (four copepods and one branchiopod species). We cataloged the presence of Toll, Imd, JAK/STAT, and JNK pathway components among them and compared them with 17 previously reported diverse arthropod species representative of insects, myriapods, chelicerates, and malacostracans. Our results indicated that copepod Gram-negative binding proteins may function in direct digestion or pathogen killing. The phylogenetic analysis of arthropod TEP and copepod-specific GCGEQ motif patterns suggested that the evolutionary history of copepod TEPs may have diverged from that of other arthropods. We classified the copepod Toll-like receptors identified in our analysis as either vertebrate or protostome types based on their cysteine motifs and the tree built with their Toll/interleukin-1 receptor domains. LrotCrustin, the first copepod AMP, was identified based on the structure of its WAP domain and deep-learning AMP predictors. Gene expression level analysis of L. rotunda innate immunity-related transcripts in each sex showed higher Toll pathway-related expression in male L. rotunda than in females, which may reflect an inverse correlation between allocation of reproductive investment and elevated immune response in males. Taken together, the results of our study provide insight into copepod innate immunity-related gene families and illuminate the evolutionary potential of copepods relative to other crustaceans.
Collapse
Affiliation(s)
- Jimoon Jun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Donggu Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jihye Yang
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyeon Gyeong Jeong
- Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea
| | - Hyungtaek Jung
- National Centre for Indigenous Genomics, Australian National University, Acton, Australia
| | - Taeho Kim
- Department of Marine Production Management, Chonnam National University, Yeosu 59626, South Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
18
|
Heimburg-Molinaro J, Mehta AY, Tilton CA, Cummings RD. Insights Into Glycobiology and the Protein-Glycan Interactome Using Glycan Microarray Technologies. Mol Cell Proteomics 2024; 23:100844. [PMID: 39307422 DOI: 10.1016/j.mcpro.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 11/11/2024] Open
Abstract
Glycans linked to proteins and lipids and also occurring in free forms have many functions, and these are partly elicited through specific interactions with glycan-binding proteins (GBPs). These include lectins, adhesins, toxins, hemagglutinins, growth factors, and enzymes, but antibodies can also bind glycans. While humans and other animals generate a vast repertoire of GBPs and different glycans in their glycomes, other organisms, including phage, microbes, protozoans, fungi, and plants also express glycans and GBPs, and these can also interact with their host glycans. This can be termed the protein-glycan interactome, and in nature is likely to be vast, but is so far very poorly described. Understanding the breadth of the protein-glycan interactome is also a key to unlocking our understanding of infectious diseases involving glycans, and immunology associated with antibodies binding to glycans. A key technological advance in this area has been the development of glycan microarrays. This is a display technology in which minute quantities of glycans are attached to the surfaces of slides or beads. This allows the arrayed glycans to be interrogated by GBPs and antibodies in a relatively high throughput approach, in which a protein may bind to one or more distinct glycans. Such binding can lead to novel insights and hypotheses regarding both the function of the GBP, the specificity of an antibody and the function of the glycan within the context of the protein-glycan interactome. This article focuses on the types of glycan microarray technologies currently available to study animal glycobiology and examples of breakthroughs aided by these technologies.
Collapse
Affiliation(s)
- Jamie Heimburg-Molinaro
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Akul Y Mehta
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Tilton
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA
| | - Richard D Cummings
- Department of Surgery Beth Israel Deaconess Medical Center, National Center for Functional Glycomics (NCFG), Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Hewson AR, Lloyd-Laney HO, Keenan T, Richards SJ, Gibson MI, Linclau B, Signoret N, Fascione MA, Parkin A. Harnessing glycofluoroforms for impedimetric biosensing. Chem Sci 2024; 15:d4sc04409f. [PMID: 39282644 PMCID: PMC11393611 DOI: 10.1039/d4sc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Glycans play a major role in biological cell-cell recognition and signal transduction but have found limited application in biosensors due to glycan/lectin promiscuity; multiple proteins are capable of binding to the same native glycan. Here, site-specific fluorination is used to introduce protein-glycan selectivity, and this is coupled with an electrochemical detection method to generate a novel biosensor platform. 3F-lacto-N-biose glycofluoroform is installed onto polymer tethers, which are subsequently immobilised onto gold screen printed electrodes, providing a non-fouling surface. The impedance biosensing platform is shown to selectively bind cancer-associated galectin-3 compared to control glycans and proteins. To improve the analytical capability, Bayesian statistical analysis was deployed in the equivalent circuit fitting of electrochemical impedance spectroscopy data. It is shown that Markov Chain Monte Carlo (MCMC) analysis is a helpful method for visualising experimental irreproducibility, and we apply this as a quality control step.
Collapse
Affiliation(s)
- Alice R Hewson
- Department of Chemistry, University of York YO10 5DD York UK
| | | | - Tessa Keenan
- Department of Chemistry, University of York YO10 5DD York UK
| | - Sarah-Jane Richards
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Matthew I Gibson
- Department of Chemistry, The University of Manchester M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester M1 7DN UK
| | - Bruno Linclau
- Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | | | | | - Alison Parkin
- Department of Chemistry, University of York YO10 5DD York UK
| |
Collapse
|
20
|
Jawale D, Khandibharad S, Singh S. Innate Immune Response and Epigenetic Regulation: A Closely Intertwined Tale in Inflammation. Adv Biol (Weinh) 2024:e2400278. [PMID: 39267219 DOI: 10.1002/adbi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Maintenance of delicate homeostasis is very important in various diseases because it ensures appropriate immune surveillance against pathogens and prevents excessive inflammation. In a disturbed homeostatic condition, hyperactivation of immune cells takes place and interplay between these cells triggers a plethora of signaling pathways, releasing various pro-inflammatory cytokines such as Tumor necrosis factor alpha (TNFα), Interferon-gamma (IFNƴ), Interleukin-6 (IL-6), and Interleukin-1 beta (IL-1β), which marks cytokine storm formation. To be precise, dysregulated balance can impede or increase susceptibility to various pathogens. Pathogens have the ability to hijack the host immune system by interfering with the host's chromatin architecture for their survival and replication in the host cell. Cytokines, particularly IL-6, Interleukin-17 (IL-17), and Interleukin-23 (IL-23), play a key role in orchestrating innate immune responses and shaping adaptive immunity. Understanding the interplay between immune response and the role of epigenetic modification to maintain immune homeostasis and the structural aspects of IL-6, IL-17, and IL-23 can be illuminating for a novel therapeutic regimen to treat various infectious diseases. In this review, the light is shed on how the orchestration of epigenetic regulation facilitates immune homeostasis.
