1
|
Quan J, Fan Q, Simons LM, Smukowski SN, Pegg C, Longnecker R, Savas JN, Hultquist JF, Smith GA. Leveraging biotin-based proximity labeling to identify cellular factors governing early alphaherpesvirus infection. mBio 2024; 15:e0144524. [PMID: 38953638 PMCID: PMC11323796 DOI: 10.1128/mbio.01445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.
Collapse
Affiliation(s)
- Jenai Quan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Fan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lacy M. Simons
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Samuel N. Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caitlin Pegg
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2024. [PMID: 38801098 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Kyle M Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Ebbing P De Jong
- Proteomics Core Facility, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Wu Z, Wu D, Zhong Q, Zou X, Liu Z, Long H, Wei J, Li X, Dai F. The role of zyxin in signal transduction and its relationship with diseases. Front Mol Biosci 2024; 11:1371549. [PMID: 38712343 PMCID: PMC11070705 DOI: 10.3389/fmolb.2024.1371549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
This review highlighted the pivotal role of zyxin, an essential cell focal adhesions protein, in cellular biology and various diseases. Zyxin can orchestrate the restructuring and dynamic alterations of the cellular cytoskeleton, which is involved in cell proliferation, adhesion, motility, and gene transcription. Aberrant zyxin expression is closely correlated with tumor cell activity and cardiac function in both tumorigenesis and cardiovascular diseases. Moreover, in fibrotic and inflammatory conditions, zyxin can modulate cellular functions and inflammatory responses. Therefore, a comprehensive understanding of zyxin is crucial for deciphering signal transduction networks and disease pathogenesis. Investigating its role in diseases holds promise for novel avenues in early diagnosis and therapeutic strategies. Nevertheless, targeting zyxin as a therapeutic focal point presents challenges in terms of specificity, safety, drug delivery, and resistance. Nonetheless, in-depth studies on zyxin and the application of precision medicine could offer new possibilities for personalized treatment modalities.
Collapse
Affiliation(s)
- Zelan Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiqin Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhong
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhongjing Liu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hehua Long
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Jing Wei
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fangjie Dai
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Kliewe F, Siegerist F, Hammer E, Al-Hasani J, Amling TRJ, Hollemann JZE, Schindler M, Drenic V, Simm S, Amann K, Daniel C, Lindenmeyer M, Hecker M, Völker U, Endlich N. Zyxin is important for the stability and function of podocytes, especially during mechanical stretch. Commun Biol 2024; 7:446. [PMID: 38605154 PMCID: PMC11009394 DOI: 10.1038/s42003-024-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | | | | | - Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Vedran Drenic
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| |
Collapse
|
5
|
Wang Z, Chen X, Chen N, Yan H, Wu K, Li J, Ru Q, Deng R, Liu X, Kang R. Mechanical Factors Regulate Annulus Fibrosus (AF) Injury Repair and Remodeling: A Review. ACS Biomater Sci Eng 2024; 10:219-233. [PMID: 38149967 DOI: 10.1021/acsbiomaterials.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Low back pain is a common chronic disease that can severely affect the patient's work and daily life. The breakdown of spinal mechanical homeostasis caused by intervertebral disc (IVD) degeneration is a leading cause of low back pain. Annulus fibrosus (AF), as the outer layer structure of the IVD, is often the first affected part. AF injury caused by consistent stress overload will further accelerate IVD degeneration. Therefore, regulating AF injury repair and remodeling should be the primary goal of the IVD repair strategy. Mechanical stimulation has been shown to promote AF regeneration and repair, but most studies only focus on the effect of single stress on AF, and lack realistic models and methods that can mimic the actual mechanical environment of AF. In this article, we review the effects of different types of stress stimulation on AF injury repair and remodeling, suggest possible beneficial load combinations, and explore the underlying molecular mechanisms. It will provide the theoretical basis for designing better tissue engineering therapy using mechanical factors to regulate AF injury repair and remodeling in the future.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Nan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Hongjie Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ke Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Jitao Li
- School of Physics and Telecommunications Engineering, Zhoukou Normal University, Zhoukou, Henan Province 466001, P.R. China
| | - Qingyuan Ru
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, P.R. China
| |
Collapse
|
6
|
Tejeda-Munoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O'Brien N, De Robertis EM. The PMA phorbol ester tumor promoter increases canonical Wnt signaling via macropinocytosis. eLife 2023; 12:RP89141. [PMID: 37902809 PMCID: PMC10615368 DOI: 10.7554/elife.89141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here, we show that a macropinocytosis activator, the tumor promoter phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Munoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Neil O'Brien
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
7
|
Parmar BS, Kieswetter A, Geens E, Vandewyer E, Ludwig C, Temmerman L. azyx-1 is a new gene that overlaps with zyxin and affects its translation in C. elegans, impacting muscular integrity and locomotion. PLoS Biol 2023; 21:e3002300. [PMID: 37713439 PMCID: PMC10575671 DOI: 10.1371/journal.pbio.3002300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Overlapping genes are widely prevalent; however, their expression and consequences are poorly understood. Here, we describe and functionally characterize a novel zyx-1 overlapping gene, azyx-1, with distinct regulatory functions in Caenorhabditis elegans. We observed conservation of alternative open reading frames (ORFs) overlapping the 5' region of zyxin family members in several animal species, and find shared sites of azyx-1 and zyxin proteoform expression in C. elegans. In line with a standard ribosome scanning model, our results support cis regulation of zyx-1 long isoform(s) by upstream initiating azyx-1a. Moreover, we report on a rare observation of trans regulation of zyx-1 by azyx-1, with evidence of increased ZYX-1 upon azyx-1 overexpression. Our results suggest a dual role for azyx-1 in influencing zyx-1 proteoform heterogeneity and highlight its impact on C. elegans muscular integrity and locomotion.
