1
|
Neumann J, Hofmann B, Dhein S, Gergs U. Cardiac Roles of Serotonin (5-HT) and 5-HT-Receptors in Health and Disease. Int J Mol Sci 2023; 24:4765. [PMID: 36902195 PMCID: PMC10003731 DOI: 10.3390/ijms24054765] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Serotonin acts solely via 5-HT4-receptors to control human cardiac contractile function. The effects of serotonin via 5-HT4-receptors lead to positive inotropic and chronotropic effects, as well as arrhythmias, in the human heart. In addition, 5-HT4-receptors may play a role in sepsis, ischaemia, and reperfusion. These presumptive effects of 5-HT4-receptors are the focus of the present review. We also discuss the formation and inactivation of serotonin in the body, namely, in the heart. We identify cardiovascular diseases where serotonin might play a causative or additional role. We address the mechanisms which 5-HT4-receptors can use for cardiac signal transduction and their possible roles in cardiac diseases. We define areas where further research in this regard should be directed in the future, and identify animal models that might be generated to this end. Finally, we discuss in what regard 5-HT4-receptor agonists or antagonists might be useful drugs that could enter clinical practice. Serotonin has been the target of many studies for decades; thus, we found it timely to summarise our current knowledge here.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Britt Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| | - Stefan Dhein
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Universität Leipzig, D-04109 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany
| |
Collapse
|
2
|
Bravo K, González-Ortiz M, Beltrán-Castillo S, Cáceres D, Eugenín J. Development of the Placenta and Brain Are Affected by Selective Serotonin Reuptake Inhibitor Exposure During Critical Periods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:179-198. [PMID: 37466774 DOI: 10.1007/978-3-031-32554-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are usually prescribed to treat major depression and anxiety disorders. Fetal brain development exhibits dependency on serotonin (5-hydroxytryptamine, 5-HT) from maternal, placental, and fetal brain sources. At very early fetal stages, fetal serotonin is provided by maternal and placental sources. However, in later fetal stages, brain sources are indispensable for the appropriate development of neural circuitry and the rise of emergent functions implied in behavior acquisition. Thus, susceptible serotonin-related critical periods are recognized, involving the early maternal and placental 5-HT synthesis and the later endogenous 5-HT synthesis in the fetal brain. Acute and chronic exposure to SSRIs during these critical periods may result in short- and long-term placental and brain dysfunctions affecting intrauterine and postnatal life. Maternal and fetal cells express serotonin receptors which make them susceptible to changes in serotonin levels influenced by SSRIs. SSRIs block the serotonin transporter (SERT), which is required for 5-HT reuptake from the synaptic cleft into the presynaptic neuron. Chronic SSRI administration leads to pre- and postsynaptic 5-HT receptor rearrangement. In this review, we focus on the effects of SSRIs administered during critical periods upon placentation and brain development to be considered in evaluating the risk-safety balance in the clinical use of SSRIs.
Collapse
Affiliation(s)
- Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile.
- Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Sebastian Beltrán-Castillo
- Centro integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Daniela Cáceres
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
| |
Collapse
|
3
|
Xu H, Chang F, Jain S, Heller BA, Han X, Liu Y, Edwards RH. SNX5 targets a monoamine transporter to the TGN for assembly into dense core vesicles by AP-3. J Cell Biol 2022; 221:e202106083. [PMID: 35426896 PMCID: PMC9016777 DOI: 10.1083/jcb.202106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The time course of signaling by peptide hormones, neural peptides, and other neuromodulators depends on their storage inside dense core vesicles (DCVs). Adaptor protein 3 (AP-3) assembles the membrane proteins that confer regulated release of DCVs and is thought to promote their trafficking from endosomes directly to maturing DCVs. We now find that regulated monoamine release from DCVs requires sorting nexin 5 (SNX5). Loss of SNX5 disrupts trafficking of the vesicular monoamine transporter (VMAT) to DCVs. The mechanism involves a role for SNX5 in retrograde transport of VMAT from endosomes to the TGN. However, this role for SNX5 conflicts with the proposed function of AP-3 in trafficking from endosomes directly to DCVs. We now identify a transient role for AP-3 at the TGN, where it associates with DCV cargo. Thus, retrograde transport from endosomes by SNX5 enables DCV assembly at the TGN by AP-3, resolving the apparent antagonism. A novel role for AP-3 at the TGN has implications for other organelles that also depend on this adaptor.
Collapse
Affiliation(s)
- Hongfei Xu
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Shweta Jain
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Bradley Austin Heller
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Departments of Pharmacology and Biological Chemistry, University of Pittsburgh, Pittsburgh, PA
| | - Robert H. Edwards
- Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Nguyen TD, Mellander L, Lork A, Thomen A, Philipsen M, Kurczy ME, Phan NT, Ewing AG. Visualization of Partial Exocytotic Content Release and Chemical Transport into Nanovesicles in Cells. ACS NANO 2022; 16:4831-4842. [PMID: 35189057 PMCID: PMC8945366 DOI: 10.1021/acsnano.2c00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
For decades, "all-or-none" and "kiss-and-run" were thought to be the only major exocytotic release modes in cell-to-cell communication, while the significance of partial release has not yet been widely recognized and accepted owing to the lack of direct evidence for exocytotic partial release. Correlative imaging with transmission electron microscopy and NanoSIMS imaging and a dual stable isotope labeling approach was used to study the cargo status of vesicles before and after exocytosis; demonstrating a measurable loss of transmitter in individual vesicles following stimulation due to partial release. Model secretory cells were incubated with 13C-labeled l-3,4-dihydroxyphenylalanine, resulting in the loading of 13C-labeled dopamine into their vesicles. A second label, di-N-desethylamiodarone, having the stable isotope 127I, was introduced during stimulation. A significant drop in the level of 13C-labeled dopamine and a reduction in vesicle size, with an increasing level of 127I-, was observed in vesicles of stimulated cells. Colocalization of 13C and 127I- in several vesicles was observed after stimulation. Thus, chemical visualization shows transient opening of vesicles to the exterior of the cell without full release the dopamine cargo. We present a direct calculation for the fraction of neurotransmitter release from combined imaging data. The average vesicular release is 60% of the total catecholamine. An important observation is that extracellular molecules can be introduced to cells during the partial exocytotic release process. This nonendocytic transport process appears to be a general route of entry that might be exploited pharmacologically.
Collapse
Affiliation(s)
- Tho Duc
Khanh Nguyen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Lisa Mellander
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Alicia Lork
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Aurélien Thomen
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Mai Philipsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
| | - Michael E. Kurczy
- DMPK,
Research and Early Development, Cardiovascular, Renal and Metabolism
(CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg S-431 83, Sweden
| | - Nhu T.N. Phan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg SE-412 96, Sweden
- E-mail:
| |
Collapse
|
5
|
Florman JT, Alkema MJ. Co-transmission of neuropeptides and monoamines choreograph the C. elegans escape response. PLoS Genet 2022; 18:e1010091. [PMID: 35239681 PMCID: PMC8932558 DOI: 10.1371/journal.pgen.1010091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/18/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
Co-localization and co-transmission of neurotransmitters and neuropeptides is a core property of neural signaling across species. While co-transmission can increase the flexibility of cellular communication, understanding the functional impact on neural dynamics and behavior remains a major challenge. Here we examine the role of neuropeptide/monoamine co-transmission in the orchestration of the C. elegans escape response. The tyraminergic RIM neurons, which coordinate distinct motor programs of the escape response, also co-express the neuropeptide encoding gene flp-18. We find that in response to a mechanical stimulus, flp-18 mutants have defects in locomotory arousal and head bending that facilitate the omega turn. We show that the induction of the escape response leads to the release of FLP-18 neuropeptides. FLP-18 modulates the escape response through the activation of the G-protein coupled receptor NPR-5. FLP-18 increases intracellular calcium levels in neck and body wall muscles to promote body bending. Our results show that FLP-18 and tyramine act in different tissues in both a complementary and antagonistic manner to control distinct motor programs during different phases of the C. elegans flight response. Our study reveals basic principles by which co-transmission of monoamines and neuropeptides orchestrate in arousal and behavior in response to stress.