Collapse
Affiliation(s)
- Diksha Jawale
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shweta Khandibharad
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, SPPU Campus, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
21
|
Fan J, Li X, Yang J, Zhang S, Qu HQ, Ji D, Glessner JT, Hao J, Ding Z, Wang N, Meng X, Xia Q, Hakonarson H, Wei W, Li J. Revealing novel genomic insights and therapeutic targets for juvenile idiopathic arthritis through omics. Rheumatology (Oxford) 2024; 63:SI249-SI259. [PMID: 38317060 DOI: 10.1093/rheumatology/keae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The genetic architecture of JIA remains only partially comprehended. There is a clear imperative for continued endeavours to uncover insights into the underlying causes of JIA. METHODS This study encompassed a comprehensive spectrum of endeavours, including conducting a JIA genome-wide association study (GWAS) meta-analysis that incorporated data from 4550 JIA cases and 18 446 controls. We employed in silico and genome-editing approaches to prioritizing target genes. To investigate pleiotropic effects, we conducted phenome-wide association studies. Cell-type enrichment analyses were performed by integrating bulk and single-cell sequencing data. Finally, we delved into potential druggable targets for JIA. RESULTS Fourteen genome-wide significant non-HLA loci were identified, including four novel loci, each exhibiting pleiotropic associations with other autoimmune diseases or musculoskeletal traits. We uncovered strong genetic correlation between JIA and BMD traits at 52 genomic regions, including three GWAS loci for JIA. Candidate genes with immune functions were captured by in silico analyses at each novel locus, with additional findings identified through our experimental approach. Cell-type enrichment analysis revealed 21 specific immune cell types crucial for the affected organs in JIA, indicating their potential contribution to the disease. Finally, 24 known or candidate druggable target genes were prioritized. CONCLUSIONS Our identification of four novel JIA-associated genes, CD247, RHOH, COLEC10 and IRF8, broadens the novel potential drug repositioning opportunities. We established a new genetic link between COLEC10, TNFRSF11B and JIA/BMD. Additionally, the identification of RHOH underscores its role in positive thymocyte selection, thereby illuminating a critical facet of JIA's underlying biological mechanisms.
Collapse
Affiliation(s)
- Jingxian Fan
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sipeng Zhang
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jian Hao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Xinyi Meng
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Niveau C, Sosa Cuevas E, Saas P, Aspord C. Glycans in melanoma: Drivers of tumour progression but sweet targets to exploit for immunotherapy. Immunology 2024; 173:33-52. [PMID: 38742251 DOI: 10.1111/imm.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Aberrant glycosylation recently emerged as an unmissable hallmark of cancer progression in many cancers. In melanoma, there is growing evidence that the tumour 'glycocode' plays a major role in promoting cell proliferation, invasion, migration, but also dictates the nature of the immune infiltrate, which strongly affects immune cell function, and clinical outcome. Aberrant glycosylation patterns dismantle anti-tumour defence through interactions with lectins on immune cells, which are crucial to shape anti-tumour immunity but also to trigger immune evasion. The glycan/lectin axis represents a new immune subversion pathway that is exploited by melanoma to hijack immune cells and escape from immune control. In this review, we describe the glycosylation features of melanoma tumour cells, and further gather findings related to the role of glycosylation in melanoma tumour progression, deciphering in detail its impact on immunity. We also depict glycan-based strategies aiming at restoring a functional anti-tumour response in melanoma patients. Glycans/lectins emerge as key immune checkpoints with promising translational properties. Exploitation of these pathways could reshape potent anti-tumour immunity while impeding immunosuppressive circuits triggered by aberrant tumour glycosylation patterns, holding great promise for cancer therapy.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| |
Collapse
|
23
|
Malamud M, Whitehead L, McIntosh A, Colella F, Roelofs AJ, Kusakabe T, Dambuza IM, Phillips-Brookes A, Salazar F, Perez F, Shoesmith R, Zakrzewski P, Sey EA, Rodrigues C, Morvay PL, Redelinghuys P, Bedekovic T, Fernandes MJG, Almizraq R, Branch DR, Amulic B, Harvey J, Stewart D, Yuecel R, Reid DM, McConnachie A, Pickering MC, Botto M, Iliev ID, McInnes IB, De Bari C, Willment JA, Brown GD. Recognition and control of neutrophil extracellular trap formation by MICL. Nature 2024; 633:442-450. [PMID: 39143217 PMCID: PMC11390483 DOI: 10.1038/s41586-024-07820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/metabolism
- Aspergillus fumigatus/immunology
- Aspergillus fumigatus/pathogenicity
- Autoantibodies/immunology
- Autoantibodies/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Disease Models, Animal
- DNA/metabolism
- DNA/immunology
- Extracellular Traps/metabolism
- Extracellular Traps/immunology
- Feedback, Physiological
- Inflammation/immunology
- Inflammation/metabolism
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/deficiency
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice, Inbred C57BL
- Neutrophil Activation
- Neutrophils/immunology
- Neutrophils/metabolism
- Protein-Arginine Deiminase Type 4/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Mitogen/antagonists & inhibitors
- Receptors, Mitogen/deficiency
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
Collapse
Affiliation(s)
- Mariano Malamud
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Lauren Whitehead
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alasdair McIntosh
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Fabio Colella
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Ivy M Dambuza
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Fabián Salazar
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Federico Perez
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Romey Shoesmith
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Emily A Sey
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | | | - Petruta L Morvay
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Tina Bedekovic
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Maria J G Fernandes
