1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Xu YP, Fu JC, Hong ZL, Zeng DF, Guo CQ, Li P, Wu JX. Psychological stressors involved in the pathogenesis of premature ovarian insufficiency and potential intervention measures. Gynecol Endocrinol 2024; 40:2360085. [PMID: 38813955 DOI: 10.1080/09513590.2024.2360085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a common gynecological endocrine disease, which seriously affects women's physical and mental health and fertility, and its incidence is increasing year by year. With the development of social economy and technology, psychological stressors such as anxiety and depression caused by social, life and environmental factors may be one of the risk factors for POI. We used PubMed to search peer-reviewed original English manuscripts published over the last 10 years to identify established and experimental studies on the relationship between various types of stress and decreased ovarian function. Oxidative stress, follicular atresia, and excessive activation of oocytes, caused by Stress-associated factors may be the main causes of ovarian function damage. This article reviews the relationship between psychological stressors and hypoovarian function and the possible early intervention measures in order to provide new ideas for future clinical treatment and intervention.
Collapse
Affiliation(s)
- Ying-Pei Xu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ji-Chun Fu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Zhi-Lin Hong
- Clinical Laboratory Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - De-Fei Zeng
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Chao-Qin Guo
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Ping Li
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Jin-Xiang Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
3
|
Mashahadi Z, Saadati H, Ghaheri Fard S. Early-life manipulation of the serotonergic system exacerbates the harmful effects of sleep deprivation on cognitive functions. Int J Dev Neurosci 2024; 84:670-678. [PMID: 38984677 DOI: 10.1002/jdn.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Serotonin is a monoamine neurotransmitter that plays a main role in regulating physiological and cognitive functions. Serotonergic system dysfunction is involved in the etiology of various psychiatric and neurological disorders. Therefore, the present study was designed to investigate the effects of early-life serotonin depletion on cognitive disorders caused by sleep deprivation. Serotonin was depleted by para-chlorophenylalanine (PCPA, 100 mg/kg, s.c.) at postnatal days 10-20, followed by sleep deprivation-induced through the multiple platform apparatus for 24 h at PND 60. After the examination of the novel object recognition and passive avoidance memories, the hippocampi and prefrontal cortex were dissected to examine the brain-derived neurotrophic factor (BDNF) mRNA expression by PCR. Our findings showed that postnatal serotonin depletion and sleep deprivation impaired the novel object recognition and passive avoidance memories and changed the BDNF levels. In the same way, the serotonin depletion in early life before sleep deprivation exacerbated the harmful effects of sleep deprivation on cognitive function and BDNF levels. It can be claimed that the serotonergic system plays a main role in the modulation of sleep and cognitive functions.
Collapse
Affiliation(s)
- Zahra Mashahadi
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Ghaheri Fard
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Zheng YB, Jin X. Evidence for the Contribution of the miR-206/BDNF Pathway in the Pathophysiology of Depression. Int J Neuropsychopharmacol 2024; 27:pyae039. [PMID: 39219169 PMCID: PMC11461769 DOI: 10.1093/ijnp/pyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation, microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and recently were proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex. Until now, only a few studies have been conducted on rodents to understand the role of miR-206 in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviors remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
7
|
Hayat MR, Umair M, Ikhtiar H, Wazir S, Palwasha A, Shah M. The Relationship Between Brain-Derived Neurotrophic Factor and Serotonin in Major Depressive and Bipolar Disorders: A Cross-Sectional Analysis. Cureus 2024; 16:e70728. [PMID: 39493096 PMCID: PMC11530576 DOI: 10.7759/cureus.70728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Background Mood disorders like major depressive disorder (MDD) and bipolar disorder (BD) involve complex interactions between brain-derived neurotrophic factor (BDNF) and serotonin. While extensive research has explored these factors individually, their combined effects and interactions in these disorders are less understood. This study uniquely addresses this gap by examining how BDNF and serotonin interact and relate to mood disorder severity, providing new insights into their joint role in MDD and BD. Objectives The objective of this study was to examine the correlation between serum BDNF and plasma serotonin levels and to assess how these correlations relate to the severity of symptoms and overall disease severity in MDD and BD. Methodology This cross-sectional study, conducted at the Khyber Medical University, Peshawar, from January to September 2023, examined the correlation between BDNF and serotonin in individuals with MDD and BD. Participants (n = 63) aged 18-65 were recruited based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria, excluding those with neurological disorders, substance abuse, or severe medical illness. A control group of 21 healthy individuals was matched by age and gender. Data collection involved demographic details, clinical history, and comorbid diagnoses assessed using the Mini International Neuropsychiatric Interview (MINI). Mood disorder severity was measured using the Hamilton Depression Rating Scale (HAM-D) for MDD and the Young Mania Rating Scale (YMRS) for BD, along with additional assessments (Beck Depression Inventory, Global Assessment of Functioning). Serum BDNF and serotonin levels were analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Statistical analyses included t-tests, Mann-Whitney U tests, Pearson correlations, and subgroup analyses to assess relationships between biomarkers, mood disorder severity, and influencing factors. Results BDNF levels were found to be 20.1 ± 5.3 ng/mL in MDD, 18.5 ± 4.7 ng/mL in BD, and 25.9 ± 6.2 ng/mL in controls. Serotonin levels were 45.8 ± 12.6 ng/mL in MDD, 43.2 ± 11.4 ng/mL in BD, and 52.1 ± 14.3 ng/mL in controls. In the MDD group, significant negative correlations were observed between BDNF levels and mood disorder severity (r = -0.32, p = 0.045), whereas serotonin levels did not show significant correlations (r = -0.21, p = 0.23). In the BD group, BDNF levels also showed a significant negative correlation with manic symptoms (r = -0.28, p = 0.048), but serotonin levels showed no significant correlation. Subgroup analyses revealed that participants under 40 years had higher BDNF levels (22.8 ± 5.6 ng/mL) compared to those aged 40 and above (19.7 ± 4.3 ng/mL). Females showed higher BDNF levels (24.5 ± 6.3 ng/mL) than males (19.3 ± 3.8 ng/mL). Participants not on medication had higher BDNF levels (23.6 ± 5.1 ng/mL) compared to those on medication (17.9 ± 4.2 ng/mL). Those without comorbidities also had higher BDNF levels (23.8 ± 5.9 ng/mL) than those with comorbidities (18.2 ± 4.5 ng/mL), while serotonin levels varied similarly across these subgroups. Conclusion Lower BDNF levels are associated with mood disorders and symptom severity, indicating their potential as a biomarker.
Collapse
Affiliation(s)
- Mian Rohail Hayat
- Department of Psychiatry, Mardan Medical Complex, Medical Teaching Institution (MTI), Mardan, PAK
| | - Muhammad Umair
- Department of Physiology, Gomal Medical College, Medical Teaching Institution (MTI), Dera Ismail Khan, PAK
| | - Hina Ikhtiar
- Department of Biochemistry, Kabir Medical College, Gandhara University, Peshawar, PAK
| | - Shandana Wazir
- Department of Anatomy, Bacha Khan Medical College, Mardan, PAK
| | - Ameena Palwasha
- Department of Physiology, Jinnah Medical College, Peshawar, PAK
| | - Maheen Shah
- Department of Physiology, Abbottabad International Medical Institute, Abbottabad, PAK
| |
Collapse
|
8
|
Fang X, Lee S, Rayalam S, Park HJ. Docosahexaenoic acid supplementation and infant brain development: role of gut microbiome. Nutr Res 2024; 131:1-13. [PMID: 39342808 DOI: 10.1016/j.nutres.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Perinatal stage represents a critical period for brain development. Docosahexaenoic acid (DHA) is a ω-3 polyunsaturated fatty acid preferentially accumulated in the brain that may benefit neurodevelopment. Microbial colonization and maturation parallel with the rapid development of infant metabolic and brain function that may influence the effects of DHA on neurological development. This review aims to summarize the current literature on the mediating effects of DHA on brain and gut microbiome development and attempts to reevaluate the efficacy of DHA from a gut microbiome-mediated perspective. Specifically, the regulatory roles of DHA on hypothalamic-pituitary-adrenal axis, inflammation, and neuroactive mediators may be partly moderated through gut microbiome. Consideration of the gut microbiome and gut-brain communication, when evaluating the efficacy of DHA, may provide new insights in better understanding the mechanisms of DHA and impart advantages to future development of nutritional therapy based on the nutrient-microbiome interaction.