Collapse
Affiliation(s)
- Jeremy T. Florman
- Department of Neurobiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Mark J. Alkema
- Department of Neurobiology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Gu C, Ewing AG. Simultaneous detection of vesicular content and exocytotic release with two electrodes in and at a single cell. Chem Sci 2021; 12:7393-7400. [PMID: 34163829 PMCID: PMC8171312 DOI: 10.1039/d1sc01190a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We developed a technique employing two electrodes to simultaneously and dynamically monitor vesicular neurotransmitter storage and vesicular transmitter release in and at the same cell. To do this, two electrochemical techniques, single-cell amperometry (SCA) and intracellular vesicle impact electrochemical cytometry (IVIEC), were applied using two nanotip electrodes. With one electrode being placed on top of a cell measuring exocytotic release and the other electrode being inserted into the cytoplasm measuring vesicular transmitter storage, upon chemical stimulation, exocytosis is triggered and the amount of release and storage can be quantified simultaneously and compared. By using this technique, we made direct comparison between exocytotic release and vesicular storage, and investigated the dynamic changes of vesicular transmitter content before, during, and after chemical stimulation of PC12 cells, a neuroendocrine cell line. While confirming that exocytosis is partial, we suggest that chemical stimulation either induces a replenishment of the releasable pool with a subpool of vesicles having higher amount of transmitter storage, or triggers the vesicles within the same subpool to load more transiently at approximately 10–20 s. Thus, a time scale for vesicle reloading is determined. The effect of l-3,4-dihydroxyphenylalanine (l-DOPA), the precursor to dopamine, on the dynamic alteration of vesicular storage upon chemical stimulation for exocytosis was also studied. We found that l-DOPA incubation reduces the observed changes of vesicular storage in regular PC12 cells, which might be due to an increased capacity of vesicular transmitter loading caused by l-DOPA. Our data provide another mechanism for plasticity after stimulation via quantitative and dynamic changes in the exocytotic machinery. Simultaneous measurements of IVIEC and SCA by two nanotip electrodes allows direct and dynamic comparison between vesicular transmitter content and vesicular transmitter release to shed light on stimulation-induced plasticity.![]()
Collapse
Affiliation(s)
- Chaoyi Gu
- Department of Chemistry and Molecular Biology, University of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg Kemivägen 10 412 96 Gothenburg Sweden
| |
Collapse
|
7
|
The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release. J Neurosci 2021; 41:2828-2841. [PMID: 33632727 DOI: 10.1523/jneurosci.2593-19.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Common fusion machinery mediates the Ca2+-dependent exocytosis of synaptic vesicles (SVs) and dense-core vesicles (DCVs). Previously, Synapsin Ia (Syn Ia) was found to localize to SVs, essential for mobilizing SVs to the plasma membrane through phosphorylation. However, whether (or how) the phosphoprotein Syn Ia plays a role in regulating DCV exocytosis remains unknown. To answer these questions, we measured the dynamics of DCV exocytosis by using single-vesicle amperometry in PC12 cells (derived from the pheochromocytoma of rats of unknown sex) overexpressing wild-type or phosphodeficient Syn Ia. We found that overexpression of phosphodeficient Syn Ia decreased the DCV secretion rate, specifically via residues previously shown to undergo calmodulin-dependent kinase (CaMK)-mediated phosphorylation (S9, S566, and S603). Moreover, the fusion pore kinetics during DCV exocytosis were found to be differentially regulated by Syn Ia and two phosphodeficient Syn Ia mutants (Syn Ia-S62A and Syn Ia-S9,566,603A). Kinetic analysis suggested that Syn Ia may regulate the closure and dilation of DCV fusion pores via these sites, implying the potential interactions of Syn Ia with certain DCV proteins involved in the regulation of fusion pore dynamics. Furthermore, we predicted the interaction of Syn Ia with several DCV proteins, including Synaptophysin (Syp) and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins. By immunoprecipitation, we found that Syn Ia interacted with Syp via phosphorylation. Moreover, a proximity ligation assay (PLA) confirmed their phosphorylation-dependent, in situ interaction on DCVs. Together, these findings reveal a phosphorylation-mediated regulation of DCV exocytosis by Syn Ia.SIGNIFICANCE STATEMENT Although they exhibit distinct exocytosis dynamics upon stimulation, synaptic vesicles (SVs) and dense-core vesicles (DCVs) may undergo co-release in neurons and neuroendocrine cells through an undefined molecular mechanism. Synapsin Ia (Syn Ia) is known to recruit SVs to the plasma membrane via phosphorylation. Here, we examined whether Syn Ia also affects the dynamics of DCV exocytosis. We showed that Syn Ia regulates the DCV secretion rate and fusion pore kinetics during DCV exocytosis. Moreover, Syn Ia-mediated regulation of DCV exocytosis depends on phosphorylation. We further found that Syn Ia interacts with Synaptophysin (Syp) on DCVs in a phosphorylation-dependent manner. Thus, these results suggest that Syn Ia may regulate the release of DCVs via phosphorylation.
Collapse
|
8
|
Srivastava AK, Roy Choudhury S, Karmakar S. Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomater Sci 2020; 8:1345-1363. [PMID: 31912833 DOI: 10.1039/c9bm01602c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and localized deposition of cytoplasmic fibrillary inclusions as Lewy bodies in the brain. The aberrant phosphorylation of α-synuclein at serine 129 is the key process on its early onset, which alters the cellular conformation to oligomers and insoluble aggregates, underpinning cellular oxidative stress and mitochondrial dysfunction, leading to devastating PD synucleinopathy. The multiple neuroprotective roles of dopamine and melatonin are often demonstrated separately; however, this approach suffers from low and short bioavailability and is associated with side-effects upon overdosing. Herein, highly pleiotropic melatonin-enriched polydopamine nanostructures were fabricated, which showed efficient brain tissue retention, sustainable and prolonged melatonin release, and prevented neuroblastoma cell death elicited by Parkinson's disease-associated and mitochondrial damaging stimuli. The synergistic neuroprotection re-established the mitochondrial membrane potential, reduced the generation of cellular reactive oxygen species (ROS), inhibited the activation of both the caspase-dependent and independent apoptotic pathways, and exhibited an anti-inflammatory effect. At the molecular level, it suppressed α-synuclein phosphorylation at Ser 129 and reduced the cellular deposition of high molecular weight oligomers. The therapeutic assessment on ex vivo organotypic brain slice culture, and in vivo experimental PD model confirmed the superior brain targeting, collective neuroprotection on dopaminergic neurons with reduced alpha-synuclein phosphorylation and deposition in the hippocampal and substantia nigra region of the brain. Thus, nature-inspired melatonin-enriched polydopamine nanostructures conferring collective neuroprotective effects attributes activation of anti-oxidative, anti-inflammatory, and anti-apoptotic pathways may be superior for application in a nanomedicine-based PD therapy.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Sector-64, Mohali, Punjab-160062, India.
| | | | | |
Collapse
|
9
|
Hummer BH, Maslar D, Soltero-Gutierrez M, de Leeuw NF, Asensio CS. Differential sorting behavior for soluble and transmembrane cargoes at the trans-Golgi network in endocrine cells. Mol Biol Cell 2019; 31:157-166. [PMID: 31825717 PMCID: PMC7001476 DOI: 10.1091/mbc.e19-10-0561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Regulated secretion of neuropeptides and peptide hormones by secretory granules (SGs) is central to physiology. Formation of SGs occurs at the trans-Golgi network (TGN) where their soluble cargo aggregates to form a dense core, but the mechanisms controlling the sorting of regulated secretory cargoes (soluble and transmembrane) away from constitutively secreted proteins remain unclear. Optimizing the use of the retention using selective hooks method in (neuro-)endocrine cells, we now quantify TGN budding kinetics of constitutive and regulated secretory cargoes. We further show that, by monitoring two cargoes simultaneously, it becomes possible to visualize sorting to the constitutive and regulated secretory pathways in real time. Further analysis of the localization of SG cargoes immediately after budding from the TGN revealed that, surprisingly, the bulk of two studied transmembrane SG cargoes (phogrin and VMAT2) does not sort directly onto SGs during budding, but rather exit the TGN into nonregulated vesicles to get incorporated to SGs at a later step. This differential behavior of soluble and transmembrane cargoes suggests a more complex model of SG biogenesis than anticipated.