- Faculty of Medicine, Department of Microbiology, Infectious Diseases, and Immunology, Laval University, Quebec City, Quebec, Canada
| | - Ruqayyah Almizraq
- Medical Affairs and Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Donald R Branch
- Medical Affairs and Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jamie Harvey
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Diane Stewart
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Raif Yuecel
- Centre for Cytomics, University of Exeter, Exeter, UK
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex McConnachie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Matthew C Pickering
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Janet A Willment
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Brown
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
24
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
25
|
Chen L, Dhoomun DK, Liu Q, Kong X, Li X, Peng S, Lan P, Wang J. A prognostic model based on CLEC6A predicts clinical outcome of breast cancer patients. Int Immunopharmacol 2024; 137:112411. [PMID: 38852520 DOI: 10.1016/j.intimp.2024.112411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
CLEC6A, (C-type lectin domain family 6, member A), plays a prominent role in regulating innate immunity and adaptive immunity. CLEC6A has shown great potential as a target for cancer immunotherapy. This study aims to explore the prognostic value of CLEC6A, and analyze the relationship associated with the common hematological parameters in breast cancer patients. We performed a retrospective analysis on 183 breast cancer patients data in hospital information system from January 2013 to December 2015. The expression of CLEC6A was recorded via semiquantitative immunohistochemistry in breast cancer. The association between expression of CLEC6A and relative parameters were performed by Chi-square test and Fisher's exact test. Kaplan-Meier assay and Log-rank test were performed to evaluate the survival time. The Cox proportional hazards regression analysis was applied to identify prognostic factors. Nomograms were conducted to predict 1-, 3-, and 5-year disease free survival (DFS) and overall survival (OS) for breast cancer, which could be a good reference in clinical practice. The nomogram model was estimated by calibration curve analysis for its function of discrimination. The accuracy and benefit of the nomogram model were appraised by comparing it to only CLEC6A via decision curve analysis (DCA). The prediction accuracy of CLEC6A was also determined by time-dependent receiver operating characteristics (TDROC) curves, and the area under the curve (AUC) for different survival time. There were 94 cases in the CLEC6A low-expression group and 89 cases in CLEC6A high-expression group. Compared to CLEC6A low-expression group, the CLEC6A high-expression group had better survival (DFS: 56.95 vs. 70.81 months, P = 0.0078 and OS: 67.98 vs. 79.05 months, P = 0.0089). The CLEC6A was a potential prognostic factor in multivariate analysis (DFS: P = 0.023, hazard ratio (HR): 0.454, 95 % confidence interval (CI): 0.229-0.898; OS: P = 0.020, HR: 0.504, 95 %CI: 0.284-0.897). The nomogram in accordance with these potential prognostic factors was constructed to predict survival and the calibration curve analysis had indicated that the predicted line was well-matched with reference line in 1-, 3-, and 5-year DFS and OS category. The 1-, 3-, and 5-year DCA curves have revealed that nomogram model yielded larger net benefits than CLEC6A alone. Finally, the TDROC curve indicated that CLEC6A could better predict 1-year DFS and OS than others. Furthermore, we combined these potential independent prognostic factors to analyze the relationship among these hematologic index and oxidative stress indicators, and indicated that higher CLEC6A level, higher CO2 level or low CHOL level or high HDL-CHO level would have survived longer and better prognosis. In breast cancer, high expression of CLEC6A can independently predict better survival. Our nomogram consisted of CLEC6A and other indicators has good predictive performance and can facilitate clinical decision-making.
Collapse
Affiliation(s)
- Li Chen
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Deenraj Kush Dhoomun
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shu Peng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Hubei 430030, PR China.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| |
Collapse
|
26
|
Zhao J, Zhang K, Sui D, Wang S, Li Y, Tang X, Liu X, Song Y, Deng Y. Recent advances in sialic acid-based active targeting chemoimmunotherapy promoting tumor shedding: a systematic review. NANOSCALE 2024; 16:14621-14639. [PMID: 39023195 DOI: 10.1039/d4nr01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tumors have always been a major public health concern worldwide, and attempts to look for effective treatments have never ceased. Sialic acid is known to be a crucial element for tumor development and its receptors are highly expressed on tumor-associated immune cells, which perform significant roles in establishing the immunosuppressive tumor microenvironment and further boosting tumorigenesis, progression, and metastasis. Obviously, it is essential to consider sophisticated crosstalk between tumors, the immune system, and preparations, and understand the links between pharmaceutics and immunology. Sialic acid-based chemoimmunotherapy enables active targeting drug delivery via mediating the recognition between the sialic acid-modified nano-drug delivery system represented by liposomes and sialic acid-binding receptors on tumor-associated immune cells, which inhibit their activity and utilize their homing ability to deliver drugs. Such a "Trojan horse" strategy has remarkably improved the shortcomings of traditional passive targeting treatments, unexpectedly promoted tumor shedding, and persistently induced robust immunological memory, thus highlighting its prospective application potential for targeting various tumors. Herein, we review recent advances in sialic acid-based active targeting chemoimmunotherapy to promote tumor shedding, summarize the current viewpoints on the tumor shedding mechanism, especially the formation of durable immunological memory, and analyze the challenges and opportunities of this attractive approach.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Kunfeng Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Dezhi Sui
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yantong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, No. 103, Shenyang 110016, China.
