1
|
Ahmad FM, Benor A. Dairy Consumption and Its Impact on PCOS and the Reproductive System: The Connection. Cureus 2025; 17:e82116. [PMID: 40357063 PMCID: PMC12066816 DOI: 10.7759/cureus.82116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent and complex endocrine disorder that affects many women of reproductive age. It is characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphology. PCOS is associated with an increased risk of cardiovascular disease, obesity, diabetes, and other long-term health conditions, including cancer. Given its widespread impact, it should be recognized as a significant public health concern, highlighting the urgent need to investigate its underlying causes and the behavioral factors contributing to its rising prevalence. The increasing prevalence of PCOS is closely linked to the global and national rise in obesity. Alarmingly, a significant portion of cases remain undiagnosed. Although the etiology of PCOS has yet to be elucidated, the general consensus is that obesity and insulin resistance (IR) are likely strong contributing factors. Although the etiology of IR is multifactorial, some believe that it may be associated with dairy consumption. Dairy, particularly cow's milk, has been a staple in the Western diet for decades; however, over the past 50 years, due to the popularization from marketing campaigns promoting it as beneficial for bone health, its consumption has now skyrocketed. There has been a growing focus on the role of dairy products on disease, especially regarding their impact on ovulation, fertility, and endocrinologic/metabolism disorders. Here, we attempt to review the contemporary evidence examining the possible role and relationship of dairy products to the pathophysiology of PCOS. We hope to clarify to the reader, based on the best available evidence, whether a low-dairy diet may help improve PCOS parameters and its comorbid conditions. This review aims to explore this question with the goal of addressing gaps in the current understanding of the interplay between dairy consumption and hormonal/metabolic dysfunction.
Collapse
Affiliation(s)
- Fatimah M Ahmad
- Obstetrics and Gynecology, American University of Antigua, Antigua and Barbuda, USA
| | - Ariel Benor
- Obstetrics and Gynecology, West Virginia University Berkeley Medical Center, Martinsburg, USA
| |
Collapse
|
2
|
Swanson K, Bell J, Hendrix D, Jiang D, Kutzler M, Batty B, Hanlon M, Bionaz M. Bovine milk consumption affects the transcriptome of porcine adipose stem cells: Do exosomes play any role? PLoS One 2024; 19:e0302702. [PMID: 39705291 DOI: 10.1371/journal.pone.0302702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/03/2024] [Indexed: 12/22/2024] Open
Abstract
The potential association of milk with childhood obesity has been widely debated and researched. Milk is known to contain many bioactive compounds as well as bovine exosomes rich in micro-RNA (miR) that can have effects on various cells, including stem cells. Among them, adipose stem cells (ASC) are particularly interesting due to their role in adipose tissue growth and, thus, obesity. The objective of this study was to evaluate the effect of milk consumption on miR present in circulating exosomes and the transcriptome of ASC in piglets. Piglets were supplemented for 11 weeks with 750 mL of whole milk (n = 6; M) or an isocaloric maltodextrin solution (n = 6; C). After euthanasia, ASC were isolated, quantified, and characterized. RNA was extracted from passage 1 ASC and sequenced. Exosomes were isolated and quantified from the milk and plasma of the pigs at 6-8 hours after milk consumption, and miRs were isolated from exosomes and sequenced. The transfer of exosomes from milk to porcine plasma was assessed by measuring bovine milk-specific miRs and mRNA in exosomes isolated from the plasma of 3 piglets during the first 6h after milk consumption. We observed a higher proportion of exosomes in the 80 nM diameter, enriched in milk, in M vs. C pigs. Over 500 genes were differentially expressed (DEG) in ASC isolated from M vs. C pigs. Bioinformatic analysis of DEG indicated an inhibition of the immune, neuronal, and endocrine systems and insulin-related pathways in ASC of milk-fed pigs compared with maltodextrin-fed pigs. Of the 900 identified miRs in porcine plasma exosomes, only 3 miRs were differentially abundant between the two groups and could target genes associated with neuronal functions. We could not detect exosomal miRs or mRNA transfer from milk to porcine-circulating plasma exosomes. Our data highlights the significant nutrigenomic role of milk consumption on ASC, a finding that does not appear to be attributed to miRs in bovine milk exosomes. The downregulation of insulin resistance and inflammatory-related pathways in the ASC of milk-fed pigs should be further explored in relation to milk and human health. In conclusion, the bioinformatic analyses and the absence of bovine exosomal miRs in porcine plasma suggest that miRs are not vertically transferred from milk exosomes.
Collapse
Affiliation(s)
- Katherine Swanson
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Jimmy Bell
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - David Hendrix
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Duo Jiang
- Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Michelle Kutzler
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brandon Batty
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie Hanlon
- Food Science and Technology, Oregon State University, Corvallis, Oregon, United States of America
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
3
|
Yuzbashian E, Berg E, de Campos Zani SC, Chan CB. Cow's Milk Bioactive Molecules in the Regulation of Glucose Homeostasis in Human and Animal Studies. Foods 2024; 13:2837. [PMID: 39272602 PMCID: PMC11395457 DOI: 10.3390/foods13172837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity disrupts glucose metabolism, leading to insulin resistance (IR) and cardiometabolic diseases. Consumption of cow's milk and other dairy products may influence glucose metabolism. Within the complex matrix of cow's milk, various carbohydrates, lipids, and peptides act as bioactive molecules to alter human metabolism. Here, we summarize data from human studies and rodent experiments illustrating how these bioactive molecules regulate insulin and glucose homeostasis, supplemented with in vitro studies of the mechanisms behind their effects. Bioactive carbohydrates, including lactose, galactose, and oligosaccharides, generally reduce hyperglycemia, possibly by preventing gut microbiota dysbiosis. Milk-derived lipids of the milk fat globular membrane improve activation of insulin signaling pathways in animal trials but seem to have little impact on glycemia in human studies. However, other lipids produced by ruminants, including polar lipids, odd-chain, trans-, and branched-chain fatty acids, produce neutral or contradictory effects on glucose metabolism. Bioactive peptides derived from whey and casein may exert their effects both directly through their insulinotropic effects or renin-angiotensin-aldosterone system inhibition and indirectly by the regulation of incretin hormones. Overall, the results bolster many observational studies in humans and suggest that cow's milk intake reduces the risk of, and can perhaps be used in treating, metabolic disorders. However, the mechanisms of action for most bioactive compounds in milk are still largely undiscovered.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Emily Berg
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Catherine B Chan
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
4
|
Pradhan M, Hedaoo R, Joseph A, Jain R. Charting Wellness in India: Piloting the iTHRIVE's Functional Nutrition Approach to Improve Glycaemic and Inflammatory Parameters in Prediabetes and Type 2 Diabetes Mellitus. Cureus 2024; 16:e63744. [PMID: 39100011 PMCID: PMC11296214 DOI: 10.7759/cureus.63744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by elevation of blood glucose levels due to underlying insulin resistance and inflammation. Multiple modifiable risk factors such as unhealthy dietary habits, physical inactivity, obesity, smoking and psychological stress contribute to T2DM. We investigated the efficacy of a comprehensive functional nutrition approach aimed at mitigating T2DM using the iTHRIVE approach which encompassed anti-inflammatory and elimination diets, micronutrient supplements, physical activity, stress management and environmental modifications through a pre-post study design. The research assessed changes in blood glucose and inflammatory markers following the implementation of the functional nutrition program. Methods A prospective pre-post intervention pilot study was conducted at ThriveTribe Wellness Solutions Pvt Ltd. (iTHRIVE), where 50 study participants from urban areas of Pune city, India (n=25 each group) were recruited voluntarily in the age group of 20-60 years. The participants were subjected to 90 days of the iTHRIVE functional nutrition approach which consisted of eliminating certain inflammatory foods and adding a combination of nutritious organic foods, adding dietary supplements like magnesium, vitamin D, alpha lipoic acid, chromium picolinate, berberine and biogymnema, physical activities like resistance training, stress reduction techniques like meditation and deep breathing exercises along with environmental changes. The blood parameters like fasting blood glucose, postprandial blood glucose, glycated haemoglobin (HbA1C), fasting serum insulin, post-prandial serum insulin, high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), vitamin D, body weight and waist circumference were measured before and after the intervention. The changes were statistically analyzed using a paired t-test. Results The mean age of the participants was found to be 43.76±10.58 years. Around 68% of the participants were prediabetic (HbA1c: 5.7-6.4%) and 32% had T2DM (HbA1c ≥6.5%). A significant reduction was observed in the average HbA1c (13.75% reduction, p<0.0001), average post-prandial blood glucose levels (14.51% reduction, p<0.048), average post-prandial serum insulin (34.31% reduction, p<0.017) and average ESR levels (34.51% reduction, p<0.006). The hs-CRP levels were reduced by 6.6%, but not statistically significant. The average body weight of the participants dropped from 78.59±15.18 kg to 75.20±14.20 kg with a mean loss of 2.91 kg (p<0.05) whereas the waist circumference decreased from 37.54±5.09 to 35.97±4.74 inches with an average loss of 1.19 inches (p<0.0004). Conclusions Following the intervention, several health indicators indicated significant improvements. Particularly, there was a significant drop in HbA1c levels, suggesting better long-term blood glucose control. Blood glucose and serum insulin levels after a meal dropped significantly, indicating enhanced insulin sensitivity. There was a decrease in systemic inflammation as evidenced by the decrease in ESR levels. These results imply that the iTHRIVE functional nutrition approach used in this investigation might be beneficial for enhancing glycemic control and insulin sensitivity, along with reducing inflammatory markers in people with prediabetes and T2DM. Larger sample sizes and longer periods of monitoring would be useful in subsequent research to validate and build on these encouraging findings.