Collapse
Affiliation(s)
- Xi Fang
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Soon Lee
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA.
| |
Collapse
|
9
|
Yaqoob H, Ju XD, Bibi M, Anwar S, Naz S. "A systematic review of risk factors of postpartum depression. Evidence from Asian culture ". Acta Psychol (Amst) 2024; 249:104436. [PMID: 39142256 DOI: 10.1016/j.actpsy.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024] Open
Abstract
OBJECTIVES One of the largest health concerns, postpartum depression (PPD), has detrimental effects on new mothers, their child, and their family. Investigating under-researched risk factors for postpartum depression in Asian women is the goal of this review of the literature. METHODS The literature was searched using a number of electronic research databases. This review included studies that meet the following requirements: (a) they evaluated risk variables; (b) they were conducted in Asian countries using quantitative or qualitative methods; and (c) they were published in English in peer-reviewed journals between 2007 and 2023. A total of 90 studies from 14 different countries were reviewed, compiled, and synthesized. RESULTS In Asian countries, where rates ranged from 0.82 % to 93 %, South Korea and Japan had the lowest and highest rates of postpartum depression, respectively. The risk factors for postpartum depression were divided into five main categories: biological/physical (e.g., ABO blood group, oxytocin level), psychological (e.g., antenatal depression, body dissatisfaction, child care stress), obstetric/pediatric (e.g., loss of baby, abortions, pain), socio-demographic (e.g., low social support, poverty, loss of autonomy), and cultural (e.g., gender preference). CONCLUSION This phenomenon is prevalent in Asian cultures as it is in European Countries. The repercussions of untreated postpartum depression can lead to long-term psychological and developmental issues in children and strain the familial bonds essential for a nurturing environment. Moreover, understanding the specific risk factors faced by Asian women can pave the way for culturally sensitive interventions and support systems designed to address and mitigate these challenges effectively.
Collapse
Affiliation(s)
- Hina Yaqoob
- School of Psychology, Northeast Normal University, Changchun, Jilin, China.
| | - Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, Jilin, China; Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, China.
| | - Maryum Bibi
- School of Psychology, Northeast Normal University, Changchun, Jilin, China.
| | - Saeed Anwar
- School of Psychology, Northeast Normal University, Changchun, Jilin, China.
| | - Sumaira Naz
- School of Psychology, Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
10
|
Bai S, Ying ZM, Ying JK, Zhang QY, Lv YH, Wu ZM. Inhibition of 5-HT alleviates PTSD-like behaviors and promotes hippocampal neuroplasticity by modulating hippocampal autophagy in rats. J Neurophysiol 2024; 132:979-990. [PMID: 39110517 DOI: 10.1152/jn.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
5-Hydroxytryptamine (5-HT) plays a substantial role in mitigating depression and anxiety. However, the potential effects of 5-HT against posttraumatic stress disorder (PTSD) and its underlying mechanisms remain unclear. Elevated plus maze test evaluates anxiety-related behaviors, and the open field test is used to assess overall activity levels and anxiety. Inflammatory cytokine levels were determined using ELISA. The levels of 5-HT and dopamine were measured using HPLC. mRNA and protein levels were examined by PCR and Western blot, respectively. Rats exposed to single prolonged stress (SPS) exhibited typical PTSD-like phenotypes, with decreased levels of 5-HT in the hippocampus and significant reductions in its downstream targets, brain-derived neurotrophic factor (BDNF) and TrkB. In addition, it was discovered that the autophagy signaling pathway might be involved in regulating hippocampal BDNF in rats exposed to SPS. Subsequent treatment with an intracerebral injection of sh-SERT significantly inhibited anxiety and cognitive dysfunction in rats. Moreover, sh-SERT treatment was observed to substantially reverse the increase in autophagy signaling protein expression and consequently improve the expression of BDNF and TrkB proteins, which had been reduced. The current study demonstrates that sh-SERT exhibits significant anti-PTSD effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.NEW & NOTEWORTHY The study demonstrated that sh-SERT exhibits significant anti-posttraumatic stress disorder (PTSD) effects, potentially mediated in part through the reduction of cellular autophagy to enhance hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Shi Bai
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Ming Ying
- Department of Neurology, Taizhou Integrated Traditional Chinese and Western Medicine Hospital, Wenling, China
| | - Jia-Kang Ying
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Qin-Ying Zhang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Yu-Hang Lv
- Department of Clinical Medicine, School of Medicine, Taizhou University, Jiaojiang, China
| | - Zhong-Min Wu
- Department of Anatomy, School of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
11
|
Kang DW, Choi SR, Shin H, Lee H, Park J, Lee M, Bae M, Kim HW. Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice. Exp Neurobiol 2024; 33:165-179. [PMID: 39266473 PMCID: PMC11411092 DOI: 10.5607/en24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Pain accompanied by depressive symptoms is a common reason for seeking medical assistance, and many chronic pain patients experience comorbid depression. The brain-derived neurotrophic factor (BDNF) is a well-known neurotrophin expressed throughout the nervous system, playing a crucial role in neuronal growth and neuroplasticity. This study aimed to examine the effects of exercise on BDNF expression in the nervous system and reserpine (RSP)-induced pain-depression dyad. RSP (1 mg/kg) was subcutaneously administered once daily for three days in mice. The exercise was performed using a rota-rod tester for seven consecutive days following RSP administration. Pain responses were evaluated using von Frey filaments, and depression-like behaviors were assessed through forced swimming and open field tests. Immunofluorescence staining was performed to examine the changes in BDNF expression in the dorsal root ganglion (DRG), spinal cord, and hippocampus. Administration of RSP reduced mechanical paw withdrawal threshold, increased immobility time in the forced swimming test, and decreased movement in the open field test. The immunoreactivity of BDNF was increased in the DRG and spinal dorsal regions, and decreased in the hippocampus after RSP administration. Physical exercise significantly reduced the RSP-induced mechanical hypersensitivity and depression-like behaviors. In addition, exercise suppressed not only the increased expression of BDNF in the DRG and spinal dorsal regions but also the decreased expression of BDNF in the hippocampus induced by RSP administration. These findings suggest that repetitive exercise could serve as an effective and non-invasive treatment option for individuals experiencing both pain and depression by modulating BDNF expression.
Collapse
Affiliation(s)
- Dong-Wook Kang
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hyunjin Shin
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Hyeryeong Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Jaehong Park
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miae Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miok Bae
- Preclinical Research Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
12
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2024. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
13
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
14
|
Shafiee A, Seighali N, Teymouri Athar M, Abdollahi AK, Jafarabady K, Bakhtiyari M. Levels of brain-derived neurotrophic factor (BDNF) among patients with COVID-19: a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1137-1152. [PMID: 37646849 DOI: 10.1007/s00406-023-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Many individuals have been suffering from consistent neurological and neuropsychiatric manifestations even after the remission of coronavirus disease (COVID-19). Brain-derived neurotrophic factor (BDNF) is a protein involved in the regulation of several processes, including neuroplasticity, neurogenesis, and neuronal differentiation, and has been linked to a range of neurological and psychiatric disorders. In this study, we aimed to synthesize the available evidence on the profile of BDNF in COVID-19. A comprehensive search was done in the Web of Science core collection, Scopus, and MEDLINE (PubMed), and Embase to identify relevant studies reporting the level of BDNF in patients with COVID-19 or those suffering from long COVID. We used the NEWCASTLE-OTTAWA tool for quality assessment. We pooled the effect sizes of individual studies using the random effect model for our meta-analysis. Fifteen articles were included in the systematic review. The sample sizes ranged from 16 to 183 participants. Six studies compared the level of BDNF in COVID-19 patients with healthy controls. The pooled estimate of the standardized mean difference in BDNF level between patients with COVID-19 and healthy individuals was - 0.84 (95% CI - 1.49 to - 0.18, p = 0.01, I2 = 81%) indicating a significantly lower BDNF level in patients with COVID-19. Seven studies assessed BDNF in different severity statuses of patients with COVID-19. The pooled estimate of the standardized mean difference in BDNF level was - 0.53 (95% CI - 0.85 to - 0.21, p = 0.001, I2 = 46%), indicating a significantly lower BDNF level in patients with more severe COVID-19. Three studies evaluated BDNF levels in COVID-19 patients through different follow-up periods. Only one study assessed the BDNF levels in long COVID patients. Sensitivity analyses did not alter the significance of the association. In this study, we showed a significant dysregulation of BDNF following COVID-19 infection. These findings may support the pathogenesis behind the long-lasting effects of this disease among infected patients. PROSPERO: CRD42023413536.
