1
|
Pan Y, Fu Y, Baird PN, Guymer RH, Das T, Iwata T. Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration. Prog Retin Eye Res 2023; 97:101159. [PMID: 36581531 DOI: 10.1016/j.preteyeres.2022.101159] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe irreversible central vision loss in individuals over 65 years old. Genome-wide association studies (GWASs) have shown that the region at chromosome 10q26, where the age-related maculopathy susceptibility (ARMS2/LOC387715) and HtrA serine peptidase 1 (HTRA1) genes are located, represents one of the strongest associated loci for AMD. However, the underlying biological mechanism of this genetic association has remained elusive. In this article, we extensively review the literature by us and others regarding the ARMS2/HTRA1 risk alleles and their functional significance. We also review the literature regarding the presumed function of the ARMS2 protein and the molecular processes of the HTRA1 protein in AMD pathogenesis in vitro and in vivo, including those of transgenic mice overexpressing HtrA1/HTRA1 which developed Bruch's membrane (BM) damage, choroidal neovascularization (CNV), and polypoidal choroidal vasculopathy (PCV), similar to human AMD patients. The elucidation of the molecular mechanisms of the ARMS2 and HTRA1 susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment.
Collapse
Affiliation(s)
- Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC506, Houston, TX, 77030, USA
| | - Paul N Baird
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Robyn H Guymer
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, 3002, Australia
| | - Taraprasad Das
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, 500034, India
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
2
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Amini MA, Karbasi A, Vahabirad M, Khanaghaei M, Alizamir A. Mechanistic Insight into Age-Related Macular Degeneration (AMD): Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management. Chonnam Med J 2023; 59:143-159. [PMID: 37840684 PMCID: PMC10570864 DOI: 10.4068/cmj.2023.59.3.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly. AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients' visual acuity, and upgrades the quality of life of AMD patients.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Karbasi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Khanaghaei
- Department of Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - Aida Alizamir
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Shiroshita A, Yamamoto N, Saka N, Shiba H, Toki S, Yamamoto M, Dohi E, Kataoka Y. Expanding the Scope: In-depth Review of Interaction in Regression Models. ANNALS OF CLINICAL EPIDEMIOLOGY 2023; 6:25-32. [PMID: 38606039 PMCID: PMC11006550 DOI: 10.37737/ace.24005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Akihiro Shiroshita
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine
- Scientific Research Works Peer Support Group (SRWS-PSG)
| | - Norio Yamamoto
- Scientific Research Works Peer Support Group (SRWS-PSG)
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Natsumi Saka
- Scientific Research Works Peer Support Group (SRWS-PSG)
- Department of Health Research Methods, Evidence & Impact, McMaster University
- Department of Orthopedic Surgery, Teikyo University School of Medicine
| | - Hiroshi Shiba
- Department of Internal Medicine, Suwa Central Hospital
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine
| | - Mari Yamamoto
- Department of Rheumatology and Nephrology,Chubu Rosai Hospital
| | - Eisuke Dohi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yuki Kataoka
- Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
- Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital
- Section of Clinical Epidemiology, Department of Community Medicine, Kyoto University Graduate School of Medicine
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/Public Health
| |
Collapse
|
5
|
Chen LJ, Chen ZJ, Pang CP. Latest Development on Genetics of Common Retinal Diseases. Asia Pac J Ophthalmol (Phila) 2023; 12:228-251. [PMID: 36971708 DOI: 10.1097/apo.0000000000000592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 03/29/2023] Open
Abstract
Many complex forms of retinal diseases are common and pan-ethnic in occurrence. Among them, neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous choroid retinopathy involve both choroidopathy and neovascularization with multifactorial etiology. They are sight-threatening and potentially blinding. Early treatment is crucial to prevent disease progression. To understand their genetic basis, candidate gene mutational and association analyses, linkage analysis, genome-wide association studies, transcriptome analysis, next-generation sequencing, which includes targeted deep sequencing, whole-exome sequencing, and whole genome sequencing have been conducted. Advanced genomic technologies have led to the identification of many associated genes. But their etiologies are attributed to complicated interactions of multiple genetic and environmental risk factors. Onset and progression of neovascular age-related macular degeneration and polypoidal choroidal vasculopathy are affected by aging, smoking, lifestyle, and variants in over 30 genes. Although some genetic associations have been confirmed and validated, individual genes or polygenic risk markers of clinical value have not been established. The genetic architectures of all these complex retinal diseases that involve sequence variant quantitative trait loci have not been fully delineated. Recently artificial intelligence is making an impact in the collection and advanced analysis of genetic, investigative, and lifestyle data for the establishment of predictive factors for the risk of disease onset, progression, and prognosis. This will contribute to individualized precision medicine for the management of complex retinal diseases.