Collapse
Affiliation(s)
- Mugdha Pradhan
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Radhika Hedaoo
- Nutrition, Symbiosis School of Culinary Arts, Symbiosis International (Deemed University), Pune, IND
| | - Anitta Joseph
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| | - Ria Jain
- Nutrition, ThriveTribe Wellness Solutions Pvt Ltd., Pune, IND
| |
Collapse
|
5
|
Kopp W. Aging and "Age-Related" Diseases - What Is the Relation? Aging Dis 2024; 16:1316-1346. [PMID: 39012663 PMCID: PMC12096902 DOI: 10.14336/ad.2024.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
The study explores the intricate relationship between aging and the development of noncommunicable diseases [NCDs], focusing on whether these diseases are inevitable consequences of aging or primarily driven by lifestyle factors. By examining epidemiological data, particularly from hunter-gatherer societies, the study highlights that many NCDs prevalent in modern populations are rare in these societies, suggesting a significant influence of lifestyle choices. It delves into the mechanisms through which poor diet, smoking, and other lifestyle factors contribute to systemic physiological imbalances, characterized by oxidative stress, insulin resistance and hyperinsulinemia, and dysregulation of the sympathetic nervous system, the renin-angiotensin-aldosterone system, and the immune system. The interplay between this pattern and individual factors such as genetic susceptibility, biological variability, epigenetic changes and the microbiome is proposed to play a crucial role in the development of a range of age-related NCDs. Modified biomolecules such as oxysterols and advanced glycation end products also contribute to their development. Specific diseases such as benign prostatic hyperplasia, Parkinson's disease, glaucoma and osteoarthritis are analyzed to illustrate these mechanisms. The study concludes that while aging contributes to the risk of NCDs, lifestyle factors play a crucial role, offering potential avenues for prevention and intervention through healthier living practices. One possible approach could be to try to restore the physiological balance, e.g. through dietary measures [e.g. Mediterranean diet, Okinawan diet or Paleolithic diet] in conjunction with [a combination of] pharmacological interventions and other lifestyle changes.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Retired head of the Diagnostikzentrum Graz, Mariatrosterstrasse 41, 8043 Graz, Austria
| |
Collapse
|
6
|
Cheng T, Yu D, Liu B, Qiu X, Tang Q, Li G, Zhou L, Wen Z. Oily fish reduces the risk of acne by lowering fasting insulin levels: A Mendelian randomization study. Food Sci Nutr 2024; 12:3964-3972. [PMID: 38873457 PMCID: PMC11167188 DOI: 10.1002/fsn3.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 06/15/2024] Open
Abstract
Meat intake, particularly from oily fish, has been associated with various chronic diseases. However, its relationship with acne has always been controversial. Therefore, we have adopted Mendelian randomization (MR) analysis to investigate the causal relationship between different types of meat intake and acne. The exposure and outcome datasets for this study were obtained from the Integrative Epidemiology Unit (IEU) Open GWAS project. Seven datasets on meat intake were included, which consisted of non-oily fish, oily fish, lamb/mutton, poultry, pork, beef, and processed meat. The main methods used for MR analysis were inverse variance weighted, weighted median, and MR-egger. To ensure the accuracy of the results, heterogeneity, pleiotropy, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) analyses were conducted. Additionally, an analysis of four risk factors (fasting insulin, insulin resistance, total testosterone level, and estradiol level) was performed to investigate the underlying mechanisms linking statistically significant meat intake to acne. Oily fish intake was found to be a protective factor for acne (OR: 0.22, 95% CI: 0.10-0.49, p < .001), and it was also observed that oily fish intake can reduce the level of fasting insulin by the IVW method (OR: 0.89, 95% CI: 0.81-0.98, p = .02). No causal relationship was identified between other types of meat intake and acne. The intake of oily fish reduces the risk of acne by lowering fasting insulin levels.
Collapse
Affiliation(s)
- Ting Cheng
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Dongdong Yu
- First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Bingqing Liu
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xingying Qiu
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qi Tang
- Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Geng Li
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Li Zhou
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
| | - Zehuai Wen
- Guangdong Provincial Hospital of Chinese Medicine (Second Affiliated Hospital of Guangzhou University of Chinese Medicine)Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouChina
- Science and Technology Innovation Center of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
7
|
Laamanen SE, Eloranta AM, Haapala EA, Sallinen T, Schwab U, Lakka TA. Associations of diet quality and food consumption with serum biomarkers for lipid and amino acid metabolism in Finnish children: the PANIC study. Eur J Nutr 2024; 63:623-637. [PMID: 38127151 PMCID: PMC10899368 DOI: 10.1007/s00394-023-03293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To investigate the associations of overall diet quality and dietary factors with serum biomarkers for lipid and amino acid metabolism in a general population of children. METHODS We studied 194 girls and 209 boys aged 6-8 years participating in the Physical Activity and Nutrition in Children study. Food consumption was assessed by 4-day food records and diet quality was quantified by the Finnish Children Healthy Eating Index (FCHEI). Fasting serum fatty acids, amino acids, apolipoproteins, as well as lipoprotein particle sizes were analyzed with high-throughput nuclear magnetic resonance spectroscopy. Data were analyzed using linear regression adjusted for age, sex, and body fat percentage. RESULTS FCHEI was directly associated with the ratio of polyunsaturated (PUFA) to saturated fatty acids (SFA) (PUFA/SFA), the ratio of PUFA to monounsaturated fatty acids (MUFA) (PUFA/MUFA), the ratio of PUFA to total fatty acids (FA) (PUFA%), the ratio of omega-3-fatty acids to total FA (omega-3 FA%), and inversely associated with the ratio of MUFA to total FA (MUFA%), alanine, glycine, histidine and very-low density lipoprotein (VLDL) particle size. Consumption of vegetable oils and vegetable-oil-based margarine (≥ 60% fat) was directly associated with PUFA/SFA, PUFA/MUFA, PUFA%, the ratio of omega-6 FA to total FA (omega-6 FA%), and inversely associated with SFA, MUFA, SFA to total FA (SFA%), MUFA%, alanine and VLDL particle size. Consumption of high-fiber grain products directly associated with PUFA/SFA, PUFA/MUFA, omega-3 FA%, omega-6 FA%, PUFA% and inversely associated with SFA and SFA%. Fish consumption directly related to omega-3 FA and omega-3 FA%. Consumption of sugary products was directly associated with histidine and VLDL particle size. Vegetable, fruit, and berry consumption had direct associations with VLDL particle size and the ratio of apolipoprotein B to apolipoprotein A1. Consumption of low fat (< 1%) milk was directly associated with phenylalanine. A higher consumption of high-fat (≥ 1%) milk was associated with lower serum MUFA/SFA and higher SFA%. Sausage consumption was directly related to SFA% and histidine. Red meat consumption was inversely associated with glycine. CONCLUSIONS Better diet quality, higher in intake of dietary sources of unsaturated fat and fiber, and lower in sugary product intake were associated with more favorable levels of serum biomarkers for lipid and amino acid metabolism independent of adiposity. TRIAL REGISTRATION ClinicalTrials.gov: NCT01803776, registered March 3, 2013.
Collapse
Affiliation(s)
- Suvi E Laamanen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Eero A Haapala
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
8
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
9
|
Janssen JAMJL. The Impact of Westernization on the Insulin/IGF-I Signaling Pathway and the Metabolic Syndrome: It Is Time for Change. Int J Mol Sci 2023; 24:ijms24054551. [PMID: 36901984 PMCID: PMC10003782 DOI: 10.3390/ijms24054551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The metabolic syndrome is a cluster of overlapping conditions resulting in an increased incidence of type 2 diabetes, cardiovascular disease, and cancer. In the last few decades, prevalence of the metabolic syndrome in the Western world has reached epidemic proportions and this is likely due to alterations in diet and the environment as well as decreased physical activity. This review discusses how the Western diet and lifestyle (Westernization) has played an important etiological role in the pathogenesis of the metabolic syndrome and its consequences by exerting negative effects on activity of the insulin-insulin-like growth factor-I (insulin-IGF-I) system. It is further proposed that interventions that normalize/reduce activity of the insulin-IGF-I system may play a key role in the prevention and treatment of the metabolic syndrome. For successful prevention, limitation, and treatment of the metabolic syndrome, the focus should be primarily on changing our diets and lifestyle in accordance with our genetic make-up, formed in adaptation to Paleolithic diets and lifestyles during a period of several million years of human evolution. Translating this insight into clinical practice, however, requires not only individual changes in our food and lifestyle, starting in pediatric populations at a very young age, but also requires fundamental changes in our current health systems and food industry. Change is needed: primary prevention of the metabolic syndrome should be made a political priority. New strategies and policies should be developed to stimulate and implement behaviors encouraging the sustainable use of healthy diets and lifestyles to prevent the metabolic syndrome before it develops.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
|
11
|
Thams L, Stounbjerg NG, Hvid LG, Mølgaard C, Hansen M, Damsgaard CT. Effects of high dairy protein intake and vitamin D supplementation on body composition and cardiometabolic markers in 6-8-y-old children-the D-pro trial. Am J Clin Nutr 2022; 115:1080-1091. [PMID: 35015806 DOI: 10.1093/ajcn/nqab424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that prevention of lifestyle diseases should begin early. Dairy protein and vitamin D can affect body composition and cardiometabolic markers, yet evidence among well-nourished children is sparse. OBJECTIVES We investigated combined and separate effects of high dairy protein intake and vitamin D on body composition and cardiometabolic markers in children. METHODS In a 2 × 2-factorial, randomized trial, 200 white, Danish, 6-8-y-old children substituted 260 g/d dairy in their diet with high-protein (HP; 10 g protein/100 g) or normal-protein (NP; 3.5 g protein/100 g) yogurt and received blinded tablets with 20 µg/d vitamin D3 or placebo for 24 wk during winter. We measured body composition (by DXA), blood pressure, and fasting blood glucose, insulin, C-peptide, and lipids. RESULTS In total, 184 children (92%) completed the study. Baseline median (25th-75th percentile) dairy protein intake was median: 3.7 (25th-75th percentile: 2.5-5.1) energy percentage (E%) and increased to median: 7.2 (25th-75th percentile: 4.7-8.8) E% and median: 4.2 (25th-75th percentile: 3.1-5.3) E% with HP and NP. Mean ± SD serum 25-hydroxyvitamin D concentration changed from 81 ± 17 to 89 ± 18 nmol/L and 48 ± 13 nmol/L with vitamin D and placebo, respectively. There were no combined effects of dairy protein and vitamin D, except for plasma glucose, with the largest increase in the NP-vitamin D group (Pinteraction = 0.005). There were smaller increases in fat mass index (P = 0.04) with HP than with NP, and the same pattern was seen for insulin, HOMA-IR, and C-peptide (all P = 0.06). LDL cholesterol was reduced with vitamin D compared with placebo (P < 0.05). Fat-free mass and blood pressure were unaffected. CONCLUSIONS High compared with normal dairy protein intake hampered an increase in fat mass index. Vitamin D supplementation counteracted the winter decline in 25-hydroxyvitamin D and the increase in LDL cholesterol observed with placebo. This study adds to the sparse evidence on dairy protein in well-nourished children and supports a vitamin D intake of ∼20 µg/d during winter. This trial was registered at clinicaltrials.gov as NCT03956732.