Collapse
Affiliation(s)
- Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran.
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Mohammad Teymouri Athar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl King Abdollahi
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Community Medicine and Epidemiology, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Tung YT, Liao YC, Yeh TH, Tsao SP, Chang CC, Shih WT, Huang HY. 10 weeks low intensity treadmill exercise intervention ameliorates motor deficits and sustains muscle mass via decreasing oxidative damage and increasing mitochondria function in a rat model of Parkinson's disease. Life Sci 2024; 350:122733. [PMID: 38763432 DOI: 10.1016/j.lfs.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
AIMS Parkinson's disease (PD) is characterized by loss of dopamine neurons in the brain, which leads to motor dysfunction; excessive inflammation induces neuronal death. This study aimed to determine the most effective exercise modality to improve motor dysfunction in PD by comparing three different exercise regimens (low-intensity treadmill, high-intensity treadmill, and swimming). MATERIALS AND METHODS The rat model for PD was established through stereotaxic surgery, inducing unilateral 6-OHDA (6-hydroxydopamine) lesions. The low-intensity treadmill regimen exerted better protective effects on neurological and motor functions in a rat model of unilateral 6-OHDA-induced PD compared to high-intensity treadmill and swimming. The most suitable exercise regimen and the optimal duration of daily exercise (15 or 30 min) on motor activity and oxidative stress parameters were evaluated. KEY FINDINGS Comparison of 15 and 30 min low-intensity treadmill regimens (10 m/min) revealed 30 min daily exercise was the optimal duration and had more favorable impacts on neurological and motor function. Furthermore, we assessed the neuroprotective effects of exercising for 15 and 30 min per day for either four or ten weeks; 30 min of daily exercise for ten weeks improved mitochondrial function, the antioxidant defense system, neurotrophic factors, and muscle mass, and thereby provided protection against dopaminergic neuron loss, and motor dysfunction in rats with 6-OHDA-induced PD. SIGNIFICANCE 30 min of daily low-intensity treadmill exercise over 10 weeks resulted in heightened mitochondrial function in both muscle and brain tissues, therefore, yielded a neuroprotective effect against the loss of dopaminergic neurons and motor dysfunction in PD rats.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yi-Chi Liao
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Neurology, College of Medicine and Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan.
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 110, Taipei Medical University Hospital, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Ting Shih
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
16
|
Kolik LG, Nadorova AV, Grigorevskikh EM, Sazonova NM, Gudasheva TA. Anxiolytic Action of Dipeptide Mimetic of the BDNF Loop 2 in Adult Animals. Bull Exp Biol Med 2024; 177:460-464. [PMID: 39264562 DOI: 10.1007/s10517-024-06208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 09/13/2024]
Abstract
We studied the anti-anxiety effect of a low-molecular-weight mimetic of the BDNF loop 2, hexamethylenediamide bis-(-N-hexanoyl-L-seryl-L-lysine) (GTS-201) in adult animals. GTS-201 at a dose of 5 mg/kg after acute intraperitoneal administration to outbred male and female rats increased the time spent in the open arms and the number of entries into the open arms in the elevated plus maze (EPM). In "highly emotional" male BALB/c mice, GTS-201 exhibited a dose-dependent anxiolytic effect in the EPM in a dose range of 0.5-2.0 mg/kg with a maximum effective dose of 1 mg/kg. These data confirm the previously revealed anti-anxiety properties of GTS-201 in inbred male and female BALB/c mice and rats and indicate the dependence of the pharmacological activity of the BDNF mimetic on animal age.
Collapse
Affiliation(s)
- L G Kolik
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia.
| | - A V Nadorova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - E M Grigorevskikh
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - N M Sazonova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - T A Gudasheva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| |
Collapse
|
17
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10328-x. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
18
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2024:10.1007/s12035-024-04333-y. [PMID: 39012443 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
19
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
20
|
Carpita B, Nardi B, Bonelli C, Pascariello L, Massimetti G, Cremone IM, Pini S, Palego L, Betti L, Giannaccini G, Dell’Osso L. Platelet Levels of Brain-Derived Neurotrophic Factor in Adults with Autism Spectrum Disorder: Is There a Specific Association with Autism Spectrum Psychopathology? Biomedicines 2024; 12:1529. [PMID: 39062102 PMCID: PMC11274613 DOI: 10.3390/biomedicines12071529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
To date, although several studies have investigated the circulating levels of brain-derived neurotrophic factor (BDNF) in children with autism spectrum disorder (ASD), only a few authors have addressed their evaluation in adults. Furthermore, an important limitation of these studies lies in the fact that circulating BDNF is stored in platelets and released into the circulation when needed. To the best of our knowledge, a very limited number of studies have related peripheral BDNF values to platelet counts, and yet no study has evaluated intra-platelet BDNF levels in adults with ASD. In this framework, the aim of the present work is to pave the way in this field and evaluate platelet BNDF levels in adult ASD patients, as well as their correlation with autistic symptoms and related psychopathological dimensions. We recruited 22 ASD and 22 healthy controls, evaluated with the Adult autism subthreshold spectrum (AdAS Spectrum), the Social Anxiety Spectrum-self report (SHY-SR), the Trauma and loss spectrum-self report (TALS-SR), the Work and Social Adjustment Scale (WSAS), and the Mood Spectrum-self report for suicidality. Intra-platelet BDNF levels were also assessed. The results highlighted lower BDNF levels in the ASD group; moreover, AdAS Spectrum and WSAS total score as well as AdAS Spectrum Restricted interest and rumination, WSAS Private leisure activities, TALS-SR Arousal, and SHY-SR Childhood domains were significant negative predictors of platelet BDNF levels.
Collapse
Affiliation(s)
- Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lavinia Pascariello
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Gabriele Massimetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| | - Lionella Palego
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Laura Betti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.P.); (L.B.); (G.G.)
| | - Liliana Dell’Osso
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (B.C.); (C.B.); (L.P.); (G.M.); (I.M.C.); (S.P.); (L.D.)
| |
Collapse
|
21
|
Petekkaya E, Ünalmış Aykar D, Kaptan Z. An analysis of the relationship of "the Mozart effect" with BDNF levels in anatomy education. ANATOMICAL SCIENCES EDUCATION 2024; 17:770-778. [PMID: 38509019 DOI: 10.1002/ase.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
In 1993, an increase was observed in the spatial IQ scores of the volunteers who listened to Mozart's sonata K448 for 10 min, and this phenomenon entered the literature as the "Mozart effect." Other studies have shown that this effect is particularly evident in spatial skill tests. A large body of research has provided evidence that spatial ability is associated with success in learning anatomy. In this study, Kastamonu University Faculty of Medicine students were divided into two groups during 16-h practical training spanning 30 days. While one of the groups listened to Mozart's K448 sonata as the background music in all lessons, the control group attended the lessons in their standard form. At the end of each lesson, all students solved a modified mental rotation test including questions involving anatomical structures. Before starting the study, after the first laboratory class, on the 15th and 30th day of the study, blood samples were taken from the participants, and plasma brain-derived neurotrophic factor (BDNF) levels were determined. The effect of time on mental rotation score and plasma BDNF level was significant (p < 0.001 for both). The effect of group was also significant (p < 0.001 for both). Pairwise comparisons showed significance in the fifth, sixth, seventh, and eighth mental rotation test (p < 0.001, p = 0.041, p < 0.001, p < 0.001, respectively) and in the third (Day 15) and fourth (Day 30) BDNF measurement (p < 0.001 for both). Our findings may indicate that specific background music may be useful for anatomy teaching.