Collapse
Affiliation(s)
- Bhavesh S. Parmar
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Amanda Kieswetter
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Elke Vandewyer
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technische Universität München, München, Germany
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
8
|
Tejeda-Muñoz N, Azbazdar Y, Monka J, Binder G, Dayrit A, Ayala R, O’Brien N, De Robertis EM. The PMA Phorbol Ester Tumor Promoter Increases Canonical Wnt Signaling Via Macropinocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543509. [PMID: 37333286 PMCID: PMC10274750 DOI: 10.1101/2023.06.02.543509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Activation of the Wnt pathway lies at the core of many human cancers. Wnt and macropinocytosis are often active in the same processes, and understanding how Wnt signaling and membrane trafficking cooperate should improve our understanding of embryonic development and cancer. Here we show that a macropinocytosis activator, the tumor promoter Phorbol 12-myristate 13-acetate (PMA), enhances Wnt signaling. Experiments using the Xenopus embryo as an in vivo model showed marked cooperation between the PMA phorbol ester and Wnt signaling, which was blocked by inhibitors of macropinocytosis, Rac1 activity, and lysosome acidification. Human colorectal cancer tissue arrays and xenografts in mice showed a correlation of cancer progression with increased macropinocytosis/multivesicular body/lysosome markers and decreased GSK3 levels. The crosstalk between canonical Wnt, focal adhesions, lysosomes, and macropinocytosis suggests possible therapeutic targets for cancer progression in Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- Department of Oncology Science, Health Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- These authors contributed equally
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
- These authors contributed equally
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Alex Dayrit
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| | - Raul Ayala
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Neil O’Brien
- Department of Medicine, David Geffen School of Medicine at UCLA
| | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, 90095-1662, USA
| |
Collapse
|
9
|
Wang YX, Huang CY, Chiu HJ, Huang PH, Chien HT, Jwo SH, Liao YC. Nuclear-localized CTEN is a novel transcriptional regulator and promotes cancer cell migration through its downstream target CDC27. J Physiol Biochem 2023; 79:163-174. [PMID: 36399312 DOI: 10.1007/s13105-022-00932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
C-terminal tensin-like (CTEN) is a tensin family protein typically localized to the cytoplasmic side of focal adhesions, and primarily contributes to cell adhesion and migration. Elevated expression and nuclear accumulation of CTEN have been reported in several types of cancers and found to be associated with malignant behaviors. However, the function of nuclear CTEN remains elusive. In this study, we report for the first time that nuclear CTEN associates with chromatin DNA and occupies the region proximal to the transcription start site in several genes. The mRNA expression level of CTEN positively correlates with that of one of its putative target genes, cell division cycle protein 27 (CDC27), in a clinical colorectal cancer dataset, suggesting that CTEN may play a role in the regulation of CDC27 gene expression. Furthermore, we demonstrated that CTEN is recruited to the promoter region of the CDC27 gene and that the mRNA expression and promoter activity of CDC27 are both reduced when CTEN is downregulated. In addition, we found that enhanced nuclear accumulation of CTEN in HCT116 cells by overexpression of CTEN fused with nuclear localization signals increases CDC27 transcript levels and promoter activity. The increased nuclear-localized CTEN also significantly promotes cell migration, and the migratory ability is suppressed when CDC27 is knocked down. These results demonstrate that nuclear CTEN regulates CDC27 expression transcriptionally and promotes cell migration through CDC27. Our findings provide new insights into CTEN moonlighting in the nucleus as a DNA-associated protein and transcriptional regulator involved in modulating cancer cell migration.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Yang Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiao-Ju Chiu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Han Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hung-Ting Chien
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Si-Han Jwo
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
10
|
Zhang S, Chong LH, Woon JYX, Chua TX, Cheruba E, Yip AK, Li HY, Chiam KH, Koh CG. Zyxin regulates embryonic stem cell fate by modulating mechanical and biochemical signaling interface. Commun Biol 2023; 6:62. [PMID: 36653484 PMCID: PMC9849324 DOI: 10.1038/s42003-023-04421-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Biochemical signaling and mechano-transduction are both critical in regulating stem cell fate. How crosstalk between mechanical and biochemical cues influences embryonic development, however, is not extensively investigated. Using a comparative study of focal adhesion constituents between mouse embryonic stem cell (mESC) and their differentiated counterparts, we find while zyxin is lowly expressed in mESCs, its levels increase dramatically during early differentiation. Interestingly, overexpression of zyxin in mESCs suppresses Oct4 and Nanog. Using an integrative biochemical and biophysical approach, we demonstrate involvement of zyxin in regulating pluripotency through actin stress fibres and focal adhesions which are known to modulate cellular traction stress and facilitate substrate rigidity-sensing. YAP signaling is identified as an important biochemical effector of zyxin-induced mechanotransduction. These results provide insights into the role of zyxin in the integration of mechanical and biochemical cues for the regulation of embryonic stem cell fate.
Collapse
Affiliation(s)
- Songjing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute A*STAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Ai Kia Yip
- Bioinformatics Institute A*STAR, Singapore, Singapore
| | - Hoi-Yeung Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
12
|
Sun X, Alushin GM. Cellular force-sensing through actin filaments. FEBS J 2022; 290:2576-2589. [PMID: 35778931 PMCID: PMC9945651 DOI: 10.1111/febs.16568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
The actin cytoskeleton orchestrates cell mechanics and facilitates the physical integration of cells into tissues, while tissue-scale forces and extracellular rigidity in turn govern cell behaviour. Here, we discuss recent evidence that actin filaments (F-actin), the core building blocks of the actin cytoskeleton, also serve as molecular force sensors. We delineate two classes of proteins, which interpret forces applied to F-actin through enhanced binding interactions: 'mechanically tuned' canonical actin-binding proteins, whose constitutive F-actin affinity is increased by force, and 'mechanically switched' proteins, which bind F-actin only in the presence of force. We speculate mechanically tuned and mechanically switched actin-binding proteins are biophysically suitable for coordinating cytoskeletal force-feedback and mechanical signalling processes, respectively. Finally, we discuss potential mechanisms mediating force-activated actin binding, which likely occurs both through the structural remodelling of F-actin itself and geometric rearrangements of higher-order actin networks. Understanding the interplay of these mechanisms will enable the dissection of force-activated actin binding's specific biological functions.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University. New York, NY, USA.,Correspondence: ;
| |
Collapse
|
13
|
Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022; 13:3053. [PMID: 35650196 PMCID: PMC9160004 DOI: 10.1038/s41467-022-30556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ana Herrero
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011, Santander, Spain
| | - Alexander E P Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Emma S Koeleman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120, Heidelberg, Germany
| | - Linda Kogerman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Almac Diagnostic Services, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- NanoString Technologies, Inc., Seattle, WA, 98109, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
14
|
Zhao Y, Yue S, Zhou X, Guo J, Ma S, Chen Q. O-GlcNAc transferase promotes the nuclear localization of the focal adhesion-associated protein Zyxin to regulate UV-induced cell death. J Biol Chem 2022; 298:101776. [PMID: 35227760 PMCID: PMC8988012 DOI: 10.1016/j.jbc.2022.101776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022] Open
Abstract
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.
Collapse
|
15
|
Balestra T, Manara MC, Laginestra MA, Pasello M, De Feo A, Bassi C, Guerzoni C, Landuzzi L, Lollini PL, Donati DM, Negrini M, Magnani M, Scotlandi K. Targeting CD99 Compromises the Oncogenic Effects of the Chimera EWS-FLI1 by Inducing Reexpression of Zyxin and Inhibition of GLI1 Activity. Mol Cancer Ther 2022; 21:58-69. [PMID: 34667115 DOI: 10.1158/1535-7163.mct-21-0189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma, a highly aggressive pediatric tumor, is driven by EWS-FLI1, an oncogenic transcription factor that remodels the tumor genetic landscape. Epigenetic mechanisms play a pivotal role in Ewing sarcoma pathogenesis, and the therapeutic value of compounds targeting epigenetic pathways is being identified in preclinical models. Here, we showed that modulation of CD99, a cell surface molecule highly expressed in Ewing sarcoma cells, may alter transcriptional dysregulation in Ewing sarcoma through control of the zyxin-GLI1 axis. Zyxin is transcriptionally repressed, but GLI1 expression is maintained by EWS-FLI1. We demonstrated that targeting CD99 with antibodies, including the human diabody C7, or genetically inhibiting CD99 is sufficient to increase zyxin expression and induce its dynamic nuclear accumulation. Nuclear zyxin functionally affects GLI1, inhibiting targets such as NKX2-2, cyclin D1, and PTCH1 and upregulating GAS1, a tumor suppressor protein negatively regulated by SHH/GLI1 signaling. We used a battery of functional assays to demonstrate (i) the relationship between CD99/zyxin and tumor cell growth/migration and (ii) how CD99 deprivation from the Ewing sarcoma cell surface is sufficient to specifically affect the expression of some crucial EWS-FLI1 targets, both in vitro and in vivo, even in the presence of EWS-FLI1. This article reveals that the CD99/zyxin/GLI1 axis is promising therapeutic target for reducing Ewing sarcoma malignancy.