Collapse
Affiliation(s)
- Line Thams
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Nanna G Stounbjerg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Lars G Hvid
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Mette Hansen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Camilla T Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
12
|
Grenov B, Larnkjær A, Ritz C, Michaelsen KF, Damsgaard CT, Mølgaard C. The effect of milk and rapeseed protein on growth factors in 7-8 year-old healthy children - A randomized controlled trial. Growth Horm IGF Res 2021; 60-61:101418. [PMID: 34333391 DOI: 10.1016/j.ghir.2021.101418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Milk protein may stimulate linear growth through insulin-like growth factor-1 (IGF-1). However, the effect of plant proteins on growth factors is largely unknown. This study assesses the effect of combinations of milk and rapeseed protein versus milk protein alone on growth factors in children. DESIGN An exploratory 3-armed randomized, double-blind, controlled trial was conducted in 129 healthy 7-8 year-old Danish children. Children received 35 g milk and rapeseed protein (ratio 54:46 or 30:70) or 35 g milk protein per day for 4 weeks. The primary outcome was difference in IGF-1 changes between intervention groups after 4 weeks. Secondary outcomes included changes in IGF-1 after 1 week and changes in insulin-like growth factor binding protein-3 (IGFBP-3), IGF-1/IGFBP-3, insulin, height, weight and body composition after 1 and 4 weeks. Results were analysed by multiple linear mixed-effect models. RESULTS There were no differences in changes of plasma IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3), IGF-1/IGFBP-3 ratio or insulin between groups after 1 or 4 weeks based on 89 complete cases (P > 0.10). IGF-1 increased by 13.7 (95% CI 9.7;17.7) ng/mL and 18.0 (14.0;22.0) ng/mL from baseline to week 1 and 4, respectively, a 16% increase during the intervention. Similarly, insulin increased by 31% (14; 50) and 33% (16; 53) from baseline to week 1 and 4. Fat-free mass index (FFMI) increments were higher with milk alone than rapeseed blends (P < 0.05), coinciding with a trend towards a lower height increment. Body mass index increased within all groups (P < 0.05), mainly due to an increase in FFMI (P < 0.01). CONCLUSION There were no differences in changes of growth factors between the combinations of milk and rapeseed protein and milk protein alone in healthy, well-nourished children with a habitual intake of milk. Within groups, growth factors increased considerably. Future studies are needed to investigate how intakes of plant and animal proteins affect childhood growth.
Collapse
Affiliation(s)
- Benedikte Grenov
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Anni Larnkjær
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Camilla T Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| | - Christian Mølgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
The potential nutrition-, physical- and health-related benefits of cow's milk for primary-school-aged children. Nutr Res Rev 2021; 35:50-69. [PMID: 33902780 DOI: 10.1017/s095442242100007x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cow's milk is a naturally nutrient-dense foodstuff. A significant source of many essential nutrients, its inclusion as a component of a healthy balanced diet has been long recommended. Beyond milk's nutritional value, an increasing body of evidence illustrates cow's milk may confer numerous benefits related to health. Evidence from adult populations suggests that cow's milk may have a role in overall dietary quality, appetite control, hydration and cognitive function. Although evidence is limited compared with the adult literature, these benefits may be echoed in recent paediatric studies. This article, therefore, reviews the scientific literature to provide an evidence-based evaluation of the associated health benefits of cow's milk consumption in primary-school-aged children (4-11 years). We focus on seven key areas related to nutrition and health comprising nutritional status, hydration, dental and bone health, physical stature, cognitive function, and appetite control. The evidence consistently demonstrates cow's milk (plain and flavoured) improves nutritional status in primary-school-aged children. With some confidence, cow's milk also appears beneficial for hydration, dental and bone health and beneficial to neutral concerning physical stature and appetite. Due to conflicting studies, reaching a conclusion has proven difficult concerning cow's milk and cognitive function; therefore, a level of caution should be exercised when interpreting these results. All areas, however, would benefit from further robust investigation, especially in free-living school settings, to verify conclusions. Nonetheless, when the nutritional-, physical- and health-related impact of cow's milk avoidance is considered, the evidence highlights the importance of increasing cow's milk consumption.
Collapse
|
14
|
Melnik BC, Schmitz G, John SM. [Health risks related to milk consumption: a critical evaluation from the medical perspective]. MMW Fortschr Med 2021; 163:3-9. [PMID: 33844179 DOI: 10.1007/s15006-021-9652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent epidemiological studies associate the consumption of non-fermented cow's milk, but not fermented milk products, with an increased risk of diseases of civilization. OBJECTIVES Presentation of epidemiological and pathophysiological data on health risks associated with milk consumption. METHOD Selective PubMed surveys between 2005-2020 considering epidemiological studies which clearly differentiate between non-fermented versus fermented milk and its potential health risks. RESULTS Epidemiological studies confirm a correlation between milk consumption and birthweight, linear growth during puberty, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, non-Hodgkin lymphoma, Parkinson's disease and over-all mortality. In comparison to milk consumption, the intake of fermented milk/milk products exhibits neutral to beneficial health effects, which are explained by attenuated mTORC1 signaling due to bacterial fermentation of milk. CONCLUSIONS Long-term persistent consumption of non-fermented milk, but not fermented milk/milk products, might increase the risk of diseases of civilization. The avoidance of milk, especially pasteurized fresh milk, may enhance the prevention and reduce the recurrence of common Western diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Abteilung Dermatologie, Umweltmedizin und Gesundheitstheorie, Universität Osnabrück, Am Finkenhügel 7a, 49076, Osnabrück, Deutschland.
| | - Gerd Schmitz
- Institut für Klinische Chemie und Laboratoriumsmedizin, Universitätsklinik Regensburg, Regensburg, Deutschland
| | - Swen Malte John
- Abteilung Dermatologie, Umweltmedizin und Gesundheitstheorie, Universitätsklinikum Osnabrück, Osnabrück, Deutschland
| |
Collapse
|
15
|
Abstract
This review provides epidemiological and translational evidence for milk and dairy intake as critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 (mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the prevention of HCC.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
16
|
Schmidt KA, Cromer G, Burhans MS, Kuzma JN, Hagman DK, Fernando I, Murray M, Utzschneider KM, Holte S, Kraft J, Kratz M. The impact of diets rich in low-fat or full-fat dairy on glucose tolerance and its determinants: a randomized controlled trial. Am J Clin Nutr 2021; 113:534-547. [PMID: 33184632 PMCID: PMC7948850 DOI: 10.1093/ajcn/nqaa301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dairy foods, particularly yogurt, and plasma biomarkers of dairy fat intake are consistently inversely associated with incident type 2 diabetes. Yet, few trials assessing the impact of dairy on glucose homeostasis include fermented or full-fat dairy foods. OBJECTIVES We aimed to compare the effects of diets rich in low-fat or full-fat milk, yogurt, and cheese on glucose tolerance and its determinants, with those of a limited dairy diet. METHODS In this parallel-design randomized controlled trial, 72 participants with metabolic syndrome completed a 4-wk wash-in period, limiting dairy intake to ≤3 servings/wk of nonfat milk. Participants were then randomly assigned to either continue the limited dairy diet, or switch to a diet containing 3.3 servings/d of either low-fat or full-fat dairy for 12 wk. Outcome measures included glucose tolerance (area under the curve glucose during an oral-glucose-tolerance test), insulin sensitivity, pancreatic β-cell function, systemic inflammation, liver-fat content, and body weight and composition. RESULTS In the per-protocol analysis (n = 67), we observed no intervention effect on glucose tolerance (P = 0.340). Both the low-fat and full-fat dairy diets decreased the Matsuda insulin sensitivity index (ISI) (means ± SDs -0.47 ± 1.07 and -0.25 ± 0.91, respectively) and as compared with the limited dairy group (0.00 ± 0.92) (P = 0.012 overall). Body weight also changed differentially (P = 0.006 overall), increasing on full-fat dairy (+1.0 kg; -0.2, 1.8 kg) compared with the limited dairy diet (-0.4 kg; -2.5, 0.7 kg), whereas the low-fat dairy diet (+0.3 kg; -1.1, 1.9 kg) was not significantly different from the other interventions. Intervention effects on the Matsuda ISI remained after adjusting for changes in adiposity. No intervention effects were detected for liver fat content or systemic inflammation. Findings in intent-to-treat analyses (n = 72) were consistent. CONCLUSIONS Contrary to our hypothesis, neither dairy diet improved glucose tolerance in individuals with metabolic syndrome. Both dairy diets decreased insulin sensitivity through mechanisms largely unrelated to changes in key determinants of insulin sensitivity.This trial was registered at clinicaltrials.gov as NCT02663544.