Collapse
Affiliation(s)
- Emine Petekkaya
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Demet Ünalmış Aykar
- Department of Anatomy, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Zülal Kaptan
- Department of Physiology, Faculty of Medicine, Istanbul Beykent University, Istanbul, Turkey
| |
Collapse
|
22
|
Tizabi Y, Getachew B, Hauser SR, Tsytsarev V, Manhães AC, da Silva VDA. Role of Glial Cells in Neuronal Function, Mood Disorders, and Drug Addiction. Brain Sci 2024; 14:558. [PMID: 38928557 PMCID: PMC11201416 DOI: 10.3390/brainsci14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Mood disorders and substance use disorder (SUD) are of immense medical and social concern. Although significant progress on neuronal involvement in mood and reward circuitries has been achieved, it is only relatively recently that the role of glia in these disorders has attracted attention. Detailed understanding of the glial functions in these devastating diseases could offer novel interventions. Here, following a brief review of circuitries involved in mood regulation and reward perception, the specific contributions of neurotrophic factors, neuroinflammation, and gut microbiota to these diseases are highlighted. In this context, the role of specific glial cells (e.g., microglia, astroglia, oligodendrocytes, and synantocytes) on phenotypic manifestation of mood disorders or SUD are emphasized. In addition, use of this knowledge in the potential development of novel therapeutics is touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA;
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-170, RJ, Brazil
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| |
Collapse
|
23
|
Liu Y, Chen C, Du H, Xue M, Zhu N. Impact of Baduanjin exercise combined with rational emotive behavior therapy on sleep and mood in patients with poststroke depression: A randomized controlled trial. Medicine (Baltimore) 2024; 103:e38180. [PMID: 38728460 PMCID: PMC11081619 DOI: 10.1097/md.0000000000038180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Poststroke depression (PSD) is one of the most common stroke complications. It not only leads to a decline in patients' quality of life but also increases the mortality of patients. In this study, the method of combining Chinese traditional exercise Baduanjin with psychotherapy was used to intervene in patients with PSD and to explore the improvement of sleep, mood, and serum levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) levels in patients with PSD by combined treatment. METHODS A total of 100 patients with PSD who met the inclusion criteria were randomly assigned to Baduanjin group (n = 50) or control group (n = 50). The control group received treatment with escitalopram oxalate and rational emotive behavior therapy, while the experimental group received Baduanjin training in addition to the treatment given to the control group. Changes in sleep efficiency, sleep total time, sleep latency, arousal index, Hamilton Anxiety Rating Scale, Hamilton Depression Scale score, serum BDNF, 5-HT, IL-6 levels, and Modified Barthel Index were measured at baseline, 4 weeks and 8 weeks after intervention, and the results were compared between the 2 groups. RESULTS Significantly improvements in the sleep efficiency, sleep total time, serum 5-HT, BDNF levels, and Modified Barthel Index score were detected at week 4 in the Baduanjin group than in the control group (P < .05). Additionally, the sleep latency, arousal index, Hamilton Anxiety Rating Scale, Hamilton Depression Scale scores and IL-6 levels in the Baduanjin group were lower than those in the control group (P < .05). After 8 weeks of treatment, the above indexes in the Baduanjin group were further improved compared with the control group (P < .05), and the above indexes of the 2 groups were significantly improved compared with the baseline (P < .001). CONCLUSION Baduanjin exercise combined with rational emotive behavior therapy effectively improves the mood and sleep status of patients with PSD; It increases the serum levels of 5-HT and BDNF while reducing the level of serum proinflammatory factor IL-6; additionally, the intervention alleviates the degree of neurological impairment, upgrades the ability of daily living, and improves the quality of life.
Collapse
Affiliation(s)
- Yihan Liu
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Chen
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hanbin Du
- Huanghe Science and Technology College, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Zhu
- Neuro-rehabilitation Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Kotańska M, Łanocha M, Bednarski M, Marcinkowska M. MM165 - A Small Hybrid Molecule Modulates the Kynurenine Pathway and Attenuates Lipopolysaccharide-Induced Memory Deficits and Inflammation. Neurochem Res 2024; 49:1200-1211. [PMID: 38381245 DOI: 10.1007/s11064-024-04105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland.
| | - Michał Łanocha
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna, 30-688, Krakow, Poland
| |
Collapse
|
25
|
Azargoonjahromi A. A systematic review of the association between zinc and anxiety. Nutr Rev 2024; 82:612-621. [PMID: 37364014 DOI: 10.1093/nutrit/nuad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
CONTEXT The incidence of anxiety, which stems from both intrinsic and extrinsic factors, has been increasing worldwide. Various methods by which it can be treated or prevented have been reported thus far. One of the most popular and effective treatments is supplementation therapy. Zinc, which is an essential nutrient found in various plants, animal foods, and supplements, has been shown to be a potential nutrient in anxiety reduction by acting on γ-aminobutyric acid (GABA), glutamatergic, serotonergic, neurogenesis, and immune systems. It can also influence important receptors, such as GPR39. Thus, zinc has received considerable attention with respect to its potential role as a therapeutic or detrimental factor for anxiety; yet, the available evidence needs to be analyzed systematically to reach a convergent conclusion. OBJECTIVE The objective was to systematically review any potential connection between adult human anxiety and zinc intake. DATA SOURCES AND EXTRACTION Nine original human studies, of which 2 assessed the relationship between zinc consumption and anxiety (based on a questionnaire) and 7 assessed the relationship between serum zinc levels and anxiety, were included based on specific selection criteria. Studies that had been written in English and published in peer-reviewed publications with no restrictions on the date of publication were searched in the Google Scholar and PubMed databases. This project was also reported according to the PRISMA guidelines. DATA ANALYSIS As per the studies analyzed in this review, there was a noticeable relationship between serum zinc levels and anxiety, which means that patients with anxiety have lower levels of zinc in their serum, as compared with healthy individuals. Furthermore, zinc consumption was inversely associated with anxiety. CONCLUSION The results provide plausible evidence for the positive role of zinc in the treatment of patients afflicted with anxiety, albeit with some limitations.
Collapse
|
26
|
Cortes-Flores H, Torrandell-Haro G, Brinton RD. Association between CNS-active drugs and risk of Alzheimer's and age-related neurodegenerative diseases. Front Psychiatry 2024; 15:1358568. [PMID: 38487578 PMCID: PMC10937406 DOI: 10.3389/fpsyt.2024.1358568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Objective As neuropsychiatric conditions can increase the risk of age-related neurodegenerative diseases (NDDs), the impact of CNS-active drugs on the risk of developing Alzheimer's Disease (AD), non-AD dementia, Multiple Sclerosis (MS), Parkinson's Disease (PD) and Amyotrophic Lateral Sclerosis (ALS) was investigated. Research design and methods A retrospective cohort analysis of a medical claims dataset over a 10 year span was conducted in patients aged 60 years or older. Participants were propensity score matched for comorbidity severity and demographic parameters. Relative risk (RR) ratios and 95% confidence intervals (CI) were determined for age-related NDDs. Cumulative hazard ratios and treatment duration were determined to assess the association between CNS-active drugs and NDDs at different ages and treatment duration intervals. Results In 309,128 patients who met inclusion criteria, exposure to CNS-active drugs was associated with a decreased risk of AD (0.86% vs 1.73%, RR: 0.50; 95% CI: 0.47-0.53; p <.0001) and all NDDs (3.13% vs 5.76%, RR: 0.54; 95% CI: 0.53-0.56; p <.0001). Analysis of impact of drug class on risk of AD indicated that antidepressant, sedative, anticonvulsant, and stimulant medications were associated with significantly reduced risk of AD whereas atypical antipsychotics were associated with increased AD risk. The greatest risk reduction for AD and NDDs occurred in patients aged 70 years or older with a protective effect only in patients with long-term therapy (>3 years). Furthermore, responders to these therapeutics were characterized by diagnosed obesity and higher prescriptions of anti-inflammatory drugs and menopausal hormonal therapy, compared to patients with a diagnosis of AD (non-responders). Addition of a second CNS-active drug was associated with greater reduction in AD risk compared to monotherapy, with the combination of a Z-drug and an SNRI associated with greatest AD risk reduction. Conclusion Collectively, these findings indicate that CNS-active drugs were associated with reduced risk of developing AD and other age-related NDDs. The exception was atypical antipsychotics, which increased risk. Potential use of combination therapy with atypical antipsychotics could mitigate the risk conferred by these drugs. Evidence from these analyses advance precision prevention strategies to reduce the risk of age-related NDDs in persons with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helena Cortes-Flores
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, United States
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
27
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024:AD.2024.0214-1. [PMID: 38421829 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Kim H, Kim H, Suh HJ, Choi HS. Lactobacillus brevis-Fermented Gamma-Aminobutyric Acid Ameliorates Depression- and Anxiety-Like Behaviors by Activating the Brain-Derived Neurotrophic Factor-Tropomyosin Receptor Kinase B Signaling Pathway in BALB/C Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2977-2988. [PMID: 38300259 DOI: 10.1021/acs.jafc.3c07260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
This study investigated the effects of Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) on depressive and anxiety-like behaviors with the underlying molecular mechanism in a chronic stress model of BALB/c mice. LB-GABA attenuates both neuronal cell death and the increase of monoamine oxidase activity induced by hydrogen peroxide. Behavioral tests revealed that GABA significantly increased sucrose preference and reduced immobility time in both tail suspension and forced swimming tests. LB-GABA increased exploration of the open arms in the elevated plus maze and restored activity in the open field. Moreover, LB-GABA lowered stress hormone and inflammatory mediator levels. Mechanistically, LB-GABA increased protein levels of BDNF and TrkB, activating downstream targets (AKT, ERK, and CREB), crucial for neuronal survival and plasticity. Furthermore, LB-GABA protected hippocampal neurons from stress-induced cell death and increased serotonin and dopamine levels. Overall, LB-GABA has the potential to alleviate stress-induced depression and anxiety-like symptoms and neuroinflammation by activating the BDNF-TrkB signaling pathway.