Collapse
Affiliation(s)
- Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital Eye Centre, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Ji Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
6
|
Abid G, Messal A, Harmel M, Idder A, Fodil M, Zemani-Fodil F. Characterization of polymorphisms in CFI and ARMS genes and their association with exudative age-related macular degeneration in Algerian patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:105-111. [PMID: 36059931 PMCID: PMC9336788 DOI: 10.22099/mbrc.2022.43634.1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence shows that polymorphisms in CFI and ARMS2 genes can influence exudative age-related macular degeneration (nAMD) risk. The aim of this study was to assess the role of CFI rs10033900 and ARMS2 rs3750846 polymorphisms in susceptibility to nAMD for the first time in the Algerian population. A total of one hundred twenty four controls and seventy two nAMD cases were included in the present study. Genomic DNA was extracted from venous blood leukocytes. CFI rs10033900 and ARMS2 rs3750846 variants were determined by using the real‑time polymerase chain reaction method. Differences in allele and genotype distribution between the cases and controls were tested with adjustment for age by logistic regression analysis. A stratification of case and control groups by age (<65 or ≥65) and by gender (male and female) was also performed. Statistical analyses were done using SPSS21.0. No statistically significant association was observed between CFI rs10033900 and ARMS2 rs3750846 polymorphisms and nAMD risk (p>0.05 for all comparisons). Stratification by age and gender did not show any significant association between these two polymorphisms and nAMD in a sample of the Algerian population. In our study, CFI rs10033900 and ARMS2 rs3750846 polymorphisms did not predispose alone to nAMD in our population. This study is a contribution to the enrichment of the bank data concerning the CFI and ARMS2 genes, reporting, for the first time, the allelic and genotypic frequencies of these genes polymorphisms characterizing the Algerian population.
Collapse
Affiliation(s)
- Ghania Abid
- Laboratory of molecular and cellular biology, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, Oran, Algeria ,Thematic Agency for Research in Health Sciences ATRSSV, Algeria,Corresponding Author: Laboratory of molecular and cellular biology, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, Oran, Algeria. Tel: +213 793378661; Fax: +213 41627130, E. mail:
| | - Ahlem Messal
- Laboratory of molecular and cellular biology, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, Oran, Algeria ,Thematic Agency for Research in Health Sciences ATRSSV, Algeria
| | - Mohammed Harmel
- Department of Ophthalmology, Hassani Abdelkader Hospital, Sidi Bel Abess, Algeria
| | - Aicha Idder
- Thematic Agency for Research in Health Sciences ATRSSV, Algeria,Department of Ophthalmology, Hassani Abdelkader Hospital, Sidi Bel Abess, Algeria
| | - Mostefa Fodil
- BiOSSE (Biology of Organisms: Stress, Health, Environment), Le Mans University, F-72085 Le Mans, France
| | - Faouzia Zemani-Fodil
- Laboratory of molecular and cellular biology, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB, Oran, Algeria ,Thematic Agency for Research in Health Sciences ATRSSV, Algeria
| |
Collapse
|
7
|
Deng Y, Qiao L, Du M, Qu C, Wan L, Li J, Huang L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis 2022; 9:62-79. [PMID: 35005108 PMCID: PMC8720701 DOI: 10.1016/j.gendis.2021.02.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disorder and is the leading cause of incurable blindness worldwide in the elderly. Clinically, AMD initially affects the central area of retina known as the macula and it is classified as early stage to late stage (advanced AMD). The advanced AMD is classified into the nonexudative or atrophic form (dry AMD) and the exudative or neovascular form (wet AMD). More severe vision loss is typically associated with the wet form. Multiple genetic factors, lipid metabolism, oxidative stress and aging, play a role in the etiology of AMD. Dysregulation in genetic to AMD is established to 46%-71% of disease contribution, with CFH and ARMS2/HTRA1 to be the two most notable risk loci among the 103 identified AMD associated loci so far. Chronic cigarette smoking is the most proven consistently risk living habits for AMD. Deep learning algorithm has been developed based on image recognition to distinguish wet AMD and normal macula with high accuracy. Currently, anti-vascular endothelial growth factor (VEGF) therapy is highly effective at treating wet AMD. Several new generation AMD drugs and iPSC-derived RPE cell therapy are in the clinical trial stage and are promising to improve AMD treatment in the near future.