Collapse
Affiliation(s)
- Tommaso Balestra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristian Bassi
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Clara Guerzoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Davide Maria Donati
- Clinica Ortopedica III, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Massimo Negrini
- Department of Translational Medicine and for Romagna, and "Laboratorio per le Tecnologie delle Terapie Avanzate" (LTTA), University of Ferrara, Ferrara, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Fano, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
16
|
Yip AK, Zhang S, Chong LH, Cheruba E, Woon JYX, Chua TX, Goh CJH, Yang H, Tay CY, Koh CG, Chiam KH. Zyxin Is Involved in Fibroblast Rigidity Sensing and Durotaxis. Front Cell Dev Biol 2021; 9:735298. [PMID: 34869319 PMCID: PMC8637444 DOI: 10.3389/fcell.2021.735298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast's ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.
Collapse
Affiliation(s)
- Ai Kia Yip
- Bioinformatics Institute ASTAR, Singapore, Singapore
| | - Songjing Zhang
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Lor Huai Chong
- Bioinformatics Institute ASTAR, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jessie Yong Xing Woon
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Theng Xuan Chua
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Haibo Yang
- Mechanobiology Institute, Singapore, Singapore
| | - Chor Yong Tay
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore.,Energy Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | | |
Collapse
|
17
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
18
|
Fu H, Lu J, Zhang X, Wang B, Sun Y, Lei Y, Shen F, Kassegne K, Han ET, Cheng Y. Identification of the Recombinant Plasmodium vivax Surface-Related Antigen as a Possible Immune Evasion Factor Against Human Splenic Fibroblasts by Targeting ITGB1. Front Cell Dev Biol 2021; 9:764109. [PMID: 34938733 PMCID: PMC8685506 DOI: 10.3389/fcell.2021.764109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmodium vivax-infected erythrocytes can enter the spleen and evade spleen clearance to establish chronic infections. However, the mechanism underlying P. vivax immune evasion in the spleen is still unclear. Human splenic fibroblasts (HSF), also known as barrier cells, play an essential role in the immune function of spleen. A hypothesis holds that P. vivax-infected erythrocytes induce spleen structural remodeling to form barrier cells. Subsequently, these infected erythrocytes can selectively cytoadhere to these barrier cells to escape spleen clearance. In this work, we found that P. vivax surface-related antigen (PvSRA; PlasmoDB ID: PVX_084970), an exported protein on infected erythrocyte membrane, could bind with HSF. Considering the above hypothesis, we speculated that PvSRA might be involved in P. vivax immune evasion by changing HSF cell performance. To investigate this speculation, RNA sequencing, protein microarray, and bioinformatics analysis technologies were applied, and in vitro validations were further performed. The results showed that the recombinant PvSRA attracted HSF migration and interacted with HSF by targeting integrin β1 (ITGB1) along with changes in HSF cell performance, such as focal adhesion, extracellular matrix, actin cytoskeleton, and cell cycle. This study indicated that PvSRA might indeed participate in the immune evasion of P. vivax in the spleen by changing HSF function through PvSRA-ITGB1 axis.
Collapse
Affiliation(s)
- Haitian Fu
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinxin Zhang
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yifan Sun
- Affiliated Hospital of Jiangnan University, Wuxi, China
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yao Lei
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Feihu Shen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kokouvi Kassegne
- Chinese Center for Tropical Diseases Research, School of Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
20
|
Guihurt Santiago J, Burgos-Tirado N, Lafontaine DD, Mendoza Sierra JC, Camacho RH, Vecchini Rodríguez CM, Morales-Tirado V, Flores-Otero J. Adhesion G protein-coupled receptor, ELTD1, is a potential therapeutic target for retinoblastoma migration and invasion. BMC Cancer 2021; 21:53. [PMID: 33430814 PMCID: PMC7802354 DOI: 10.1186/s12885-020-07768-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prognosis for pediatric metastatic Retinoblastoma (Rb) is poor and current therapies are limited by high systemic toxicity rates and insufficient therapeutic efficacy for metastatic Rb. Tumor dissemination to the brain is promoted by the heterogeneous adhesive and invasive properties of Rb cells within the tumor. In this study we evaluate, for the first time, the expression, and roles of the ELTD1 and GPR125 adhesion G protein-coupled receptors (GPCRs) in Rb cell migration, viability and invasion. METHODS We characterized the RNA expression of adhesion-GPCRs in 64 Rb tumors compared to 11 fetal retinas using the database from the Childhood Solid Tumor Network from St Jude Children's Research Hospital. The role of ELTD1 and GPR125 in Rb were investigated ex vivo by microarray analysis, in vitro by cell viability, Western blot and migration assays, in addition to imaging of the subcellular localization of the GPCRs. To elucidate their role in vivo we utilized siRNA technology in an established Rb orthotopic xenograft murine model. RESULTS Our investigation demonstrates, for the first time, that ELTD1 but not GPR125, is significantly increased in Rb tumors compared to fetal retinas. We utilized established the Rb cell lines Y79 and Weri-Rb-1, which represent an aggressive, metastatic, and non-metastatic phenotype, respectively, for the in vitro analyses. The studies demonstrated that ELTD1 is enriched in Weri-Rb-1 cells, while GPR125 is enriched in Y79 cells. The measured differences extended to their subcellular localization as ELTD1 labeling displayed punctate clusters in cell-to-cell adhesion sites of Weri-Rb-1 cells, while GPR125 displayed a polarized distribution in Y79 cells. Lastly, we demonstrated the lack of both adhesion receptors does not affect Rb cell viability, yet inhibition of ELTD1 decreases Y79 cell migration in vitro and invasion in vivo. CONCLUSION Taken together, our data suggest that ELTD1, is a potential target to prevent extraocular Rb. The results within establish ELTD1 as a potential therapeutic target for metastatic Rb.
