1
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Jiménez A, López-Martínez R, Martí MC, Cano-Yelo D, Sevilla F. The integration of TRX/GRX systems and phytohormonal signalling pathways in plant stress and development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108298. [PMID: 38176187 DOI: 10.1016/j.plaphy.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Plant acclimation to changing environmental conditions involves the interaction of different signalling molecules, including reactive oxygen species and hormones. Redox regulation exerted by thioredoxin (TRX) and glutaredoxin (GRX), two oxidoreductases, is emerging as a specific point of control mediating signal transduction pathways associated with plant growth and stress response. Phytohormones are messengers that coordinate plant cell activities to regulate growth, defence, and productivity, although their cross-talk with components of the redox system is less known. The present review focuses on our current knowledge of the interplay that occurs between TRX and GRX systems and phytohormonal signalling pathways in connection with the control of plant development and stress responses. Here, we consider the regulation that phytohormones exert on TRX and GRX systems, as well as the involvement of these redox proteins in the control of phytohormone-mediated signalling pathways.
Collapse
Affiliation(s)
- Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Raquel López-Martínez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - María Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Desiré Cano-Yelo
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| | - Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
4
|
Sevilla F, Martí MC, De Brasi-Velasco S, Jiménez A. Redox regulation, thioredoxins, and glutaredoxins in retrograde signalling and gene transcription. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5955-5969. [PMID: 37453076 PMCID: PMC10575703 DOI: 10.1093/jxb/erad270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Integration of reactive oxygen species (ROS)-mediated signal transduction pathways via redox sensors and the thiol-dependent signalling network is of increasing interest in cell biology for their implications in plant growth and productivity. Redox regulation is an important point of control in protein structure, interactions, cellular location, and function, with thioredoxins (TRXs) and glutaredoxins (GRXs) being key players in the maintenance of cellular redox homeostasis. The crosstalk between second messengers, ROS, thiol redox signalling, and redox homeostasis-related genes controls almost every aspect of plant development and stress response. We review the emerging roles of TRXs and GRXs in redox-regulated processes interacting with other cell signalling systems such as organellar retrograde communication and gene expression, especially in plants during their development and under stressful environments. This approach will cast light on the specific role of these proteins as redox signalling components, and their importance in different developmental processes during abiotic stress.
Collapse
Affiliation(s)
- Francisca Sevilla
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Maria Carmen Martí
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Sabrina De Brasi-Velasco
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| | - Ana Jiménez
- Abiotic Stress, Production and Quality Laboratory, Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
5
|
Zaragoza-Gómez A, García-Caffarel E, Cruz-Zamora Y, González J, Anaya-Muñoz VH, Cruz-García F, Juárez-Díaz JA. The Nβ motif of NaTrxh directs secretion as an endoplasmic reticulum transit peptide and variations might result in different cellular targeting. PLoS One 2023; 18:e0287087. [PMID: 37824466 PMCID: PMC10569557 DOI: 10.1371/journal.pone.0287087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023] Open
Abstract
Soluble secretory proteins with a signal peptide reach the extracellular space through the endoplasmic reticulum-Golgi conventional pathway. During translation, the signal peptide is recognised by the signal recognition particle and results in a co-translational translocation to the endoplasmic reticulum to continue the secretory pathway. However, soluble secretory proteins lacking a signal peptide are also abundant, and several unconventional (endoplasmic reticulum/Golgi independent) pathways have been proposed and some demonstrated. This work describes new features of the secretion signal called Nβ, originally identified in NaTrxh, a plant extracellular thioredoxin, that does not possess an orthodox signal peptide. We provide evidence that other proteins, including thioredoxins type h, with similar sequences are also signal peptide-lacking secretory proteins. To be a secretion signal, positions 5, 8 and 9 must contain neutral residues in plant proteins-a negative residue in position 8 is suggested in animal proteins-to maintain the Nβ motif negatively charged and a hydrophilic profile. Moreover, our results suggest that the NaTrxh translocation to the endoplasmic reticulum occurs as a post-translational event. Finally, the Nβ motif sequence at the N- or C-terminus could be a feature that may help to predict protein localisation, mainly in plant and animal proteins.
Collapse
Affiliation(s)
- Andre Zaragoza-Gómez
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Emilio García-Caffarel
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Yuridia Cruz-Zamora
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Víctor Hugo Anaya-Muñoz
- Escuela Nacional Estudios Superiores unidad Morelia, Universidad Nacional Autónoma de México, Campus Morelia, Morelia, Michoacán, México
| | - Felipe Cruz-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| | - Javier Andrés Juárez-Díaz
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, UNAM, Ciudad de Mexico, México
| |
Collapse
|
6
|
Chae HB, Jung YJ, Paeng SK, Jung HS, Lee SY, Lee JR. Functional changes of OsTrxm from reductase to molecular chaperone under heat shock stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108005. [PMID: 37776672 DOI: 10.1016/j.plaphy.2023.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Ubiquitous disulfide reductases, thioredoxins (Trxs), function in the redox balance of all living organisms. Although the roles of the rice (Oryza sativa) Trx m-type isoform (OsTrxm) in chloroplast development have been already published, biochemical and molecular functions of OsTrxm remain to be elucidated for decades. The OsTrxm and its two conserved active cysteine mutant (OsTrxm C95S/C98S, referred to as OsTrxmC/S) proteins in Arabidopsis thaliana were overexpressed to characterize in vivo roles of active cysteines of OsTrxm. Interestingly, the OsTrxm overexpressed variant plants were resistant to heat shock treatment. Especially OsTrxmC/S with higher molecular weight (HMW) complexes showed higher heat tolerance than OsTrxm with lower molecular weight (LMW) structure in Arabidopsis thaliana. To confirm the importance of active cysteines on structural changes under heat stress, OsTrxm and OsTrxmC/S proteins were bacterially expressed and isolated. This study found that two proteins have various structures ranging from LMW to HMW complexes and have potential functions as a disulfide reductase and a molecular chaperone, which has never been reported anywhere. The function of molecular chaperone predominated in the HMW complexes, whereas the disulfide reductase function was observed in LMW forms. These results suggest that the active cysteines of OsTrxm play a critical role in protein structural change as well as heat tolerance in plants.
Collapse
Affiliation(s)
- Ho Byoung Chae
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Young Jun Jung
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea
| | - Seol Ki Paeng
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21(+)), PMBBRC, and Plant Biological Rhythm Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jung Ro Lee
- National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon-gun, 33657, Republic of Korea.
| |
Collapse
|
7
|
Souza PVL, Hou LY, Sun H, Poeker L, Lehman M, Bahadar H, Domingues-Junior AP, Dard A, Bariat L, Reichheld JP, Silveira JAG, Fernie AR, Timm S, Geigenberger P, Daloso DM. Plant NADPH-dependent thioredoxin reductases are crucial for the metabolism of sink leaves and plant acclimation to elevated CO 2. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37267089 DOI: 10.1111/pce.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/04/2023]
Abstract
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Collapse
Affiliation(s)
- Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Hu Sun
- University of Rostock, Rostock, Germany
| | - Louis Poeker
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Lehman
- Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Humaira Bahadar
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | | | | | | | | | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
8
|
De Brasi-Velasco S, Sánchez-Guerrero A, Castillo MC, Vertommen D, León J, Sevilla F, Jiménez A. Thioredoxin TRXo1 is involved in ABA perception via PYR1 redox regulation. Redox Biol 2023; 63:102750. [PMID: 37269685 DOI: 10.1016/j.redox.2023.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Abscisic acid (ABA) plays a fundamental role in plant growth and development processes such as seed germination, stomatal response or adaptation to stress, amongst others. Increases in the endogenous ABA content is recognized by specific receptors of the PYR/PYL/RCAR family that are coupled to a phosphorylation cascade targeting transcription factors and ion channels. Just like other receptors of the family, nuclear receptor PYR1 binds ABA and inhibits the activity of type 2C phosphatases (PP2Cs), thus avoiding the phosphatase-exerted inhibition on SnRK2 kinases, positive regulators which phosphorylate targets and trigger ABA signalling. Thioredoxins (TRXs) are key components of cellular redox homeostasis that regulate specific target proteins through a thiol-disulfide exchange, playing an essential role in redox homeostasis, cell survival, and growth. In higher plants, TRXs have been found in almost all cellular compartments, although its presence and role in nucleus has been less studied. In this work, affinity chromatography, Dot-blot, co-immunoprecipitation, and bimolecular fluorescence complementation assays allowed us to identify PYR1 as a new TRXo1 target in the nucleus. Studies on recombinant HisAtPYR1 oxidation-reduction with wild type and site-specific mutagenized forms showed that the receptor underwent redox regulation involving changes in the oligomeric state in which Cys30 and Cys65 residues were implied. TRXo1 was able to reduce previously-oxidized inactive PYR1, thus recovering its capacity to inhibit HAB1 phosphatase. In vivo PYR1 oligomerization was dependent on the redox state, and a differential pattern was detected in KO and over-expressing Attrxo1 mutant plants grown in the presence of ABA compared to WT plants. Thus, our findings suggest the existence of a redox regulation of TRXo1 on PYR1 that may be relevant for ABA signalling and had not been described so far.