Collapse
Affiliation(s)
- Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hoon Kim
- College of Biotechnology and Natural Resources, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| |
Collapse
|
29
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
30
|
Zhong Y, Du Q, Wang Z, Zheng Q, Yang M, Hu P, Yang Q, Xu H, Wu Z, Huang X, Li H, Tang M, Zeng H, Zhu L, Ren G, Cao M, Liu Y, Wang H. Antidepressant effect of Perilla frutescens essential oil through monoamine neurotransmitters and BDNF/TrkB signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116840. [PMID: 37355083 DOI: 10.1016/j.jep.2023.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine posits that affect-mind ill-being is the primary cause of depression, with Qi movement stagnation as its pathogenesis. As such, clinical treatment for depression should prioritize regulating Qi and relieving depressive symptoms. The pharmacological properties of traditional Chinese medicine indicate that Perilla frutescens may have potential therapeutic effects on depression and other neuropsychiatric diseases due to its ability to regulate Qi and alleviate depressive symptoms. Although previous studies have reported the antidepressant effects of Perilla frutescens, the mechanism underlying PFEO inhalation-mediated antidepressant effect remains unclear. AIM OF THE STUDY The aim of this investigation is to elucidate the antidepressant mechanisms of PFEO by examining its effects on monoamine neurotransmitters and the BDNF/TrkB signaling pathway. MATERIALS AND METHODS The CUMS rat model of depression was established, and the depressive state of the animals was assessed through sucrose preference and forced swim tests. ELISA assays were conducted to determine monoamine neurotransmitter levels in the hippocampus and cerebral cortex of rats. Immunohistochemistry, western blotting, and RT-PCR experiments were employed to investigate the BDNF/TrkB signaling pathway's regulation of depression via PFEO inhalation. RESULTS It has been observed that inhalation administration of PFEO can significantly enhance the preference for sugar water in CUMS rats and reduce their immobility time during forced swimming. Additionally, there was an increase in the levels of monoamine transmitters in both the hippocampus and cerebral cortex of these rats. Furthermore, there was an upregulation in the expression levels of BDNF and TrkB positive cells as well as BDNF and TrkB proteins within both regions, along with increased BDNF mRNA and TrkB mRNA expression levels. CONCLUSION The antidepressant effect of PFEO via inhalation administration is speculated to be mediated through the monoamine neurotransmitters and BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Yu Zhong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qing Du
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ziqian Wang
- Jiangxi Drug Inspection Center, Nanchang, 330000, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Huanhua Xu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Mingxia Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiming Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Liyun Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guilin Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yu Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Hongbo Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
31
|
Hosseini E, Ammar A, Josephson JK, Gibson DL, Askari G, Bragazzi NL, Trabelsi K, Schöllhorn WI, Mokhtari Z. Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being? Front Nutr 2024; 10:1256101. [PMID: 38264193 PMCID: PMC10803520 DOI: 10.3389/fnut.2023.1256101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Fasting diets (FDs) have drawn great attention concerning their contribution to health and disease over the last decade. Despite considerable interest in FDs, the effect of fasting diets on eating behaviors, sleep, and mood-essential components of diet satisfaction and mental health- has not been addressed comprehensively. Understanding the critical role that fasting plays in these elements will open up potential treatment avenues that have not yet been explored. The aim of the present paper was to conduct a comprehensive critical review exploring the effects of fasting on eating behaviors, sleep, and mood. There is currently a lack of clarity regarding which fasting option yields the most advantageous effects, and there is also a scarcity of consistent trials that assess the effects of FDs in a comparable manner. Similarly, the effects and/or treatment options for utilizing FDs to modify eating and sleep behaviors and enhance mood are still poorly understood. Further researches aiming at understanding the impacts of various fasting regimes, providing new insights into the gut-brain axis and offering new treatment avenues for those with resistant anxiety and depression, are warranted. Alteration of eating behaviors can have lasting effects on various physiological parameters. The use of fasting cures can underpin ancient knowledge with scientific evidence to form a new approach to the prevention and treatment of problems associated with co-morbidities or challenges pertaining to eating behaviors. Therefore, a thorough examination of the various fasting regimens and how they impact disease patterns is also warranted.
Collapse
Affiliation(s)
- Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Achraf Ammar
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | | | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
- Faculty of Medicine, University of British Columbia, Kelowna, BC, Canada
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nicola L. Bragazzi
- Human Nutrition Unit (HNU), Department of Food and Drugs, University of Parma, Parma, Italy
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Wolfgang I. Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Pettrey C, Kerr PL, Dickey TO. Physical Exercise as an Intervention for Depression: Evidence for Efficacy and Mu-Opioid Receptors as a Mechanism of Action. ADVANCES IN NEUROBIOLOGY 2024; 35:221-239. [PMID: 38874725 DOI: 10.1007/978-3-031-45493-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Physical exercise is often cited as an important part of an intervention for depression, and there is empirical evidence to support this. However, the mechanism of action through which any potential antidepressant effects are produced is not widely understood. Recent evidence points toward the involvement of endogenous opioids, and especially the mu-opioid system, as a partial mediator of these effects. In this chapter, we discuss the current level of empirical support for physical exercise as either an adjunctive or standalone intervention for depression. We then review the extant evidence for involvement of endogenous opioids in the proposed antidepressant effects of exercise, with a focus specifically on evidence for mu-opioid system involvement.
Collapse
Affiliation(s)
| | - Patrick L Kerr
- Behavioral Medicine & Psychiatry, WVU School of Medicine, Charleston, WV, USA
| | - T O Dickey
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA
| |
Collapse
|
33
|
Chowdhury M, Raj Chaudhary N, Kaur P, Goyal A, Sahu SK. Different Strategies Targeting Gut Microbiota for the Management of Several Disorders: A Sustainable Approach. Infect Disord Drug Targets 2024; 24:e160124225675. [PMID: 38317473 DOI: 10.2174/0118715265267536231121095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND A potential limelight is flashed on the Gut Microbiota (GM) in the human body, which confers additional psychological as well as physiological attributes to health. Other than just occupying a wide portion of the gastrointestinal tract, it also plays numerous functions in the systems of the body. Gut Microbiota is largely responsible for a considerably vast array of conditions such as obesity, diabetes ,other metabolic disorders, and cardiovascular disorders. Strategies targeting the gut microbiota have been proposed as a promising approach for the management of these disorders. OBJECTIVE This review aims to summarize the different strategies targeting the gut microbiota for the management of several disorders and to highlight the importance of a sustainable approach. METHODS A comprehensive literature search was conducted using various databases between 2008 and 2022 that focused on the use of prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, dietary interventions, and antibiotics. RESULTS Different strategies targeting the gut microbiota for the management of several disorders were identified, including probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and dietary interventions. Modification in diet and lifestyle, allowing favorable microbiota growth in the stomach, intake of prebiotics and probiotics, and fecal microbiota transplantation are amongst the widely accepted recent approaches allowing the application of GM in the field of treatment. CONCLUSION Although considerable steps in enhancing and understanding the mechanism of treatment with the help of gut microbiota are under progress, much diversified and elaborate research must be conducted in order to enhance and implement the use of GM with high effectiveness.