Collapse
Affiliation(s)
- Kelsey A Schmidt
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Nutritional Sciences Program, School of Public Health, University of Washington, Seattle, WA, USA
| | - Gail Cromer
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Maggie S Burhans
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jessica N Kuzma
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Derek K Hagman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Imashi Fernando
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Nutritional Sciences Program, School of Public Health, University of Washington, Seattle, WA, USA
| | - Merideth Murray
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Nutritional Sciences Program, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kristina M Utzschneider
- VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sarah Holte
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jana Kraft
- The College of Agriculture and Life Sciences, The University of Vermont, Burlington, VT, USA
| | - Mario Kratz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Nutritional Sciences Program, School of Public Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
18
|
Teymoori F, Mokhtari E, Salehi P, Hosseini-Esfahani F, Mirmiran P, Azizi F. A nutrient pattern characterized by vitamin A, C, B6, potassium, and fructose is associated with reduced risk of insulin-related disorders: A prospective study among participants of Tehran lipid and glucose study. Diabetol Metab Syndr 2021; 13:12. [PMID: 33499915 PMCID: PMC7836167 DOI: 10.1186/s13098-021-00629-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Insulin-related disorders, including insulin resistance, insulin insensitivity, and insulinemia, is considered early predictors of major chronic disease risk. Using a set of correlated nutrient as nutrient patterns to explore the diet-disease relationship has drawn more attention recently. We aimed to investigate the association of nutrient patterns and insulin markers' changes prospectively among adults who participated in the Tehran Lipid and Glucose Study (TLGS). METHODS For the present study, 995 men and women aged 30-75 years, with complete information on insulin and dietary intake in survey III TLGS, were selected and followed three years until survey IV. Dietary intakes at baseline were assessed using a valid and reliable food frequency questionnaire (FFQ). Nutrient patterns were derived using principal component analysis (PCA). We extracted five dominant patterns based on the scree plot and categorized them into quartiles. Linear regression analysis was conducted to investigate the association between Nutrient patterns and three-year insulin markers changes, including fasting insulin, HOMA-IR, and HOMA-S. RESULTS The mean (SD) age and BMI of participants (43.1 % male) were 46.2(10.9) year and 28.0(4.7) kg/m2, respectively. The median (IQR, 25, 75) of 3 years changes of insulin, HOMA-IR and HOMA-S were 0.35 (- 1.71, 2.67) mU/mL, 0.25 (- 0.28, 0.84) and - 6.60 (- 22.8, 7.76), respectively. In the fully adjusted model for potential confounders, per each quartile increment of the fifth nutrient pattern, the β coefficients (95 % CI) of changes in insulin, HOMA-IR, and HOMA-S were - 0.36 (- 0.62, - 0.10); P value = 0.007, -0.10 (-0.19, -0.01); P value = 0.022, and 1.92 (0.18, 3.66); P value = 0.030, respectively. There were no significant association between other nutrient patterns and insulin related indices. CONCLUSIONS Present study showed that high adherence to a nutrient pattern rich in vitamin A, vitamin C, pyridoxine, potassium, and fructose is inversely associated with 3-years changes in insulin, HOMA-IR, and directly associated with HOMA-S.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Pantea Salehi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Geiker NRW, Mølgaard C, Iuliano S, Rizzoli R, Manios Y, van Loon LJC, Lecerf JM, Moschonis G, Reginster JY, Givens I, Astrup A. Impact of whole dairy matrix on musculoskeletal health and aging-current knowledge and research gaps. Osteoporos Int 2020; 31:601-615. [PMID: 31728607 PMCID: PMC7075832 DOI: 10.1007/s00198-019-05229-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Dairy products are included in dietary guidelines worldwide, as milk, yoghurt, and cheese are good sources of calcium and protein, vital nutrients for bones and muscle mass maintenance. Bone growth and mineralization occur during infancy and childhood, peak bone mass being attained after early adulthood. A low peak bone mass has consequences later in life, including increased risk of osteoporosis and fractures. Currently, more than 200 million people worldwide suffer from osteoporosis, with approximately 9 million fractures yearly. This poses a tremendous economic burden on health care. Between 5% and 10% of the elderly suffer from sarcopenia, the loss of muscle mass and strength, further increasing the risk of fractures due to falls. Evidence from interventional and observational studies support that fermented dairy products in particular exert beneficial effects on bone growth and mineralization, attenuation of bone loss, and reduce fracture risk. The effect cannot be explained by single nutrients in dairy, which suggests that a combined or matrix effect may be responsible similar to the matrix effects of foods on cardiometabolic health. Recently, several plant-based beverages and products have become available and marketed as substitutes for dairy products, even though their nutrient content differs substantially from dairy. Some of these products have been fortified, in efforts to mimic the nutritional profile of milk, but it is unknown whether the additives have the same bioavailability and beneficial effect as dairy. We conclude that the dairy matrix exerts an effect on bone and muscle health that is more than the sum of its nutrients, and we suggest that whole foods, not only single nutrients, need to be assessed in future observational and intervention studies of health outcomes. Furthermore, the importance of the matrix effect on health outcomes argues in favor of making future dietary guidelines food based.
Collapse
Affiliation(s)
- N R W Geiker
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.
| | - C Mølgaard
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - S Iuliano
- Department of Endocrinology, University of Melbourne, Austin Health, Melbourne, Australia
| | - R Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Y Manios
- Department of Nutrition & Dietetics, Harokopio University, Athens, Greece
| | - L J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - J-M Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - G Moschonis
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia
| | - J-Y Reginster
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - I Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - A Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| |
Collapse
|
20
|
Melnik BC. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus. Nutr Metab (Lond) 2019; 16:85. [PMID: 31827573 PMCID: PMC6898964 DOI: 10.1186/s12986-019-0412-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) steadily increases in prevalence since the 1950's, the period of widespread distribution of refrigerated pasteurized cow's milk. Whereas breastfeeding protects against the development of T2DM in later life, accumulating epidemiological evidence underlines the role of cow's milk consumption in T2DM. Recent studies in rodent models demonstrate that during the breastfeeding period pancreatic β-cells are metabolically immature and preferentially proliferate by activation of mechanistic target of rapamycin complex 1 (mTORC1) and suppression of AMP-activated protein kinase (AMPK). Weaning determines a metabolic switch of β-cells from a proliferating, immature phenotype with low insulin secretion to a differentiated mature phenotype with glucose-stimulated insulin secretion, less proliferation, reduced mTORC1- but increased AMPK activity. Translational evidence presented in this perspective implies for the first time that termination of milk miRNA transfer is the driver of this metabolic switch. miRNA-148a is a key inhibitor of AMPK and phosphatase and tensin homolog, crucial suppressors of mTORC1. β-Cells of diabetic patients return to the postnatal phenotype with high mTORC1 and low AMPK activity, explained by continuous transfer of bovine milk miRNAs to the human milk consumer. Bovine milk miRNA-148a apparently promotes β-cell de-differentiation to the immature mTORC1-high/AMPK-low phenotype with functional impairments in insulin secretion, increased mTORC1-driven endoplasmic reticulum stress, reduced autophagy and early β-cell apoptosis. In contrast to pasteurized cow's milk, milk's miRNAs are inactivated by bacterial fermentation, boiling and ultra-heat treatment and are missing in current infant formula. Persistent milk miRNA signaling adds a new perspective to the pathogenesis of T2DM and explains the protective role of breastfeeding but the diabetogenic effect of continued milk miRNA signaling by persistent consumption of pasteurized cow's milk.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, D-49076 Osnabrück, Germany
| |
Collapse
|
21
|
Milk Fat Intake and Telomere Length in U.S. Women and Men: The Role of the Milk Fat Fraction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1574021. [PMID: 31772698 PMCID: PMC6855010 DOI: 10.1155/2019/1574021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
The associations between milk intake frequency and milk fat consumption and telomere length, an index of biological aging, were studied using an NHANES sample of 5,834 U.S. adults and a cross-sectional design. The milk consumption variables were assessed with the NHANES Diet Behavior and Nutrition questionnaire. The quantitative polymerase chain reaction method was used to measure leukocyte telomere length. Results showed that milk consumption frequency was not related to telomere length; however, there was a strong association between milk fat intake and telomere length. With the sample delimited to milk drinkers only, milk fat intake was linearly and inversely related to telomere length, after adjusting for the covariates (F = 8.6, P = 0.0066). For each 1 percentage point increase in milk fat consumed (e.g., 1% to 2%), adults had more than 4 years of additional biological aging. With milk fat intake divided into 5 categories (i.e., milk abstainers, nonfat, 1%, 2%, and full-fat milk), mean telomere lengths differed across the categories (F = 4.1, P = 0.0093). The mean telomere difference between the extremes of milk fat intake (nonfat vs. full-fat) was 145 base pairs, representing years of additional biological aging for full-fat milk consumers. Effect modification testing indicated that the milk fat and cellular aging association may be partly due to saturated fat intake differences across the milk fat groups. When the sample was delimited to adults reporting only high total saturated fat intake (tertile 3), the milk fat and telomere relationship was strong. However, when the sample was restricted to adults reporting only low saturated fat consumption (tertile 1), there was no relationship between milk fat intake and telomere length. Overall, the findings highlight an association of increased biological aging in U.S. adults who consumed high-fat milk. The results support the latest Dietary Guidelines for Americans (2015–2020), which recommend consumption of low-fat milk, but not high-fat milk, as part of a healthy diet.
Collapse
|
22
|
Grijalva-Avila J, Villanueva-Fierro I, Lares-Asseff I, Chairez-Hernández I, Rivera-Sanchez G, Martínez-Estrada S, Martínez-Rivera I, Quiñones LA, Loera-Castañeda V. Milk intake and IGF-1 rs6214 polymorphism as protective factors to obesity. Int J Food Sci Nutr 2019; 71:388-393. [DOI: 10.1080/09637486.2019.1666805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Ismael Lares-Asseff
- Instituto Politécnico, Nacional-CIIDIR Unidad Durango, Durango, México
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | - Gildardo Rivera-Sanchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | | | | | - Luis A. Quiñones
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Verónica Loera-Castañeda
- Instituto Politécnico, Nacional-CIIDIR Unidad Durango, Durango, México
- Latin-American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
23
|
Kopp W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab Syndr Obes 2019; 12:2221-2236. [PMID: 31695465 PMCID: PMC6817492 DOI: 10.2147/dmso.s216791] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Westernized populations are plagued by a plethora of chronic non-infectious degenerative diseases, termed as "civilization diseases", like obesity, diabetes, cardiovascular diseases, cancer, autoimmune diseases, Alzheimer's disease and many more, diseases which are rare or virtually absent in hunter-gatherers and other non-westernized populations. There is a growing awareness that the cause of this amazing discrepancy lies in the profound changes in diet and lifestyle during recent human history. This paper shows that the transition from Paleolithic nutrition to Western diets, along with lack of corresponding genetic adaptations, cause significant distortions of the fine-tuned metabolism that has evolved over millions of years of human evolution in adaptation to Paleolithic diets. With the increasing spread of Western diet and lifestyle worldwide, overweight and civilization diseases are also rapidly increasing in developing countries. It is suggested that the diet-related key changes in the developmental process include an increased production of reactive oxygen species and oxidative stress, development of hyperinsulinemia and insulin resistance, low-grade inflammation and an abnormal activation of the sympathetic nervous system and the renin-angiotensin system, all of which play pivotal roles in the development of diseases of civilization. In addition, diet-related epigenetic changes and fetal programming play an important role. The suggested pathomechanism is also able to explain the well-known but not completely understood close relationship between obesity and the wide range of comorbidities, like type 2 diabetes mellitus, cardiovascular disease, etc., as diseases of the same etiopathology. Changing our lifestyle in accordance with our genetic makeup, including diet and physical activity, may help prevent or limit the development of these diseases.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Retired Head, Diagnostikzentrum Graz, Graz8043, Austria
- Correspondence: Wolfgang Kopp Mariatrosterstraße 41, Graz8043, Austria Email
| |
Collapse
|
24
|
Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of Civilization - Cancer, Diabetes, Obesity and Acne - the Implication of Milk, IGF-1 and mTORC1. MAEDICA 2018; 13:273-281. [PMID: 30774725 PMCID: PMC6362881 DOI: 10.26574/maedica.2018.13.4.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutrition and food are one of the most complex aspects of human lives, being influenced by biochemical, psychological, social and cultural factors. The Western diet is the prototype of modern dietary pattern and is mainly characterized by the intake of large amounts of red meat, dairy products, refined grains and sugar. Large amounts of scientific evidence positively correlate Western diet to acne, obesity, diabetes, heart disease and cancer, the so-called "diseases of civilization". The pathophysiological common ground of all these pathologies is the IGF-1 and mTORC pathways, which will be disscussed further in this paper.