Collapse
Affiliation(s)
- Jonathan Guihurt Santiago
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Debusk College of Osteopathic Medicine at Lincoln Memorial University, Harrogate, TN USA
| | - Neikelyn Burgos-Tirado
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Daniella Dorta Lafontaine
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- Present address: Central University of the Caribbean of Puerto Rico, Bayamon, Puerto Rico
| | - José C. Mendoza Sierra
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- University of Puerto Rico, Rio Piedras Campus, Rio Piedras, Puerto Rico
- University of Medicine and Health Sciences, New York, USA
| | - Roberto Herrera Camacho
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Current affiliation: Ponce Health Sciences University, Ponce, Puerto Rico
| | - Clara M. Vecchini Rodríguez
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067 Puerto Rico
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Vanessa Morales-Tirado
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN USA
- Present address: AbbVie Bioresearch Center, Worcester, MA USA
| | - Jacqueline Flores-Otero
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, 00936-5067 Puerto Rico
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| |
Collapse
|
21
|
Martynova NY, Parshina EA, Eroshkin FM, Zaraisky AG. The Cytoskeletal Protein Zyxin Modulates the Expression of the Target Genes of the Shh Signaling Cascade in the Cells of the Neural Plate of Embryos of the Spur-Toed Frog Xenopus laevis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020040147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Belgardt E, Steinberg T, Husari A, Dieterle MP, Hülter-Hassler D, Jung B, Tomakidi P. Force-responsive Zyxin modulation in periodontal ligament cells is regulated by YAP rather than TAZ. Cell Signal 2020; 72:109662. [PMID: 32330602 DOI: 10.1016/j.cellsig.2020.109662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
Abstract
In the context of mechanically induced force transmission, the modification of the actin cytoskeleton through involvement of zyxin is an established concept. However, in cells of the periodontal ligament (PDL), which is physiologically subjected to intermittent mechanical forces, the force-responsive modulation of zyxin and the molecular key players, which orchestrate its cellular regulation, have not yet been elucidated. By employing indirect immunofluorescence and western blotting with different subcellular fractions, we show here in stretch force-exposed human PDL fibroblasts (hPDLFs) that (i) the zyxin protein is modulated, and (ii) its subcellular localization is altered. More importantly, using a pharmacological intervention approach, to inhibit the nuclear presence of the co-transcriptional activator yes-associated protein (YAP), we evidence for the first time that on the molecular level, the cellular abundance of zyxin, among the Thyrotrophic Embryonic Factor (TEF)-binding proteins, is regulated by YAP rather than TAZ. Our findings provide novel insights into the topic how cells of the periodontium and the periodontal ligament in particular respond and may adapt to mechanical forces, and first time identify YAP as the key player of the intracellular regulation of the mechano-sensor and mechano-transducer zyxin in hPDLFs. Moreover, the findings broaden the current knowledge on YAP, since so far, currently only very few YAP-regulated genes have been identified.
Collapse
Affiliation(s)
- Elisa Belgardt
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Ayman Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany.
| | - Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Diana Hülter-Hassler
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | - Britta Jung
- Department of Orthodontics, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| |
Collapse
|
23
|
Kanoldt V, Fischer L, Grashoff C. Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 2018; 400:687-698. [DOI: 10.1515/hsz-2018-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
Abstract
Abstract
The ability of cells to sense and respond to mechanical stimuli is crucial for many developmental and homeostatic processes, while mechanical dysfunction of cells has been associated with numerous pathologies including muscular dystrophies, cardiovascular defects and epithelial disorders. Yet, how cells detect and process mechanical information is still largely unclear. In this review, we outline major mechanisms underlying cellular mechanotransduction and we summarize the current understanding of how cells integrate information from distinct mechanosensitive structures to mediate complex mechanoresponses. We also discuss the concept of mechanical memory and describe how cells store information on previous mechanical events for different periods of time.
Collapse
Affiliation(s)
- Verena Kanoldt
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Lisa Fischer
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
- Department of Quantitative Cell Biology , Institute of Molecular Cell Biology, University of Münster , 48149 Münster , Germany
| |
Collapse
|
24
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
25
|
Koedood Zhao M, Wang Y, Murphy K, Yi J, Beckerle MC, Gilmore TD. LIM domain-containing protein trip6 can act as a coactivator for the v-Rel transcription factor. Gene Expr 2018; 8:207-17. [PMID: 10794523 PMCID: PMC6157364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The retroviral oncoprotein v-Rel is a transcriptional activator in the Rel/NF-kappaB family of eukaryotic transcription factors. v-Rel malignantly transforms a variety of cell types in vitro and in vivo, and its transforming activity is dependent on the ability of v-Rel to bind to DNA and activate transcription. In this report, we used the yeast two-hybrid assay to identify proteins that interact with C-terminal sequences of v-Rel that are needed for transcriptional activation and transformation. One protein, Trip6, that we identified in this screen was previously identified as a thyroid hormone receptor-interacting protein. Trip6 is a member of a subfamily of LIM domain-containing proteins that are thought to transport intracellular signals from the cell surface to the nucleus. By several criteria, we show that sequences from Trip6, which include the LIM domains, behave as a coactivator for transcriptional activation by v-Rel. That is, a GAL4-Trip6 fusion protein can activate transcription in yeast and chicken cells, Trip6 can enable C-terminal sequences of v-Rel to activate transcription in yeast, and Trip6 can enhance activation by v-Rel from a kappaB site reporter plasmid in yeast. Although full-length Trip6 localizes to adhesion plaques, deletion of N-terminal sequences allows human Trip6 to enter the nucleus of chicken cells. Lastly, Northern blotting shows that Trip6 mRNA is expressed in many human tissues. Coexpression of Trip6 does not affect the transforming activity of v-Rel. Taken together, our results indicate that Trip6 may be a protein that is important for the ability of v-Rel to activate transcription and transform cells, and may represent a potential target for blocking Rel-mediated oncogenesis and transcriptional activation.
Collapse
Affiliation(s)
- Marieke Koedood Zhao
- *Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - Yuan Wang
- *Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - Kerry Murphy
- *Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - Jinseong Yi
- †Department of Biology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Mary C. Beckerle
- †Department of Biology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Thomas D. Gilmore
- *Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
- Address correspondence to Thomas D. Gilmore, Boston University, Biology Department, 5 Cummington Street, Boston, MA 02215. Tel: (617) 353-5444; Fax: (617) 353-6340; E-mail:
| |
Collapse
|
26
|
Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular Mechanotransduction: From Tension to Function. Front Physiol 2018; 9:824. [PMID: 30026699 PMCID: PMC6041413 DOI: 10.3389/fphys.2018.00824] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Living cells are constantly exposed to mechanical stimuli arising from the surrounding extracellular matrix (ECM) or from neighboring cells. The intracellular molecular processes through which such physical cues are transformed into a biological response are collectively dubbed as mechanotransduction and are of fundamental importance to help the cell timely adapt to the continuous dynamic modifications of the microenvironment. Local changes in ECM composition and mechanics are driven by a feed forward interplay between the cell and the matrix itself, with the first depositing ECM proteins that in turn will impact on the surrounding cells. As such, these changes occur regularly during tissue development and are a hallmark of the pathologies of aging. Only lately, though, the importance of mechanical cues in controlling cell function (e.g., proliferation, differentiation, migration) has been acknowledged. Here we provide a critical review of the recent insights into the molecular basis of cellular mechanotransduction, by analyzing how mechanical stimuli get transformed into a given biological response through the activation of a peculiar genetic program. Specifically, by recapitulating the processes involved in the interpretation of ECM remodeling by Focal Adhesions at cell-matrix interphase, we revise the role of cytoskeleton tension as the second messenger of the mechanotransduction process and the action of mechano-responsive shuttling proteins converging on stage and cell-specific transcription factors. Finally, we give few paradigmatic examples highlighting the emerging role of malfunctions in cell mechanosensing apparatus in the onset and progression of pathologies.