Collapse
Affiliation(s)
- Mahima Chowdhury
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Neil Raj Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara (Punjab) 144411, India
| |
Collapse
|
34
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
35
|
Guan W, Wu XY, Jin X, Sheng XM, Fan Y. miR-204-5p Plays a Critical Role in the Pathogenesis of Depression and Anti-depression Action of Venlafaxine in the Hippocampus of Mice. Curr Med Chem 2024; 31:3412-3425. [PMID: 37357509 DOI: 10.2174/0929867330666230623163315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Venlafaxine has been demonstrated to treat diseases such as social anxiety disorder and depression. Most of antidepressants including venlafaxine have a certain effect, but significant side effects. Therefore, it is necessary for us to research the development of novel antidepressants for effective treatment in practice. MicroRNA-204 (miR-204) is highly expressed in brain tissue, and plays a critical role in the synaptic plasticity of hippocampal neurons in rats. However, the underlying molecular mechanism of miR-204 remains unclear to date, this study aims to offer unique insights into depression and provide a theoretical basis for clinical physicians. METHODS A chronic social defeat stress (CSDS) was initially adopted for establishing a mice model of depression in this research and depression-like behaviors were evaluated by a series of behavioral experiments including the sucrose preference test (SPT), the tail suspension test (TST), the forced swim test (FST) and the social interaction test (SIT). Quantitative real-time reverse transcription PCR (qRT-PCR) was also conducted to test the expression levels of miR-204 and BDNF in the hippocampus of mice. Finally, gene interference of miR-204-5p was further adopted to test whether miR-204-5p played an effective role in the antidepressant effects of venlafaxine in mice. RESULTS Our data implicated that CSDS significantly increased the miR-204-5p but not miR-204-3p levels in the hippocampus of mice. The treatment of venlafaxine obviously relieved depression- like behaviors of CSDS-induced mice. The usage of venlafaxine abolished the increasing effects on the expression of miR-204-5p but up-regulated the BDNF expression level in CSDS-exposured mice. More importantly, we found that genetic overexpression of miR-204-5p decreased the reverse effects of venlafaxine on depressive-like behaviors and genetic knockdown of hippocampal miR-204-5p relieved the depressive-like behaviors and neurogenesis in CSDS-induced mice. CONCLUSION miR-204-5p played an effective role in the antidepressant effects of venlafaxine in CSDS-induced mice.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Xin-Yuan Wu
- Department of Gynaecology and Obstetrics, Yancheng Maternal and Child Health Care Hospital, Yancheng 224000 Jiangsu, China
| | - Xiang Jin
- Department of Pharmacy, The Second People's Hospital of Nantong, Nantong 226002, Jiangsu, China
| | - Xiao-Ming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| |
Collapse
|
36
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a common thread linking different classes of antidepressants. Cell Chem Biol 2023; 30:1557-1570.e6. [PMID: 37992715 DOI: 10.1016/j.chembiol.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
37
|
Joung JY, Song JG, Lee B, Kim HW, Oh NS. Preventive effect of peptides derived from fermented milk on chronic stress-induced brain damage and intestinal dysfunction in mice. J Dairy Sci 2023; 106:8287-8298. [PMID: 37690713 DOI: 10.3168/jds.2023-23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the preventive effects of peptides derived from milk fermented with the probiotic strain Lactobacillus gasseri 505 (505) against stress-related brain damage and anxiety-like behavior. The peptides MKPWIQPKTKVIPYVRYL (Pep14) and VYQHQKAMKPWIQPKTKVIPYVRYL (Pep21), which exhibit high antioxidant and anti-inflammatory activities, were administered to stressed mice. The results showed that the stress mechanism in the gut-brain axis was regulated by pretreatment with both peptides, leading to inhibition of neurodevelopment and neuroinflammation through the hypothalamic-pituitary-adrenal (HPA) axis, based on the expression of related mRNA and proteins. The expression of colonic inflammation-related mRNA and proteins was also reduced. Moreover, anxiety-like behavior was significantly reduced in mice treated with Pep14 and Pep21. These results indicate that the bioactive peptides Pep14 and Pep21, derived from milk fermented with 505, may prevent stress-induced brain damage and anxiety-like behavior via regulation of the HPA axis.
Collapse
Affiliation(s)
- Jae Yeon Joung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea.
| | - Nam Su Oh
- Department of Food and Biotechnology, Korea University, Sejong, 30019, Korea.
| |
Collapse
|
38
|
Limón-Morales O, Morales-Quintero K, Arteaga-Silva M, Molina-Jiménez T, Cerbón M, Bonilla-Jaime H. Alterations of learning and memory are accompanied by alterations in the expression of 5-HT receptors, glucocorticoid receptor and brain-derived neurotrophic factor in different brain regions of an animal model of depression generated by neonatally male treatment with clomipramine in male rats. Behav Brain Res 2023; 455:114664. [PMID: 37714467 DOI: 10.1016/j.bbr.2023.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Depressive illness has been associated with impaired cognitive processes accompanied by reduced neurotrophin levels, especially brain-derived neurotrophic factor (BDNF), and dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis. In addition, depression is characterized by a decreased functioning of the serotonergic system due to changes in the activity or expression of its receptors including, most significantly, 5-HT1A, 5-HT2A, and 5-HT3 in brain regions that regulate mood, emotions, and memory, such as the prefrontal cortex, hippocampus, and amygdala. In this regard, rats treated with clomipramine (CMI) in the neonatal stage show depression-like behaviors that persist into adulthood; hence, this constitutes an adequate model of depression for exploring various molecular aspects associated with the etiology of this disorder. This, study, then, was designed to analyze the long-term effects of early postnatal exposure to CMI on the expression of 5-HT1A, 5-HT2A, and 5-HT3 receptors, as well as BDNF and GR in the following brain regions: PFC, amygdala, hippocampus, and hypothalamus, which could be related to alterations in memory and learning, as evaluated using the novel object recognition (NOR) and Morris water maze (MWM). Expression of the 5-HT1A, 5-HT2A, and 5-HT3 receptors, BDNF, and the glucocorticoid receptor (GR) was assessed by RT-qPCR in the four aforementioned brain regions, all of which play important roles in the control of memory and mood. Findings show that neonatal treatment with CMI causes alterations in memory and learning, as indicated by alterations in the results of the MWM and NOR tests. Expression of the 5-HT1A receptor increased in the hippocampus, amygdala, and hypothalamus, but decreased in the PFC, while the 5-HT2A and BDNF receptors decreased their expression in the PFC, amygdala, and hippocampus. There was no change in the expression of the 5-HT3 receptor. In addition, expression of GR in the hippocampus and PFC was low, but increased in the hypothalamus. Taken together, these data show that neonatal CMI treatment produces permanent molecular changes in brain regions related to learning and memory that could contribute to explaining the behavioral alterations observed in this model.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico; Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Kenia Morales-Quintero
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| |
Collapse
|
39
|
Anyachor CP, Orish CN, Ezejiofor AN, Cirovic A, Cirovic A, Ezealisiji KM, Orisakwe OE. Nickel and aluminium mixture elicit memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus of male albino rats. Curr Res Toxicol 2023; 5:100129. [PMID: 37841055 PMCID: PMC10569962 DOI: 10.1016/j.crtox.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
This study evaluated nickel and aluminium-induced neurotoxicity, as a binary metal mixture. Twenty-eight male Sprague Dawley albino rats were weight-matched and divided into four groups. Group 1 (control) received deionized water. Group 2 and 3 received Aluminium (1 mg/kg) and Nickel (0.2 mg/kg) respectively, while Group 4 received Ni and Al mixture HMM three times a week orally for 90 days. Barnes maze tests was performed. Rats were sacrificed under pentobarbital anaesthesia, cerebral cortex and hippocampus were separated, and metal levels were measured using Atomic Absorption Spectroscopy (AAS). Malondialdehyde (MDA), catalase (CAT), glutathione content (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), Brain Derived Neurotrophic Factor (BDNF), Nerve growth factor NGF, cyclo-oxygenase COX-2 and Acetylcholinesterase (AChE) were assayed using ELISA kits. Ni/Al binary mixture exposed rats showed a shorter latency period (though not significant) of 3.21 ± 1.40 s in comparison to 3.77 ± 1.11 (Ni only) and 3.99 ± 1.16(Al only). Ni/Al mixture gp had the lowest levels of Mg in both the hippocampus and frontal cortex when compared with the individual metals. In the hippocampus Al only exposed rats significantly showed p < 0.05 higher iron and Ca levels in comparison to Ni/Al mixture. Al alone significantly showed p < 0.05 lower levels of Fe but higher Ca than the Ni/Al mixture group. Exposure to Al only showed lower levels of BDNF in comparison to Ni/Al combination, whereas Ni/Al mixture gp had lower levels of NGF in comparison to the individual metals in the hippocampus. In the frontal cortex Ni only, group showed significantly lower BDNF in comparison to Ni/Al mixture whereas the mixture showed significantly lower NGF when compared with Al only group. There were higher levels of COX-2 in the Ni/Al mixture than individual metal treated rats in both hippocampus and frontal cortex. AChE levels in the Ni/Al mixture group was higher than Ni or Al only gps in the hippocampus whereas in the frontal cortex, Ni/Al exposed rats showed significantly lower AChE levels in comparison to Al only group. Ni, Al and Ni/Al mixture exhibited memory impairment by activation of oxidative stress, COX-2, and diminution of AChE, BDNF and NGF levels in cerebral cortex and hippocampus. The BDNF-COX-2 AChE signalling pathway may be involved in the neurotoxicity of Ni and Al.