Collapse
Affiliation(s)
| | | | | | - Noah F de Leeuw
- Department of Physics and Astronomy, University of Denver, Denver, CO 80210
| | | |
Collapse
|
10
|
Sato DX, Ishii Y, Nagai T, Ohashi K, Kawata M. Human-specific mutations in VMAT1 confer functional changes and multi-directional evolution in the regulation of monoamine circuits. BMC Evol Biol 2019; 19:220. [PMID: 31791232 PMCID: PMC6889191 DOI: 10.1186/s12862-019-1543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neurochemicals like serotonin and dopamine play crucial roles in human cognitive and emotional functions. Vesicular monoamine transporter 1 (VMAT1) transports monoamine neurotransmitters, and its variant (136Thr) is associated with various psychopathological symptoms and reduced monoamine uptake relative to 136Ile. We previously showed that two human-specific amino acid substitutions (Glu130Gly and Asn136Thr/Ile) of VMAT1 were subject to positive natural selection. However, the potential functional alterations caused by these substitutions (Glu130Gly and Asn136Thr) remain unclear. To assess functional changes in VMAT1 from an evolutionary perspective, we reconstructed ancestral residues and examined the role of these substitutions in monoamine uptake in vitro using fluorescent false neurotransmitters (FFN), which are newly developed substances used to quantitatively assay VMATs. RESULTS Immunoblotting confirmed that all the transfected YFP-VMAT1 variants are properly expressed in HEK293T cells at comparable levels, and no significant difference was seen in the density and the size of vesicles among them. Our fluorescent assays revealed a significant difference in FFN206 uptake among VMAT1 variants: 130Glu/136Asn, 130Glu/136Thr, and 130Gly/136Ile showed significantly higher levels of FFN206 uptake than 130Gly/136Asn and 130Gly/136Thr, indicating that both 130Glu and 136Ile led to increased neurotransmitter uptake, for which 136Thr and 136Asn were comparable by contrast. CONCLUSIONS These findings suggest that monoamine uptake by VMAT1 initially declined (from 130Glu/136Asn to 130Gly/136Thr) in human evolution, possibly resulting in higher susceptibility to the external environment of our ancestors.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuu Ishii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Tomoaki Nagai
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazumasa Ohashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
11
|
Yan K, Zhang W, Han X, Chang F, Liu Y. Inhibitory role of peroxiredoxin 2 in LRRK2 kinase activity induced cellular pathogenesis. J Biomed Res 2019; 34:103-113. [PMID: 32305964 DOI: 10.7555/jbr.33.20190090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease. One of the known genetic contributors to PD pathogenesis is leucine-rich repeat kinase 2 (LRRK2) whose mutations with elevated kinase activity could lead to both familial and sporadic PD. However, how the pathogenic kinase activity of LRRK2 is regulated remains largely unclear. Here we report that peroxiredoxin 2 (Prx2) was identified as a novel interacting protein to LRRK2 with preferential expression in dopaminergic neurons over other Prx proteins. We also confirmed that Prx2 interacted with LRRK2 through its COR domain and its overexpression significantly decreased the kinase activity of mutant LRRK2. Functionally, overexpressed Prx2 rescued the transfected cells from LRRK2 mutant induced apoptotic processes. Importantly, overexpressed Prx2 reversed the altered subcellular distribution of cation-independent mannose 6-phosphate receptor (CI-M6PR) induced by PD-mutant LRRK2. Our results suggest that, by interacting with LRRK2, Prx2 may play an inhibitory role in the LRRK2 mediated cellular toxicity in PD by inhibiting its kinase activity.
Collapse
Affiliation(s)
- Kang Yan
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
12
|
Blakely RD, El Mestikawy S, Robinson MB. The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2018; 123:1-6. [PMID: 30571999 DOI: 10.1016/j.neuint.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The brain has specific properties that make it uniquely dependent upon transporters. This is the 3rd edition of a biennial special issue that originates from a scientific meeting devoted to studies of transporters and their relationship to brain function and to neurodevelopmental, neurologic, and psychiatric disorders. The field continues to rapidly evolve with advances in studies of structure that inform mechanism, with genetic analyses in humans revealing surprising aspects of biology, and with integrated cellular to whole animal analyses of the role of transporters in their control of physiology and pathophysiology. This special issue includes a sampling of review articles that address timely questions of the field followed by several primary research articles.
Collapse
Affiliation(s)
- Randy D Blakely
- Florida Atlantic University Brain Institute, Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, United States
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada; Sorbonne Universités, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
13
|
McKenzie C, Spanova M, Johnson A, Kainrath S, Zheden V, Sitte HH, Janovjak H. Isolation of synaptic vesicles from genetically engineered cultured neurons. J Neurosci Methods 2018; 312:114-121. [PMID: 30496761 DOI: 10.1016/j.jneumeth.2018.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Synaptic vesicles (SVs) are an integral part of the neurotransmission machinery, and isolation of SVs from their host neuron is necessary to reveal their most fundamental biochemical and functional properties in in vitro assays. Isolated SVs from neurons that have been genetically engineered, e.g. to introduce genetically encoded indicators, are not readily available but would permit new insights into SV structure and function. Furthermore, it is unclear if cultured neurons can provide sufficient starting material for SV isolation procedures. NEW METHOD Here, we demonstrate an efficient ex vivo procedure to obtain functional SVs from cultured rat cortical neurons after genetic engineering with a lentivirus. RESULTS We show that ∼108 plated cortical neurons allow isolation of suitable SV amounts for functional analysis and imaging. We found that SVs isolated from cultured neurons have neurotransmitter uptake comparable to that of SVs isolated from intact cortex. Using total internal reflection fluorescence (TIRF) microscopy, we visualized an exogenous SV-targeted marker protein and demonstrated the high efficiency of SV modification. COMPARISON WITH EXISTING METHODS Obtaining SVs from genetically engineered neurons currently generally requires the availability of transgenic animals, which is constrained by technical (e.g. cost and time) and biological (e.g. developmental defects and lethality) limitations. CONCLUSIONS These results demonstrate the modification and isolation of functional SVs using cultured neurons and viral transduction. The ability to readily obtain SVs from genetically engineered neurons will permit linking in situ studies to in vitro experiments in a variety of genetic contexts.
Collapse
Affiliation(s)
- Catherine McKenzie
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Miroslava Spanova
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Stephanie Kainrath
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Vanessa Zheden
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Harald H Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Waehringerstrasse 13A, 1090, Vienna, Austria
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
14
|
Dijkstra AA, Lin LC, Nana AL, Gaus SE, Seeley WW. Von Economo Neurons and Fork Cells: A Neurochemical Signature Linked to Monoaminergic Function. Cereb Cortex 2018; 28:131-144. [PMID: 27913432 PMCID: PMC6075576 DOI: 10.1093/cercor/bhw358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
The human anterior cingulate and frontoinsular cortices are distinguished by 2 unique Layer 5 neuronal morphotypes, the von Economo neurons (VENs) and fork cells, whose biological identity remains mysterious. Insights could impact research on diverse neuropsychiatric diseases to which these cells have been linked. Here, we leveraged the Allen Brain Atlas to evaluate mRNA expression of 176 neurotransmitter-related genes and identified vesicular monoamine transporter 2 (VMAT2), gamma-aminobutyric acid (GABA) receptor subunit θ (GABRQ), and adrenoreceptor α-1A (ADRA1A) expression in human VENs, fork cells, and a minority of neighboring Layer 5 neurons. We confirmed these results using immunohistochemistry or in situ hybridization. VMAT2 and GABRQ expression was absent in mouse cerebral cortex. Although VMAT2 is known to package monoamines into synaptic vesicles, in VENs and fork cells its expression occurs in the absence of monoamine-synthesizing enzymes or reuptake transporters. Thus, VENs and fork cells may possess a novel, uncharacterized mode of cortical monoaminergic function that distinguishes them from most other mammalian Layer 5 neurons.