Collapse
Affiliation(s)
- Fabiana Martino
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Ana R. Perestrelo
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Vladimír Vinarský
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
| | - Stefania Pagliari
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Giancarlo Forte
- Center for Translational Medicine, International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
- Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czechia
- Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
27
|
Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation. Proc Natl Acad Sci U S A 2018; 115:E6760-E6769. [PMID: 29967145 DOI: 10.1073/pnas.1800621115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zyxin is a member of the focal adhesion complex and plays a critical role in actin filament polymerization and cell motility. Several recent studies showed that Zyxin is a positive regulator of Yki/YAP (Yes-associated protein) signaling. However, little is known about the mechanisms by which Zyxin itself is regulated and how Zyxin affects Hippo-YAP activity. We first showed that Zyxin is phosphorylated by CDK1 during mitosis. Depletion of Zyxin resulted in significantly impaired colon cancer cell proliferation, migration, anchorage-independent growth, and tumor formation in xenograft animal models. Mitotic phosphorylation is required for Zyxin activity in promoting growth. Zyxin regulates YAP activity through the colon cancer oncogene CDK8. CDK8 knockout phenocopied Zyxin knockdown in colon cancer cells, while ectopic expression of CDK8 substantially restored the tumorigenic defects of Zyxin-depletion cells. Mechanistically, we showed that CDK8 directly phosphorylated YAP and promoted its activation. Fully activated YAP is required to support the growth in CDK8-knockout colon cancer cells in vitro and in vivo. Together, these observations suggest that Zyxin promotes colon cancer tumorigenesis in a mitotic-phosphorylation-dependent manner and through CDK8-mediated YAP activation.
Collapse
|
28
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
29
|
Sala S, Ampe C. An emerging link between LIM domain proteins and nuclear receptors. Cell Mol Life Sci 2018; 75:1959-1971. [PMID: 29428964 PMCID: PMC11105726 DOI: 10.1007/s00018-018-2774-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
30
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
31
|
Byron A, Frame MC. Adhesion protein networks reveal functions proximal and distal to cell-matrix contacts. Curr Opin Cell Biol 2016; 39:93-100. [PMID: 26930633 PMCID: PMC5094910 DOI: 10.1016/j.ceb.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 12/15/2022]
Abstract
Cell adhesion to the extracellular matrix is generally mediated by integrin receptors, which bind to intracellular adhesion proteins that form multi-molecular scaffolding and signalling complexes. The networks of proteins, and their interactions, are dynamic, mechanosensitive and extremely complex. Recent efforts to characterise adhesions using a variety of technologies, including imaging, proteomics and bioinformatics, have provided new insights into their composition, organisation and how they are regulated, and have also begun to reveal unexpected roles for so-called adhesion proteins in other cellular compartments (for example, the nucleus or centrosomes) in diseases such as cancer. We believe this is opening a new chapter on understanding the wider functions of adhesion proteins, both proximal and distal to cell-matrix contacts.
Collapse
Affiliation(s)
- Adam Byron
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1889-904. [PMID: 25958335 DOI: 10.1016/j.bbamcr.2015.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
Abstract
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Xiaohan Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China
| | - Yichen Guo
- The University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Fanjie Meng
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Physiology and Biophysics Department, Center for Single Molecule Studies, University at Buffalo, The State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, PR China.
| |
Collapse
|
33
|
Young JS, Vogl AW. Focal adhesion proteins Zyxin and Vinculin are co-distributed at tubulobulbar complexes. SPERMATOGENESIS 2014; 2:63-68. [PMID: 22553491 PMCID: PMC3341248 DOI: 10.4161/spmg.19391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tubulobulbar complexes (TBCs) are actin-related double-membrane invaginations formed at intercellular junctions in the seminiferous epithelium of mammalian testis. They occur at basal junction complexes between neighboring Sertoli cells and at apical junctions between Sertoli cells and spermatids. They are proposed to internalize intercellular junctions during the translocation of spermatocytes from basal to adluminal compartments of the seminiferous epithelium, and during sperm release from Sertoli cells. Although TBCs are specific to the seminiferous epithelium, they morphologically resemble podosomes in osteoclasts. Previously, we have reported that a key group of proteins consisting of N-WASp, Arp2/3, cortactin and dynamin that occur at podosomes also is present at TBCs. Here we explore the prediction that zyxin, a focal adhesion protein known to be present at podosomes, also is present at apical TBCs. A rabbit polyclonal anti-zyxin antibody (B71) was used to label fixed fragments and frozen sections of testis. In both fragments and sections, B71 labeled tubular regions of TBCs at apical sites of attachment between Sertoli cells and spermatids, in addition to being localized at actin related intercellular adhesion junctions termed ectoplasmic specializations. Although the function of zyxin at TBCs has yet to be determined, the protein is known to interact with the cytoplasmic domain of integrins at focal adhesions, and integrins are known to be present in TBCs.
Collapse
Affiliation(s)
- J'nelle S Young
- Department of Cellular and Physiological Sciences; Faculty of Medicine; Life Sciences Centre; The University of British Columbia; Vancouver, BC Canada
| | | |
Collapse
|
34
|
Nuclear export of L-periaxin, mediated by its nuclear export signal in the PDZ domain. PLoS One 2014; 9:e91953. [PMID: 24633211 PMCID: PMC3954830 DOI: 10.1371/journal.pone.0091953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/18/2014] [Indexed: 11/30/2022] Open
Abstract
Myelinating Schwann cells specifically express L-periaxin (L-PRX) in the mammalian peripheral nervous system. Several loss-of-function mutations in periaxin have been described and linked to autosomal recessive Dejerine Sottas neuropathy and to demyelinating Charcot-Marie-Tooth disease. The localization of L-periaxin is developmentally regulated in the nucleus and the plasma membrane of Schwann cells. In this study, L-periaxin, which contains a PDZ domain, a nuclear localization signal (NLS) domain, a repeat domain, and an acidic domain, was localized in the cytoplasm of RSC96 cells. By contrast, a mutant L-periaxin with a deleted PDZ domain was localized mainly in the nucleus of RSC96 cells. After a nuclear cyclin A1, which is localized exclusively in the nucleus, was fused with the PDZ domain, cyclinA1was found in the cytoplasm of RSC96 cells. Treatment with leptomycin B (LMB), a specific inhibitor of nuclear export mediated by leucine-rich nuclear export signal (NES), also causes nuclear accumulation of wild-type L-periaxin. Double leucine mutation (L83, 85Q) in the putative NES in the PDZ domain prevented L-periaxin nuclear export and induced nuclear accumulation. These results suggested that the localization of L-periaxin in the cytoplasm is supported by NES in the PDZ domain.