Collapse
Affiliation(s)
| | | | | | - Anca Roseanu
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Madalina Icriverzi
- Department of Ligand-Receptor Interaction, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | | |
Collapse
|
25
|
Prodhan UK, Milan AM, Thorstensen EB, Barnett MPG, Stewart RAH, Benatar JR, Cameron-Smith D. Altered Dairy Protein Intake Does Not Alter Circulatory Branched Chain Amino Acids in Healthy Adults: A Randomized Controlled Trial. Nutrients 2018; 10:nu10101510. [PMID: 30326639 PMCID: PMC6213722 DOI: 10.3390/nu10101510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Dairy, as a major component of a high protein diet, is a critical dietary source of branched chain amino acids (BCAA), which are biomarkers of health and diseases. While BCAA are known to be key stimulators of protein synthesis, elevated circulatory BCAA is an independent risk factor for type 2 diabetes mellitus. This study examined the impact of altered dairy intake on plasma BCAA and their potential relationship to insulin sensitivity. Healthy adults (n = 102) were randomized to receive dietary advice to reduce, maintain, or increase habitual dairy intake for 1 month. Food intake was recorded with food frequency questionnaires. Self-reported protein intake from dairy was reported to be reduced (−14.6 ± 3.0 g/day), maintained (−4.0 ± 2.0 g/day) or increased (+13.8 ± 4.1 g/day) according to group allocation. No significant alterations in circulating free amino acids (AA), including BCAA, were measured. Insulin sensitivity, as assessed by homeostatic model assessment-insulin resistance (HOMA-IR), was also unaltered. A significant change in dairy protein intake showed no significant effect on fasting circulatory BCAA and insulin sensitivity in healthy populations.
Collapse
Affiliation(s)
- Utpal K Prodhan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
- Riddet Institute, Palmerston North 4442, New Zealand.
| | - Amber M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Eric B Thorstensen
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Matthew P G Barnett
- Riddet Institute, Palmerston North 4442, New Zealand.
- Food Nutrition & Health Team, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland-1023, New Zealand.
| | - Ralph A H Stewart
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland 1030, New Zealand.
| | - Jocelyn R Benatar
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland 1030, New Zealand.
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Riddet Institute, Palmerston North 4442, New Zealand.
- Food & Bio-Based Products Group, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand.
| |
Collapse
|
26
|
A Dietary Intervention to Lower Serum Levels of IGF-I in BRCA Mutation Carriers. Cancers (Basel) 2018; 10:cancers10090309. [PMID: 30181513 PMCID: PMC6162406 DOI: 10.3390/cancers10090309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Insulin-like growth factor I (IGF-I) and other markers of insulin resistance (IRm) might influence the penetrance of BRCA gene mutation. In a demonstration project on BRCA mutation carriers we tested the effect of the 'Mediterranean diet', with moderate protein restriction, on serum levels of IGF-I and IRm. METHODS BRCA mutation carriers, with or without breast cancer, aged 18⁻70 years and without metastases were eligible. After the baseline examinations, women were randomized to an active dietary intervention or to a control group. The intervention group attended six full days of life-style intervention activities (cookery classes followed by lunch, sessions of walking for 45 min and nutritional conferences) over the next six months. RESULTS 213 BRCA mutation carriers completed the six-month study. Women in the intervention group (110) showed major changes in all the parameters under study. They significantly lost weight (p < 0.001), fat mass (p = 0.002), with reduced hip circumference (p = 0.01), triglycerides (p = 0.02) and IGF-I (p = 0.02) compared with controls. They also had a significantly higher levels of insulin-like growth factor-binding protein 3 (IGFI-BP3) (p = 0.03) and a lower IGF-I/IGFI-BP3 ratio (p = 0.04). The reduction of serum levels of IGF-I was significantly associated with the reduction in the consumption of animal products (p = 0.04). CONCLUSIONS Women in the intervention group showed significant improvements in IGF-I and in other IRm that might influence the penetrance of BRCA mutations.
Collapse
|
27
|
Kopp W. Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension? Nutr Metab Insights 2018; 11:1178638818773072. [PMID: 30455570 PMCID: PMC6238249 DOI: 10.1177/1178638818773072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023] Open
Abstract
Benign prostatic hyperplasia and hypertension are common age-related comorbidities. Although the etiology of benign prostatic hyperplasia (BPH) is still largely unresolved and poorly understood, a significant age-independent association was found between BPH and hypertension, indicating a common pathophysiological factor for both diseases. It has previously been suggested that the development of essential hypertension may be related to diet-induced hyperinsulinemia. This study follows the question, whether BPH may develop due to the same mechanism, thereby explaining the well-known comorbidity of these 2 disorders. The scientific evidence presented shows that BPH and hypertension share the same pathophysiological changes, with hyperinsulinemia as the driving force. It further shows that significant dietary changes during human history cause disruption of a finely tuned metabolic balance that has evolved over millions of years of evolution: high-insulinemic food, typical of current “Western” diets, has the potential to cause hyperinsulinemia and insulin resistance, as well as an abnormally increased activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, alterations that play a pivotal role in the pathogenesis of BPH and hypertension.
Collapse
Affiliation(s)
- Wolfgang Kopp
- Former head of the Diagnostikzentrum Graz, Graz, Austria
| |
Collapse
|
28
|
|
29
|
Okekunle AP, Wu X, Duan W, Feng R, Li Y, Sun C. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can J Diabetes 2017; 42:484-492.e7. [PMID: 29625864 DOI: 10.1016/j.jcjd.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To assess the association between branched-chain amino acid (BCAA) intakes and risk for type 2 diabetes. METHODS Dietary intakes were assessed in 1,804 people with type 2 diabetes and 7,020 controls with information on nutrient intakes, including BCAAs derived from Chinese food composition tables. Principal component analysis was used to identify dietary patterns (DPs) and multivariable-adjusted odds ratios (ORs) of type 2 diabetes, and 95% confidence intervals (CIs) by quartiles of BCAAs were estimated using logistic regression with 2-sided p<0.05. RESULTS Multivariable-adjusted ORs and 95% CI were 1.00, 1.297 (1.087 to 1.548), 1.380 (1.153 to 1.652) and 1.561 (1.291 to 1.888), p<0.0001, across energy-adjusted quartiles of total BCAA intakes. We identified 6 DPs: wheaten foods; vegetables, fruit and milk; beverages and snacks; potatoes, soybean and egg; meat; and fish. Multivariable-adjusted ORs and 95% CI across quartiles of total BCAA intakes for people with type 2 diabetes within the 4th quartile of DPs were 1.00, 1.337 (0.940 to 1.903); 1.579 (1.065 to 2.343); 2.412 (1.474 to 3.947); Pfor trend=0.001 for vegetables, fruit and milk, 1.00, 1.309 (0.930 to 1.842), 1.328 (0.888 to 1.985), 2.044 (1.179 to 3.544); Pfor trend=0.028 for meat and 1.00, 1.043 (0.720 to 1.509), 1.497 (0.969 to 2.312), 1.896 (1.067 to 3.367); Pfor trend=0.017 for fish. CONCLUSIONS BCAA intakes and type 2 diabetes risk depend on the context of DPs, not exclusively on BCAA intake.
Collapse
Affiliation(s)
- Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaoyan Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Wei Duan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
30
|
Abstract
The present narrative review outlines the use of milk products in infant and young child feeding from early history until today and illustrates how research findings and technical innovations contributed to the evolution of milk-based strategies to combat undernutrition in children below the age of 5 years. From the onset of social welfare initiatives, dairy products were provided by maternal and child health services to improve nutrition. During the last century, a number of aetiological theories on oedematous forms of undernutrition were developed and until the 1970s the dogma of protein deficiency was dominant. Thereafter, a multifactorial concept gained acceptance and protein quality was emphasised. During the last decades, research findings demonstrated that the inclusion of dairy products in the management of severe acute malnutrition is most effective. For children suffering from moderate acute malnutrition the evidence for the superiority of milk-based diets is less clear. There is an unmet need for evaluating locally produced milk-free alternatives at lower cost, especially in countries that rely on imported dairy products. New strategies for the dietary management of childhood undernutrition need to be developed on the basis of research findings, current child feeding practices, socio-cultural conditions and local resources. Exclusive and continued breast-feeding supported by community-based nutrition programmes using optimal combinations of locally available complementary foods should be compared with milk product-based interventions.