Collapse
Affiliation(s)
| | | | - Mari-Cruz Castillo
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform UCLouvain, 1200, Brussels, Belgium.
| | - José León
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| |
Collapse
|
9
|
Gutiérrez-Escobedo G, Vázquez-Franco N, López-Marmolejo A, Luna-Arvizu G, Cañas-Villamar I, Castaño I, De Las Peñas A. Characterization of the Trr/Trx system in the fungal pathogen Candida glabrata. Fungal Genet Biol 2023; 166:103799. [PMID: 37105080 DOI: 10.1016/j.fgb.2023.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
C. glabrata, an opportunistic fungal pathogen, can adapt and resist to different stress conditions. It is highly resistant to oxidant stress compared to other Candida spp and to the phylogenetically related but non-pathogen Saccharomyces cerevisiae. In this work, we describe the Trx/Trr system of C. glabrata composed of Trr1 and Trr2 (thioredoxin reductases) and Trx2 (thioredoxin) that are localized in the cytoplasm and Trx3 present in the mitochondrion. The transcriptional induction of TRR2 and TRX2 by oxidants depends on Yap1 and Skn7 and TRR1 and TRX3 have a low expression level. Both TRR2 and TRX2 play an important role in the oxidative stress response. The absence of TRX2 causes auxotrophy of methionine and cysteine. Trr1 and Trr2 are necessary for survival at high temperatures and for the chronological life span of C. glabrata. Furthermore, the Trx/Trr system is needed for survival in the presence of neutrophils. The role of TRR1 and TRX3 is not clear, but in the presence of neutrophils, they have non-overlapping functions with their TRR2 and TRX2 paralogues.
Collapse
Affiliation(s)
- Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico
| | - Norma Vázquez-Franco
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Ana López-Marmolejo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico
| | - Gabriel Luna-Arvizu
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Israel Cañas-Villamar
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José, #2055, Col. Lomas 4ª Sección, San Luis Potosí 78216, Mexico.
| |
Collapse
|
10
|
Xu A, Wei N, Hu H, Zhou S, Huang Y, Kong Q, Bie Z, Nie WF, Cheng F. Thioredoxin h2 inhibits the MPKK5-MPK3 cascade to regulate the CBF-COR signaling pathway in Citrullus lanatus suffering chilling stress. HORTICULTURE RESEARCH 2023; 10:uhac256. [PMID: 36778181 PMCID: PMC9907054 DOI: 10.1093/hr/uhac256] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/13/2022] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous oxidoreductases and present as a multigenic family. TRXs determine the thiol redox balance, which is crucial for plants in the response to cold stress. However, limited knowledge is available about the role of TRXs in watermelon (Citrullus lanatus), which is highly sensitive to chilling stress in agricultural practice. Here, we identified 18 genes encoding 14 typical and 4 atypical TRXs from the watermelon genome, and found that ClTRX h2 localized at the plasma membrane was largely induced by chilling. Virus-induced gene silencing of ClTRX h2 resulted in watermelon plants that were more sensitive to chilling stress. We further found that ClTRX h2 physically interacted with mitogen-activated protein kinase kinase 5 (ClMPKK5), which was confirmed to phosphorylate and activate ClMPK3 in vitro, and the activation of ClMPK3 by ClMPKK5 was blocked by a point mutation of the Cys-229 residue to Ser in ClMPKK5. Additionally, ClTRX h2 inhibited the chilling-induced activation of ClMPK3, suggesting that the ClMPKK5-ClMPK3 cascade is regulated in a redox-dependent manner. We showed that ClMPK3-silenced plants had increased tolerance to chilling, as well as enhanced transcript abundances of the C-repeat/DREB binding factor (ClCBF) and cold-responsive (ClCOR) genes. Taken together, our results indicate that redox status mediated by ClTRX h2 inhibits ClMPK3 phosphorylation through the interaction between ClTRX h2 and ClMPKK5, which subsequently regulates the CBF-COR signaling pathway when submitted to chilling stress. Hence, our results provide a link between thiol redox balance and MAPK cascade signaling, revealing a conceptual framework to understand how TRX regulates chilling stress tolerance in watermelon.
Collapse
Affiliation(s)
- Anqi Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nannan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Huang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiusheng Kong
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
11
|
Zhou J, Song T, Zhou H, Zhang M, Li N, Xiang J, Zhang X. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1020584. [PMID: 36618641 PMCID: PMC9813791 DOI: 10.3389/fpls.2022.1020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Typical thioredoxin (TRX) plays an important role in maintaining redox balance in plants. However, the typical TRX genes in wheat still need to be comprehensively and deeply studied. In this research, a total of 48 typical TaTRX genes belonging to eight subtypes were identified via a genome-wide search in wheat, and the gene structures, protein conserved motifs, and protein 3D structures of the same subtype were very similar. Evolutionary analysis showed that there are two pairs of tandem duplication genes and 14 clusters of segmental duplication genes in typical TaTRX family members; TaTRX15, TaTRX36, and TaTRX42 had positive selection compared with the orthologs of their ancestral species; rice and maize have 11 and 13 orthologous typical TRXs with wheat, respectively. Gene Ontology (GO) analysis indicated that typical TaTRXs were involved in maintaining redox homeostasis in wheat cells. Estimation of ROS content, determination of antioxidant enzyme activity, and gene expression analysis in a line overexpressing one typical TaTRX confirmed that TRX plays an important role in maintaining redox balance in wheat. A predictive analysis of cis-acting elements in the promoter region showed that typical TaTRXs were extensively involved in various hormone metabolism and response processes to stress. The results predicted using public databases or verified using RT-qPCR show that typical TaTRXs were able to respond to biotic and abiotic stresses, and their expression in wheat was spatiotemporal. A total of 16 wheat proteins belonging to four different families interacting with typical TaTRXs were predicted. The above comprehensive analysis of typical TaTRX genes can enrich our understanding of this gene family in wheat and provide valuable insights for further gene function research.
Collapse
Affiliation(s)
- Jianfei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Nan Li
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation Reactions in Plants. Antioxidants (Basel) 2022; 11:antiox11071411. [PMID: 35883902 PMCID: PMC9311986 DOI: 10.3390/antiox11071411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Protein cysteines (Cys) undergo a multitude of different reactive oxygen species (ROS), reactive sulfur species (RSS), and/or reactive nitrogen species (RNS)-derived modifications. S-nitrosation (also referred to as nitrosylation), the addition of a nitric oxide (NO) group to reactive Cys thiols, can alter protein stability and activity and can result in changes of protein subcellular localization. Although it is clear that this nitrosative posttranslational modification (PTM) regulates multiple signal transduction pathways in plants, the enzymatic systems that catalyze the reverse S-denitrosation reaction are poorly understood. This review provides an overview of the biochemistry and regulation of nitro-oxidative modifications of protein Cys residues with a focus on NO production and S-nitrosation. In addition, the importance and recent advances in defining enzymatic systems proposed to be involved in regulating S-denitrosation are addressed, specifically cytosolic thioredoxins (TRX) and the newly identified aldo-keto reductases (AKR).