Collapse
|
35
|
Abstract
Cardiomyopathies are the most common disorders resulting in heart failure, with dilated cardiomyopathy being responsible for the majority of cases. Other forms of cardiomyopathy, especially hypertrophic forms, are also important causes of heart failure. The mortality rate due to cardiomyopathy in the USA is over 10,000 deaths per year, and the costs associated with heart failure are approximately 200 million US dollars per year in the USA alone. Over the past few years, breakthroughs have occurred in understanding the basic mechanisms of these disorders, potentially enabling clinicians to devise improved diagnostic strategies and therapies. As at least 30 to 40% of cases are inherited, it is now imperative that the genetic basis for these disorders is clearly recognized by caregivers and scientists. However, it has also become clear that these diseases are genetically highly heterogeneous, with multiple genes identified for each of the major forms of cardiomyopathy, and most patients having private mutations. These data suggest that the genetic diagnosis of most patients with cardiomyopathy will be impractical with current technologies. However, there are a few exceptions, such as patients with X-linked cardiomyopathies, with or without the concomitant abnormalities of cyclic neutropenia and 3-methylglutaconic aciduria, or patients with cardiomyopathy associated with conduction disease: these appear to be associated with mutations in a small subset of genes, and can be investigated by certified diagnostic laboratories. This review will summarize current knowledge of the genetics of inherited cardiomyopathies and how findings from research laboratories may be translated into the diagnostic laboratory.
Collapse
Affiliation(s)
- Karla R Bowles
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
36
|
Chinenov Y, Gupte R, Rogatsky I. Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol 2013; 380:55-64. [PMID: 23623868 PMCID: PMC3787948 DOI: 10.1016/j.mce.2013.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/05/2023]
Abstract
Inflammation is a protective response of organisms to pathogens, irritation or injury. Primary inflammatory sensors activate an array of signaling pathways that ultimately converge upon a few transcription factors such as AP1, NFκB and STATs that in turn stimulate expression of inflammatory genes to ultimately eradicate infection and repair the damage. A disturbed balance between activation and inhibition of inflammatory pathways can set the stage for chronic inflammation which is increasingly recognized as a key pathogenic component of autoimmune, metabolic, cardiovascular and neurodegenerative disorders. Nuclear receptors (NRs) are a large family of transcription factors many of which are known for their potent anti-inflammatory actions. Activated by small lipophilic ligands, NRs interact with a wide range of transcription factors, cofactors and chromatin-modifying enzymes, assembling numerous cell- and tissue-specific DNA-protein transcriptional regulatory complexes with diverse activities. Here we discuss established and emerging roles and mechanisms by which NRs and, in particular, the glucocorticoid receptor (GR) repress genes encoding cytokines, chemokines and other pro-inflammatory mediators.
Collapse
Affiliation(s)
- Yurii Chinenov
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
| | - Rebecca Gupte
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
| | - Inez Rogatsky
- Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10021
- Corresponding author: , Tel: 1 212-606-1462, Fax: 1 212-774-2560
| |
Collapse
|
37
|
Grunewald TGP, Willier S, Janik D, Unland R, Reiss C, da Costa OP, Buch T, Dirksen U, Richter GH, Neff F, Burdach S, Butt E. The Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) is overexpressed in Ewing's sarcoma and promotes migration, invasion and cell growth. Biol Cell 2013; 105:535-47. [DOI: 10.1111/boc.201300041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas G. P. Grunewald
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Semjon Willier
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
| | - Dirk Janik
- Institute of Pathology; Helmholtz Center Munich; Neuherberg 85764 Germany
| | - Rebekka Unland
- Department of Pediatric Hematology and Oncology; University Hospital Muenster; Westphalian Wilhelms University; Muenster 48149 Germany
| | - Cora Reiss
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
- Center for Thrombosis and Hemostasis; University Medical Center Mainz; Mainz 55131 Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology, and Hygiene; Technische Universität München; Munich 81675 Germany
| | - Thorsten Buch
- Institute for Medical Microbiology, Immunology, and Hygiene; Technische Universität München; Munich 81675 Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology; University Hospital Muenster; Westphalian Wilhelms University; Muenster 48149 Germany
| | - Günther H.S. Richter
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Frauke Neff
- Institute of Pathology; Helmholtz Center Munich; Neuherberg 85764 Germany
| | - Stefan Burdach
- Children's Cancer Research Center and Roman Herzog Comprehensive Cancer Center; Laboratory of Functional Genomics and Transplantation Biology; Klinikum rechts der Isar; Technische Universität München; Munich 80804 Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry; University Clinic of Würzburg; Würzburg 97080 Germany
| |
Collapse
|
38
|
Li N, Goodwin RL, Potts JD. Zyxin regulates cell migration and differentiation in EMT during chicken AV valve morphogenesis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:842-854. [PMID: 23742986 DOI: 10.1017/s1431927613001633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During heart valve development, epithelial-mesenchymal transformation (EMT) is a key process for valve formation. EMT leads to the generation of mesenchymal cells that will eventually become the interstitial cells (fibroblasts) of the mature valve. During EMT, cell architecture and motility change markedly; significant changes are also observed in various signaling pathways. Here we systematically examined the expression, localization, and function of zyxin, a focal adhesion protein, in EMT during atrioventricular (AV) valve morphogenesis. Expression and localization studies showed that zyxin was expressed in the AV canal region during crucial stages of valve development. An in vitro 3D collagen gel culture system was used to determine zyxin function either after siRNA gene knockdown or after overexpression. Our studies revealed that zyxin overexpression inhibited endocardial cell migration and cell differentiation and also led to a decrease in the number of migrating mesenchymal cells. Moreover, correlative cytoskeletal changes were apparent in response to both overexpression and knockdown treatments. Thus, zyxin appears to play a role as a regulator of cell migration and differentiation during EMT in chicken AV valve formation.
Collapse
Affiliation(s)
- Na Li
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | |
Collapse
|
39
|
Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:700-22. [PMID: 23860255 DOI: 10.1016/j.bbamem.2013.07.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac muscle cells are equipped with specialized biochemical machineries for the rapid generation of force and movement central to the work generated by the heart. During each heart beat cardiac muscle cells perceive and experience changes in length and load, which reflect one of the fundamental principles of physiology known as the Frank-Starling law of the heart. Cardiac muscle cells are unique mechanical stretch sensors that allow the heart to increase cardiac output, and adjust it to new physiological and pathological situations. In the present review we discuss the mechano-sensory role of the cytoskeletal proteins with respect to their tight interaction with the sarcolemma and extracellular matrix. The role of contractile thick and thin filament proteins, the elastic protein titin, and their anchorage at the Z-disc and M-band, with associated proteins are reviewed in physiologic and pathologic conditions leading to heart failure. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Louise L A M Nijenkamp
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jessica A Regan
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Department of Physiology, Molecular Cardiovascular Research Program, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, The Netherlands.