Collapse
Affiliation(s)
- Chidinma P. Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Chinna N. Orish
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Anthonet N. Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Kenneth M. Ezealisiji
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Choba, Port Harcourt, Nigeria
| |
Collapse
|
40
|
Zosen D, Kondratskaya E, Kaplan-Arabaci O, Haugen F, Paulsen RE. Antidepressants escitalopram and venlafaxine up-regulate BDNF promoter IV but down-regulate neurite outgrowth in differentiating SH-SY5Y neurons. Neurochem Int 2023; 169:105571. [PMID: 37451345 DOI: 10.1016/j.neuint.2023.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Antidepressants are used to treat depression and some anxiety disorders, including use in pregnant patients. The pharmacological actions of these drugs generally determine the uptake and metabolism of a series of neurotransmitters, such as serotonin, norepinephrine, or dopamine, along with an increase in BDNF expression. However, many aspects of antidepressant action remain unknown, particularly whether antidepressants interfere with normal neurodevelopment when taken by pregnant women. In order to reveal cellular and molecular implications crucial to the functioning of pathways related to antidepressant effects, we performed an investigation on neuronally differentiating human SH-SY5Y cells. To our knowledge, this is the first time human SH-SY5Y cells in cultures of purely neuronal cells induced by controlled differentiation with retinoic acid are followed by short-term 48-h exposure to 0.1-10 μM escitalopram or venlafaxine. Treatment with antidepressants (1 μM) did not affect the electrophysiological properties of SH-SY5Y cells. However, the percentage of mature neurons exhibiting voltage-gated sodium currents was substantially higher in cultures pre-treated with either antidepressant. After exposure to escitalopram or venlafaxine, we observed a concentration-dependent increase in activity-dependent BDNF promoter IV activation. The assessment of neurite metrics showed significant down-regulation of neurite outgrowth upon exposure to venlafaxine. Identified changes may represent links to molecular processes of importance to depression and be involved in neurodevelopmental alterations observed in postpartum children exposed to antidepressants antenatally.
Collapse
Affiliation(s)
- Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Elena Kondratskaya
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oykum Kaplan-Arabaci
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
41
|
Xiao C, Fedirko V, Claussen H, Richard Johnston H, Peng G, Paul S, Maner-Smith KM, Higgins KA, Shin DM, Saba NF, Wommack EC, Bruner DW, Miller AH. Circulating short chain fatty acids and fatigue in patients with head and neck cancer: A longitudinal prospective study. Brain Behav Immun 2023; 113:432-443. [PMID: 37543249 PMCID: PMC10528227 DOI: 10.1016/j.bbi.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
Fatigue among patients with head and neck cancer (HNC) has been associated with higher inflammation. Short-chain fatty acids (SCFAs) have been shown to have anti-inflammatory and immunoregulatory effects. Therefore, this study aimed to examine the association between SCFAs and fatigue among patients with HNC undergoing treatment with radiotherapy with or without concurrent chemotherapy. Plasma SCFAs and the Multidimensional Fatigue Inventory-20 were collected prior to and one month after the completion of treatment in 59 HNC patients. The genome-wide gene expression profile was obtained from blood leukocytes prior to treatment. Lower butyrate concentrations were significantly associated with higher fatigue (p = 0.013) independent of time of assessment, controlling for covariates. A similar relationship was observed for iso/valerate (p = 0.025). Comparison of gene expression in individuals with the top and bottom 33% of butyrate or iso/valerate concentrations prior to radiotherapy revealed 1,088 and 881 significantly differentially expressed genes, respectively (raw p < 0.05). The top 10 Gene Ontology terms from the enrichment analyses revealed the involvement of pathways related to cytokines and lipid and fatty acid biosynthesis. These findings suggest that SCFAs may regulate inflammatory and immunometabolic responses and, thereby, reduce inflammatory-related symptoms, such as fatigue.
Collapse
Affiliation(s)
- Canhua Xiao
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA.
| | - Veronika Fedirko
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA; Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Henry Claussen
- Integrated Computational Core, Emory University, Atlanta, GA, USA
| | | | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Sudeshna Paul
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA
| | | | | | - Dong M Shin
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Nabil F Saba
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deborah W Bruner
- Nell Hodson Woodroof School of Nursing, Emory University, Atlanta, GA, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
42
|
Joo MK, Shin YJ, Kim DH. Cefaclor causes vagus nerve-mediated depression-like symptoms with gut dysbiosis in mice. Sci Rep 2023; 13:15529. [PMID: 37726354 PMCID: PMC10509198 DOI: 10.1038/s41598-023-42690-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Antibiotics are increasingly recognized as causing neuropsychiatric side effects including depression and anxiety. Alterations in central serotonin and 5-HT receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with gastrointestinal disorders. Nevertheless, it is still unclear how antibiotics can cause anxiety and depression. In this study, oral administration of cefaclor, a second-generation cephalosporin antibiotic, induced anxiety- and depression-like behaviors and colitis with gut microbiota alteration in mice. Cefaclor reduced serotonin levels and fluctuated 5-HT receptor mRNA expressions such as Htr1a, Htr1b, and Htr6 in the hippocampus. Vagotomy attenuated the cefaclor-induced anxiety- and depression-like symptoms, while the cefaclor-induced changes in gut bacteria alteration and colitis were not affected. Fluoxetine attenuated cefaclor-induced anxiety- and depression-like behaviors. Furthermore, fluoxetine decreased cefaclor-resistant Enterobacteriaceae and Enterococcaceae. Taken together, our findings suggest that the use of antibiotics, particularly, cefaclor may cause gut dysbiosis-dependent anxiety and depression through the microbiota-gut-blood-brain and microbiota-gut-vagus nerve-brain pathway. Targeting antibiotics-resistant pathogenic bacteria may be a promising therapeutic strategy for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
43
|
Kemp JVA, Kumar V, Saleem A, Hashman G, Hussain M, Taylor VH. Examining Associations Between Women's Mental Health and Obesity. Psychiatr Clin North Am 2023; 46:539-549. [PMID: 37500249 DOI: 10.1016/j.psc.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Obesity is a common comorbidity associated with mental illness. It is important to understand the many ways weight gain and obesity can impact the cause and course of mental illness in women, with a special focus on vulnerable life stages. Women seem disproportionally impacted by the weight gain side effects of medications, and issues such as weight gain are more likely to impact symptoms of mental illness, impacting self-esteem. This article summarizes the existing literature on the associations between women's mental health and obesity. Understanding this association will lead to better health outcomes.