| |
Collapse
|
27
|
Singh L, Singh S, Singh DD. A Machine Learning Approach to Identify C Type Lectin Domain (CTLD) Containing Proteins. Protein J 2024; 43:718-725. [PMID: 39068630 DOI: 10.1007/s10930-024-10224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Lectins are sugar interacting proteins which bind specific glycans reversibly and have ubiquitous presence in all forms of life. They have diverse biological functions such as cell signaling, molecular recognition, etc. C-type lectins (CTL) are a group of proteins from the lectin family which have been studied extensively in animals and are reported to be involved in immune functions, carcinogenesis, cell signaling, etc. The carbohydrate recognition domain (CRD) in CTL has a highly variable protein sequence and proteins carrying this domain are also referred to as C-type lectin domain containing proteins (CTLD). Because of this low sequence homology, identification of CTLD from hypothetical proteins in the sequenced genomes using homology based programs has limitations. Machine learning (ML) tools use characteristic features to identify homologous sequences and it has been used to develop a tool for identification of CTLD. Initially 500 sequences of well annotated CTLD and 500 sequences of non CTLD were used in developing the machine learning model. The classifier program Linear SVC from sci kit library of python was used and characteristic features in CTLD sequences like dipeptide and tripeptide composition were used as training attributes in various classifiers. A precision, recall and multiple correlation coefficient (MCC) value of 0.92, 0.91 and 0.82 respectively were obtained when tested on external test set. On fine tuning of the parameters like kernel, C value, gamma, degree and increasing number of non CTLD sequences there was improvement in precision, recall and MCC and the corresponding values were 0.99, 0.99 and 0.96. New CTLD have also been identified in the hypothetical segment of human genome using the trained model. The tool is available on our local server for interested users.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Sukhwinder Singh
- University Institute of Engineering & Technology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Desh Deepak Singh
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
28
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
29
|
Basaran R, Budhadev D, Kempf A, Nehlmeier I, Hondow N, Pöhlmann S, Guo Y, Zhou D. Probing scaffold size effects on multivalent lectin-glycan binding affinity, thermodynamics and antiviral properties using polyvalent glycan-gold nanoparticles. NANOSCALE 2024; 16:13962-13978. [PMID: 38984502 DOI: 10.1039/d4nr00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are pivotal for viral infections and immune regulation. Their structural and biophysical data are thus highly valuable, not only for understanding their basic mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information for some important MGLIs remains poorly understood, greatly limiting research progress. We have recently developed densely glycosylated nanoparticles, e.g., ∼4 nm quantum dots (QDs) or ∼5 nm gold nanoparticles (GNPs), as mechanistic probes for MLGIs. Using two important model lectin viral receptors, DC-SIGN and DC-SIGNR, we have shown that these probes can not only offer sensitive fluorescence assays for quantifying MLGI affinities, but also reveal key structural information (e.g., binding site orientation and binding mode) useful for MLGI targeting. However, the small sizes of the previous scaffolds may not be optimal for maximising MLGI affinity and targeting specificity. Herein, using α-manno-α-1,2-biose (DiMan) functionalised GNP (GNP-DiMan) probes, we have systematically studied how GNP scaffold size (e.g., 5, 13, and 27 nm) and glycan density (e.g., 100, 75, 50 and 25%) determine their MLGI affinities, thermodynamics, and antiviral properties. We have developed a new GNP fluorescence quenching assay format to minimise the possible interference of GNP's strong inner filter effect in MLGI affinity quantification, revealing that increasing the GNP size is highly beneficial for enhancing MLGI affinity. We have further determined the MLGI thermodynamics by combining temperature-dependent affinity and Van't Hoff analyses, revealing that GNP-DiMan-DC-SIGN/R binding is enthalpy driven with favourable binding Gibbs free energy changes (ΔG°) being enhanced with increasing GNP size. Finally, we show that increasing the GNP size significantly enhances their antiviral potency. Notably, the DiMan coated 27 nm GNP potently and robustly blocks both DC-SIGN and DC-SIGNR mediated pseudo-Ebola virus cellular entry with an EC50 of ∼23 and ∼49 pM, respectively, making it the most potent glycoconjugate inhibitor against DC-SIGN/R-mediated Ebola cellular infections. Our results have established GNP-glycans as a new tool for quantifying MLGI biophysical parameters and revealed that increasing the GNP scaffold size significantly enhances their MLGI affinities and antiviral potencies.
Collapse
Affiliation(s)
- Rahman Basaran
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Amy Kempf
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School of Food Science and Nutrition, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
30
|
Moniaux N, Geoffre N, Deshayes A, Dos Santos A, Job S, Lacoste C, Nguyen TS, Darnaud M, Friedel-Arboleas M, Guettier C, Purhonen J, Kallijärvi J, Amouyal G, Amouyal P, Bréchot C, Vivès RR, Buendia MA, Issad T, Faivre J. Tumor suppressive role of the antimicrobial lectin REG3A targeting the O -GlcNAc glycosylation pathway. Hepatology 2024:01515467-990000000-00943. [PMID: 38975812 DOI: 10.1097/hep.0000000000000993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved. APPROACH AND RESULTS This study provides evidence for a suppressive role of REG3A in HCC by reducing O -GlcNAcylation in 2 mouse models of HCC, in vitro cell studies, and clinical samples. REG3A expression in hepatocytes significantly reduced global O -GlcNAcylation and O -GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibited HCC development in REG3A-c-MYC double transgenic mice and mice exposed to diethylnitrosamine. REG3A modified O -GlcNAcylation without altering the expression or activity of O-linked N-acetylglucosaminyltransferase, O-linked N-acetylglucosaminyl hydrolase, or glutamine fructose-6-phosphate amidotransferase. Reduced O -GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in precancerous and cancerous livers. This effect was linked to the ability of REG3A to bind glucose and glucose-6 phosphate, suggested by a REG3A mutant unable to bind glucose and glucose-6 phosphate and alter O -GlcNAcylation. Importantly, patients with cirrhosis with high hepatic REG3A expression had lower levels of O -GlcNAcylation and longer cancer-free survival than REG3A-negative cirrhotic livers. CONCLUSIONS REG3A helps fight liver cancer by reducing O -GlcNAcylation. This study suggests a new paradigm for the regulation of O -GlcNAc signaling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.