Collapse
|
13
|
Mitochondrial Peroxiredoxin-IIF (PRXIIF) Activity and Function during Seed Aging. Antioxidants (Basel) 2022; 11:antiox11071226. [PMID: 35883717 PMCID: PMC9311518 DOI: 10.3390/antiox11071226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria play a major role in energy metabolism, particularly in cell respiration, cellular metabolism, and signal transduction, and are also involved in other processes, such as cell signaling, cell cycle control, cell growth, differentiation and apoptosis. Programmed cell death is associated with the production of reactive oxygen species (ROS) and a concomitant decrease in antioxidant capacity, which, in turn, determines the aging of living organisms and organs and thus also seeds. During the aging process, cell redox homeostasis is disrupted, and these changes decrease the viability of stored seeds. Mitochondrial peroxiredoxin-IIF (PRXIIF), a thiol peroxidase, has a significant role in protecting the cell and sensing oxidative stress that occurs during the disturbance of redox homeostasis. Thioredoxins (TRXs), which function as redox transmitters and switch protein function in mitochondria, can regulate respiratory metabolism. TRXs serve as electron donors to PRXIIF, as shown in Arabidopsis. In contrast, sulfiredoxin (SRX) can regenerate mitochondrial PRXIIF once hyperoxidized to sulfinic acid. To protect against oxidative stress, another type of thiol peroxidases, glutathione peroxidase-like protein (GPXL), is important and receives electrons from the TRX system. They remove peroxides produced in the mitochondrial matrix. However, the TRX/PRX and TRX/GPXL systems are not well understood in mitochondria. Knowledge of both systems is important because these systems play an important role in stress sensing, response and acclimation, including redox imbalance and generation of ROS and reactive nitrogen species (RNS). The TRX/PRX and TRX/GPXL systems are important for maintaining cellular ROS homeostasis and maintaining redox homeostasis under stress conditions. This minireview focuses on the functions of PRXIIF discovered in plant cells approximately 20 years ago and addresses the question of how PRXIIF affects seed viability maintenance and aging. Increasing evidence suggests that the mitochondrial PRXIIF plays a major role in metabolic processes in seeds, which was not previously known.
Collapse
|
14
|
Chibani K, Pucker B, Dietz KJ, Cavanagh A. Genome-wide analysis and transcriptional regulation of the typical and atypical thioredoxins in Arabidopsis thaliana. FEBS Lett 2021; 595:2715-2730. [PMID: 34561866 DOI: 10.1002/1873-3468.14197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Thioredoxins (TRXs), a large subclass of ubiquitous oxidoreductases, are involved in thiol redox regulation. Here, we performed a comprehensive analysis of TRXs in the Arabidopsis thaliana genome, revealing 41 genes encoding 18 typical and 23 atypical TRXs, and 6 genes encoding thioredoxin reductases (TRs). The high number of atypical TRXs indicates special functions in plants that mostly await elucidation. We identified an atypical class of thioredoxins called TRX-c in the genomes of photosynthetic eukaryotes. Localized to the chloroplast, TRX-c displays atypical CPLC, CHLC and CNLC motifs in the active sites. In silico analysis of the transcriptional regulations of TRXs revealed high expression of TRX-c in leaves and strong regulation under cold, osmotic, salinity and metal ion stresses.
Collapse
Affiliation(s)
- Kamel Chibani
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Boas Pucker
- Department of Sciences, University of Cambridge, UK
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Germany
| | - Amanda Cavanagh
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
15
|
da Fonseca-Pereira P, Souza PVL, Fernie AR, Timm S, Daloso DM, Araújo WL. Thioredoxin-mediated regulation of (photo)respiration and central metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5987-6002. [PMID: 33649770 DOI: 10.1093/jxb/erab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (TRXs) are ubiquitous proteins engaged in the redox regulation of plant metabolism. Whilst the light-dependent TRX-mediated activation of Calvin-Benson cycle enzymes is well documented, the role of extraplastidial TRXs in the control of the mitochondrial (photo)respiratory metabolism has been revealed relatively recently. Mitochondrially located TRX o1 has been identified as a regulator of alternative oxidase, enzymes of, or associated with, the tricarboxylic acid (TCA) cycle, and the mitochondrial dihydrolipoamide dehydrogenase (mtLPD) involved in photorespiration, the TCA cycle, and the degradation of branched chain amino acids. TRXs are seemingly a major point of metabolic regulation responsible for activating photosynthesis and adjusting mitochondrial photorespiratory metabolism according to the prevailing cellular redox status. Furthermore, TRX-mediated (de)activation of TCA cycle enzymes contributes to explain the non-cyclic flux mode of operation of this cycle in illuminated leaves. Here we provide an overview on the decisive role of TRXs in the coordination of mitochondrial metabolism in the light and provide in silico evidence for other redox-regulated photorespiratory enzymes. We further discuss the consequences of mtLPD regulation beyond photorespiration and provide outstanding questions that should be addressed in future studies to improve our understanding of the role of TRXs in the regulation of central metabolism.
Collapse
Affiliation(s)
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert- Einstein-Str. 3, Rostock, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
16
|
Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F. Reactive oxygen species and organellar signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5807-5824. [PMID: 34009340 DOI: 10.1093/jxb/erab218] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 05/07/2023]
Abstract
The evolution of photosynthesis and its associated metabolic pathways has been crucial to the successful establishment of plants, but has also challenged plant cells in the form of production of reactive oxygen species (ROS). Intriguingly, multiple forms of ROS are generated in virtually every plant cell compartment through diverse pathways. As a result, a sophisticated network of ROS detoxification and signaling that is simultaneously tailored to individual organelles and safeguards the entire cell is necessary. Here we take an organelle-centric view on the principal sources and sinks of ROS across the plant cell and provide insights into the ROS-induced organelle to nucleus retrograde signaling pathways needed for operational readjustments during environmental stresses.
Collapse
Affiliation(s)
- Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems, Université de Liège, Liège,Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent,Belgium
- Center for Plant Systems Biology, VIB, Ghent,Belgium
| |
Collapse
|
17
|
Thioredoxin h2 and o1 Show Different Subcellular Localizations and Redox-Active Functions, and Are Extrachloroplastic Factors Influencing Photosynthetic Performance in Fluctuating Light. Antioxidants (Basel) 2021; 10:antiox10050705. [PMID: 33946819 PMCID: PMC8147087 DOI: 10.3390/antiox10050705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Arabidopsis contains eight different h-type thioredoxins (Trx) being distributed in different cell organelles. Although Trx h2 is deemed to be confined to mitochondria, its subcellular localization and function are discussed controversially. Here, cell fractionation studies were used to clarify this question, showing Trx h2 protein to be exclusively localized in microsomes rather than mitochondria. Furthermore, Arabidopsis trxo1, trxh2 and trxo1h2 mutants were analyzed to compare the role of Trx h2 with mitochondrial Trx o1. Under medium light, trxo1 and trxo1h2 showed impaired growth, while trxh2 was similar to wild type. In line with this, trxo1 and trxo1h2 clustered differently from wild type with respect to nocturnal metabolite profiles, revealing a decrease in ascorbate and glutathione redox states. Under fluctuating light, these genotypic differences were attenuated. Instead, the trxo1h2 double mutant showed an improved NADPH redox balance, compared to wild type, accompanied by increased photosynthetic efficiency, specifically in the high-light phases. Conclusively, Trx h2 and Trx o1 are differentially localized in microsomes and mitochondria, respectively, which is associated with different redox-active functions and effects on plant growth in constant light, while there is a joint role of both Trxs in regulating NADPH redox balance and photosynthetic performance in fluctuating light.
Collapse
|
18
|
Przybyla-Toscano J, Christ L, Keech O, Rouhier N. Iron-sulfur proteins in plant mitochondria: roles and maturation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2014-2044. [PMID: 33301571 DOI: 10.1093/jxb/eraa578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Iron-sulfur (Fe-S) clusters are prosthetic groups ensuring electron transfer reactions, activating substrates for catalytic reactions, providing sulfur atoms for the biosynthesis of vitamins or other cofactors, or having protein-stabilizing effects. Hence, metalloproteins containing these cofactors are essential for numerous and diverse metabolic pathways and cellular processes occurring in the cytoplasm. Mitochondria are organelles where the Fe-S cluster demand is high, notably because the activity of the respiratory chain complexes I, II, and III relies on the correct assembly and functioning of Fe-S proteins. Several other proteins or complexes present in the matrix require Fe-S clusters as well, or depend either on Fe-S proteins such as ferredoxins or on cofactors such as lipoic acid or biotin whose synthesis relies on Fe-S proteins. In this review, we have listed and discussed the Fe-S-dependent enzymes or pathways in plant mitochondria including some potentially novel Fe-S proteins identified based on in silico analysis or on recent evidence obtained in non-plant organisms. We also provide information about recent developments concerning the molecular mechanisms involved in Fe-S cluster synthesis and trafficking steps of these cofactors from maturation factors to client apoproteins.