Collapse
Affiliation(s)
- Yanhui Deng
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Lifeng Qiao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Mingyan Du
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences, Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, PR China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Ling Wan
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
| | - Lulin Huang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Clinical Laboratory, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, PR China
- Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
8
|
Gili P, Lloreda Martín L, Martín-Rodrigo JC, Kim-Yeon N, Modamio-Gardeta L, Fernández-García JL, Rebolledo-Poves AB, Gómez-Blazquez E, Pazos-Rodriguez R, Pérez-Fernández E, Velasco M. Gene polymorphisms associated with an increased risk of exudative age-related macular degeneration in a Spanish population. Eur J Ophthalmol 2022; 32:651-657. [PMID: 33765843 DOI: 10.1177/11206721211002698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To identify the association between single-nucleotide polymorphisms (SNPs) in CFH, ARMS2, HTRA1, CFB, C2, and C3 genes and exudative age-related macular degeneration (AMD) in a Spanish population. METHODS In 187 exudative AMD patients and 196 healthy controls (61% women, mean age 75 years), 12 SNPs as risk factors for AMD in CFH (rs1410996, rs1061170, r380390), ARMS2 (rs10490924, rs10490923), HTRA1 (rs11200638), CFB (rs641153), C2 (rs547154, rs9332739), and C3 (rs147859257, rs2230199, rs1047286) genes were analyzed. RESULTS The G allele was the most frequent in CFH gene (rs1410996) with a 7-fold increased risk of AMD (OR 7.69, 95% CI 3.17-18.69), whereas carriers of C allele in CFH (rs1061170) showed a 3-fold increased risk for AMD (OR 3.22, 95% CI 1.93-5.40). In CFH (rs380390), the presence of G allele increased the risk for AMD by 2-fold (OR 2.52, 95% CI 1.47-4.30). In ARMS2 (rs10490924), the T-allele was associated with an almost 5-fold increased risk (OR 5.49, 95% CI 3.23-9.31). The A allele in HTRA1 (rs11200638) was more prevalent in AMD versus controls (OR 6.44, 95% CI 3.62-11.47). In C2 gene (rs9332739) the presence of C increased risk for AMD by 3-fold (OR 3.10, 95% CI 1.06-9.06). CONCLUSION SNPs in CFH, ARMS2, HTRA1, and C2 genes were associated in our study with an increased risk for exudative AMD in Spanish patients.
Collapse
Affiliation(s)
- Pablo Gili
- Unit of Ophthalmology, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | | | - Naon Kim-Yeon
- Unit of Ophthalmology, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | | | | | - Elena Gómez-Blazquez
- Research Support Laboratory, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Ruth Pazos-Rodriguez
- Research Support Laboratory, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | | | - María Velasco
- Research Unit, Hospital Universitario Fundación Alcorcón, Madrid, Spain
| |
Collapse
|
9
|
Dao D, Xie B, Nadeem U, Xiao J, Movahedan A, D’Souza M, Leone V, Hariprasad SM, Chang EB, Sulakhe D, Skondra D. High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota. Cells 2021; 10:cells10082119. [PMID: 34440888 PMCID: PMC8392173 DOI: 10.3390/cells10082119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.