Collapse
Affiliation(s)
- Anke A Dijkstra
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Li-Chun Lin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Stephanie E Gaus
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
16
|
Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB. Costorage of Enteroendocrine Hormones Evaluated at the Cell and Subcellular Levels in Male Mice. Endocrinology 2017; 158:2113-2123. [PMID: 28430903 DOI: 10.1210/en.2017-00243] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Recent studies reveal complex patterns of hormone coexpression within enteroendocrine cells (EECs), contrary to the traditional view that gut hormones are expressed individually in EECs. Moreover, different hormones have been found in separate subcellular vesicles. However, detailed analysis of relative expression of multiple hormones has not been made. Subcellular studies have been confined to peptide hormones, and have not included the indolamine 5-hydroxytryptamine (5-HT) or the neuroendocrine protein chromogranin A (CgA). In the present work, coexpression of 5-HT, CgA, secretin, cholecystokinin (CCK), ghrelin, and glucagonlike peptide (GLP)-1 in mouse duodenum was quantified at a cellular and subcellular level by semiautomated cell counting and quantitative vesicle measurements. We investigated whether relative numbers of cells with colocalized hormones analyzed at a cell level matched the numbers revealed by examination of individual storage vesicles within cells. CgA and 5-HT were frequently expressed in EECs that contained combinations of GLP-1, ghrelin, secretin, and CCK. Separate subcellular stores of 5-HT, CgA, secretin, CCK, ghrelin, and GLP-1 were identified. In some cases, high-resolution analysis revealed small numbers of immunoreactive vesicles in cells dominated by a different hormone. Thus the observed incidence of cells with colocalized hormones is greater when analyzed at a subcellular, compared with a cellular, level. Subcellular analysis also showed that relative numbers of vesicles differ considerably between cells. Thus separate packaging of hormones that are colocalized is a general feature of EECs, and EECs exhibit substantial heterogeneity, including the colocalization of hormones that were formerly thought to be in cells of different lineages.
Collapse
Affiliation(s)
- Linda J Fothergill
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Zhao Y, Zhong X, Ou X, Cai H, Wu X, Huang R. Cotransfecting norepinephrine transporter and vesicular monoamine transporter 2 genes for increased retention of metaiodobenzylguanidine labeled with iodine 131 in malignant hepatocarcinoma cells. Front Med 2017; 11:120-128. [PMID: 28213878 DOI: 10.1007/s11684-017-0501-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023]
Abstract
Norepinephrine transporter (NET) transfection leads to significant uptake of iodine-131-labeled metaiodobenzylguanidine (131I-MIBG) in non-neuroendocrine tumors. However, the use of 131I-MIBG is limited by its short retention time in target cells. To prolong the retention of 131I-MIBG in target cells, we infected hepatocarcinoma (HepG2) cells with Lentivirus-encoding human NET and vesicular monoamine transporter 2 (VMAT2) genes to obtain NET-expressing, NET-VMAT2-coexpressing, and negative-control cell lines. We evaluated the uptake and efflux of 131I-MIBG both in vitro and in vivo in mice bearing transfected tumors. NET-expressing and NET-VMAT2-coexpressing cells respectively showed 2.24 and 2.22 times higher 131I-MIBG uptake than controls. Two hours after removal of 131I-MIBG-containing medium, 25.4% efflux was observed in NET-VMAT2-coexpressing cells and 38.6% in NET-expressing cells. In vivo experiments were performed in nude mice bearing transfected tumors; results revealed that NET-VMAT2-coexpressing tumors had longer 131I-MIBG retention time than NET-expressing tumors. Meanwhile, NET-VMAT2-coexpressing and NET-expressing tumors displayed 0.54% and 0.19%, respectively, of the injected dose per gram of tissue 24 h after 131I-MIBG administration. Cotransfection of HepG2 cells with NET and VMAT2 resulted in increased 131I-MIBG uptake and retention. However, the degree of increase was insufficient to be therapeutically effective in target cells.
Collapse
Affiliation(s)
- Yanlin Zhao
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaohong Ou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Abstract
Biogenic amine transporters mediate two important steps in the reuptake and recycling of monoamines released by neurons in the central nervous system. First, high-affinity transporters found in the plasma membrane of neurons and glial cells mediate the removal of neurotransmitter from the extracellular space, thus terminating the action of the monoamines serotonin, norepinephrine, and dopamine. Within the cell, vesicular transporters repackage monoamines into vesicles for additional cycles of release. Two gene families are involved in the transport of the biogenic amines—the Na+/Cl--dependent plasma membrane carriers and the H+-dependent vesicular amine carriers. These transporters are known to regulate neurotransmitter con centrations in monoaminergic pathways and are the primary targets for a wide variety of clinically important antidepressants, antihypertensives, stimulants, and stimulant drugs of abuse. The Neuroscientist 1:259-267, 1995
Collapse
Affiliation(s)
- Susan G. Amara
- The Vollum Institute and Howard Hughes Medical Institute
Oregon Health Sciences University Portland, Oregon
| |
Collapse
|
19
|
Butler B, Sambo D, Khoshbouei H. Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 2016; 83-84:41-49. [PMID: 27334403 DOI: 10.1016/j.jchemneu.2016.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 01/13/2023]
Abstract
Alpha-synuclein is a small, highly charged protein encoded by the synuclein or SNCA gene that is predominantly expressed in central nervous system neurons. Although its physiological function remains enigmatic, alpha-synuclein is implicated in movement disorders such as Parkinson's disease, multiple system atrophy, and in neurodegenerative diseases such as Dementia with Lewy bodies. Here we have focused on reviewing the existing literature pertaining to wild-type alpha-synuclein structure, its properties, and its potential involvement in regulation of dopamine neurotransmission.
Collapse
Affiliation(s)
- Brittany Butler
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Danielle Sambo
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Habibeh Khoshbouei
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611.
| |
Collapse
|
20
|
Wu Q, Xu H, Wang W, Chang F, Jiang Y, Liu Y. Retrograde trafficking of VMAT2 and its role in protein stability in non-neuronal cells. J Biomed Res 2016; 30:502-509. [PMID: 27924069 PMCID: PMC5138583 DOI: 10.7555/jbr.30.20160061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/08/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Increasing evidence suggests that the impaired neuroprotection of vesicular monoamine transporter 2 (VMAT2) contributes to the pathogenesis of Parkinson's disease. That has been linked to aberrant subcellular retrograde trafficking as strongly indicated by recent genomic studies on familial Parkinson's diseases. However, whether VMAT2 function is regulated by retrograde trafficking is unknown. By using biochemistry and cell biology approaches, we have shown that VMAT2 was stringently localized to the trans-Golgi network and underwent retrograde trafficking in non-neuronal cells. The transporter also interacted with the key component of retromer, Vps35, biochemically and subcellularly. Using specific siRNA, we further showed that Vps35 depletion altered subcellular localization of VMAT2. Moreover, siRNA-mediated Vps35 knockdown also decreased the stability of VMAT2 as demonstrated by the reduced half-life. Thus, our work suggested that altered vesicular trafficking of VMAT2 may play a vital role in neuroprotection of the transporter as well as in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Qiuzi Wu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Wang
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Jiang
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yongjian Liu
- Department of Physiology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA;
| |
Collapse
|
21
|
Kourtesis I, Kasparov S, Verkade P, Teschemacher AG. Ultrastructural Correlates of Enhanced Norepinephrine and Neuropeptide Y Cotransmission in the Spontaneously Hypertensive Rat Brain. ASN Neuro 2015; 7:7/5/1759091415610115. [PMID: 26514659 PMCID: PMC4641560 DOI: 10.1177/1759091415610115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas—nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.
Collapse
Affiliation(s)
- Ioannis Kourtesis
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Sergey Kasparov
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| | - Paul Verkade
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK School of Biochemistry, University of Bristol, UK Wolfson Bioimaging Facility, University of Bristol, UK
| | - Anja G Teschemacher
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| |
Collapse
|
22
|
The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors. J Neurosci 2014; 34:6924-37. [PMID: 24828646 DOI: 10.1523/jneurosci.0694-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.
Collapse
|
23
|
Sirkis DW, Edwards RH, Asensio CS. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLoS Genet 2013; 9:e1003812. [PMID: 24086151 PMCID: PMC3784564 DOI: 10.1371/journal.pgen.1003812] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022] Open
Abstract
The regulated secretion of peptide hormones, neural peptides and many growth factors depends on their sorting into large dense core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network, but the mechanisms that sort proteins to this regulated secretory pathway and the cytosolic machinery that produces LDCVs remain poorly understood. Recently, we used an RNAi screen to identify a role for heterotetrameric adaptor protein AP-3 in regulated secretion and in particular, LDCV formation. Indeed, mocha mice lacking AP-3 have a severe neurological and behavioral phenotype, but this has been attributed to a role for AP-3 in the endolysosomal rather than biosynthetic pathway. We therefore used mocha mice to determine whether loss of AP-3 also dysregulates peptide release in vivo. We find that adrenal chromaffin cells from mocha animals show increased constitutive exocytosis of both soluble cargo and LDCV membrane proteins, reducing the response to stimulation. We also observe increased basal release of both insulin and glucagon from pancreatic islet cells of mocha mice, suggesting a global disturbance in the release of peptide hormones. AP-3 exists as both ubiquitous and neuronal isoforms, but the analysis of mice lacking each of these isoforms individually and together shows that loss of both is required to reproduce the effect of the mocha mutation on the regulated pathway. In addition, we show that loss of the related adaptor protein AP-1 has a similar effect on regulated secretion but exacerbates the effect of AP-3 RNAi, suggesting distinct roles for the two adaptors in the regulated secretory pathway.