Collapse
Affiliation(s)
- Jonathan Przybyla-Toscano
- Université de Lorraine, INRAE, IAM, Nancy, France
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Loïck Christ
- Université de Lorraine, INRAE, IAM, Nancy, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | | |
Collapse
|
19
|
Overexpression of Tamarix hispida ThTrx5 Confers Salt Tolerance to Arabidopsis by Activating Stress Response Signals. Int J Mol Sci 2020; 21:ijms21031165. [PMID: 32050573 PMCID: PMC7037472 DOI: 10.3390/ijms21031165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Salt stress inhibits normal plant growth and development by disrupting cellular water absorption and metabolism. Therefore, understanding plant salt tolerance mechanisms should provide a theoretical basis for developing salt-resistant varieties. Here, we cloned ThTrx5 from Tamarix hispida, a salt-resistant woody shrub, and generated ThTrx5-overexpressing transgenic Arabidopsis thaliana lines. Under NaCl stress, the germination rate of overexpressing ThTrx5 lines was significantly increased relative to that of the nontransgenic line; under salt stress, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione levels and root length and fresh weight values of transgenic ThTrx5 plants were significantly greater than corresponding values for wild-type plants. Moreover, with regard to the transcriptome, comparison of differential gene expression of transgenic versus nontransgenic lines at 0 h and 3 h of salt stress exposure revealed 500 and 194 differentially expressed genes (DEGs), respectively, that were mainly functionally linked to catalytic activity and binding process. Pull-down experiments showed that ThTrx bound 2-Cys peroxiredoxin BAS1-like protein that influences stress response-associated redox, hormone signal transduction, and transcription factor functions. Therefore, this work provides important insights into ThTrx5 mechanisms that promote salt tolerance in plants.
Collapse
|
20
|
Martí MC, Jiménez A, Sevilla F. Thioredoxin Network in Plant Mitochondria: Cysteine S-Posttranslational Modifications and Stress Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:571288. [PMID: 33072147 PMCID: PMC7539121 DOI: 10.3389/fpls.2020.571288] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
Plants are sessile organisms presenting different adaptation mechanisms that allow their survival under adverse situations. Among them, reactive oxygen and nitrogen species (ROS, RNS) and H2S are emerging as components not only of cell development and differentiation but of signaling pathways involved in the response to both biotic and abiotic attacks. The study of the posttranslational modifications (PTMs) of proteins produced by those signaling molecules is revealing a modulation on specific targets that are involved in many metabolic pathways in the different cell compartments. These modifications are able to translate the imbalance of the redox state caused by exposure to the stress situation in a cascade of responses that finally allow the plant to cope with the adverse condition. In this review we give a generalized vision of the production of ROS, RNS, and H2S in plant mitochondria. We focus on how the principal mitochondrial processes mainly the electron transport chain, the tricarboxylic acid cycle and photorespiration are affected by PTMs on cysteine residues that are produced by the previously mentioned signaling molecules in the respiratory organelle. These PTMs include S-oxidation, S-glutathionylation, S-nitrosation, and persulfidation under normal and stress conditions. We pay special attention to the mitochondrial Thioredoxin/Peroxiredoxin system in terms of its oxidation-reduction posttranslational targets and its response to environmental stress.
Collapse
|
21
|
da Fonseca-Pereira P, Souza PVL, Hou LY, Schwab S, Geigenberger P, Nunes-Nesi A, Timm S, Fernie AR, Thormählen I, Araújo WL, Daloso DM. Thioredoxin h2 contributes to the redox regulation of mitochondrial photorespiratory metabolism. PLANT, CELL & ENVIRONMENT 2020; 43:188-208. [PMID: 31378951 DOI: 10.1111/pce.13640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/18/2023]
Abstract
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2 -dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Paulo V L Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Saskia Schwab
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, D-18051, Germany
| | - Alisdair R Fernie
- Department Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ina Thormählen
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, 60451-970, Brazil
| |
Collapse
|
22
|
Zafar SA, Patil SB, Uzair M, Fang J, Zhao J, Guo T, Yuan S, Uzair M, Luo Q, Shi J, Schreiber L, Li X. DEGENERATED PANICLE AND PARTIAL STERILITY 1 (DPS1) encodes a cystathionine β-synthase domain containing protein required for anther cuticle and panicle development in rice. THE NEW PHYTOLOGIST 2020; 225:356-375. [PMID: 31433495 DOI: 10.1111/nph.16133] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine β-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tingting Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
23
|
Wei H, Zhou J, Xu C, Movahedi A, Sun W, Li D, Zhuge Q. Identification and Characterization of an OSH1 Thiol Reductase from Populus Trichocarpa. Cells 2019; 9:E76. [PMID: 31892265 PMCID: PMC7017176 DOI: 10.3390/cells9010076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 01/11/2023] Open
Abstract
Interferon gamma-induced lysosomal thiol reductase (GILT) is abundantly expressed in antigen-presenting cells and participates in the treatment and presentation of antigens by major histocompatibility complex II. Also, GILT catalyzes the reduction of disulfide bonds, which plays an important role in cellular immunity. (1) Background: At present, the studies of GILT have mainly focused on animals. In plants, GILT homologous gene (Arabidopsis thalianaOSH1: AtOSH1) was discovered in the forward screen of mutants with compromised responses to sulphur nutrition. However, the complete properties and functions of poplar OSH1 are unclear. In addition, CdCl2 stress is swiftly engulfing the limited land resources on which humans depend, restricting agricultural production. (2) Methods: A prokaryotic expression system was used to produce recombinant PtOSH1 protein, and Western blotting was performed to identify its activity. In addition, a simplified version of the floral-dip method was used to transform A. thaliana. (3) Results: Here, we describe the identification and characterization of OSH1 from Populus trichocarpa. The deduced PtOSH1 sequence contained CQHGX2ECX2NX4C and CXXC motifs. The transcript level of PtOSH1 was increased by cadmium (Cd) treatment. In addition, recombinant PtOSH1 reduced disulfide bonds. A stress assay showed that PtOSH1-overexpressing (OE) A. thaliana lines had greater resistance to Cd than wild-type (WT) plants. Also, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in PtOSH1-OE plants were significantly higher than those in WT A. thaliana. These results indicate that PtOSH1 likely plays an important role in the response to Cd by regulating the reactive oxygen species (ROS)-scavenging system. (4) Conclusions: PtOSH1 catalyzes the reduction of disulfide bonds and behaves as a sulfhydryl reductase under acidic conditions. The overexpression of PtOSH1 in A. thaliana promoted root development, fresh weight, and dry weight; upregulated the expression levels of ROS scavenging-related genes; and improved the activity of antioxidant enzymes, enhancing plant tolerance to cadmium (Cd) stress. This study aimed to provide guidance that will facilitate future studies of the function of PtOSH1 in the response of plants to Cd stress.
Collapse
Affiliation(s)
- Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China;
| | - Chen Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Key Laboratory of Quality and Safety of Agricultural Products, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (C.X.); (A.M.); (W.S.); (D.L.)
| |
Collapse
|
24
|
Yu L, Guo R, Jiang Y, Ye X, Yang Z, Meng Y, Shao C. Identification of novel phasiRNAs loci on long non-coding RNAs in Arabidopsis thaliana. Genomics 2019; 111:1668-1675. [PMID: 30458274 DOI: 10.1016/j.ygeno.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/28/2023]
Abstract
Long non-coding RNAs (lncRNAs) are the "dark matters"involved in gene regulation with complex mechanisms. However, the functions of most lncRNAs remain to be determined. Our previous work revealed a massive number of degradome-supported cleavage signatures on Arabidopsis lncRNAs. Some of them have been confirmed associated with miRNAs-like sRNAs production, while others without long stem structure remain unexplored. A systematical search for phasiRNAs generating ability of these lncRNAs was conducted. Eight novel small RNA triggered lncRNA-phasiRNA pathways were discovered and three of them were found to be conserved in Arabidopsis, Oryza sativa, Glycine max and Gossypium hirsutum. Besides, Five novel ta-siRNAs derived from these lncRNAs were further identified to be involved in the regulation of plant development, stress responses and aromatic amino acids synthesis. These results substantially expanded the gene regulation mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Lan Yu
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Rongkai Guo
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Yeqin Jiang
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Xinghuo Ye
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Zhihong Yang
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
25
|
Park SC, Kim IR, Kim JY, Lee Y, Yoo SH, Jung JH, Cheong GW, Lee SY, Jang MK, Lee JR. Functional Characterization of a Rice Thioredoxin Protein OsTrxm and Its Cysteine Mutant Variant with Antifungal Activity. Antioxidants (Basel) 2019; 8:antiox8120598. [PMID: 31795318 PMCID: PMC6943642 DOI: 10.3390/antiox8120598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023] Open
Abstract
Although there are many antimicrobial proteins in plants, they are not well-explored. Understanding the mechanism of action of plant antifungal proteins (AFPs) may help combat fungal infections that impact crop yields. In this study, we aimed to address this gap by screening Oryza sativa leaves to isolate novel AFPs. We identified a thioredoxin protein with antioxidant properties. Being ubiquitous, thioredoxins (Trxs) function in the redox balance of all living organisms. Sequencing by Edman degradation method revealed the AFP to be O. sativa Thioredoxin m-type isoform (OsTrxm). We purified the recombinant OsTrxm and its cysteine mutant proteins (OsTrxm C/S) in Escherichia coli. The recombinant OsTrxm proteins inhibited the growth of various pathogenic fungal cells. Interestingly, OsTrxm C/S mutant showed higher antifungal activity than OsTrxm. A growth inhibitory assay against various fungal pathogens and yeasts confirmed the pertinent role of cysteine residues. The OsTrxm protein variants penetrated the fungal cell wall and membrane, accumulated in the cells and generated reactive oxygen species. Although the role of OsTrxm in chloroplast development is known, its biochemical and molecular functions have not been elucidated. These findings suggest that in addition to redox regulation, OsTrxm also functions as an antimicrobial agent.