Collapse
Affiliation(s)
- David Dao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Bingqing Xie
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Urooba Nadeem
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Jason Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Asad Movahedan
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06437, USA;
| | - Mark D’Souza
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; (B.X.); (M.D.)
| | - Vanessa Leone
- Department of Animal Biologics and Metabolism, University of Wisconsin, Madison, WI 53706, USA;
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Seenu M. Hariprasad
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
| | - Eugene B. Chang
- Knapp Center for Biomedical Discovery, Department of Medicine, Microbiome Medicine Program, University of Chicago, Chicago, IL 60637, USA;
| | - Dinanath Sulakhe
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (D.D.); (J.X.); (S.M.H.)
- Correspondence:
| |
Collapse
|
10
|
Comparison of machine learning tools for the prediction of AMD based on genetic, age, and diabetes-related variables in the Chinese population. Regen Ther 2021; 15:180-186. [PMID: 33426217 PMCID: PMC7770346 DOI: 10.1016/j.reth.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Age-related macular degeneration (AMD) is the main cause of visual impairment and the most important cause of blindness in older people. However, there is currently no effective treatment for this disease, so it is necessary to establish a risk model to predict AMD development. Methods This study included a total of 202 subjects, comprising 82 AMD patients and 120 control subjects. Sixty-six single-nucleotide polymorphisms (SNPs) were identified using the MassArray assay. Considering 14 independent clinical variables as well as SNPs, four predictive models were established in the training set and evaluated by the confusion matrix, area under the receiver operating characteristic (ROC) curve (AUROC). The difference distributions of the 14 independent clinical features between the AMD and control groups were tested using the chi-squared test. Age and diabetes were adjusted using logistic regression analysis and the “genomic-control” method was used for multiple testing correction. Results Three SNPs (rs10490924, OR = 1.686, genomic-control corrected p-value (GC) = 0.030; rs2338104, OR = 1.794, GC = 0.025 and rs1864163, OR = 2.125, GC = 0.038) were significant risk factors for AMD development. In the training set, four models obtained AUROC values above 0.72. Conclusions We believe machine learning tools will be useful for the early prediction of AMD and for the development of relevant intervention strategies.
Collapse
|
11
|
Colijn JM, Meester-Smoor M, Verzijden T, de Breuk A, Silva R, Merle BMJ, Cougnard-Grégoire A, Hoyng CB, Fauser S, Coolen A, Creuzot-Garcher C, Hense HW, Ueffing M, Delcourt C, den Hollander AI, Klaver CCW. Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe: The EYE-RISK Consortium. Ophthalmology 2020; 128:1039-1049. [PMID: 33253757 DOI: 10.1016/j.ophtha.2020.11.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a common multifactorial disease in the elderly with a prominent genetic basis. Many risk variants have been identified, but the interpretation remains challenging. We investigated the genetic distribution of AMD-associated risk variants in a large European consortium, calculated attributable and pathway-specific genetic risks, and assessed the influence of lifestyle on genetic outcomes. DESIGN Pooled analysis of cross-sectional data from the European Eye Epidemiology Consortium. PARTICIPANTS Seventeen thousand one hundred seventy-four individuals 45 years of age or older participating in 6 population-based cohort studies, 2 clinic-based studies, and 1 case-control study. METHODS Age-related macular degeneration was diagnosed and graded based on fundus photographs. Data on genetics, lifestyle, and diet were harmonized. Minor allele frequencies and population-attributable fraction (PAF) were calculated. A total genetic risk score (GRS) and pathway-specific risk scores (complement, lipid, extra-cellular matrix, other) were constructed based on the dosage of SNPs and conditional β values; a lifestyle score was constructed based on smoking and diet. MAIN OUTCOME MEASURES Intermediate and late AMD. RESULTS The risk variants with the largest difference between late AMD patients and control participants and the highest PAFs were located in ARMS2 (rs3750846) and CHF (rs570618 and rs10922109). Combining all genetic variants, the total genetic risk score ranged from -3.50 to 4.63 and increased with AMD severity. Of the late AMD patients, 1581 of 1777 (89%) showed a positive total GRS. The complement pathway and ARMS2 were by far the most prominent genetic pathways contributing to late AMD (positive GRS, 90% of patients with late disease), but risk in 3 pathways was most frequent (35% of patients with late disease). Lifestyle was a strong determinant of the outcome in each genetic risk category; unfavorable lifestyle increased the risk of late AMD at least 2-fold. CONCLUSIONS Genetic risk variants contribute to late AMD in most patients. However, lifestyle factors have a strong influence on the outcome of genetic risk and should be a strong focus in patient management. Genetic risks in ARMS2 and the complement pathway are present in most late AMD patients but are mostly combined with risks in other pathways.