Collapse
Affiliation(s)
- Daniel W. Sirkis
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Robert H. Edwards
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California, United States of America
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Cédric S. Asensio
- Departments of Physiology and Neurology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
24
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
25
|
Papke JB, Moore-Dotson JM, Watson DJ, Wedell CD, French LR, Rendell SR, Harkins AB. Titration of synaptotagmin I expression differentially regulates release of norepinephrine and neuropeptide Y. Neuroscience 2012; 218:78-88. [PMID: 22609930 DOI: 10.1016/j.neuroscience.2012.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/20/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022]
Abstract
Synaptotagmin (syt) I is a Ca(2+) sensor that has been thought to trigger all vesicle secretion with similar mechanisms. However, given the calcium and stimulation requirements of small clear, and large dense core vesicles, we hypothesized that syt I expression differentially regulates vesicle release. Therefore, in this study, we generated multiple stable cell lines of PC12 cells that each had a different and stable level of syt I expression. We determined the functional effects of titrated syt I expression on transmitter release from the two vesicle types, and showed that the transmitters, norepinephrine (NE) and neuropeptide Y (NPY), each have a threshold level of syt I expression required for their release that is different for the two transmitter types. We used carbon fiber amperometry to measure release of NE from single vesicles, and found that release ranged from 50% to 100% in the syt I-targeted cells compared to release from control cells. We used an immunoassay to measure NPY release and found that NPY release was abolished in cells that had abolished syt I expression, but cell lines that expressed 50-60% of control levels of syt I exhibited NPY release levels comparable to release of NPY from control cells. Furthermore, the vesicle fusion pore exhibited a reduced open duration when syt I was abolished, but a longer open duration time for 50% syt I expression than control cells. Therefore, vesicles have a threshold for syt I that is required to control opening of the fusion pore, expansion, and full fusion to release large dense core proteins, but not for full fusion of the small molecules like NE.
Collapse
Affiliation(s)
- J B Papke
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Monocular enucleation profoundly reduces secretogranin II expression in adult mouse visual cortex. Neurochem Int 2011; 59:1082-94. [DOI: 10.1016/j.neuint.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/12/2011] [Indexed: 11/21/2022]
|
27
|
Asensio CS, Sirkis DW, Edwards RH. RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. ACTA ACUST UNITED AC 2011; 191:1173-87. [PMID: 21149569 PMCID: PMC3002028 DOI: 10.1083/jcb.201006131] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AP-3 concentrates proteins within large dense-core vesicles to promote regulated exocytosis. The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila melanogaster S2 cells, we now identify a small number of genes, including several subunits of the heterotetrameric adaptor protein AP-3, which are required for sorting to the RSP. In mammalian neuroendocrine cells, loss of AP-3 dysregulates exocytosis due to a primary defect in LDCV formation. Previous work implicated AP-3 in the endocytic pathway, but we find that AP-3 promotes sorting to the RSP within the biosynthetic pathway at the level of the TGN. Although vesicles with a dense core still form in the absence of AP-3, they contain substantially less synaptotagmin 1, indicating that AP-3 concentrates the proteins required for regulated exocytosis.
Collapse
Affiliation(s)
- Cédric S Asensio
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
28
|
Abstract
Hypothalamic dopamine neurons inhibit pituitary prolactin secretion. In this issue of Neuron, Lyons et al. provide evidence for a novel model, whereby the excitatory neuropeptide TRH depolarizes gap-junction-coupled dopamine neurons, leading to a shift in the population pattern of action potentials from phasic burst firing to regular tonic firing, hypothetically reducing dopamine release while increasing total spike number.
Collapse
|
29
|
Grygoruk A, Fei H, Daniels RW, Miller BR, Diantonio A, Krantz DE. A tyrosine-based motif localizes a Drosophila vesicular transporter to synaptic vesicles in vivo. J Biol Chem 2010; 285:6867-78. [PMID: 20053989 DOI: 10.1074/jbc.m109.073064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vesicular neurotransmitter transporters must localize to synaptic vesicles (SVs) to allow regulated neurotransmitter release at the synapse. However, the signals required to localize vesicular proteins to SVs in vivo remain unclear. To address this question we have tested the effects of mutating proposed trafficking domains in Drosophila orthologs of the vesicular monoamine and glutamate transporters, DVMAT-A and DVGLUT. We show that a tyrosine-based motif (YXXY) is important both for DVMAT-A internalization from the cell surface in vitro, and localization to SVs in vivo. In contrast, DVGLUT deletion mutants that lack a putative C-terminal trafficking domain show more modest defects in both internalization in vitro and trafficking to SVs in vivo. Our data show for the first time that mutation of a specific trafficking motif can disrupt localization to SVs in vivo and suggest possible differences in the sorting of VMATs versus VGLUTs to SVs at the synapse.
Collapse
Affiliation(s)
- Anna Grygoruk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
30
|
Cartier EA, Parra LA, Baust TB, Quiroz M, Salazar G, Faundez V, Egaña L, Torres GE. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. J Biol Chem 2009; 285:1957-66. [PMID: 19903816 DOI: 10.1074/jbc.m109.054510] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT(2)) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process. First, the rate-limiting enzyme tyrosine hydroxylase (TH) converts tyrosine to di-OH-phenylalanine. Aromatic amino acid decarboxylase (AADC) then converts di-OH-phenylalanine into DA. Here, we provide evidence that VMAT(2) physically and functionally interacts with the enzymes responsible for DA synthesis. In rat striata, TH and AADC co-immunoprecipitate with VMAT(2), whereas in PC 12 cells, TH co-immunoprecipitates with the closely related VMAT(1) and with overexpressed VMAT(2). GST pull-down assays further identified three cytosolic domains of VMAT(2) involved in the interaction with TH and AADC. Furthermore, in vitro binding assays demonstrated that TH directly interacts with VMAT(2). Additionally, using fractionation and immunoisolation approaches, we demonstrate that TH and AADC associate with VMAT(2)-containing synaptic vesicles from rat brain. These vesicles exhibited specific TH activity. Finally, the coupling between synthesis and transport of DA into vesicles was impaired in the presence of fragments involved in the VMAT(2)/TH/AADC interaction. Taken together, our results indicate that DA synthesis can occur at the synaptic vesicle membrane, where it is physically and functionally coupled to VMAT(2)-mediated transport into vesicles.
Collapse
Affiliation(s)
- Etienne A Cartier
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Genome-wide association studies have identified multiple genetic polymorphisms associated with schizophrenia. These polymorphisms conform to a polygenic disease model in which multiple alleles cumulatively increase the risk of developing disease. Two genes linked to schizophrenia, DTNBP1 and MUTED, encode proteins that belong to the endosome-localized Biogenesis of Lysosome-related Organelles Complex-1 (BLOC-1). BLOC-1 plays a key role in endosomal trafficking and as such has been found to regulate cell-surface abundance of the D2 dopamine receptor, the biogenesis and fusion of synaptic vesicles, and neurite outgrowth. These functions are pertinent to both neurodevelopment and synaptic transmission, processes tightly regulated by selective cell-surface delivery of membrane proteins to and from endosomes. We propose that cellular processes, such as endosomal trafficking, act as convergence points in which multiple small effects from polygenic genetic polymorphisms accumulate to promote the development of schizophrenia.