Collapse
|
31
|
Hanvold SE, Vinknes KJ, Bastani NE, Turner C, Løken EB, Mala T, Refsum H, Aas AM. Plasma amino acids, adiposity, and weight change after gastric bypass surgery: are amino acids associated with weight regain? Eur J Nutr 2017; 57:2629-2637. [PMID: 28856439 DOI: 10.1007/s00394-017-1533-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Plasma concentrations of several amino acids (AAs) are positively correlated with obesity. The aim of this study was to examine if selected plasma AAs are associated with weight regain from 2 to 4 years after Roux-en-Y gastric bypass (RYGB). METHODS In a prospective study with 165 patients, we examined the relationship between plasma aromatic AAs (AAAs), branched chain AAs (BCAAs), and total cysteine (tCys) 2 years after RYGB, with BMI at 2 years and with weight change from 2 to 4 years after surgery. Analyses were adjusted for relevant covariates. RESULT The investigated AAs at 2 years correlated positively with BMI at 2 years (P ≤ 0.003 for all). BCAAs and AAAs at 2 years correlated inversely with % weight loss from 0 to 2 years (P = 0.002 and P = 0.001, respectively), while the association was not significant for tCys (r = -0.14, P = 0.08). Plasma tCys at 2 years correlated positively with BMI at 4 years (P = 0.010) and with weight regain from 2 to 4 years (P = 0.015). CONCLUSION Plasma AAAs, BCAAs, and tCys at 2 years were associated with BMI at 2 years. In addition, plasma AAAs and BCAAs at 2 years were associated with weight loss from 0 to 2 years, while tCys at 2 years was associated with weight regain from 2 to 4 years after RYGB. These results suggest that high tCys at 2 years may be used as a prognostic marker for future weight regain. The study was registered in ClinicalTrials.gov (NCT0 1270451).
Collapse
Affiliation(s)
- Susanna E Hanvold
- Section of Nutrition and Dietetics, Division of Medicine, Department of Clinical Service, Oslo University Hospital Aker, Oslo, Norway.
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Kathrine J Vinknes
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nasser E Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Elin B Løken
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Tom Mala
- Division of Medicine, Department of Morbid Obesity and Bariatric Surgery, Oslo University Hospital Aker, Oslo, Norway
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Anne-Marie Aas
- Section of Nutrition and Dietetics, Division of Medicine, Department of Clinical Service, Oslo University Hospital Aker, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update 2017; 23:371-389. [PMID: 28333357 DOI: 10.1093/humupd/dmx006] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Infertility is a global public health issue, affecting 15% of all couples of reproductive age. Male factors, including decreased semen quality, are responsible for ~25% of these cases. The dietary pattern, the components of the diet and nutrients have been studied as possible determinants of sperm function and/or fertility. OBJECTIVE AND RATIONALE Previous systematic reviews have been made of the few heterogeneous low-quality randomized clinical trials (RCTs) conducted in small samples of participants and investigating the effect of specific nutrients and nutritional supplements on male infertility. However, as yet there has been no systematic review of observational studies. SEARCH METHODS A comprehensive systematic review was made of the published literature, from the earliest available online indexing year to November 2016, in accordance with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We have included cross-sectional, case-control and prospective and retrospective studies in which fertile/infertile men were well defined (men with sperm disorders, sperm DNA damage, varicocele or idiopathic infertility). The primary outcomes were semen quality or fecundability. With the data extracted, we evaluated and scored the quality of the studies selected. We excluded RCTs, animal studies, review articles and low-quality studies. OUTCOMES A total of 1944 articles were identified, of which 35 were selected for qualitative analysis. Generally, the results indicated that healthy diets rich in some nutrients such as omega-3 fatty acids, some antioxidants (vitamin E, vitamin C, β-carotene, selenium, zinc, cryptoxanthin and lycopene), other vitamins (vitamin D and folate) and low in saturated fatty acids and trans-fatty acids were inversely associated with low semen quality parameters. Fish, shellfish and seafood, poultry, cereals, vegetables and fruits, low-fat dairy and skimmed milk were positively associated with several sperm quality parameters. However, diets rich in processed meat, soy foods, potatoes, full-fat dairy and total dairy products, cheese, coffee, alcohol, sugar-sweetened beverages and sweets have been detrimentally associated with the quality of semen in some studies. As far as fecundability is concerned, a high intake of alcohol, caffeine and red meat and processed meat by males has a negative influence on the chance of pregnancy or fertilization rates in their partners. WIDER IMPLICATIONS Male adherence to a healthy diet could improve semen quality and fecundability rates. Since observational studies may prove associations but not causation, the associations summarized in the present review need to be confirmed with large prospective cohort studies and especially with well-designed RCTs.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mònica Bulló
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jordi Salas-Salvadó
- Human Nutrition Unit, Biochemistry and Biotechnology Department, Faculty of Medicine and Health Sciences, University Hospital of Sant Joan de Reus, IISPV, Universitat Rovira i Virgili, Reus, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
33
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
34
|
Abstract
Adequate protein intake is critical for health and development. Generally, protein of animal origin is of higher quality for humans owing to its amino acid pattern and good digestibility. When administered in mixtures it can enhance the quality of plant proteins, but its availability is often low in low-income communities, especially in young children, the elderly, and pregnant and lactating women, who have increased requirements and in whom high-quality protein also stimulates (bone) growth and maintenance. Although high protein intake was associated with increased type 2 diabetes mellitus risk, milk and seafood are good sources of branched chain amino acids and taurine, which act beneficially on glucose metabolism and blood pressure. However, high consumption of protein-rich animal food is also associated with adverse health effects and higher risk for noncommunicable diseases, partly related to other components of these foods, like saturated fatty acids and potential carcinogens in processed meat but also the atherogenic methionine metabolite homocysteine. In moderation, however, animal proteins are especially important for health maintenance in vulnerable persons.
Collapse
Affiliation(s)
- Ibrahim Elmadfa
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1010, Austria;,
| | - Alexa L. Meyer
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna 1010, Austria;,
| |
Collapse
|
35
|
Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev 2017; 30:50-72. [PMID: 28112064 DOI: 10.1017/s0954422416000238] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of linear growth by nutritional and inflammatory influences is examined in terms of growth-plate endochondral ossification, in order to better understand stunted growth in children. Linear growth is controlled by complex genetic, physiological, and nutrient-sensitive endocrine/paracrine/autocrine mediated molecular signalling mechanisms, possibly including sleep adequacy through its influence on growth hormone secretion. Inflammation, which accompanies most infections and environmental enteric dysfunction, inhibits endochondral ossification through the action of mediators including proinflammatory cytokines, the activin A-follistatin system, glucocorticoids and fibroblast growth factor 21 (FGF21). In animal models linear growth is particularly sensitive to dietary protein as well as Zn intake, which act through insulin, insulin-like growth factor-1 (IGF-1) and its binding proteins, triiodothyronine, amino acids and Zn2+ to stimulate growth-plate protein and proteoglycan synthesis and cell cycle progression, actions which are blocked by corticosteroids and inflammatory cytokines. Observational human studies indicate stunting to be associated with nutritionally poor, mainly plant-based diets. Intervention studies provide some support for deficiencies of energy, protein, Zn and iodine and for multiple micronutrient deficiencies, at least during pregnancy. Of the animal-source foods, only milk has been specifically and repeatedly shown to exert an important influence on linear growth in both undernourished and well-nourished children. However, inflammation, caused by infections, environmental enteric dysfunction, which may be widespread in the absence of clean water, adequate sanitation and hygiene (WASH), and endogenous inflammation associated with excess adiposity, in each case contributes to stunting, and may explain why nutritional interventions are often unsuccessful. Current interventions to reduce stunting are targeting WASH as well as nutrition.
Collapse
|
36
|
Elshorbagy A, Jernerén F, Basta M, Basta C, Turner C, Khaled M, Refsum H. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur J Nutr 2016; 56:1953-1962. [PMID: 27289540 PMCID: PMC5534203 DOI: 10.1007/s00394-016-1237-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2016] [Indexed: 12/22/2022]
Abstract
Purpose To explore whether changes in dietary protein sources can lower plasma branched-chain amino acids (BCAAs), aromatic amino acids and sulfur amino acids (SAAs) that are often elevated in the obese, insulin-resistant state and in type 2 diabetes. Methods Thirty-six subjects (mean age 31 ± 2 years) underwent a voluntary abstinence from meat, poultry, eggs, and dairy products for 6 weeks, while enriching the diet with fish, in fulfillment of a religious fast. Subjects were assessed 1 week before the fast (V1), 1 week after initiation of the fast (V2) and in the last week of the fast (V3). Thirty-four subjects completed all three visits. Results Fasting plasma BCAAs decreased at V2 and remained low at V3 (P < 0.001 for all). Valine showed the greatest decline, by 20 and 19 % at V2 and V3, respectively. Phenylalanine and tryptophan, but not tyrosine, also decreased at V2 and V3. The two proteinogenic SAAs, methionine and cysteine, remained stable, but the cysteine product, taurine, decreased from 92 ± 7 μmol/L to 66 ± 6 (V2; P = 0.003) and 65 ± 6 μmol/L (V3; P = 0.003). A progressive decline in plasma glutamic acid, coupled with an increase in glutamine, was observed. Plasma total and LDL cholesterol decreased at V2 and V3 (P < 0.001 for all). Conclusion Changing dietary protein sources to plant- and fish-based sources in an ad libitum setting lowers the plasma BCAAs that have been linked to diabetes risk. These findings point to habitual diet as a potentially modifiable determinant of fasting plasma BCAA concentrations. Electronic supplementary material The online version of this article (doi:10.1007/s00394-016-1237-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amany Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | | | - Marianne Basta
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Caroline Basta
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Maram Khaled
- Pain Management Unit, Department of Anaesthesia, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
37
|
Bioavailability of milk protein-derived bioactive peptides: a glycaemic management perspective. Nutr Res Rev 2016; 29:91-101. [DOI: 10.1017/s0954422416000032] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractMilk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future.