Collapse
Affiliation(s)
- Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon 57922, Korea; (S.-C.P.); (J.-Y.K.)
| | - Il Ryong Kim
- Division of Ecological Safety Research, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon 33657, Korea; (I.R.K.); (S.-H.Y.)
- Division of Applied Life Science (BK21+ Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (S.Y.L.)
| | - Jin-Young Kim
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon 57922, Korea; (S.-C.P.); (J.-Y.K.)
| | - Yongjae Lee
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
| | - Su-Hyang Yoo
- Division of Ecological Safety Research, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon 33657, Korea; (I.R.K.); (S.-H.Y.)
| | - Ji Hyun Jung
- Division of Applied Life Science (BK21+ Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (S.Y.L.)
- Goseong Agricultural Development/Technology Center, Goseong 52930, Korea
| | - Gang-Won Cheong
- Division of Applied Life Sciences and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Korea; (J.H.J.); (S.Y.L.)
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon 57922, Korea; (S.-C.P.); (J.-Y.K.)
- The Research Institute for Sanitation and Environment of Coastal Areas, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (M.-K.J.); (J.R.L.)
| | - Jung Ro Lee
- Division of Ecological Safety Research, National Institute of Ecology, 1210 Geumgang-ro, Maseo-myeon, Seocheon 33657, Korea; (I.R.K.); (S.-H.Y.)
- Correspondence: (M.-K.J.); (J.R.L.)
| |
Collapse
|
26
|
Florez-Sarasa I, Obata T, Del-Saz NSFN, Reichheld JP, Meyer EH, Rodriguez-Concepcion M, Ribas-Carbo M, Fernie AR. The Lack of Mitochondrial Thioredoxin TRXo1 Affects In Vivo Alternative Oxidase Activity and Carbon Metabolism under Different Light Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:2369-2381. [PMID: 31318380 DOI: 10.1093/pcp/pcz123] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
The alternative oxidase (AOX) constitutes a nonphosphorylating pathway of electron transport in the mitochondrial respiratory chain that provides flexibility to energy and carbon primary metabolism. Its activity is regulated in vitro by the mitochondrial thioredoxin (TRX) system which reduces conserved cysteines residues of AOX. However, in vivo evidence for redox regulation of the AOX activity is still scarce. In the present study, the redox state, protein levels and in vivo activity of the AOX in parallel to photosynthetic parameters were determined in Arabidopsis knockout mutants lacking mitochondrial trxo1 under moderate (ML) and high light (HL) conditions, known to induce in vivo AOX activity. In addition, 13C- and 14C-labeling experiments together with metabolite profiling were performed to better understand the metabolic coordination between energy and carbon metabolism in the trxo1 mutants. Our results show that the in vivo AOX activity is higher in the trxo1 mutants at ML while the AOX redox state is apparently unaltered. These results suggest that mitochondrial thiol redox systems are responsible for maintaining AOX in its reduced form rather than regulating its activity in vivo. Moreover, the negative regulation of the tricarboxylic acid cycle by the TRX system is coordinated with the increased input of electrons into the AOX pathway. Under HL conditions, while AOX and photosynthesis displayed similar patterns in the mutants, photorespiration is restricted at the level of glycine decarboxylation most likely as a consequence of redox imbalance.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Toshihiro Obata
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
- University of Nebraska Lincoln, 1901 Vine Street, Lincoln, NE, USA
| | - Nï Stor Fernï Ndez Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Spain
- Departamento de Bot�nica, Facultad de Ciencias Naturales y Oceanogr�ficas, Universidad de Concepci�n, Concepci�n, Chile
| | | | - Etienne H Meyer
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut f�r Molekulare Pflanzenphysiologie, Am M�hlenberg 1, Potsdam-Golm, Germany
| |
Collapse
|
27
|
Reinholdt O, Schwab S, Zhang Y, Reichheld JP, Fernie AR, Hagemann M, Timm S. Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1. PLANT PHYSIOLOGY 2019; 181:442-457. [PMID: 31413204 PMCID: PMC6776843 DOI: 10.1104/pp.19.00559] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/30/2019] [Indexed: 05/02/2023]
Abstract
Photorespiration sustains photosynthesis in the presence of oxygen due to rapid metabolization of 2-phosphoglycolate, the major side-product of the oxygenase activity of Rubisco that also directly impedes carbon assimilation and allocation. Despite the fact that both the biochemical reactions and the underlying genetics are well characterized, information concerning the regulatory mechanisms that adjust photorespiratory flux is rare. Here, we studied the impact of mitochondrial-localized thioredoxin o1 (TRXo1) on photorespiratory metabolism. The characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional line (trxo1-1) revealed an increase in the stoichiometry of photorespiratory CO2 release and impaired Gly-to-Ser turnover after a shift from high-to-low CO2 without changes in Gly decarboxylase (GDC) gene or protein expression. These effects were distinctly pronounced in a double mutant, where the TRXo1 mutation was combined with strongly reduced GDC T-protein expression. The double mutant (TxGT) showed reduced growth in air but not in high CO2, decreased photosynthesis, and up to 54-fold more Gly alongside several redox-stress-related metabolites. Given that GDC proteins are potential targets for redox-regulation, we also examined the in vitro properties of recombinant GDC l-proteins (lipoamide dehydrogenase) from plants and the cyanobacterium Synechocystis species strain PCC6803 and observed a redox-dependent inhibition by either artificial reducing agents or TRXo1 itself. Collectively, our results demonstrate that TRXo1 potentially adjusts photorespiration via redox-regulation of GDC in response to environmental changes.
Collapse
Affiliation(s)
- Ole Reinholdt
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Saskia Schwab
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Martin Hagemann
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| | - Stefan Timm
- University of Rostock, Plant Physiology Department, Albert-Einstein-Straße 3, D-18059 Rostock, Germany
| |
Collapse
|
28
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P, Wagner S, Ostermann L, Moseler A, Lemke P, Fricker MD, Müller-Schüssele SJ, Moerschbacher BM, Costa A, Meyer AJ, Schwarzländer M. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H 2 O 2 and thiol redox integration and elucidates intracellular H 2 O 2 dynamics during elicitor-induced oxidative burst in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:1649-1664. [PMID: 30347449 DOI: 10.1111/nph.15550] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/13/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is ubiquitous in cells and at the centre of developmental programmes and environmental responses. Its chemistry in cells makes H2 O2 notoriously hard to detect dynamically, specifically and at high resolution. Genetically encoded sensors overcome persistent shortcomings, but pH sensitivity, silencing of expression and a limited concept of sensor behaviour in vivo have hampered any meaningful H2 O2 sensing in living plants. We established H2 O2 monitoring in the cytosol and the mitochondria of Arabidopsis with the fusion protein roGFP2-Orp1 using confocal microscopy and multiwell fluorimetry. We confirmed sensor oxidation by H2 O2 , show insensitivity to physiological pH changes, and demonstrated that glutathione dominates sensor reduction in vivo. We showed the responsiveness of the sensor to exogenous H2 O2 , pharmacologically-induced H2 O2 release, and genetic interference with the antioxidant machinery in living Arabidopsis tissues. Monitoring intracellular H2 O2 dynamics in response to elicitor exposure reveals the late and prolonged impact of the oxidative burst in the cytosol that is modified in redox mutants. We provided a well defined toolkit for H2 O2 monitoring in planta and showed that intracellular H2 O2 measurements only carry meaning in the context of the endogenous thiol redox systems. This opens new possibilities to dissect plant H2 O2 dynamics and redox regulation, including intracellular NADPH oxidase-mediated ROS signalling.