Collapse
Affiliation(s)
- Jennifer V A Kemp
- Department of Psychiatry, University of Calgary, Foothills Campus, Calgary, Alberta, Canada; Matheson Centre for Mental Health Research & Education, University of Calgary, Foothills Campus, 3280 Hospital Drive Northwest, 1D-57, Calgary, Alberta T2N 4Z6, Canada
| | - Vivek Kumar
- Department of Psychiatry, University of Calgary, Foothills Campus, Calgary, Alberta, Canada; Matheson Centre for Mental Health Research & Education, University of Calgary, Foothills Campus, 3280 Hospital Drive Northwest, 1D-57, Calgary, Alberta T2N 4Z6, Canada
| | - April Saleem
- Department of Pathology and Molecular Medicine, Gastrointestinal Disease Research Unit, Queen's University, 76 Stuart Street, Sheth Lab (Floor 3), Kingston, Ontario K7L 2V7, Canada
| | - Gabrielle Hashman
- Department of Psychiatry, University of Calgary, Foothills Campus, Calgary, Alberta, Canada; Matheson Centre for Mental Health Research & Education, University of Calgary, Foothills Campus, 3280 Hospital Drive Northwest, 1D-57, Calgary, Alberta T2N 4Z6, Canada; Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mashael Hussain
- Department of Psychiatry, University of Calgary, Foothills Campus, Calgary, Alberta, Canada; Matheson Centre for Mental Health Research & Education, University of Calgary, Foothills Campus, 3280 Hospital Drive Northwest, 1D-57, Calgary, Alberta T2N 4Z6, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Calgary, Foothills Campus, Calgary, Alberta, Canada.
| |
Collapse
|
44
|
Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15:2081. [PMID: 37631295 PMCID: PMC10457827 DOI: 10.3390/pharmaceutics15082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a significant role in the survival and development of neurons, being involved in several diseases such as Alzheimer's disease and major depression disorder. The association between BDNF and major depressive disorder is the subject of extensive research. Indeed, numerous studies indicate that decreased levels of BDNF are linked to an increased occurrence of depressive symptoms, neuronal loss, and cortical atrophy. Moreover, it has been observed that antidepressive therapy can help restore BDNF levels. In this review, we will focus on the role of BDNF in major depression disorder serotonergic imbalance and associated stress conditions, particularly hypothalamic-pituitary-adrenal (HPA) axis dysregulation and oxidative stress. All of these features are highly connected to BDNF signaling pathways in the context of this disease, and exploring this topic will aim to advance our understanding of the disorder, improve diagnostic and treatment approaches, and potentially identify new therapeutic targets to alleviate the heavy burden of depression on society.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
45
|
Joo MK, Ma X, Yoo JW, Shin YJ, Kim HJ, Kim DH. Patient-derived Enterococcus mundtii and its capsular polysaccharides cause depression through the downregulation of NF-κB-involved serotonin and BDNF expression. Microbes Infect 2023; 25:105116. [PMID: 36758891 DOI: 10.1016/j.micinf.2023.105116] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
The genus Enterococcus is commonly overpopulated in patients with depression compared to healthy control in the feces. Therefore, we isolated Enterococcus faecalis, Enterococcus durans, Enterococcus gallinarum, Enterococcus faecium, and Enterococcus mundtii from the feces of patients with comorbid inflammatory bowel disease with depression and examined their roles in depression in vivo and in vitro. Of these Enterococci, E. mundtii NK1516 most potently induced NF-κB-activated TNF-α and IL-6 expression in BV2 microglia cells. NK1516 also caused the most potent depression-like behaviors in the absence of sickness behaviors, neuroinflammation, downregulated brain-derived neurotrophic factor (BDNF), and serotonin (5-HT) levels in the hippocampus of mice. Furthermore, E. mundtii NK1516 reduced the mRNA expression of Htr1a in the hippocampus. Its capsular polysaccharide (CP), but not cytoplasmic components, also caused depression-like behaviors and reduced BDNF and serotonin levels in the hippocampus. Conversely, this was not observed with E. mundtii ATCC882, a well-known probiotic, or its CP. Orally gavaged fluorescence isothiocyanate (FITC)-conjugated NK1516 CP was detected in the hippocampus of mice. The NK1516 genome exhibited unique CP biosynthesis-related genes (capD, wbjC, WecB, vioB), unlike that of ATCC882. These findings suggest that E. mundtii may be a risk factor for depression.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| | - Xiaoyang Ma
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| | - Jong-Wook Yoo
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| | - Hyo-Jong Kim
- Department of Internal Medicine, Kyung Hee University School of Medicine, Kyung Hee University, Seoul 02447, South Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
46
|
Rupanagunta GP, Nandave M, Rawat D, Upadhyay J, Rashid S, Ansari MN. Postpartum depression: aetiology, pathogenesis and the role of nutrients and dietary supplements in prevention and management. Saudi Pharm J 2023; 31:1274-1293. [PMID: 37304359 PMCID: PMC10250836 DOI: 10.1016/j.jsps.2023.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.
Collapse
Affiliation(s)
- Gnana Prasoona Rupanagunta
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), MB Road, Pushp Vihar, Sector 3, New Delhi 110017, India
| | - Divya Rawat
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acres Campus, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
47
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Yamada M, Shikama Y, Matsushita K. Long-Term Soft-Food Rearing in Young Mice Alters Brain Function and Mood-Related Behavior. Nutrients 2023; 15:2397. [PMID: 37242280 PMCID: PMC10222696 DOI: 10.3390/nu15102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between caloric and nutrient intake and overall health has been extensively studied. However, little research has focused on the impact of the hardness of staple foods on health. In this study, we investigated the effects of a soft diet on brain function and behavior in mice from an early age. Mice fed a soft diet for six months exhibited increased body weight and total cholesterol levels, along with impaired cognitive and motor function, heightened nocturnal activity, and increased aggression. Interestingly, when these mice were switched back to a solid diet for three months, their weight gain ceased, total cholesterol levels stabilized, cognitive function improved, and aggression decreased, while their nocturnal activity remained high. These findings suggest that long-term consumption of a soft diet during early development can influence various behaviors associated with anxiety and mood regulation, including weight gain, cognitive decline, impaired motor coordination, increased nocturnal activity, and heightened aggression. Therefore, the hardness of food can impact brain function, mental well-being, and motor skills during the developmental stage. Early consumption of hard foods may be crucial for promoting and maintaining healthy brain function.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan;
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| |
Collapse
|
48
|
Chu P, Guo W, You H, Lu B. Regulation of Satiety by Bdnf-e2-Expressing Neurons through TrkB Activation in Ventromedial Hypothalamus. Biomolecules 2023; 13:biom13050822. [PMID: 37238691 DOI: 10.3390/biom13050822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The transcripts for Bdnf (brain-derived neurotrophic factor), driven by different promoters, are expressed in different brain regions to control different body functions. Specific promoter(s) that regulates energy balance remain unclear. We show that disruption of Bdnf promoters I and II but not IV and VI in mice (Bdnf-e1-/-, Bdnf-e2-/-) results in obesity. Whereas Bdnf-e1-/- exhibited impaired thermogenesis, Bdnf-e2-/- showed hyperphagia and reduced satiety before the onset of obesity. The Bdnf-e2 transcripts were primarily expressed in ventromedial hypothalamus (VMH), a nucleus known to regulate satiety. Re-expressing Bdnf-e2 transcript in VMH or chemogenetic activation of VMH neurons rescued the hyperphagia and obesity of Bdnf-e2-/- mice. Deletion of BDNF receptor TrkB in VMH neurons in wildtype mice resulted in hyperphagia and obesity, and infusion of TrkB agonistic antibody into VMH of Bdnf-e2-/- mice alleviated these phenotypes. Thus, Bdnf-e2-transcripts in VMH neurons play a key role in regulating energy intake and satiety through TrkB pathway.
Collapse
Affiliation(s)
- Pengcheng Chu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - He You
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| |
Collapse
|
49
|
Sałaciak K, Koszałka A, Lustyk K, Żmudzka E, Jagielska A, Pytka K. Memory impairments in rodent depression models: A link with depression theories. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110774. [PMID: 37088171 DOI: 10.1016/j.pnpbp.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
More than 80% of depressed patients struggle with learning new tasks, remembering positive events, or concentrating on a single topic. These neurocognitive deficits accompanying depression may be linked to functional and structural changes in the prefrontal cortex and hippocampus. However, their mechanisms are not yet completely understood. We conducted a narrative review of articles regarding animal studies to assess the state of knowledge. First, we argue the contribution of changes in neurotransmitters and hormone levels in the pathomechanism of cognitive dysfunction in animal depression models. Then, we used numerous neuroinflammation studies to explore its possible implication in cognitive decline. Encouragingly, we also observed a positive correlation between increased oxidative stress and a depressive-like state with concomitant memory deficits. Finally, we discuss the undeniable role of neurotrophin deficits in developing cognitive decline in animal models of depression. This review reveals the complexity of depression-related memory impairments and highlights the potential clinical importance of gathered findings for developing more reliable animal models and designing novel antidepressants with procognitive properties.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Aleksandra Koszałka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College Medyczna, 9 Street, Kraków 30-688, Poland
| | - Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| |
Collapse
|
50
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|