Collapse
|
38
|
Melnik BC. Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med 2015; 13:385. [PMID: 26691922 PMCID: PMC4687119 DOI: 10.1186/s12967-015-0746-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity-associated) gene are associated with enhanced FTO expression, increased body weight, obesity and type 2 diabetes mellitus (T2DM). The N6-methyladenosine (m6A) demethylase FTO plays a pivotal regulatory role for postnatal growth and energy expenditure. The purpose of this review is to provide translational evidence that links milk signaling with FTO-activated transcription of the milk recipient. FTO-dependent demethylation of m6A regulates mRNA splicing required for adipogenesis, increases the stability of mRNAs, and affects microRNA (miRNA) expression and miRNA biosynthesis. FTO senses branched-chain amino acids (BCAAs) and activates the nutrient sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), which plays a key role in translation. Milk provides abundant BCAAs and glutamine, critical components increasing FTO expression. CpG hypomethylation in the first intron of FTO has recently been associated with T2DM. CpG methylation is generally associated with gene silencing. In contrast, CpG demethylation generally increases transcription. DNA de novo methylation of CpG sites is facilitated by DNA methyltransferases (DNMT) 3A and 3B, whereas DNA maintenance methylation is controlled by DNMT1. MiRNA-29s target all DNMTs and thus reduce DNA CpG methylation. Cow´s milk provides substantial amounts of exosomal miRNA-29s that reach the systemic circulation and target mRNAs of the milk recipient. Via DNMT suppression, milk exosomal miRNA-29s may reduce the magnitude of FTO methylation, thereby epigenetically increasing FTO expression in the milk consumer. High lactation performance with increased milk yield has recently been associated with excessive miRNA-29 expression of dairy cow mammary epithelial cells (DCMECs). Notably, the galactopoietic hormone prolactin upregulates the transcription factor STAT3, which induces miRNA-29 expression. In a retrovirus-like manner milk exosomes may transfer DCMEC-derived miRNA-29s and bovine FTO mRNA to the milk consumer amplifying FTO expression. There is compelling evidence that obesity, T2DM, prostate and breast cancer, and neurodegenerative diseases are all associated with increased FTO expression. Maximization of lactation performance by veterinary medicine with enhanced miRNA-29s and FTO expression associated with increased exosomal miRNA-29 and FTO mRNA transfer to the milk consumer may represent key epigenetic mechanisms promoting FTO/mTORC1-mediated diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090, Osnabrück, Germany.
| |
Collapse
|
39
|
Kabasakal Cetin A, Dasgin H, Gülec A, Onbasilar İ, Akyol A. Maternal Low Quality Protein Diet Alters Plasma Amino Acid Concentrations of Weaning Rats. Nutrients 2015; 7:9847-59. [PMID: 26633475 PMCID: PMC4690060 DOI: 10.3390/nu7125508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022] Open
Abstract
Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring’s plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring’s plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey.
| | - Halil Dasgin
- Department of Nutrition and Dietetics, Kirikkale University, Merkez, 71100 Kırıkkale, Turkey.
| | - Atila Gülec
- Department of Nutrition and Dietetics, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey.
| | - İlyas Onbasilar
- Faculty of Medicine, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey.
| | - Asli Akyol
- Department of Nutrition and Dietetics, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey.
| |
Collapse
|
40
|
Funtikova AN, Navarro E, Bawaked RA, Fíto M, Schröder H. Impact of diet on cardiometabolic health in children and adolescents. Nutr J 2015; 14:118. [PMID: 26574072 PMCID: PMC4647337 DOI: 10.1186/s12937-015-0107-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
The manifestation of cardiovascular risk factors, such as hypertension, diabetes, and particularly obesity begins in children and adolescents, with deleterious effects for cardiometabolic health at adulthood. Although the impact of diet on cardiovascular risk factors has been studied extensively in adults, showing that their cardiometabolic health is strongly lifestyle-dependent, less is known about this impact in children and adolescents. In particular, little is known about the relationship between their dietary patterns, especially when derived a posteriori, and cardiovascular risk. An adverse association of cardiovascular health and increased intake of sodium, saturated fat, meat, fast food and soft drinks has been reported in this population. In contrast, vitamin D, fiber, mono-and poly-unsaturated fatty acids, dairy, fruits and vegetables were positively linked to cardiovascular health. The aim of this review was to summarize current epidemiological and experimental evidence on the impact of nutrients, foods, and dietary pattern on cardiometabolic health in children and adolescents. A comprehensive review of the literature available in English and related to diet and cardiometabolic health in this population was undertaken via the electronic databases PubMed, Cochrane Library, and Medline.
Collapse
Affiliation(s)
- Anna N Funtikova
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.,Food and Nutrition PhD program, University of Barcelona, Barcelona, Spain
| | - Estanislau Navarro
- Molecular Oncology Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Rowaedh Ahmed Bawaked
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Biomedicine PhD program, University of Pompeu Fabra, Barcelona, Spain
| | - Montserrat Fíto
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Helmut Schröder
- Cardiovascular Risk and Nutrition Research Group (CARIN), IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CIBER Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
41
|
Abstract
Based on own translational research of the biochemical and hormonal effects of cow's milk consumption in humans, this review presents milk as a signaling system of mammalian evolution that activates the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the pivotal regulator of translation. Milk, a mammary gland-derived secretory product, is required for species-specific gene-nutrient interactions that promote appropriate growth and development of the newborn mammal. This signaling system is highly conserved and tightly controlled by the lactation genome. Milk is sufficient to activate mTORC1, the crucial regulator of protein, lipid, and nucleotide synthesis orchestrating anabolism, cell growth and proliferation. To fulfill its mTORC1-activating function, milk delivers four key metabolic messengers: (1) essential branched-chain amino acids (BCAAs); (2) glutamine; (3) palmitic acid; and (4) bioactive exosomal microRNAs, which in a synergistical fashion promote mTORC1-dependent translation. In all mammals except Neolithic humans, postnatal activation of mTORC1 by milk intake is restricted to the postnatal lactation period. It is of critical concern that persistent hyperactivation of mTORC1 is associated with aging and the development of age-related disorders such as obesity, type 2 diabetes mellitus, cancer, and neurodegenerative diseases. Persistent mTORC1 activation promotes endoplasmic reticulum (ER) stress and drives an aimless quasi-program, which promotes aging and age-related diseases.
Collapse
|
42
|
Turner KM, Keogh JB, Clifton PM. Red meat, dairy, and insulin sensitivity: a randomized crossover intervention study. Am J Clin Nutr 2015; 101:1173-9. [PMID: 25809854 DOI: 10.3945/ajcn.114.104976] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/02/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epidemiologic studies have linked high consumption of red and processed meat with risk of developing type 2 diabetes, whereas high dairy consumption has been associated with decreased risk, but interventions have been limited. OBJECTIVE We compared the effects on insulin sensitivity of consuming a diet high in lean red meat with minimal dairy, a diet high in primarily low-fat dairy (from milk, yogurt, or custard) with no red meat, and a control diet that contained neither red meat nor dairy. DESIGN A randomized crossover study was undertaken with 47 overweight and obese men and women divided into 2 groups as follows: those with normal glucose tolerance and those with impaired fasting glucose or impaired glucose tolerance. Participants followed the 3 weight-stable dietary interventions for 4 wk with glucose, insulin, and C-peptide measured by using oral-glucose-tolerance tests at the end of each diet. RESULTS Fasting insulin was significantly higher after the dairy diet than after the red meat diet (P < 0.01) with no change in fasting glucose resulting in a decrease in insulin sensitivity after the high-dairy diet (P < 0.05) as assessed by homeostasis model assessment of insulin resistance (HOMA-IR). A significant interaction between diet and sex was observed such that, in women alone, HOMA-IR was significantly lower after the red meat diet than after the dairy diet (1.33 ± 0.8 compared with 1.71 ± 0.8, respectively; P < 0.01). Insulin sensitivity calculated by using the Matsuda method was 14.7% lower in women after the dairy diet than after the red meat diet (P < 0.01) with no difference between diets in men. C-peptide was not different between diets. CONCLUSION In contrast to some epidemiologic findings, these results suggest that high consumption of dairy reduces insulin sensitivity compared with a diet high in lean red meat in overweight and obese subjects, some of whom had glucose intolerance. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN12613000441718.
Collapse
Affiliation(s)
- Kirsty M Turner
- From the School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Jennifer B Keogh
- From the School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Peter M Clifton
- From the School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
43
|
Abstract
High serum levels of insulin-like growth factor I (IGF-I) are associated with an increased risk of sporadic breast cancer (BC). Furthermore, insulin and markers of insulin resistance, such as abdominal obesity, high blood glucose, high serum testosterone and metabolic syndrome, may affect both BC incidence and prognosis. We hypothesized that all these factors might be relevant also for hereditary BC, due to a deleterious mutation of BRCA genes. Epidemiological observation suggested that weight, energy intake (usually associated with higher bio-availability of growth factors) and physical activity may be relevant in BRCA mutation carriers. Mechanistic studies hypothesized a functional interaction between BRCA genes and the IGF-I system. We have provided some evidence that high serum levels of IGF-I are associated with a significantly increased penetrance. We are recruiting a larger cohort of BRCA mutation carriers in order to test potential modulators of penetrance and prognosis. Within this cohort, we have planned a randomized controlled trial to test whether moderate calorie and protein restriction, together with physical activity, decrease IGF-I. Eligible study subjects are women with or without BC, aged 18-70, with a proven deleterious BRCA mutation, and without metastases. All the women will receive recommendations for the dietary prevention of cancer. The women will be then randomized into an active life-style intervention group and into a control group that will receive only the baseline recommendations. We expect to significantly reduce IGF-I in the intervention group. This trial and the subsequent cohort follow-up might open up primary prevention options for genetic BC.
Collapse
|
44
|
Melnik BC, John SM, Schmitz G. Milk consumption during pregnancy increases birth weight, a risk factor for the development of diseases of civilization. J Transl Med 2015; 13:13. [PMID: 25592553 PMCID: PMC4302093 DOI: 10.1186/s12967-014-0377-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
Antenatal dietary lifestyle intervention and nutrition during pregnancy and early postnatal life are important for appropriate lifelong metabolic programming. Epidemiological evidence underlines the crucial role of increased birth weight as a risk factor for the development of chronic diseases of civilization such as obesity, diabetes and cancer. Obstetricians and general practitioners usually recommend milk consumption during pregnancy as a nutrient enriched in valuable proteins and calcium for bone growth. However, milk is not just a simple nutrient, but has been recognized to function as an endocrine signaling system promoting anabolism and postnatal growth by activating the nutrient-sensitive kinase mTORC1. Moreover, pasteurized cow’s milk transfers biologically active exosomal microRNAs into the systemic circulation of the milk consumer apparently affecting more than 11 000 human genes including the mTORC1-signaling pathway. This review provides literature evidence and evidence derived from translational research that milk consumption during pregnancy increases gestational, placental, fetal and birth weight. Increased birth weight is a risk factor for the development of diseases of civilization thus involving key disciplines of medicine. With regard to the presented evidence we suggest that dietary recommendations promoting milk consumption during pregnancy have to be re-evaluated.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, D-49090, Osnabrück, Germany.