Collapse
Affiliation(s)
- Nicolas Moniaux
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nicolas Geoffre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alice Deshayes
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sylvie Job
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tung-Son Nguyen
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marion Darnaud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Catherine Guettier
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Hôpital Bicêtre, Laboratoire Anatomie Pathologique, Le Kremlin Bicêtre, France
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Romain R Vivès
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Marie Annick Buendia
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Tarik Issad
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Medical-University Department (DMU) Biology Genetics, Université Paris-Saclay, Paul-Brousse Hospital, Villejuif, France
| |
Collapse
|
31
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
32
|
Duan Z, Zhang F, Wang X, Li H, Zhou D, Chen Q, Tao Z, Chen Z, Yu G, Yu H. C-type lectin 12B/4E of black rockfish (Sebastes schlegelii) macrophages as pattern recognition receptors in the antibacterial mechanism of exploration. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109636. [PMID: 38762095 DOI: 10.1016/j.fsi.2024.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1β, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.
Collapse
Affiliation(s)
- Zhixiang Duan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Fan Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Hengshun Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Dianyang Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Qiannan Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Ze Tao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Zhentao Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Gan Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
33
|
Nihashi F, Furuhashi K, Horiguchi R, Kitahara Y, Inoue Y, Yasui H, Karayama M, Suzuki Y, Hozumi H, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Suda T. CLEC10A expression defines functionally distinct subsets of conventional type 2 dendritic cells (cDC2) in the mouse lung. Allergol Int 2024; 73:481-484. [PMID: 38341372 DOI: 10.1016/j.alit.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Affiliation(s)
- Fumiya Nihashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Infection Control and Prevention Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Kitahara
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
34
|
Ma L, Wang T, Liu M, Ji L, Wang Y, Li S, Zhang Y, Wang Y, Zhao W, Wu Z, Yu H, Zhao H. Xiaoer niuhuang qingxin powder alleviates influenza a virus infection by inhibiting the activation of the TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118000. [PMID: 38527574 DOI: 10.1016/j.jep.2024.118000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoer Niuhuang Qingxin Powder (XNQP) is a classic traditional Chinese medicine formula with significant clinical efficacy for treating febrile convulsions and influenza. AIM OF THE STUDY This study aims to explore the potential mechanisms of XNQP in combating combating the influenza A virus, providing a theoretical basis for its clinical application. MATERIALS AND METHODS The present investigation employed network pharmacology and bioinformatics analysis to determine the TLR4/MyD88/NF-κB signaling pathway as a viable target for XNQP intervention in IAV infection.Subsequently, a mouse model of influenza A virus infection was established, and different doses of XNQP were used for intervention. The protein expression levels of TLR4/MyD88/NF-κB were detected using HE staining, Elisa, immunohistochemistry, immunofluorescence, and western blot. RESULTS The results showed that treatment with XNQP after IAV infection reduced the mortality and prolonged the survival time of infected mice. It reduced the release of TNF-α and IFN-γ in the serum and alleviated pathological damage in the lung tissue following infection. Additionally, the levels of TLR4, MyD88, NF-κB, and p-NF-κB P65 proteins were significantly reduced in lung tissue by XNQP. The inhibitory effect of XNQP on the expression of MyD88 and NF-κB was antagonized when TLR4 signaling was overexpressed. Consequently, the expression levels of MyD88, NF-κB, and p-NF-κB P65 were increased in lung tissue. Conversely, the expression levels of the proteins MyD88, NF-κB, and p-NF-κB P65 were downregulated when TLR4 signaling was inhibited. CONCLUSIONS XNQP alleviated lung pathological changes, reduced serum levels of inflammatory factors, reduced mortality, and prolonged survival time in mice by inhibiting the overexpression of the TLR4/MyD88/NF-κB signaling pathway in lung tissues after IAV infection.
Collapse
Affiliation(s)
- Lanying Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meiyi Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250355, China
| | - Yanan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuting Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - WenXiao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China; Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
35
|
Angers I, Akik W, Beauchamp A, King IL, Lands LC, Qureshi ST. Card9 Broadly Regulates Host Immunity against Experimental Pulmonary Cryptococcus neoformans 52D Infection. J Fungi (Basel) 2024; 10:434. [PMID: 38921420 PMCID: PMC11204891 DOI: 10.3390/jof10060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor that is downstream of several CLRs. Experimental studies have implicated Card9 in host resistance against C. neoformans; however, the mechanisms that are associated with susceptibility to progressive infection are not well defined. To further characterize the role of Card9 in cryptococcal infection, Card9em1Sq mutant mice that lack exon 2 of the Card9 gene on the Balb/c genetic background were created using CRISPR-Cas9 genome editing technology and intratracheally infected with C. neoformans 52D. Card9em1Sq mice had significantly higher lung and brain fungal burdens and shorter survival after C. neoformans 52D infection. Susceptibility of Card9em1Sq mice was associated with lower pulmonary cytokine and chemokine production, as well as reduced numbers of CD4+ lymphocytes, neutrophils, monocytes, and dendritic cells in the lungs. Histological analysis and intracellular cytokine staining of CD4+ T cells demonstrated a Th2 pattern of immunity in Card9em1Sq mice. These findings demonstrate that Card9 broadly regulates the host inflammatory and immune response to experimental pulmonary infection with a moderately virulent strain of C. neoformans.