Collapse
Affiliation(s)
- Thomas Nietzel
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Marlene Elsässer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Cristina Ruberti
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Janina Steinbeck
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philippe Fuchs
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Stephan Wagner
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Lara Ostermann
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Philipp Lemke
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Stefanie J Müller-Schüssele
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- BioSC, c/o Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Markus Schwarzländer
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| |
Collapse
|
30
|
Umekawa Y, Ito K. Thioredoxin o-mediated reduction of mitochondrial alternative oxidase in the thermogenic skunk cabbage Symplocarpus renifolius. J Biochem 2019; 165:57-65. [PMID: 30289493 PMCID: PMC6299270 DOI: 10.1093/jb/mvy082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 11/21/2022] Open
Abstract
Thermogenesis in plants involves significant increases in their cyanide-resistant mitochondrial alternative oxidase (AOX) capacity. Because AOX is a non-proton-motive ubiquinol oxidase, the dramatic drop in free energy between ubiquinol and oxygen is dissipated as heat. In the thermogenic skunk cabbage (Symplocarpus renifolius), SrAOX is specifically expressed in the florets. Although SrAOX harbours conserved cysteine residues, the details of the mechanisms underlying its redox regulation are poorly understood. In our present study, the two mitochondrial thioredoxin o cDNAs SrTrxo1 and SrTrxo2, were isolated from the thermogenic florets of S. renifolius. The deduced amino acid sequences of the protein products revealed that SrTrxo2 specifically lacks the region corresponding to the α3-helix in SrTrxo1. Expression analysis of thermogenic and non-thermogenic S. renifolius tissues indicated that the SrTrxo1 and SrAOX transcripts are predominantly expressed together in thermogenic florets, whereas SrTrxo2 transcripts are almost undetectable in any tissue. Finally, functional in vitro analysis of recombinant SrTrxo1 and mitochondrial membrane fractions of thermogenic florets indicated its reducing activity on SrAOX proteins. Taken together, these results indicate that SrTrxo1 is likely to play a role in the redox regulation of SrAOX in S. renifolius thermogenic florets.
Collapse
Affiliation(s)
- Yui Umekawa
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| | - Kikukatsu Ito
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.,Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan.,Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate, Japan
| |
Collapse
|
31
|
da Fonseca-Pereira P, Daloso DM, Gago J, de Oliveira Silva FM, Condori-Apfata JA, Florez-Sarasa I, Tohge T, Reichheld JP, Nunes-Nesi A, Fernie AR, Araújo WL. The Mitochondrial Thioredoxin System Contributes to the Metabolic Responses Under Drought Episodes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:213-229. [PMID: 30329109 DOI: 10.1093/pcp/pcy194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 05/04/2023]
Abstract
Thioredoxins (Trxs) modulate metabolic responses during stress conditions; however, the mechanisms governing the responses of plants subjected to multiple drought events and the role of Trxs under these conditions are not well understood. Here we explored the significance of the mitochondrial Trx system in Arabidopsis following exposure to single and repeated drought events. We analyzed the previously characterized NADPH-dependent Trx reductase A and B double mutant (ntra ntrb) and two independent mitochondrial thioredoxin o1 (trxo1) mutant lines. Following similar reductions in relative water content (∼50%), Trx mutants subjected to two drought cycles displayed a significantly higher maximum quantum efficiency (Fv/Fm) and were less sensitive to drought than their wild-type counterparts and than all genotypes subjected to a single drought event. Trx mutant plants displayed a faster recovery after two cycles of drought, as observed by the higher accumulation of secondary metabolites and higher stomatal conductance. Our results indicate that plants exposed to multiple drought cycles are able to modulate their subsequent metabolic and physiological response, suggesting the occurrence of an exquisite acclimation in stressed Arabidopsis plants. Moreover, this differential acclimation involves the participation of a set of metabolic changes as well as redox poise alteration following stress recovery.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jorge Gago
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Palma de Mallorca, Illes Balears, Spain
| | | | - Jorge A Condori-Apfata
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, Centre National de la Recherche Scientifique, Université de Perpignan Via Domitia, Perpignan, France
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
32
|
Reinholdt O, Bauwe H, Hagemann M, Timm S. Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates light induction of photosynthesis. PLANT SIGNALING & BEHAVIOR 2019; 14:1674607. [PMID: 31589099 PMCID: PMC6866678 DOI: 10.1080/15592324.2019.1674607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Despite the well-known biochemistry of the major pathways involved in central carbon and amino acid metabolism, there are still gaps regarding their regulation or regulatory interactions. Recent research demonstrated the physiological significance of the mitochondrial redox machinery, particularly thioredoxin o1 (TRXo1), for proper regulation of the tricarboxylic acid cycle, components of the mitochondrial electron transport chain and photorespiration. These findings imply that TRXo1 regulation contributes to the metabolic acclimation toward changes in the prevailing environmental conditions. Here, we analyzed if TRXo1 is involved in the light induction of photosynthesis. Our results show that the trxo1 mutant activates CO2 assimilation rates to a significantly lower extend than wild type in response to short-term light/dark changes. Metabolite analysis suggests that activation of glycine-to-serine conversion catalyzed through glycine decarboxylase in conjunction with serine hydroxymethyltransferase in trxo1 is slowed down at onset of illumination. We propose that redox regulation via TRXo1 is necessary to allow the rapid induction of mitochondrial steps of the photorespiratory cycle and, in turn, to facilitate light-induction of photosynthesis.
Collapse
Affiliation(s)
- Ole Reinholdt
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
- CONTACT Stefan Timm Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
33
|
Haddad R, Heidari-Japelaghi R, Eslami-Bojnourdi N. Isolation and functional characterization of two thioredoxin h isoforms from grape. Int J Biol Macromol 2018; 120:2545-2551. [DOI: 10.1016/j.ijbiomac.2018.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/05/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
|
34
|
Calderón A, Sánchez-Guerrero A, Ortiz-Espín A, Martínez-Alcalá I, Camejo D, Jiménez A, Sevilla F. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. PHYSIOLOGIA PLANTARUM 2018; 164:251-267. [PMID: 29446456 DOI: 10.1111/ppl.12708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 05/26/2023]
Abstract
In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild-type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2 O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Antonio Sánchez-Guerrero
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Isabel Martínez-Alcalá
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| |
Collapse
|
35
|
Zannini F, Roret T, Przybyla-Toscano J, Dhalleine T, Rouhier N, Couturier J. Mitochondrial Arabidopsis thaliana TRXo Isoforms Bind an Iron⁻Sulfur Cluster and Reduce NFU Proteins In Vitro. Antioxidants (Basel) 2018; 7:E142. [PMID: 30322144 PMCID: PMC6210436 DOI: 10.3390/antiox7100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.
Collapse
Affiliation(s)
| | - Thomas Roret
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- CNRS, LBI2M, Sorbonne Universités, F-29680 Roscoff, France.
| | - Jonathan Przybyla-Toscano
- Université de Lorraine, Inra, IAM, F-54000 Nancy, France.