Collapse
Affiliation(s)
- Johanna M Colijn
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Magda Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rufino Silva
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Department of Ophthalmology, Coimbra Hospital and University Center, Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Benedicte M J Merle
- Team LEHA, Bordeaux Population Health Research Center, Inserm, Université de Bordeaux, Bordeaux, France
| | - Audrey Cougnard-Grégoire
- Team LEHA, Bordeaux Population Health Research Center, Inserm, Université de Bordeaux, Bordeaux, France
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital Cologne, Cologne, Germany; Hoffmann-La Roche AG, Basel, Switzerland
| | - Anthonius Coolen
- Randall Division of Cellular and Molecular Biophysics, King's College London, London, United Kingdom; Department of Mathematics, King's College London, London, United Kingdom
| | - Catherine Creuzot-Garcher
- Department of Ophthalmology, University Hospital, Eye and Nutrition Research Group, INRAe, Dijon, France
| | - Hans-Werner Hense
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Cecile Delcourt
- Team LEHA, Bordeaux Population Health Research Center, Inserm, Université de Bordeaux, Bordeaux, France
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland.
| | | |
Collapse
|
12
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
13
|
Annamalai B, Nicholson C, Parsons N, Stephenson S, Atkinson C, Jones B, Rohrer B. Immunization Against Oxidized Elastin Exacerbates Structural and Functional Damage in Mouse Model of Smoke-Induced Ocular Injury. Invest Ophthalmol Vis Sci 2020; 61:45. [PMID: 32207814 PMCID: PMC7401451 DOI: 10.1167/iovs.61.3.45] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of blindness in Western populations. While an overactive complement system has been linked to pathogenesis, mechanisms contributing to its activation are largely unknown. In aged and AMD eyes, loss of the elastin layer (EL) of Bruch's membrane (BrM) has been reported. Elastin antibodies are elevated in patients with AMD, the pathogenic significance of which is unclear. Here we assess the role of elastin antibodies using a mouse model of smoke-induced ocular pathology (SIOP), which similarly demonstrates EL loss. Methods C57BL/6J mice were immunized with elastin or elastin peptide oxidatively modified by cigarette smoke (ox-elastin). Mice were then exposed to cigarette smoke or air for 6 months. Visual function was assessed by optokinetic response, retinal morphology by spectral-domain optical coherence tomography and electron microscopy, and complement activation and antibody deposition by Western blot. Results Ox-elastin IgG and IgM antibodies were elevated in ox-elastin immunized mice following 6 months of smoke, whereas elastin immunization had a smaller effect. Ox-elastin immunization exacerbated smoke-induced vision loss, with thicker BrM and more damaged retinal pigment epithelium (RPE) mitochondria compared with mice immunized with elastin or nonimmunized controls. These changes were correlated with increased levels of IgM, IgG2, IgG3, and complement activation products in RPE/choroid. Conclusions These data demonstrate that SIOP mice generate elastin-specific antibodies and that immunization with ox-elastin exacerbates ocular pathology. Elastin antibodies represented complement fixing isotypes that, together with the increased presence of complement activation seen in immunized mice, suggest that elastin antibodies exert pathogenic effects through mediating complement activation.