Collapse
Affiliation(s)
- Isabelle Angers
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Wided Akik
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Beauchamp
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Irah L. King
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Larry C. Lands
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Salman T. Qureshi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
36
|
Qing F, Sui L, He W, Chen Y, Xu L, He L, Xiao Q, Guo T, Liu Z. IRF7 Exacerbates Candida albicans Infection by Compromising CD209-Mediated Phagocytosis and Autophagy-Mediated Killing in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1932-1944. [PMID: 38709167 DOI: 10.4049/jimmunol.2300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Lina Sui
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Wenji He
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Yayun Chen
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Li Xu
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Gastroenterology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Zhiping Liu
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
37
|
Zhang Y, Zhang J, Fan H, Lu R, Nie G. Database construction and comparative genomics analysis of genes involved in nutritional metabolic diseases in fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101241. [PMID: 38733902 DOI: 10.1016/j.cbd.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Nutritional metabolic diseases in fish frequently arise in the setting of intensive aquaculture. The etiology and pathogenesis of these conditions involve energy metabolic disorders influenced by both internal genetic factors and external environmental conditions. The exploration of genes associated with nutritional and metabolic disorder has sparked considerable interest within both the aquaculture scientific community and the industry. High-throughput sequencing technology offers researchers extensive genetic information. Effectively mining, analyzing, and securely storing this data is crucial, especially for advancing disease prevention and treatment strategies. Presently, the exploration and application of gene databases concerning nutritional and metabolic disorders in fish are at a nascent stag. Therefore, this study focused on the model organism zebrafish and five primary economic fish species as the subjects of investigation. Using information from KEGG, OMIM, and existing literature, a novel gene database associated with nutritional metabolic diseases in fish was meticulously constructed. This database encompassed 4583 genes for Danio rerio, 6287 for Cyprinus carpio, 3289 for Takifugu rubripes, 3548 for Larimichthys crocea, 3816 for Oreochromis niloticus, and 5708 for Oncorhynchus mykiss. Through a comparative systems biology approach, we discerned a relatively high conservation of genes linked to nutritional metabolic diseases across these fish species, with over 54.9 % of genes being conserved throughout all six species. Additionally, the analysis pinpointed the existence of 13 species-specific genes within the genomes of large yellow croaker, tilapia, and rainbow trout. These genes exhibit the potential to serve as novel candidate targets for addressing nutritional metabolic diseases.
Collapse
Affiliation(s)
- Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Junmei Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Haiying Fan
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
38
|
Malireddi RKS, Sharma BR, Kanneganti TD. Innate Immunity in Protection and Pathogenesis During Coronavirus Infections and COVID-19. Annu Rev Immunol 2024; 42:615-645. [PMID: 38941608 PMCID: PMC11373870 DOI: 10.1146/annurev-immunol-083122-043545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The COVID-19 pandemic was caused by the recently emerged β-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.
Collapse
Affiliation(s)
- R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | | |
Collapse
|
39
|
Du J, Tang Y, Chu J, Yang Q, Qian X, Wan Y, Lu Y, Zhang L, Wang W. A novel exoskeletal-derived C-type lectin facilitates phagocytosis of hemocytes in the oriental river prawn Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109532. [PMID: 38579977 DOI: 10.1016/j.fsi.2024.109532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
C-type lectins (CTLs) execute critical functions in multiple immune responses of crustaceans as a member of pattern recognition receptors (PRRs) family. In this study, a novel CTL was identified from the exoskeleton of the oriental river prawn Macrobrachium nipponense (MnLec3). The full-length cDNA of MnLec3 was 1150 bp with an open reading frame of 723 bp, encoding 240 amino acids. MnLec3 protein contained a signal peptide and one single carbohydrate-recognition domain (CRD). MnLec3 transcripts were widely distributed at the exoskeleton all over the body. Significant up-regulation of MnLec3 in exoskeleton after Aeromonas hydrophila challenged suggested the involvement of MnLec3 as well as the possible function of the exoskeleton in immune response. In vitro tests with recombinant MnLec3 protein (rMnLec3) manifested that it had polysaccharide binding activity, a wide spectrum of bacterial binding activity and agglutination activity only for tested Gram-negative bacteria (Escherichia coli, Vibrio anguillarum and A. hydrophila). Moreover, rMnLec3 significantly promoted phagocytic ability of hemocytes against A. hydrophila in vivo. What's more, MnLec3 interference remarkably impaired the survivability of the prawns when infected with A. hydrophila. Collectively, these results ascertained that MnLec3 derived from exoskeleton took an essential part in immune defense of the prawns against invading bacteria as a PRR.