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden.
| | | | | | | |
Collapse
|
36
|
Huang J, Niazi AK, Young D, Rosado LA, Vertommen D, Bodra N, Abdelgawwad MR, Vignols F, Wei B, Wahni K, Bashandy T, Bariat L, Van Breusegem F, Messens J, Reichheld JP. Self-protection of cytosolic malate dehydrogenase against oxidative stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3491-3505. [PMID: 29194485 DOI: 10.1093/jxb/erx396] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/10/2017] [Indexed: 05/20/2023]
Abstract
Plant malate dehydrogenase (MDH) isoforms are found in different cell compartments and function in key metabolic pathways. It is well known that the chloroplastic NADP-dependent MDH activities are strictly redox regulated and controlled by light. However, redox dependence of other NAD-dependent MDH isoforms have been less studied. Here, we show by in vitro biochemical characterization that the major cytosolic MDH isoform (cytMDH1) is sensitive to H2O2 through sulfur oxidation of cysteines and methionines. CytMDH1 oxidation affects the kinetics, secondary structure, and thermodynamic stability of cytMDH1. Moreover, MS analyses and comparison of crystal structures between the reduced and H2O2-treated cytMDH1 further show that thioredoxin-reversible homodimerization of cytMDH1 through Cys330 disulfide formation protects the protein from overoxidation. Consistently, we found that cytosolic thioredoxins interact specifically with cytMDH in a yeast two-hybrid system. Importantly, we also show that cytosolic and chloroplastic, but not mitochondrial NAD-MDH activities are sensitive to H2O2 stress in Arabidopsis. NAD-MDH activities decreased both in a catalase2 mutant and in an NADP-thioredoxin reductase mutant, emphasizing the importance of the thioredoxin-reducing system to protect MDH from oxidation in vivo. We propose that the redox switch of the MDH activity contributes to adapt the cell metabolism to environmental constraints.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Adnan Khan Niazi
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - David Young
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leonardo Astolfi Rosado
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nandita Bodra
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mohamed Ragab Abdelgawwad
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Florence Vignols
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Bo Wei
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Talaat Bashandy
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Laetitia Bariat
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Perpignan, France
| |
Collapse
|
37
|
Singh A, Tyagi C, Nath O, Singh IK. Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets. Int J Biol Macromol 2018; 109:231-243. [DOI: 10.1016/j.ijbiomac.2017.12.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
|
38
|
Chibani K, Saul F, Didierjean C, Rouhier N, Haouz A. Structural snapshots along the reaction mechanism of the atypical poplar thioredoxin-like2.1. FEBS Lett 2018; 592:1030-1041. [PMID: 29453875 DOI: 10.1002/1873-3468.13009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 11/07/2022]
Abstract
Plastidial thioredoxin (TRX)-like2.1 proteins are atypical thioredoxins possessing a WCRKC active site signature and using glutathione for recycling. To obtain structural information supporting the peculiar catalytic mechanisms and target proteins of these TRXs, we solved the crystal structures of poplar TRX-like2.1 in oxidized and reduced states and of mutated variants. These structures share similar folding with TRXs exhibiting the canonical WCGPC signature. Moreover, the overall conformation is not altered by reduction of the catalytic disulfide bond or in a C45S/C67S variant that formed a disulfide-bridged dimer possibly mimicking reaction intermediates with target proteins. Modeling of the interaction of TRX-like2.1 with both NADPH- and ferredoxin-thioredoxin reductases (FTR) indicates that the presence of Arg43 and Lys44 residues likely precludes reduction by the plastidial FTR.
Collapse
Affiliation(s)
- Kamel Chibani
- UMR 1136, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine/INRA, Vandœuvre-lès-Nancy, France
| | - Frederick Saul
- Institut Pasteur, Plateforme de Cristallographie, CNRS-UMR 3528, Paris, France
| | | | - Nicolas Rouhier
- UMR 1136, Interactions Arbres-Microorganismes, Faculté des Sciences et Technologies, Université de Lorraine/INRA, Vandœuvre-lès-Nancy, France
| | - Ahmed Haouz
- Institut Pasteur, Plateforme de Cristallographie, CNRS-UMR 3528, Paris, France
| |
Collapse
|
39
|
Calderón A, Ortiz-Espín A, Iglesias-Fernández R, Carbonero P, Pallardó FV, Sevilla F, Jiménez A. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture. Redox Biol 2017; 11:688-700. [PMID: 28183062 PMCID: PMC5299145 DOI: 10.1016/j.redox.2017.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Raquel Iglesias-Fernández
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Pilar Carbonero
- Centre for Plant Biotechnology and Genomics (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, E-28223 Madrid, Spain.
| | - Federico Vicente Pallardó
- Department of Physiology, Faculty of Medicine, University of Valencia, Av. Blasco Ibañez 15, E-46010 Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Campus Universitario de Espinardo, E-30100 Murcia, Spain.
| |
Collapse
|
40
|
Geigenberger P, Thormählen I, Daloso DM, Fernie AR. The Unprecedented Versatility of the Plant Thioredoxin System. TRENDS IN PLANT SCIENCE 2017; 22:249-262. [PMID: 28139457 DOI: 10.1016/j.tplants.2016.12.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 05/18/2023]
Abstract
Thioredoxins are ubiquitous enzymes catalyzing reversible disulfide-bond formation to regulate structure and function of many proteins in diverse organisms. In recent years, reverse genetics and biochemical approaches were used to resolve the functions, specificities, and interactions of the different thioredoxin isoforms and reduction systems in planta and revealed the most versatile thioredoxin system of all organisms. Here we review the emerging roles of the thioredoxin system, namely the integration of thylakoid energy transduction, metabolism, gene expression, growth, and development under fluctuating environmental conditions. We argue that these new developments help us to understand why plants organize such a divergent composition of thiol redox networks and provide insights into the regulatory hierarchy that operates between them.
Collapse
Affiliation(s)
- Peter Geigenberger
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany.
| | - Ina Thormählen
- Ludwig-Maximilians-Universität (LMU) München, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
41
|
Roodgar-Nashta M, Shahpiri A. Replacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2017; 6:33-40. [PMID: 28447047 PMCID: PMC5396813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that were previously found to be reduced by NADPH-dependent thioredoxin reductase and GSH/Grx system, respectively. In the present work the reduction of mutants G41TOsTrx23, T55GOsTrx20, K48DOsTrx20 and T55G-K48D OsTrx20 as well as wild types OsTrx23 and OsTrx20 were tested in the reaction containing either NADPH/NTR or glutathione (GSH). The results revealed that reduction rate of T55GOsTrx20 was remarkably decreased by GSH as compared to WtOsTrx20 highlighting the critical role of Thr-55 in interaction of OsTrx20 with GSH. On the other hand a significant decrease in the reduction rate of G41TOsTrx23 was observed in reaction containing NADPH-dependent thioredoxin reductase as compared with readuction rate of WtOsTrx23. These results suggest that first residue after N-terminal active site Cys is one of the critical residue in determination of system that Trxs can be reduced in.
Collapse
Affiliation(s)
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
42
|
Ortiz-Espín A, Iglesias-Fernández R, Calderón A, Carbonero P, Sevilla F, Jiménez A. Mitochondrial AtTrxo1 is transcriptionally regulated by AtbZIP9 and AtAZF2 and affects seed germination under saline conditions. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1025-1038. [PMID: 28184497 PMCID: PMC5441863 DOI: 10.1093/jxb/erx012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Aingeru Calderón
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (CBGP; UPM-INIA), Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Francisca Sevilla
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| | - Ana Jiménez
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 30100-Murcia, Spain
| |
Collapse
|
43
|
Mihara S, Yoshida K, Higo A, Hisabori T. Functional Significance of NADPH-Thioredoxin Reductase C in the Antioxidant Defense System of Cyanobacterium Anabaena sp. PCC 7120. PLANT & CELL PHYSIOLOGY 2017; 58:86-94. [PMID: 28011872 DOI: 10.1093/pcp/pcw182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The redox regulation system is widely accepted as a crucial mechanism for controlling the activities of various metabolic enzymes. In addition to thioredoxin reductase/thioredoxin cascades, NADPH-thioredoxin reductase C (NTRC), a hybrid protein formed by an NADPH-thioredoxin reductase domain and a thioredoxin (Trx) domain, is present in chloroplasts and in most cyanobacteria species. Although several target proteins and physiological functions of NTRC in chloroplasts have been characterized, little is known about NTRC functions in cyanobacteria. Therefore, we investigated the molecular basis and physiological significance of NTRC-dependent redox regulation in the filamentous heterocyst-forming nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120). Initially, we identified six candidate NTRC targets in Anabaena 7120 using NTRC affinity chromatography. Subsequently, we compared the efficiency of reducing-equivalent transfer from NTRC and Trx-m1 to the NTRC target protein 2-Cys peroxiredoxin. Biochemical analyses revealed that compared with Trx-m1, NTRC more efficiently transfers reducing equivalents to 2-Cys peroxiredoxin. Subsequently, we constructed and analyzed an ntrC knockout strain in Anabaena 7120. The mutant showed impaired growth under oxidative stress conditions and lower concentrations of reduced 2-Cys peroxiredoxin in cells. Taken together, the present in vitro and in vivo results indicate that NTRC is a significant electron donor for 2-Cys peroxiredoxin and plays a pivotal role in antioxidant defense systems in Anabaena 7120 cells.