Collapse
Affiliation(s)
- Pearl V. Ryder
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322
| |
Collapse
|
32
|
Park Y, Kim KT. Short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Cell Signal 2009; 21:1465-70. [PMID: 19249357 DOI: 10.1016/j.cellsig.2009.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Synaptic plasticity results from changes in the strength of synaptic transmission upon repetitive stimulation. The amount of neurotransmitter released from presynaptic terminals can regulate short-term plasticity that lasts for a few minutes. This review focuses on short-term plasticity of small synaptic vesicle (SSV) and large dense-core vesicle (LDCV) exocytosis. Whereas SSVs contain classical neurotransmitters and activate ion channels, LDCVs contain neuropeptides and hormones which primarily activate G protein-coupled receptors (GPCRs). Thus, LDCV exocytosis is mainly associated with modulation of synaptic activity and cannot induce synaptic activity by itself. As in SSV exocytosis, repetitive stimulation leads to short-term enhancement of LDCV exocytosis: i.e., activity-dependent potentiation (ADP) which represents potentiation of neurotransmitter release. Short-term plasticity of SSV exocytosis results from Ca2+ accumulation, but ADP of LDCV exocytosis does not. Here, we review the signaling mechanisms and differences of short-term plasticity in exocytotic processes of SSV and LDCV.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | |
Collapse
|
33
|
Mingorance-Le Meur A, Mohebiany AN, O'Connor TP. Varicones and growth cones: two neurite terminals in PC12 cells. PLoS One 2009; 4:e4334. [PMID: 19183810 PMCID: PMC2629561 DOI: 10.1371/journal.pone.0004334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022] Open
Abstract
The rat adrenal pheochromocytoma PC12 cell line is one of the traditional models for the study of neurite outgrowth and growth cone behavior. To clarify to what extent PC12 neurite terminals can be compared to neuronal growth cones, we have analyzed their morphology and protein distribution in fixed PC12 cells by immunocytochemistry. Our results show that that PC12 cells display a special kind of neurite terminal that includes a varicosity in close association with a growth cone. This hybrid terminal, or "varicone", is characterized by the expression of specific markers not typically present in neuronal growth cones. For example, we show that calpain-2 is a specific marker of varicones and can be detected even before the neurite develops. Our data also shows that a fraction of PC12 neurites end in regular growth cones, which we have compared to hippocampal neurites as a control. We also report the extraordinary incidence of varicones in the literature referred to as "growth cones". In summary, we provide evidence of two different kinds of neurite terminals in PC12 cells, including a PC12-specific terminal, which implies that care must be taken when using them as a model for neuronal growth cones or neurite outgrowth.
Collapse
Affiliation(s)
- Ana Mingorance-Le Meur
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
34
|
Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE. Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9:1425-36. [PMID: 18507811 DOI: 10.1111/j.1600-0854.2008.00771.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
35
|
Izumi Y, Yamamoto N, Kume T, Katsuki H, Sawada H, Akaike A. Regulation of intracellular dopamine levels by dopaminergic drugs: Involvement of vesicular monoamine transporter. Eur J Pharmacol 2008; 582:52-61. [DOI: 10.1016/j.ejphar.2007.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/28/2007] [Accepted: 12/16/2007] [Indexed: 11/30/2022]
|
36
|
Colgan L, Liu H, Huang SY, Liu YJ. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter. Traffic 2008; 8:512-22. [PMID: 17451554 DOI: 10.1111/j.1600-0854.2007.00555.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient cholinergic transmission requires accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs). However, the signals that regulate this vesicular targeting are not well characterized. Although previous studies suggest that the C-terminus of the transporter is required for its SV targeting, it is not clear whether this region is sufficient for this process. Furthermore, a synaptic vesicle-targeting motif (SVTM) within this sequence remains to be identified. Here we use a chimeric protein, TacA, between an unrelated plasma membrane protein, Tac, and the C-terminus of VAChT to demonstrate the sufficiency of the C-terminus for targeting to synaptic vesicle-like vesicles (SVLVs) in PC12 cells. TacA shows colocalization and cosedimentation with the SV marker synaptophysin. Deletion mutation analysis of TacA demonstrates that a short, dileucine motif-containing sequence is required and sufficient to direct this targeting. Dialanine mutation analysis within this sequence suggests indistinguishable signals for both internalization and SV sorting. Using additional chimeras as controls, we confirm the specificity of this region for SVLVs targeting. Therefore, we suggest that the dileucine-containing motif is sufficient as a dual signal for both internalization and SV targeting during VAChT trafficking.
Collapse
Affiliation(s)
- Lesley Colgan
- Department of Neurology, University of Pittsburgh School of Medicine, S512 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
37
|
Ortega R, Cloetens P, Devès G, Carmona A, Bohic S. Iron storage within dopamine neurovesicles revealed by chemical nano-imaging. PLoS One 2007; 2:e925. [PMID: 17895967 PMCID: PMC1976597 DOI: 10.1371/journal.pone.0000925] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 08/08/2007] [Indexed: 11/20/2022] Open
Abstract
Altered homeostasis of metal ions is suspected to play a critical role in neurodegeneration. However, the lack of analytical technique with sufficient spatial resolution prevents the investigation of metals distribution in neurons. An original experimental setup was developed to perform chemical element imaging with a 90 nm spatial resolution using synchrotron-based X-ray fluorescence. This unique spatial resolution, combined to a high brightness, enables chemical element imaging in subcellular compartments. We investigated the distribution of iron in dopamine producing neurons because iron-dopamine compounds are suspected to be formed but have yet never been observed in cells. The study shows that iron accumulates into dopamine neurovesicles. In addition, the inhibition of dopamine synthesis results in a decreased vesicular storage of iron. These results indicate a new physiological role for dopamine in iron buffering within normal dopamine producing cells. This system could be at fault in Parkinson's disease which is characterized by an increased level of iron in the substantia nigra pars compacta and an impaired storage of dopamine due to the disruption of vesicular trafficking. The re-distribution of highly reactive dopamine-iron complexes outside neurovesicles would result in an enhanced death of dopaminergic neurons.
Collapse
Affiliation(s)
- Richard Ortega
- Cellular Chemical Imaging and Speciation Group, Chimie Nucléaire Analytique Bioenvironnementale, Centre National de la Recherche Scientifique, Université Bordeaux 1, Gradignan, France.
| | | | | | | | | |
Collapse
|
38
|
Schuske K, Palfreyman MT, Watanabe S, Jorgensen EM. UNC-46 is required for trafficking of the vesicular GABA transporter. Nat Neurosci 2007; 10:846-53. [PMID: 17558401 DOI: 10.1038/nn1920] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/09/2007] [Indexed: 12/11/2022]
Abstract
Mutations in unc-46 in Caenorhabditis elegans cause defects in all behaviors that are mediated by GABA. Here we show that UNC-46 is a sorting factor that localizes the vesicular GABA transporter to synaptic vesicles. The UNC-46 protein is related to the LAMP (lysosomal associated membrane protein) family of proteins and is localized at synapses. In unc-46 mutants, the vesicular transporter is not found specifically in synaptic vesicles but rather is diffusely spread along the axon. Mislocalization of the transporter severely reduces the frequency of miniature currents, but the remaining currents are normal in amplitude. Because the number of synaptic vesicles is not depleted, it is likely that only a fraction of vesicles harbor the transporter in unc-46 mutants. Our data indicate that the transporter and UNC-46 have mutual roles in sorting. The vesicular GABA transporter recruits UNC-46 to synaptic vesicle precursors in the cell body, and UNC-46 sorts the transporter at the cell body and during endocytosis at the synapse.
Collapse
Affiliation(s)
- Kim Schuske
- Howard Hughes Medical Institute and the Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | | | | | | |
Collapse
|
39
|
Brunk I, Höltje M, von Jagow B, Winter S, Sternberg J, Blex C, Pahner I, Ahnert-Hilger G. Regulation of vesicular monoamine and glutamate transporters by vesicle-associated trimeric G proteins: new jobs for long-known signal transduction molecules. Handb Exp Pharmacol 2007:305-25. [PMID: 16722242 DOI: 10.1007/3-540-29784-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- I Brunk
- AG Funktionelle Zellbiologie, Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Felder E, Dechant G. Neurotrophic factors acutely alter the sorting of the vesicular acetyl choline transporter and the vesicular monoamine transporter 2 in bimodal sympathetic neurons. Mol Cell Neurosci 2006; 34:1-9. [PMID: 17059887 DOI: 10.1016/j.mcn.2006.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 08/31/2006] [Accepted: 09/07/2006] [Indexed: 11/25/2022] Open
Abstract
Individual sympathetic neurons in co-cultures with cardiac myocytes store acetylcholine and noradrenaline in two different populations of synaptic vesicles and release both neurotransmitters from single presynaptic terminals. Neurotrophic factors selectively and acutely stimulate differential release of the two types of neurotransmitters from these bimodal neurons. Here we investigated the acute effects of neurotrophic factors on two pivotal marker proteins for catecholaminergic and cholinergic synaptic vesicle populations: the vesicular monoamine transporter 2 and the vesicular acetylcholine transporter. We observed that separation of the two fluorescence labeled transporters is not restricted to the varicosities, but can also be observed in the neurites as well as in the cell soma. Application of nerve growth factor, brain-derived neurotrophic factor and ciliary neuronotrophic factor caused acute alterations in transporter segregation. These results point to a novel function of neurotrophic factors during the short-term regulation of synaptic protein sorting in neurons.