Collapse
Affiliation(s)
- Juan Du
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiaye Chu
- School of Stomatology, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Quanli Yang
- School of Stomatology, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiaohan Qian
- School of the Third Clinical Medicine, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Wan
- School of the Third Clinical Medicine, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yuming Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Limin Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Wenfeng Wang
- College of Life Sciences, Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| |
Collapse
|
40
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
41
|
Chang CM, Chang WC, Hsieh SL. Characterization of the genetic variation and evolutionary divergence of the CLEC18 family. J Biomed Sci 2024; 31:53. [PMID: 38764023 PMCID: PMC11103991 DOI: 10.1186/s12929-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The C-type lectin family 18 (CLEC18) with lipid and glycan binding capabilities is important to metabolic regulation and innate immune responses against viral infection. However, human CLEC18 comprises three paralogous genes with highly similar sequences, making it challenging to distinguish genetic variations, expression patterns, and biological functions of individual CLEC18 paralogs. Additionally, the evolutionary relationship between human CLEC18 and its counterparts in other species remains unclear. METHODS To identify the sequence variation and evolutionary divergence of human CLEC18 paralogs, we conducted a comprehensive analysis using various resources, including human and non-human primate reference genome assemblies, human pangenome assemblies, and long-read-based whole-genome and -transcriptome sequencing datasets. RESULTS We uncovered paralogous sequence variants (PSVs) and polymorphic variants (PVs) of human CLEC18 proteins, and identified distinct signatures specific to each CLEC18 paralog. Furthermore, we unveiled a novel segmental duplication for human CLEC18A gene. By comparing CLEC18 across human and non-human primates, our research showed that the CLEC18 paralogy probably occurred in the common ancestor of human and closely related non-human primates, and the lipid-binding CAP/SCP/TAPS domain of CLEC18 is more diverse than its glycan-binding CTLD. Moreover, we found that certain amino acids alterations at variant positions are exclusive to human CLEC18 paralogs. CONCLUSIONS Our findings offer a comprehensive profiling of the intricate variations and evolutionary characteristics of human CLEC18.
Collapse
Affiliation(s)
- Che-Mai Chang
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei City, 115, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei City, 110, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, No.250, Wuxing St., Xinyi Dist, Taipei City, 110, Taiwan.
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei City, 110, Taiwan.
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei City, 116, Taiwan.
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei City, 116, Taiwan.
- Department of Pharmacology, National Defense Medical Center, Taipei City, 114, Taiwan.
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nangang Dist., Taipei City, 115, Taiwan.
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei City, 110, Taiwan.
- Immunology Research Center, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei City, 112, Taiwan.
| |
Collapse
|
42
|
Chop M, Ledo C, Nicolao MC, Loos J, Cumino A, Rodriguez Rodrigues C. Hydatid fluid from Echinococcus granulosus induces autophagy in dendritic cells and promotes polyfunctional T-cell responses. Front Cell Infect Microbiol 2024; 14:1334211. [PMID: 38817444 PMCID: PMC11137651 DOI: 10.3389/fcimb.2024.1334211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-β genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.
Collapse
Affiliation(s)
- Maia Chop
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Camila Ledo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - María Celeste Nicolao
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Julia Loos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Cumino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Christian Rodriguez Rodrigues
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
43
|
Groven RVM, Kuik C, Greven J, Mert Ü, Bouwman FG, Poeze M, Blokhuis TJ, Huber-Lang M, Hildebrand F, Cillero-Pastor B, van Griensven M. Fracture haematoma proteomics. Bone Joint Res 2024; 13:214-225. [PMID: 38699779 PMCID: PMC11090216 DOI: 10.1302/2046-3758.135.bjr-2023-0323.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Aims The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies. Methods A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase. Results The early fxH proteome was characterized by immunomodulatory and osteogenic proteins, and proteins involved in the coagulation cascade. Treatment-specific proteome alterations were observed. The fxH proteome of the ETC group showed increased expression of pro-inflammatory proteins related to, among others, activation of the complement system, neutrophil functioning, and macrophage activation, while showing decreased expression of proteins related to osteogenesis and tissue remodelling. Conversely, the fxH proteome of the DCO group contained various upregulated or exclusively detected proteins related to tissue regeneration and remodelling, and proteins related to anti-inflammatory and osteogenic processes. Conclusion The early fxH proteome of the ETC group was characterized by the expression of immunomodulatory, mainly pro-inflammatory, proteins, whereas the early fxH proteome of the DCO group was more regenerative and osteogenic in nature. These findings match clinical observations, in which enhanced surgical trauma after multiple trauma causes dysbalanced inflammation, potentially leading to reduced tissue regeneration, and gained insights into regulatory mechanisms of fracture healing after severe trauma.
Collapse
Affiliation(s)
- Rald V. M. Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Christel Kuik
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Ümit Mert
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Freek G. Bouwman
- NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Taco J. Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Berta Cillero-Pastor
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
44
|
Tricomi J, Aoun M, Xu B, Holmdahl R, Richichi B. Stereoselective Synthesis of the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc Trisaccharide: a new Ligand for DCAR and Mincle C-Type Lectin Receptors. Chembiochem 2024; 25:e202400026. [PMID: 38506247 DOI: 10.1002/cbic.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
In this work, we have discovered that the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| | - Mike Aoun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Bingze Xu
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| |
Collapse
|
45
|
Yee EJ, Vigil I, Sun Y, Torphy RJ, Schulick RD, Zhu Y. Group XIV C-type lectins: emerging targets in tumor angiogenesis. Angiogenesis 2024; 27:173-192. [PMID: 38468017 PMCID: PMC11021320 DOI: 10.1007/s10456-024-09907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.
Collapse
Affiliation(s)
- Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Isaac Vigil
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yi Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Robert J Torphy
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, 12800 E 19th Avenue, RC1-North, P18-8116, Aurora, CO, 80045, USA.