| |
Collapse
|
40
|
Lecroisey C, Brouilly N, Qadota H, Mariol MC, Rochette NC, Martin E, Benian GM, Ségalat L, Mounier N, Gieseler K. ZYX-1, the unique zyxin protein of Caenorhabditis elegans, is involved in dystrophin-dependent muscle degeneration. Mol Biol Cell 2013; 24:1232-49. [PMID: 23427270 PMCID: PMC3623643 DOI: 10.1091/mbc.e12-09-0679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In vertebrates, zyxin is a LIM-domain protein belonging to a family composed of seven members. We show that the nematode Caenorhabditis elegans has a unique zyxin-like protein, ZYX-1, which is the orthologue of the vertebrate zyxin subfamily composed of zyxin, migfilin, TRIP6, and LPP. The ZYX-1 protein is expressed in the striated body-wall muscles and localizes at dense bodies/Z-discs and M-lines, as well as in the nucleus. In yeast two-hybrid assays ZYX-1 interacts with several known dense body and M-line proteins, including DEB-1 (vinculin) and ATN-1 (α-actinin). ZYX-1 is mainly localized in the middle region of the dense body/Z-disk, overlapping the apical and basal regions containing, respectively, ATN-1 and DEB-1. The localization and dynamics of ZYX-1 at dense bodies depend on the presence of ATN-1. Fluorescence recovery after photobleaching experiments revealed a high mobility of the ZYX-1 protein within muscle cells, in particular at dense bodies and M-lines, indicating a peripheral and dynamic association of ZYX-1 at these muscle adhesion structures. A portion of the ZYX-1 protein shuttles from the cytoplasm into the nucleus, suggesting a role for ZYX-1 in signal transduction. We provide evidence that the zyx-1 gene encodes two different isoforms, ZYX-1a and ZYX-1b, which exhibit different roles in dystrophin-dependent muscle degeneration occurring in a C. elegans model of Duchenne muscular dystrophy.
Collapse
|
41
|
Yamamura M, Noguchi K, Nakano Y, Segawa E, Zushi Y, Takaoka K, Kishimoto H, Hashimoto-Tamaoki T, Urade M. Functional analysis of Zyxin in cell migration and invasive potential of oral squamous cell carcinoma cells. Int J Oncol 2013; 42:873-80. [PMID: 23292068 DOI: 10.3892/ijo.2013.1761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 11/05/2022] Open
Abstract
Zyxin is an evolutionarily conserved protein that has been implicated in the regulation of actin assembly and is mainly located at focal adhesions. However, the biological roles of Zyxin in cancer cells are incompletely understood. We analyzed the functions of Zyxin in cell migration and the invasive potential of OSCC. Zyxin expression was examined using eight OSCC cell lines with two different cell morphologies (6 epithelial type and 2 fibroblastic type). To knockdown Zyxin expression, OSCC cells were transfected with Zyxin siRNA and control siRNA. The cell lines were studied by western blot analysis, immunocytochemical analysis and cell migration and invasion assay. Epithelial type OSCC cells showed a high level of E-cadherin expression and a low level of Zyxin expression. N-cadherin as well as Zyxin were strongly expressed in fibroblastic type OSCC cells. Expression levels of LPP and TRIP6, members of the human Zyxin family, did not differ between epithelial type and fibroblastic type. Knockdown of Zyxin expression by siRNA in fibroblastic type OSCC cells was associated with cell morphological changes from spindle (fibroblastic) to polygonal (epithelial) shape and significantly inhibited cell growth as well as cell migration and invasion. Expression levels of Rac1 and Cdc42 were weaker in Zyxin siRNA-treated fibroblastic type OSCC cells than in control siRNA-treated cells, but the expression of RhoA did not differ significantly. Treatment of fibroblastic type OSCC cells with Rac1 inhibitor decreased the expression of Zyxin mRNA and protein. Zyxin is suggested to promote growth, migration and invasiveness of fibroblastic type OSCC cells by upregulating Rac1 and Cdc42.
Collapse
Affiliation(s)
- Michiyo Yamamura
- Department of Oral and Maxillofacial Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
New insights into adhesion signaling in bone formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:1-68. [PMID: 23890379 DOI: 10.1016/b978-0-12-407695-2.00001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mineralized tissues that are protective scaffolds in the most primitive species have evolved and acquired more specific functions in modern animals. These are as diverse as support in locomotion, ion homeostasis, and precise hormonal regulation. Bone formation is tightly controlled by a balance between anabolism, in which osteoblasts are the main players, and catabolism mediated by the osteoclasts. The bone matrix is deposited in a cyclic fashion during homeostasis and integrates several environmental cues. These include diffusible elements that would include estrogen or growth factors and physicochemical parameters such as bone matrix composition, stiffness, and mechanical stress. Therefore, the microenvironment is of paramount importance for controlling this delicate equilibrium. Here, we provide an overview of the most recent data highlighting the role of cell-adhesion molecules during bone formation. Due to the very large scope of the topic, we focus mainly on the role of the integrin receptor family during osteogenesis. Bone phenotypes of some deficient mice as well as diseases of human bones involving cell adhesion during this process are discussed in the context of bone physiology.
Collapse
|
43
|
Sun Z, Huang S, Li Z, Meininger GA. Zyxin is involved in regulation of mechanotransduction in arteriole smooth muscle cells. Front Physiol 2012; 3:472. [PMID: 23267329 PMCID: PMC3526782 DOI: 10.3389/fphys.2012.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/03/2012] [Indexed: 01/16/2023] Open
Abstract
Zyxin is a focal adhesion protein that has been implicated in the modulation of cell adhesion and motility, and is hypothesized to be a mechano-sensor in integrin-mediated responses to mechanical force. To test the functional role of zyxin in the mechanotransduction of microvascular smooth muscle cells (VSMC), we utilized atomic force microscopy (AFM) to apply localized pulling forces to VSMC through a fibronectin (FN) focal adhesion induced by a FN-coated bead on cell surface. Application of force with the AFM induced an increase of zyxin accumulation at the site of the FN-bead focal adhesion that accompanied the VSMC contractile response. Whereas, reduction of zyxin expression by using a zyxin-shRNA construct abolished the VSMC contractile response to AFM pulling forces, even though the zyxin-silenced VSMCs displayed increased adhesion to FN in both AFM adhesion assays and cell adhesion assays. The reduced zyxin expression significantly impaired cell spreading and reorganization of the actin cytoskeleton that could indicate a possible underlying reason for the loss of a contractile response to mechanical force. Consistent with these observations, in zyxin-silenced VSMC, we also observed a reduced expression of Rac1, which plays an important role in the actin reorganization in VSMC, but increased thyroid receptor-interacting proteins (TRIP6) and FAK expression, the latter being a major protein that promote cell adhesion. In conclusion, these data support an important enabling role for zyxin in VSMCs ability to mechanically respond to applied force.