Collapse
|
14
|
Ahlers-Dannen KE, Spicer MM, Fisher RA. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Mol Pharmacol 2020; 98:730-738. [PMID: 32015009 DOI: 10.1124/mol.119.118836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 11/22/2022] Open
Abstract
Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia: RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT: Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Katelin E Ahlers-Dannen
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mackenzie M Spicer
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Rory A Fisher
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
15
|
SMOKING STATUS AND TREATMENT OUTCOMES OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITORS FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2019; 40:1696-1703. [DOI: 10.1097/iae.0000000000002679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Handa JT, Bowes Rickman C, Dick AD, Gorin MB, Miller JW, Toth CA, Ueffing M, Zarbin M, Farrer LA. A systems biology approach towards understanding and treating non-neovascular age-related macular degeneration. Nat Commun 2019; 10:3347. [PMID: 31350409 PMCID: PMC6659646 DOI: 10.1038/s41467-019-11262-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 07/03/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly in the developed world. While treatment is effective for the neovascular or “wet” form of AMD, no therapy is successful for the non-neovascular or “dry” form. Here we discuss the current knowledge on dry AMD pathobiology and propose future research directions that would expedite the development of new treatments. In our view, these should emphasize system biology approaches that integrate omic, pharmacological, and clinical data into mathematical models that can predict disease onset and progression, identify biomarkers, establish disease causing mechanisms, and monitor response to therapy. No effective therapies exist for dry age-related macular degeneration. In this perspective, the authors propose that research should emphasize system biology approaches that integrate various ‘omics’ data into mathematical models to establish pathogenic mechanisms on which to design novel treatments, and identify biomarkers that predict disease progression and therapeutic response.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, 21287, MD, USA.
| | - Cathy Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Andrew D Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, BS8 1TH, UK.,University College London, Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and UCL-Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Michael B Gorin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, 90095, CA, USA.,Brain Research Institute, UCLA, Los Angeles, 90095, CA, USA
| | - Joan W Miller
- Retina Service, Massachusetts Eye and Ear, Harvard Ophthalmology AMD Center of Excellence, Department of Ophthalmology, Harvard Medical School, Boston, 02114, MA, USA
| | - Cynthia A Toth
- Department of Ophthalmology, Duke University Medical Center, Durham, 27708, NC, USA
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, D-72076, Germany
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, Rutgers University, Newark, 07103, NJ, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, 02118, MA, USA.
| |
Collapse
|
17
|
Desmettre T. [Epigenetics in age-related macular degeneration (AMD) - French translation of the article]. J Fr Ophtalmol 2018; 41:981-990. [PMID: 30454959 DOI: 10.1016/j.jfo.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, Royaume-Uni.
| |
Collapse
|
18
|
Desmettre TJ. Epigenetics in Age-related Macular Degeneration (AMD). J Fr Ophtalmol 2018; 41:e407-e415. [PMID: 30458925 DOI: 10.1016/j.jfo.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023]
Abstract
Age-related Macular Degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T J Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, United Kingdom.
| |
Collapse
|
19
|
Kringel D, Kaunisto MA, Lippmann C, Kalso E, Lötsch J. Development of an AmpliSeq TM Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain. Front Pharmacol 2018; 9:1008. [PMID: 30283335 PMCID: PMC6156278 DOI: 10.3389/fphar.2018.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 ⋅ 106 reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Catharina Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
20
|
Maugeri A, Barchitta M, Mazzone MG, Giuliano F, Agodi A. Complement System and Age-Related Macular Degeneration: Implications of Gene-Environment Interaction for Preventive and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7532507. [PMID: 30225264 PMCID: PMC6129329 DOI: 10.1155/2018/7532507] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of visual loss in developed countries, with a significant economic and social burden on public health. Although genome-wide and gene-candidate studies have been enabled to identify genetic variants in the complement system associated with AMD pathogenesis, the effect of gene-environment interaction is still under debate. In this review we provide an overview of the role of complement system and its genetic variants in AMD, summarizing the consequences of the interaction between genetic and environmental risk factors on AMD onset, progression, and therapeutic response. Finally, we discuss the perspectives of current evidence in the field of genomics driven personalized medicine and public health.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Maria Grazia Mazzone
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Francesco Giuliano
- SIFI SpA, Research and Development Department, Via Ercole Patti 36, 95025 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
21
|
Abstract
OBJECTIVE Epilepsy surgery is one of the most effective treatments in modern medicine. Yet, it remains largely under-utilized, in spite of its proven efficacy. The referrals for epilepsy surgery are often delayed until it is too late to prevent the detrimental psychosocial effects of refractory seizures. The reluctance towards epilepsy surgery is influenced by the perceived risks of the procedure by practitioners and patients. This review discusses how, in general decision-making processes, one faces a natural tendency towards emphasizing the risks of the most immediate and operational decision (surgery), at times without contrasting these risks with the alternative (uncontrolled epilepsy). METHODS In the field of economics, this bias is well recognized and can be overcome through marginal analysis, formally defined as focusing on incremental changes as opposed to absolute levels. RESULTS Regarding epilepsy surgery, the risks and benefits of surgery are considered separately from the risks of uncontrolled epilepsy. For instance, even though surgery carries an ∼0.1-0.5% risk of perioperative mortality, the chance of sudden unexpected death with refractory epilepsy can be as high as 0.6-0.9% per year. It is suggested that the inadequate way of phrasing clinical questions can be a crucial contributing factor for the under-utilization of epilepsy surgery. SIGNIFICANCE It is proposed that examining decision-making for epilepsy surgery in the context of marginal analysis may enable providers and patients to make more accurate informed decisions.