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinics of Regensburg, Regensburg, Germany.
| |
Collapse
|
45
|
Melnik BC. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev 2015; 11:46-62. [PMID: 25587719 PMCID: PMC4428476 DOI: 10.2174/1573399811666150114100653] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosomal microRNAs. After milk consumption, bovine microRNA-29b, a member of the diabetogenic microRNA-29- family, reaches the systemic circulation and the cells of the milk consumer. MicroRNA-29b downregulates branchedchain α-ketoacid dehydrogenase, a potential explanation for increased BCAA serum levels, the metabolic signature of insulin resistance and type 2 diabetes mellitus (T2DM). In non-obese diabetic mice, microRNA-29b downregulates the antiapoptotic protein Mcl-1, which leads to early β-cell death. In all mammals except Neolithic humans, milk-driven mTORC1 signaling is physiologically restricted to the postnatal period. In contrast, chronic hyperactivated mTORC1 signaling has been associated with the development of age-related diseases of civilization including T2DM. Notably, chronic hyperactivation of mTORC1 enhances endoplasmic reticulum stress that promotes apoptosis. In fact, hyperactivated β-cell mTORC1 signaling induced early β-cell apoptosis in a mouse model. The EPIC-InterAct Study demonstrated an association between milk consumption and T2DM in France, Italy, United Kingdom, Germany, and Sweden. In contrast, fermented milk products and cheese exhibit an inverse correlation. Since the early 1950´s, refrigeration technology allowed widespread consumption of fresh pasteurized milk, which facilitates daily intake of bioactive bovine microRNAs. Persistent uptake of cow´s milk-derived microRNAs apparently transfers an overlooked epigenetic diabetogenic program that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabruck, Sedanstraße 115, D-49090 Osnabrück, Germany.
| |
Collapse
|
46
|
Phy JL, Pohlmeier AM, Cooper JA, Watkins P, Spallholz J, Harris KS, Berenson AB, Boylan M. Low Starch/Low Dairy Diet Results in Successful Treatment of Obesity and Co-Morbidities Linked to Polycystic Ovary Syndrome (PCOS). ACTA ACUST UNITED AC 2015. [PMID: 26225266 PMCID: PMC4516387 DOI: 10.4172/2165-7904.1000259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Polycystic Ovary Syndrome (PCOS) affects approximately 15% of reproductive-age women and increases risk of insulin resistance, type 2 diabetes mellitus, cardiovascular disease, cancer and infertility. Hyperinsulinemia is believed to contribute to or worsen all of these conditions, and increases androgens in women with PCOS. Carbohydrates are the main stimulators of insulin release, but research shows that dairy products and starches elicit greater postprandial insulin secretion than non-starchy vegetables and fruits. The purpose of this study was to determine whether an 8-week low-starch/low-dairy diet results in weight loss, increased insulin sensitivity, and reduced testosterone in women with PCOS. Methods Prospective 8-week dietary intervention using an ad libitum low starch/low dairy diet in 24 overweight and obese women (BMI ≥ 25 kg/m2 and ≤ 45 kg/m2) with PCOS. Diagnosis of PCOS was based on the Rotterdam criteria. Weight, BMI, Waist Circumference (WC), Waist-to-Height Ratio (WHtR), fasting and 2-hour glucose and insulin, homeostasis model assessment of Insulin Resistance (HOMA-IR), HbA1c, total and free testosterone, and Ferriman-Gallwey scores were measured before and after the 8-week intervention. Results There was a reduction in weight (−8.61 ± 2.34 kg, p<0.001), BMI (−3.25 ± 0.88 kg/m2, p<0.001), WC (−8.4 ± 3.1 cm, p<0.001), WHtR (−0.05 ± 0.02 inches, p<0.001), fasting insulin (−17.0 ± 13.6 μg/mL, p<0.001) and 2-hour insulin (−82.8 ± 177.7 μg/mL, p=0.03), and HOMA-IR (−1.9 ± 1.2, p<0.001) after diet intervention. Total testosterone (−10.0 ± 17.0 ng/dL, p=0.008), free testosterone (−1.8 pg/dL, p=0.043) and Ferriman-Gallwey scores (−2.1 ± 2.7 points (p=0.001) were also reduced from pre- to post-intervention. Conclusion An 8-week low-starch/low-dairy diet resulted in weight loss, improved insulin sensitivity and reduced testosterone in women with PCOS.
Collapse
Affiliation(s)
- Jennifer L Phy
- Department of OB-GYN, Center for Fertility & Reproductive Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ali M Pohlmeier
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA ; Department of OB-GYN, Center for Interdisciplinary Research in Women's Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jamie A Cooper
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Phillip Watkins
- Clinical Research Institute, Department of Statistics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Julian Spallholz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kitty S Harris
- Center for the Study of Addiction and Recovery, Texas Tech University, Lubbock, TX, USA
| | - Abbey B Berenson
- Department of OB-GYN, Center for Interdisciplinary Research in Women's Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Mallory Boylan
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
47
|
Tucker LA, Erickson A, LeCheminant JD, Bailey BW. Dairy consumption and insulin resistance: the role of body fat, physical activity, and energy intake. J Diabetes Res 2015; 2015:206959. [PMID: 25710041 PMCID: PMC4325471 DOI: 10.1155/2015/206959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/26/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between dairy consumption and insulin resistance was ascertained in 272 middle-aged, nondiabetic women using a cross-sectional design. Participants kept 7-day, weighed food records to report their diets, including dairy intake. Insulin resistance was assessed using the homeostatic model assessment (HOMA). The Bod Pod was used to measure body fat percentage, and accelerometry for 7 days was used to objectively index physical activity. Regression analysis was used to determine the extent to which mean HOMA levels differed across low, moderate, and high dairy intake categories. Results showed that women in the highest quartile of dairy consumption had significantly greater log-transformed HOMA values (0.41 ± 0.53) than those in the middle-two quartiles (0.22 ± 0.55) or the lowest quartile (0.19 ± 0.58) (F = 6.90, P = 0.0091). The association remained significant after controlling for each potential confounder individually and all covariates simultaneously. Adjusting for differences in energy intake weakened the relationship most, but the association remained significant. Of the 11 potential confounders, only protein intake differed significantly across the dairy categories, with those consuming high dairy also consuming more total protein than their counterparts. Apparently, high dairy intake is a significant predictor of insulin resistance in middle-aged, nondiabetic women.
Collapse
Affiliation(s)
- Larry A. Tucker
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
- *Larry A. Tucker:
| | - Andrea Erickson
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | | | - Bruce W. Bailey
- College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
48
|
Turner KM, Keogh JB, Clifton PM. Dairy consumption and insulin sensitivity: a systematic review of short- and long-term intervention studies. Nutr Metab Cardiovasc Dis 2015; 25:3-8. [PMID: 25156891 DOI: 10.1016/j.numecd.2014.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/17/2014] [Accepted: 07/29/2014] [Indexed: 11/20/2022]
Abstract
AIM Evidence from epidemiological studies suggests that higher consumption of dairy products may be inversely associated with risk of type 2 diabetes and other components of the metabolic syndrome, although the evidence is mixed. Intervention studies that increase dairy intake often involve lifestyle changes, including weight loss, which alone will improve insulin sensitivity. The aim of this review was to examine weight stable intervention studies that assess the effect of an increased intake of dairy products or dairy derived supplements on glucose metabolism and insulin sensitivity. DATA SYNTHESIS An electronic search was conducted using MEDLINE, EMBASE, the Cochrane Database and Web of Science for randomised controlled trials altering only dairy intake in humans with no other lifestyle or dietary change, particularly no weight change, and with measurement of glucose or insulin. Healthy participants and those with features of the metabolic syndrome were included. Chronic whey protein supplementation was also included. Ten studies were included in this systematic review. CONCLUSIONS In adults, four of the dairy interventions showed a positive effect on insulin sensitivity as assessed by Homeostasis Model Assessment (HOMA); one was negative and five had no effect. As the number of weight stable intervention studies is very limited and participant numbers small, these findings need to be confirmed by larger trials in order to conclusively determine any relationship between dairy intake and insulin sensitivity.
Collapse
Affiliation(s)
- K M Turner
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - J B Keogh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - P M Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
49
|
Melnik BC, John SM, Schmitz G. Adipogenic and insulin resistance- promoting effects of milk consumption. Mol Nutr Food Res 2014; 58:1166-7. [PMID: 24902679 DOI: 10.1002/mnfr.201470054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| | | | | |
Collapse
|
50
|
Larnkjær A, Arnberg K, Michaelsen KF, Jensen SM, Mølgaard C. Effect of milk proteins on linear growth and IGF variables in overweight adolescents. Growth Horm IGF Res 2014; 24:54-59. [PMID: 24461794 DOI: 10.1016/j.ghir.2013.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Milk may stimulate growth acting via insulin-like growth factor-I (IGF-I) secretion but the effect in adolescents is less examined. This study investigates the effect of milk proteins on linear growth, IGF-I, IGF binding protein-3 (IGFBP-3) and IGF-I/IGFBP-3 ratio in overweight adolescents. DESIGN The trial included 193 overweight adolescents aged 12-15 years. They were randomized to drink 1L/day of: skimmed milk, whey, casein or water for 12 weeks; all milk-based drinks contained 35 g protein/L. A subgroup of 32 adolescents was examined 12 weeks before they were randomized into the groups and started the intervention (pre-test control group). Examinations included anthropometry, diet registration and blood samples which were analyzed for IGF-I and IGFBP-3 by chemiluminescence methods. The effects of milk-based drinks on linear growth, IGF-I, IGFBP-3 and IGF-I availability, calculated as the IGF-I/IGFBP-3 ratio, were compared with baseline, the pre-test control group and water. RESULTS IGF-I increased with skimmed milk (P=0.015) and tended to increase with casein (P=0.075) compared to the pre-test control group. IGFBP-3 but not IGF-I increased with skimmed milk (P=0.006) and casein (P=0.001) compared to water. There was no difference in height or height Z-score for any of the milk-based test drink groups compared to water or compared to the pre-test control group. However, height Z-score decreased within the whey group. CONCLUSIONS Skimmed milk and casein may have a stimulating effect on the IGF-I system whereas there was no positive effect on height in overweight adolescents during this 12 week intervention.
Collapse
Affiliation(s)
- Anni Larnkjær
- The Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
| | - Karina Arnberg
- The Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Kim F Michaelsen
- The Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Signe M Jensen
- The Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| | - Christian Mølgaard
- The Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
| |
Collapse
|