Collapse
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | | | | | | |
Collapse
|
44
|
Van Tam JK, Uto K, Ebara M, Pagliari S, Forte G, Aoyagi T. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064205. [PMID: 27877532 PMCID: PMC5099765 DOI: 10.1088/1468-6996/13/6/064205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/01/2012] [Indexed: 06/06/2023]
Abstract
The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Forte
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
45
|
Kolind K, Leong KW, Besenbacher F, Foss M. Guidance of stem cell fate on 2D patterned surfaces. Biomaterials 2012; 33:6626-33. [DOI: 10.1016/j.biomaterials.2012.05.070] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/30/2012] [Indexed: 01/01/2023]
|
46
|
Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O. Zyxin is a transforming growth factor-β (TGF-β)/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. J Biol Chem 2012; 287:31393-405. [PMID: 22778267 DOI: 10.1074/jbc.m112.357624] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although TGF-β acts as a tumor suppressor in normal tissues and in early carcinogenesis, these tumor suppressor effects are lost in advanced malignancies. Single cell migration and epithelial-mesenchymal transition (EMT), both of which are regulated by TGF-β, are critical steps in mediating cancer progression. Here, we sought to identify novel direct targets of TGF-β signaling in lung cancer cells and have indentified the zyxin gene as a target of Smad3-mediated TGF-β1 signaling. Zyxin concentrates at focal adhesions and along the actin cytoskeleton; as such, we hypothesized that cytoskeletal organization, motility, and EMT in response to TGF-β1 might be regulated by zyxin expression. We show that TGF-β1 treatment of lung cancer cells caused rapid phospho-Smad3-dependent expression of zyxin. Zyxin expression was critical for the formation and integrity of cell adherens junctions. Silencing of zyxin decreased expression of the focal adhesion protein vasodilator-activated phospho-protein (VASP), although the formation and morphology of focal adhesions remained unchanged. Zyxin-depleted cells displayed significantly increased integrin α5β1 levels, accompanied by enhanced adhesion to fibronectin and acquisition of a mesenchymal phenotype in response to TGF-β1. Zyxin silencing led to elevated integrin α5β1-dependent single cell motility. Importantly, these features are mirrored in the K-ras-driven mouse model of lung cancer. Here, lung tumors revealed decreased levels of both zyxin and phospho-Smad3 when compared with normal tissues. Our data thus demonstrate that zyxin is a novel functional target and effector of TGF-β signaling in lung cancer. By regulating cell-cell junctions, integrin α5β1 expression, and cell-extracellular matrix adhesion, zyxin may regulate cancer cell motility and EMT during lung cancer development and progression.
Collapse
Affiliation(s)
- Nikica Mise
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, 81377 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Hoffman LM, Jensen CC, Chaturvedi A, Yoshigi M, Beckerle MC. Stretch-induced actin remodeling requires targeting of zyxin to stress fibers and recruitment of actin regulators. Mol Biol Cell 2012; 23:1846-59. [PMID: 22456508 PMCID: PMC3350550 DOI: 10.1091/mbc.e11-12-1057] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mechanical stimulation induces zyxin-dependent actin cytoskeletal reinforcement. Stretch induces MAPK activation, zyxin phosphorylation, and recruitment to actin stress fibers, independent of p130Cas. Zyxin's C-terminal LIM domains are required for stretch-induced targeting to stress fibers, and zyxin's N-terminus is necessary for actin remodeling. Reinforcement of actin stress fibers in response to mechanical stimulation depends on a posttranslational mechanism that requires the LIM protein zyxin. The C-terminal LIM region of zyxin directs the force-sensitive accumulation of zyxin on actin stress fibers. The N-terminal region of zyxin promotes actin reinforcement even when Rho kinase is inhibited. The mechanosensitive integrin effector p130Cas binds zyxin but is not required for mitogen-activated protein kinase–dependent zyxin phosphorylation or stress fiber remodeling in cells exposed to uniaxial cyclic stretch. α-Actinin and Ena/VASP proteins bind to the stress fiber reinforcement domain of zyxin. Mutation of their docking sites reveals that zyxin is required for recruitment of both groups of proteins to regions of stress fiber remodeling. Zyxin-null cells reconstituted with zyxin variants that lack either α-actinin or Ena/VASP-binding capacity display compromised response to mechanical stimulation. Our findings define a bipartite mechanism for stretch-induced actin remodeling that involves mechanosensitive targeting of zyxin to actin stress fibers and localized recruitment of actin regulatory machinery.
Collapse
Affiliation(s)
- Laura M Hoffman
- Departments of Biology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
48
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
49
|
Kumeta M, Yamaguchi H, Yoshimura SH, Takeyasu K. Karyopherin-independent spontaneous transport of amphiphilic proteins through the nuclear pore. J Cell Sci 2012; 125:4979-84. [DOI: 10.1242/jcs.109520] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Highly selective nucleocytoplasmic molecular transport is critical to eukaryotic cells, which is illustrated by the size-filtering diffusion and karyopherin-mediated passage mechanisms. However, a considerable number of large proteins without nuclear localization signals are localized to the nucleus. Here, we provide evidence for spontaneous migration of large proteins in a karyopherin-independent manner. Time-lapse observation of nuclear transport assay revealed that several large molecules spontaneously and independently pass through the NPC. The amphiphilic motifs were shown to be sufficient to overcome the selectivity barrier of the NPC. Furthermore, we report that the characteristic amphiphilic property of these proteins enables altered local conformation in hydrophobic solutions, so that elevated surface hydrophobicity facilitates passage through the nuclear pore. The molecular dynamics simulation revealed the conformational change of the amphiphilic structure that exposes the hydrophobic amino acid residues to the outer surface in hydrophobic solution. These results contribute to the understanding of both nucleocytoplasmic molecular sorting and the nature of the permeability barrier.
Collapse
|
50
|
The LIM domain of zyxin is sufficient for force-induced accumulation of zyxin during cell migration. Biophys J 2011; 101:1069-75. [PMID: 21889443 DOI: 10.1016/j.bpj.2011.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/20/2011] [Accepted: 08/01/2011] [Indexed: 01/21/2023] Open
Abstract
Cellular responses to mechanical perturbation are vital to cell physiology. In particular, migrating cells have been shown to sense substrate stiffness and alter cell morphology and speed. Zyxin is a focal adhesion protein that responds to external mechanical forces; however, the mechanisms of zyxin recruitment at force-bearing sites are unknown. Using force-sensing microfabricated substrates, we simultaneously measured traction force and zyxin recruitment at force-bearing sites. GFP-tagged zyxin accumulates at force-bearing sites at the leading edge, but not at the trailing edge, of migrating epithelial cells. Zyxin recruitment at force-bearing sites depends on Rho-kinase and myosin II activation, suggesting that zyxin responds not only to the externally applied force, as previously shown, but also to the internally generated actin-myosin force. Zyxin in turn recruits vasodilator-stimulated phosphoprotein, a regulator of actin assembly, to force-bearing sites. To dissect the domains of zyxin that are essential for this unique force-dependent accumulation, we generated two zyxin truncation mutants: one lacking the LIM domain (ΔLIM) and one containing only the LIM domain with all three LIM motifs (LIM). GFP-tagged ΔLIM does not localize to the force-bearing sites, but GFP-tagged zyxin LIM-domain is sufficient for the recruitment to and dynamics at force-bearing focal adhesions. Furthermore, one or two LIM motifs are not sufficient for force-dependent accumulation, suggesting that all three LIM motifs are required. Therefore, the LIM domain of zyxin recruits zyxin to force-bearing sites at the leading edge of migrating cells.
Collapse
|