Collapse
Affiliation(s)
- Jonathan C Edwards
- a Medical University of South Carolina , Department of Neurology , Charleston , SC , USA
| | | | - Leonardo Bonilha
- a Medical University of South Carolina , Department of Neurology , Charleston , SC , USA
| |
Collapse
|
22
|
Joachim N, Kifley A, Colijn JM, Lee KE, Buitendijk GHS, Klein BEK, Myers C, Meuer SM, Tan AG, Flood V, Schoufour JD, Franco OH, Holliday EG, Attia J, Liew G, Iyengar SK, de Jong PTVM, Hofman A, Vingerling JR, Mitchell P, Klein R, Klaver CCW, Wang JJ. Joint Contribution of Genetic Susceptibility and Modifiable Factors to the Progression of Age-Related Macular Degeneration over 10 Years: The Three Continent AMD Consortium Report. Ophthalmol Retina 2017; 2:684-693. [PMID: 31047378 DOI: 10.1016/j.oret.2017.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE To assess joint effects of genetic and modifiable factors on the 10-year progression of age-related macular degeneration (AMD). DESIGN Individual and pooled data analyses of 2 population-based cohorts. PARTICIPANTS Blue Mountains Eye Study (BMES) and Rotterdam Study (RS) participants (n = 835). METHODS Participants of the BMES and RS were followed up over 10 years or more. At baseline and follow-up visits, interviews using questionnaires and eye examinations with retinal photography were performed. Age-related macular degeneration was assessed by trained photographic graders and verified by retinal specialists. Genetic susceptibility to AMD meant carrying 2 or more risk alleles of the CFH or ARMS2 SNPs, or both (rs1061170 and rs10490924), relative to 0 or 1 risk allele. Discrete logistic regression models were used to investigate the joint associations of genetic susceptibility and either smoking, fish consumption, dietary intake of lutein-zeaxanthin, or combined environmental risk scores from the 3 modifiable factors with the risk of AMD progression. Odds ratios (ORs) with 95% confidence intervals (CIs) and synergy indexes are reported. MAIN OUTCOME MEASURE Ten-year progression of AMD, categorized as any (≥1 step) or 2-step (≥2 steps) progression on the Three Continent AMD Consortium 5-step severity scale. RESULTS Older age, the presence of AMD genetic susceptibility, and baseline AMD status were associated strongly with AMD progression (P < 0.0001). In analyses of pooled data, each additional score from the combined environmental risk scores was associated with an increased risk of 2-step progression over 10 years (OR, 1.26; 95% CI, 1.02-1.56). The copresence of AMD genetic susceptibility and combined risk score of 3 or more was associated with a substantially higher risk of 2-step progression compared with the presence of either factor alone. There was a significant synergistic effect (OR, 4.14; 95% CI, 1.07-15.95) and interaction (P = 0.025) between genetic susceptibility and environmental risk score of 3 or more. CONCLUSIONS Among persons with AMD genetic susceptibility and pre-existing early AMD lesions, presenting with high environmental risk scores from 3 modifiable factors (smoking, infrequent consumption of fish, low lutein-zeaxanthin intake) were associated with an increased risk of 2-step progression over 10 years.