Collapse
Affiliation(s)
- Edward Felder
- Institute for Neuroscience, Innsbruck Medical University, MZA, Anichstr. 35, 6020 Innsbruck, Austria
| | | |
Collapse
|
41
|
Slonimsky JD, Mattaliano MD, Moon JI, Griffith LC, Birren SJ. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proc Natl Acad Sci U S A 2006; 103:2915-9. [PMID: 16476997 PMCID: PMC1413855 DOI: 10.1073/pnas.0511276103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins regulate sympathetic neuron cotransmission by modulating the activity-dependent release of norepinephrine and acetylcholine. Nerve growth factor promotes excitatory noradrenergic transmission, whereas brain-derived neurotrophic factor (BDNF), acting through the p75 receptor, increases inhibitory cholinergic transmission. This regulation of corelease by target-derived factors leads to the functional modulation of myocyte beat rate in neuron-myocyte cocultures. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the control of both pre- and postsynaptic mechanisms of synaptic plasticity. We demonstrate that CaMKII acts in conjunction with p75 signaling to regulate cholinergic transmission between sympathetic neurons and heart cells. Inhibition of presynaptic CaMKII prevents the BDNF-dependent shift to inhibitory neurotransmission, whereas presynaptic expression of a constitutively active CaMKII results in inhibitory neurotransmission in the absence of added BDNF, suggesting that activation of presynaptic CaMKII is both necessary and sufficient for a shift from excitatory to inhibitory transmission. Several isozymes of CaMKII are expressed in sympathetic neurons, with the delta-CaMKII being activated by BDNF and nerve growth factor. Activated CaMKII is less effective at promoting cholinergic transmission in the absence of p75 signaling, demonstrating that p75 and CaMKII act to coordinate neurotransmitter selection in sympathetic neurons.
Collapse
Affiliation(s)
- John D. Slonimsky
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Mark D. Mattaliano
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Jung-il Moon
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Leslie C. Griffith
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
| | - Susan J. Birren
- Department of Biology, National Center for Behavior Genomics, Brandeis University, M/S 008, 415 South Street, Waltham, MA 02454
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Li H, Waites CL, Staal RG, Dobryy Y, Park J, Sulzer DL, Edwards RH. Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines. Neuron 2006; 48:619-33. [PMID: 16301178 DOI: 10.1016/j.neuron.2005.09.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 07/22/2005] [Accepted: 09/22/2005] [Indexed: 11/21/2022]
Abstract
The release of monoamine neurotransmitters from cell bodies and dendrites has an important role in behavior, but the mechanism (vesicular or non vesicular) has remained unclear. Because the location of vesicular monoamine transporter 2 (VMAT2) defines the secretory vesicles capable of monoamine release, we have studied its trafficking to assess the potential for monoamine release by exocytosis. In neuroendocrine PC12 cells, VMAT2 localizes exclusively to large dense-core vesicles (LDCVs), and we now show that cytoplasmic signals target VMAT2 directly to LDCVs within the biosynthetic pathway. In neurons, VMAT2 localizes to a population of vesicles that we now find undergo regulated exocytosis in dendrites. Although hippocampal neurons do not express typical LDCV proteins, transfected chromogranins A, B, and brain-derived neurotrophic factor (BDNF) colocalize with VMAT2. VMAT2 thus defines a population of secretory vesicles that mediate the activity-dependent somatodendritic release of multiple retrograde signals involved in synaptic function, growth, and plasticity.
Collapse
Affiliation(s)
- Haiyan Li
- Graduate Programs in Neuroscience and Cell Biology, Department of Neurology and Physiology, UCSF School of Medicine, 600 16th Street, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen CXQ, Huang SY, Zhang L, Liu YJ. Synaptophysin enhances the neuroprotection of VMAT2 in MPP+-induced toxicity in MN9D cells. Neurobiol Dis 2005; 19:419-26. [PMID: 16023584 DOI: 10.1016/j.nbd.2005.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 01/10/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022] Open
Abstract
The use of the potent neurotoxin MPTP in producing a model for Parkinson's disease (PD) has allowed us to dissect the cellular processes responsible for both selective neuronal vulnerability and neuroprotection in idiopathic PD. It has been suggested that vesicular monoamine transporters (VMATs) play a critical neuroprotective role in MPP+ toxicity. However, little is known about how this detoxificative sequestration in dopaminergic (DAergic) neurons is regulated at the molecular and cellular levels. Using the DAergic cell line MN9D as an in vitro model, we found that overexpression of VMAT2 (a neuronal isoform of VMATs) protects the transformants from MPP+-induced toxicity, consistent with the previous work on fibroblastic CHO cells. We further found that the MN9D cells displayed lower expression levels of secretory vesicle proteins such as synaptophysin. Overexpression of synaptophysin in MN9D cells can significantly increase the resistance of the transformants to MPP+ toxicity. The co-expression of VMAT2 and synaptophysin has shown synergistic protection for the transformants, suggesting a role of synaptophysin in the biogenesis of secretory vesicles and in influencing the targeting of VMAT2 to these vesicles. Our work indicates that both the expression level of VMAT2 and capacity of vesicular packaging of DA are important in protecting DAergic cells from MPP+ toxicity.
Collapse
Affiliation(s)
- Carol X-Q Chen
- Department of Neurology, University of Pittsburgh School of Medicine, W958 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
44
|
Toren P, Rehavi M, Luski A, Roz N, Laor N, Lask M, Weizman A. Decreased platelet vesicular monoamine transporter density in children and adolescents with attention deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2005; 15:159-62. [PMID: 15695060 DOI: 10.1016/j.euroneuro.2004.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 07/22/2004] [Accepted: 07/22/2004] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to assess vesicular monoamine transporter (VMAT2) density in attention deficit/hyperactivity disorder (ADHD), a disorder involving monoaminergic dysregulation. It was hypothesized that the hypoactivity of monoaminergic neurotransmission related to ADHD could be associated with an under-expression of VMAT2. We assessed high affinity [3H]dihydrotetrabenazine [TBZOH] binding to platelet VMAT2 in untreated male ADHD children and adolescents (n=11) as compared to age-matched controls (n=14), as well as the correlation between VMAT2 density and the severity of ADHD symptoms as measured by the clinician-administered DSM-IV ADHD Scale (DAS) and the parent-administered Abbreviated Conners' Rating Scale (ACPRS). The [3H]TBZOH binding capacity (Bmax) was significantly lower (17%) in the ADHD group as compared to the controls. There was no difference between the two groups in the affinity (Kd value) of [3H]TBZOH to its binding site. An inverse correlation was found between the ADHD symptom scales and the Bmax values. It remains unclear whether the under-expression of platelet VMAT2 in ADHD children is reflective of a parallel change in the brain, and whether it is primary or an epiphenomenon of ADHD.
Collapse
Affiliation(s)
- Paz Toren
- Tel-Aviv Community Mental Health Center and the Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
46
|
Whitley J, Parsons J, Freeman J, Liu Y, Edwards RH, Near JA. Electrochemical monitoring of transport by a vesicular monoamine transporter expressed in Xenopus oocytes. J Neurosci Methods 2004; 133:191-9. [PMID: 14757360 DOI: 10.1016/j.jneumeth.2003.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenopus laevis oocytes were injected with synthetic mRNA coding for a rat VMAT2 mutant (rVMAT2-I483A/L484A) shown previously to be retained on the plasma membrane as a result of a presumed reduction of endocytosis. Binding of the specific VMAT inhibitor [3H]dihydrotetrabenazine indicated that expression did occur at a level of approximately 3 fmol per oocyte. To determine if rVMAT2-I483A/L484A expressed in oocytes was capable of substrate transport, oocytes were placed in buffer at pH 6.0, dopamine substrate was injected into the cell, and egress of substrate was monitored by fast scan cyclic voltammetry using a carbon fiber microelectrode. Under these conditions, transport by oocytes injected with RNA coding for rVMAT2-I483A/L484A ranged from approximately 0.5 to more than 2.5 pmol/min. Water-injected and uninjected control oocytes did not exhibit appreciable transport activity. Transport by rVMAT2-I483A/L484A-injected oocytes was reduced to control levels by tetrabenazine, a known inhibitor of VMAT transport activity. Comparison of subtracted voltammograms obtained from transport assays with those for calibration experiments confirmed that the transported species was dopamine. These results suggest that expression of VMATs in oocytes may provide a useful model system for mechanistic and regulatory studies that would not be feasible using traditional methods.