| |
Collapse
|
46
|
Bu L, Habib MR, Lu L, Mutuku MW, Loker ES, Zhang SM. Transcriptional profiling of Bulinus globosus provides insights into immune gene families in snails supporting the transmission of urogenital schistosomiasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105150. [PMID: 38367887 PMCID: PMC10932938 DOI: 10.1016/j.dci.2024.105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Schistosomiasis, urogenital and intestinal, afflicts 251 million people worldwide with approximately two-thirds of the patients suffering from the urogenital form of the disease. Freshwater snails of the genus Bulinus (Gastropoda: Planorbidae) serve as obligate intermediate hosts for Schistosoma haematobium, the etiologic agent of human urogenital schistosomiasis. These snails also act as vectors for the transmission of schistosomiasis in livestock and wildlife. Despite their crucial role in human and veterinary medicine, our basic understanding at the molecular level of the entire Bulinus genus, which comprises 37 recognized species, is very limited. In this study, we employed Illumina-based RNA sequencing (RNAseq) to profile the genome-wide transcriptome of Bulinus globosus, one of the most important intermediate hosts for S. haematobium in Africa. A total of 179,221 transcripts (N50 = 1,235) were assembled and the benchmarking universal single-copy orthologs (BUSCO) was estimated to be 97.7%. The analysis revealed a substantial number of transcripts encoding evolutionarily conserved immune-related proteins, particularly C-type lectin (CLECT) domain-containing proteins (n = 316), Toll/Interleukin 1-receptor (TIR)-containing proteins (n = 75), and fibrinogen related domain-containing molecules (FReD) (n = 165). Notably, none of the FReDs are fibrinogen-related proteins (FREPs) (immunoglobulin superfamily (IgSF) + fibrinogen (FBG)). This RNAseq-based transcriptional profile provides new insights into immune capabilities of Bulinus snails, helps provide a framework to explain the complex patterns of compatibility between snails and schistosomes, and improves our overall understanding of comparative immunology.
Collapse
Affiliation(s)
- Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mohamed R Habib
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Martin W Mutuku
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Parasitology Division, Museum of Southwestern Biology, University of New Mexico, Albuquerque, 87131, USA
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
47
|
Feng X, Qi F, Huang Y, Zhang G, Deng W. Reduced Expression of CLEC4G in Neurons Is Associated with Alzheimer's Disease. Int J Mol Sci 2024; 25:4621. [PMID: 38731839 PMCID: PMC11083414 DOI: 10.3390/ijms25094621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aβ generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.
Collapse
Affiliation(s)
- Xinwei Feng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 510631, China
| | - Fangfang Qi
- Department of Neurology, Mayo Clinic, Rochester, MN 55901, USA
- Department of Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuying Huang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 510631, China
| |
Collapse
|
48
|
Wu TL, Wang BN, Yang AJ, Wang L, You YN, Zhou RQ. C-type lectin 4 of Toxocara canis activates NF-ĸB and MAPK pathways by modulating NOD1/2 and RIP2 in murine macrophages in vitro. Parasitol Res 2024; 123:189. [PMID: 38639821 DOI: 10.1007/s00436-024-08212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Toxocara canis is a parasitic zoonose that is distributed worldwide and is one of the two pathogens causing toxocariasis. After infection, it causes serious public health and safety problems, which pose significant veterinary and medical challenges. To better understand the regulatory effects of T. canis infection on the host immune cells, murine macrophages (RAW264.7) were incubated with recombinant T. canis C-type lectin 4 (rTc-CTL-4) protein in vitro. The quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to analyze the nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2), receptor-interacting protein 2 (RIP2), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) on mRNA level and protein expression level in macrophages. Our results indicated that 10 μg/mL rTc-CTL-4 protein could modulate the expression of NOD1, NOD2, and RIP2 at both the transcriptional and translational levels. The protein translation levels of NF-κB, P-p65, p38, and P-p38 in macrophages were also modulated by rTc-CTL-4 protein. Macrophages were co-incubated with rTc-CTL-4 protein after siRNA silencing of NOD1, NOD2, and RIP2. The expression levels of NF-κB, P-p65, p38, and P-p38 were significantly changed compared with the negative control groups (Neg. Ctrl.). Taken together, rTc-CTL-4 protein seemed to act on NOD1/2-RIP2-NF-κB and MAPK signaling pathways in macrophages and might activate MAPK and NF-κB signaling pathways by regulating NOD1, NOD2, and RIP2. The insights from the above studies could contribute to our understanding of immune recognition and regulatory mechanisms of T. canis infection in the host animals.
Collapse
Affiliation(s)
- Tian-Le Wu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Bing-Nan Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ai-Jia Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lei Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yi-Ning You
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Rong-Qiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
49
|
Limonta G, Panti C, Fossi MC, Nardi F, Baini M. Exposure to virgin and marine incubated microparticles of biodegradable and conventional polymers modulates the hepatopancreas transcriptome of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133819. [PMID: 38402680 DOI: 10.1016/j.jhazmat.2024.133819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Biodegradable polymers have been proposed as an alternative to conventional plastics to mitigate the impact of marine litter, but the research investigating their toxicity is still in its infancy. This study evaluates the potential ecotoxicological effects of both virgin and marine-incubated microparticles (MPs), at environmentally relevant concentration (0.1 mg/l), made of different biodegradable polymers (Polycaprolactone, Mater-Bi, cellulose) and conventional polymers (Polyethylene) on Mytilus galloprovincialis by using transcriptomics. This approach is increasingly being used to assess the effects of pollutants on organisms, obtaining data on numerous biological pathways simultaneously. Whole hepatopancreas de novo transcriptome sequencing was performed, individuating 972 genes differentially expressed across experimental groups compared to the control. Through the comparative transcriptomic profiling emerges that the preponderant effect is attributable to the marine incubation of MPs, especially for incubated polycaprolactone (731 DEGs). Mater-Bi and cellulose alter the smallest number of genes and biological processes in the mussel hepatopancreas. All microparticles, regardless of their polymeric composition, dysregulated innate immunity, and fatty acid metabolism biological processes. These findings highlight the necessity of considering the interactions of MPs with the environmental factors in the marine ecosystem when performing ecotoxicological evaluations. The results obtained contribute to fill current knowledge gaps regarding the potential environmental impacts of biodegradable polymers.
Collapse
Affiliation(s)
- Giacomo Limonta
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- National Biodiversity Future Center (NBFC), Palermo, Italy; Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
50
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|