Collapse
Affiliation(s)
- Shoko Mihara
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Akiyoshi Higo
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
44
|
Chasing stress signals - Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea. Fungal Genet Biol 2016; 90:12-22. [PMID: 26988904 DOI: 10.1016/j.fgb.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/26/2016] [Accepted: 03/13/2016] [Indexed: 10/22/2022]
Abstract
Reactive oxygen species (ROS) are important molecules influencing intracellular developmental processes as well as plant pathogen interactions. They are produced at the infection site and affect the intracellular redox homeostasis. However, knowledge of ROS signaling pathways, their connection to other signaling cascades, and tools for the visualization of intra- and extracellular ROS levels and their impact on the redox state are scarce. By using the genetically encoded biosensor roGFP2 we studied for the first time the differences between the redox states of the cytosol, the intermembrane space of mitochondria and the ER in the filamentous fungus Botrytis cinerea. We showed that the ratio of oxidized to reduced glutathione inside of the cellular compartments differ and that the addition of hydrogen peroxide (H2O2), calcium chloride (CaCl2) and the fluorescent dye calcofluor white (CFW) have a direct impact on the cellular redox states. Dependent on the type of stress agents applied, the redox states were affected in the different cellular compartments in a temporally shifted manner. By integrating the biosensor in deletion mutants of bcnoxA, bcnoxB, bctrx1 and bcltf1 we further elucidated the putative roles of the different proteins in distinct stress-response pathways. We showed that the redox states of ΔbcnoxA and ΔbcnoxB display a wild-type pattern upon exposure to H2O2, but appear to be strongly affected by CaCl2 and CFW. Moreover, we demonstrated the involvement of the light-responsive transcription factor BcLtf1 in the maintenance of the redox state in the intermembrane space of the mitochondria. Finally, we report that CaCl2 as well as cell wall stress-inducing agents stimulate ROS production and that ΔbcnoxB produces significantly less ROS than the wild type and ΔbcnoxA.
Collapse
|
45
|
Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:810-8. [PMID: 26946085 DOI: 10.1016/j.bbabio.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 11/22/2022]
Abstract
Mitochondrial metabolism is important for sustaining cellular growth and maintenance; however, the regulatory mechanisms underlying individual processes in plant mitochondria remain largely uncharacterized. Previous redox-proteomics studies have suggested that mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid (TCA) cycle and redox shuttling, is under thiol-based redox regulation as a target candidate of thioredoxin (Trx). In addition, the adenine nucleotide status may be another factor controlling mitochondrial metabolism, as respiratory ATP production in mitochondria is believed to be influenced by several environmental stimuli. Using biochemical and reverse-genetic approaches, we addressed the redox- and adenine nucleotide-dependent regulation of mMDH in Arabidopsis thaliana. Recombinant mMDH protein formed intramolecular disulfide bonds under oxidative conditions, but these bonds did not have a considerable effect on mMDH activity. Mitochondria-localized o-type Trx (Trx-o) did not facilitate re-reduction of oxidized mMDH. Determination of the in vivo redox state revealed that mMDH was stably present in the reduced form even in Trx-o-deficient plants. Accordingly, we concluded that mMDH is not in the class of redox-regulated enzymes. By contrast, mMDH activity was lowered by adenine nucleotides (AMP, ADP, and ATP). Each adenine nucleotide suppressed mMDH activity with different potencies and ATP exerted the largest inhibitory effect with a significantly lower K(I). Correspondingly, mMDH activity was inhibited by the increase in ATP/ADP ratio within the physiological range. These results suggest that mMDH activity is finely controlled in response to variations in mitochondrial adenine nucleotide balance.
Collapse
|
46
|
Hägglund P, Finnie C, Yano H, Shahpiri A, Buchanan BB, Henriksen A, Svensson B. Seed thioredoxin h. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:974-82. [PMID: 26876537 DOI: 10.1016/j.bbapap.2016.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Abstract
Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Per Hägglund
- Protein and Immune Systems Biology, Department of Systems Biology, Matematiktorvet, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Christine Finnie
- Carlsberg Research Laboratory, Gamle Carlsberg Vej 4, DK-1799 Copenhagen V, Denmark
| | - Hiroyuki Yano
- National Food Research Institute, National Agriculture and Food Research Organization, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan
| | - Azar Shahpiri
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Bob B Buchanan
- Department of Plant and Microbial Biology, Koshland Hall 111, Berkeley, CA 94720-3102, USA
| | - Anette Henriksen
- Department of Large Protein Biophysics and Formulation, Global Research Unit, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Elektrovej, Building 375, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
47
|
Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP. Nuclear thiol redox systems in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:84-95. [PMID: 26795153 DOI: 10.1016/j.plantsci.2015.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| | - Sajid A K Bangash
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| |
Collapse
|
48
|
Henne M, König N, Triulzi T, Baroni S, Forlani F, Scheibe R, Papenbrock J. Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests. FEBS Open Bio 2015; 5:832-43. [PMID: 26605137 PMCID: PMC4618214 DOI: 10.1016/j.fob.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 01/18/2023] Open
Abstract
Sulfurtransferases (Strs) and thioredoxins (Trxs) are members of large protein families. Trxs are disulfide reductases and play an important role in redox-related cellular processes. They interact with a broad range of proteins. Strs catalyze the transfer of a sulfur atom from a suitable sulfur donor to nucleophilic sulfur acceptors in vitro, but the physiological roles of these enzymes are not well defined. Several studies in different organisms demonstrate protein-protein interactions of Strs with members of the Trx family. We are interested in investigating the specificity of the interaction between Str and Trx isoforms. In order to use the bimolecular fluorescence complementation (BiFC), several Str and Trx sequences from Arabidopsis thaliana were cloned into the pUC-SPYNE and pUC-SPYCE split-YFP vectors, respectively. Each couple of plasmids containing the sequences for the putative interaction partners were transformed into Arabidopsis protoplasts and screened using a confocal laser scanning microscope. Compartment- and partner-specific interactions could be observed in transformed protoplasts. Replacement of cysteine residues in the redox-active site of Trxs abolished the interaction signal. Therefore, the redox site is not only involved in the redox reaction but also responsible for the interaction with partner proteins. Biochemical assays support a specific interaction among Strs and certain Trxs. Based on the results obtained, the interaction of Strs and Trxs indicates a role of Strs in the maintenance of the cellular redox homeostasis.
Collapse
Affiliation(s)
- Melina Henne
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Nicolas König
- University Osnabrück, Department for Plant Physiology, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Tiziana Triulzi
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Sara Baroni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Fabio Forlani
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Renate Scheibe
- University Osnabrück, Department for Plant Physiology, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| |
Collapse
|
49
|
Ortiz-Espín A, Locato V, Camejo D, Schiermeyer A, De Gara L, Sevilla F, Jiménez A. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment. ANNALS OF BOTANY 2015; 116:571-82. [PMID: 26041732 PMCID: PMC4577997 DOI: 10.1093/aob/mcv076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. METHODS Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. KEY RESULTS Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. CONCLUSIONS A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved.
Collapse
Affiliation(s)
- Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Vittoria Locato
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Plant Biotechnology, Forckenbeckstrasse 6, D-52074, Aachen, Germany
| | - Laura De Gara
- Laboratory of Plant Biochemistry and Food Science, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, I-00128, Rome, Italy and
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, Campus Universitario de Espinardo Murcia, E-30100, Spain,
| |
Collapse
|
50
|
Cha JY, Kim WY, Kang SB, Kim JI, Baek D, Jung IJ, Kim MR, Li N, Kim HJ, Nakajima M, Asami T, Sabir JSM, Park HC, Lee SY, Bohnert HJ, Bressan RA, Pardo JM, Yun DJ. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nat Commun 2015; 6:8041. [PMID: 26314500 PMCID: PMC4560777 DOI: 10.1038/ncomms9041] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/11/2015] [Indexed: 11/10/2022] Open
Abstract
YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sun Bin Kang
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Dongwon Baek
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - In Jung Jung
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Mi Ri Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ning Li
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.,Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Hyeong Cheol Park
- Department of Ecological Adaptation, National Institute of Ecology, Seocheon 325-813, Republic of Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hans J Bohnert
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ray A Bressan
- Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jose M Pardo
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Sevilla 41012, Spain
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21Plus), PMBBRC &IALS, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|