Collapse
Affiliation(s)
- Janet Whitley
- Medical Science, Indiana University School of Medicine, Jordan Hall 104, Bloomington, IN 47405-6401, USA
| | | | | | | | | | | |
Collapse
|
47
|
Cordeiro ML, Gundersen CB, Umbach JA. Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells. Neuropsychopharmacology 2004; 29:39-44. [PMID: 12955095 DOI: 10.1038/sj.npp.1300288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium and valproate are chemically unrelated compounds that are used to treat manic-depressive illness. Previously, we reported that lithium ions upregulate genes encoding proteins primarily associated with large dense core vesicles (LDCV) in nerve growth factor (NGF)-differentiated PC12 cells, but not in undifferentiated PC12 cells. Moreover, lithium did not alter the expression of proteins associated with small-clear, synaptic-like vesicles (SSV) in these cells. Based on these observations, we investigated whether valproate had actions similar to those of lithium in PC12 cells. Thus, undifferentiated or NGF-differentiated PC12 cells were exposed to lithium (1 mM) or valproate (1 mM) for 48 h. Extracts from these cells were submitted to semiquantitative Northern and Western analyses. In NGF-differentiated cells, both agents increased the expression of proteins associated with LDCV, the vesicular monoamine transporter 1 (VMAT1), and cysteine string protein (CSP). These same treatments did not alter the expression of proteins primarily associated with SSV, the vesicular acetylcholine transporter (VAChT), and synaptophysin (SY). Furthermore, neither drug affected the expression of these proteins in undifferentiated cells. Interestingly, secretion of (3)H-dopamine was increased in cells exhibiting the increase of VMAT1 and csp. Taken together, the convergent effects of these chemically diverse compounds suggest that altered dynamics of LDCV may play a vital role in the biochemical pathway, leading to the relief of the symptoms of manic depression.
Collapse
Affiliation(s)
- Mara L Cordeiro
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, UCLA, School of Medicine, Los Angeles, CA 90095-1770, USA
| | | | | |
Collapse
|
48
|
Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 2004; 480:264-80. [PMID: 15515175 DOI: 10.1002/cne.20354] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three closely related proteins transport glutamate into synaptic vesicles for release by exocytosis. Complementary patterns of expression in glutamatergic terminals have been reported for VGLUT1 and VGLUT2. VGLUT3 shows expression by many cells not considered to be glutamatergic. Here we describe the changes in VGLUT expression that occur during development. VGLUT1 expression increases gradually after birth and eventually predominates over the other isoforms in telencephalic regions. Expressed at high levels shortly after birth, VGLUT2 declines with age in multiple regions, in the cerebellum by 14-fold. In contrast, Coexpression of the two isoforms occurs transiently during development as well as permanently in a restricted subset of glutamatergic terminals in the adult. VGLUT3 is transiently expressed at high levels by select neuronal populations, including terminals in the cerebellar nuclei, scattered neurons in the cortex, and progenitor-like cells, implicating exocytotic glutamate release in morphogenesis and development. VGLUT3 also colocalizes extensively during development with the neuronal vesicular monoamine transporter VMAT2, with the vesicular acetylcholine transporter VAChT, and with the vesicular gamma-aminobutyric acid transporter VGAT. Such coexpression occurs particularly at some specific developmental stages and is restricted to certain sets of cells. In skeletal muscle, VGLUT3 localizes to granular organelles in the axon terminal as well as in the muscle sarcoplasm. The results suggest novel mechanisms and roles for regulated transmitter release.
Collapse
Affiliation(s)
- Jean-Luc Boulland
- Institute of Basic Medical Sciences and the Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kim DK, Natarajan N, Prabhakar NR, Kumar GK. Facilitation of dopamine and acetylcholine release by intermittent hypoxia in PC12 cells: involvement of calcium and reactive oxygen species. J Appl Physiol (1985) 2003; 96:1206-15; discussion 1196. [PMID: 14657041 DOI: 10.1152/japplphysiol.00879.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the effects of preconditioning pheochromocytoma (PC12) cells with intermittent hypoxia (IH) on transmitter release during acute hypoxia. Cell cultures were exposed to either alternating cycles of hypoxia (1% O(2) + 5% CO(2); 30 s/cycle) and normoxia (21% O(2) + 5% CO(2); 3 min/cycle) for 15 or 60 cycles or normoxia alone (control) for similar durations. Control and IH cells were challenged with either hyperoxia (basal release) or acute hypoxia (Po(2) of approximately 35 Torr) for 5 min, and the amounts of dopamine (DA) and acetylcholine (ACh) released in the medium were determined by HPLC combined with electrochemical detection. Hypoxia augmented DA (approximately 80%) but not ACh release in naive cells, whereas, in IH-conditioned cells, it further enhanced DA release (ranging from 120 to approximately 145%) and facilitated ACh release (approximately 30%). Hypoxia-evoked augmentation of transmitter release was not seen in cells conditioned with sustained hypoxia. IH-induced increase in DA but not IH-induced ACh release during hypoxia was partially inhibited by cadmium chloride (100 microM), a voltage-gated Ca(2+) channel blocker. By contrast, 2-aminoethoxydiphenylborate (75 microM), a blocker of inositol 1,4,5-trisphosphate (IP(3)) receptors, and N-acetyl-L-cysteine (300 microM), a potent scavenger of reactive oxygen species, either attenuated or abolished IH-evoked augmentation of transmitter release during hypoxia. Together, the above results demonstrate that IH conditioning increases hypoxia-evoked neurotransmitter release from PC12 cells via mechanisms involving mobilization of Ca(2+) from intracellular stores through activation of IP(3) receptors. Our findings also suggest that oxidative stress plays a central role in IH-induced augmentation of transmitter release from PC12 cells during acute hypoxia.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-4935, USA
| | | | | | | |
Collapse
|
50
|
Smith AD, Antion M, Zigmond MJ, Austin MC. Effect of 6-hydroxydopamine on striatal GDNF and nigral GFRα1 and RET mRNAs in the adult rat. ACTA ACUST UNITED AC 2003; 117:129-38. [PMID: 14559146 DOI: 10.1016/s0169-328x(03)00289-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exogenous GDNF as well as vectors containing the gene for this trophic factor has been shown to be neuroprotective in animal models of Parkinson's disease. We therefore investigated whether changes in striatal GDNF protein and nigral mRNA levels of its co-receptors GFRalpha1 and RET occur in response to lesions of dopamine (DA) neurons and examined the temporal profile of these changes as they relate to the loss of dopaminergic markers. Rats were lesioned with 6-hydroxydopamine and sacrificed 3 h to 60 days post-infusion. DA tissue levels in the striatum and tyrosine hydroxylase immunoreactivity in the substantia nigra (SN) and ventral tegmental area (VTA) were used to determine the size of the lesions. GDNF protein was measured in the striatum using radioimmunocytochemistry. In situ hybridization was used to determine alterations in the mRNAs of RET and GFRalpha1 in the SN and VTA. We observed no persistent changes in GDNF protein in the striatum in response to 6-hydroxydopamine over the 60-day observation period, suggesting that compensatory changes in this trophic factor do not occur in response to injury. Dramatic decreases in RET and GFRalpha1 were observed in both SN and VTA that were generally correlated with the loss of TH protein and striatal DA content, strongly suggesting that these receptors are located on DA neurons and that the protective effect of GDNF reflects a direct action of the trophic factor on these neurons.
Collapse
Affiliation(s)
- Amanda D Smith
- Department of Neurology, University of Pittsburgh, S-510 Biomedical Science Tower, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|