Collapse
Affiliation(s)
- Nichole Joachim
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Annette Kifley
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Johanna Maria Colijn
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kristine E Lee
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin
| | - Gabriëlle H S Buitendijk
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Barbara E K Klein
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin
| | - Chelsea Myers
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin
| | - Stacy M Meuer
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin
| | - Ava G Tan
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Victoria Flood
- Faculty of Health Sciences, University of Sydney, Sydney, Australia; Western Sydney Local Health District, Westmead, Australia
| | - Josje D Schoufour
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oscar H Franco
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elizabeth G Holliday
- Centre for Clinical Epidemiology and Biostatistics and School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - John Attia
- Centre for Clinical Epidemiology and Biostatistics and School of Medicine and Public Health, University of Newcastle, Newcastle, Australia; Department of Medicine, John Hunter Hospital and Hunter Medical Research Institute, Newcastle, Australia
| | - Gerald Liew
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Sudha K Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Paulus T V M de Jong
- Netherlands Institute of Neurosciences, Institute of the Royal Netherlands Academy of Arts and Sciences, Department of Ophthalmology, Academic Medical Centre, Amsterdam, and Leiden University Medical Centre, Leiden, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Netherlands Consortium for Healthy Aging, Netherlands Genomics Initiative, The Hague, The Netherlands
| | - Johannes R Vingerling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paul Mitchell
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Ronald Klein
- Department of Ophthalmology & Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Sydney, Australia; Office of Clinical Sciences and Academic Medicine Research Institute, Duke-NUS, Singapore, Republic of Singapore.
| |
Collapse
|
23
|
The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60:201-218. [PMID: 28336424 DOI: 10.1016/j.preteyeres.2017.03.002] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized, unique epithelial cell that interacts with photoreceptors on its apical side and with Bruch's membrane and the choriocapillaris on its basal side. Due to vital functions that keep photoreceptors healthy, the RPE is essential for maintaining vision. With aging and the accumulated effects of environmental stresses, the RPE can become dysfunctional and die. This degeneration plays a central role in age-related macular degeneration (AMD) pathobiology, the leading cause of blindness among the elderly in western societies. Oxidative stress and inflammation have both physiological and potentially pathological roles in RPE degeneration. Given the central role of the RPE, this review will focus on the impact of oxidative stress and inflammation on the RPE with AMD pathobiology. Physiological sources of oxidative stress as well as unique sources from photo-oxidative stress, the phagocytosis of photoreceptor outer segments, and modifiable factors such as cigarette smoking and high fat diet ingestion that can convert oxidative stress into a pathological role, and the negative impact of impairing the cytoprotective roles of mitochondrial dynamics and the Nrf2 signaling system on RPE health in AMD will be discussed. Likewise, the response by the innate immune system to an inciting trigger, and the potential role of local RPE production of inflammation, as well as a potential role for damage by inflammation with chronicity if the inciting trigger is not neutralized, will be debated.
Collapse
|
24
|
Estrago-Franco MF, Moustafa MT, Riazi-Esfahani M, Sapkal AU, Piche-Lopez R, Patil AJ, Sharma A, Falatoonzadeh P, Chwa M, Luczy-Bachman G, Kuppermann BD, Kenney MC. Effects of Benzo(e)pyrene on Reactive Oxygen/Nitrogen Species and Inflammatory Cytokines Induction in Human RPE Cells and Attenuation by Mitochondrial-involved Mechanism. J Ophthalmic Vis Res 2016; 11:385-393. [PMID: 27994808 PMCID: PMC5139551 DOI: 10.4103/2008-322x.194091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose: To identify inhibitors that could effectively lower reactive oxygen/nitrogen species (ROS/RNS), complement and inflammatory cytokine levels induced by Benzo(e)pyrene [B(e)p], an element of cigarette smoke, in human retinal pigment epithelial cells (ARPE-19) in vitro. Methods: ARPE-19 cells were treated for 24 hours with 200 μM, 100 μM, and 50 μM B(e)p or DMSO (dimethyl sulfoxide)-equivalent concentrations. Some cultures were pre-treated with ROS/RNS inhibitors (NG nitro-L-arginine, inhibits nitric oxide synthase; Apocynin, inhibits NADPH oxidase; Rotenone, inhibits mitochondrial complex I; Antimycin A, inhibits mitochondria complex III) and ROS/RNS levels were measured with a fluorescent H2 DCFDA assay. Multiplex bead arrays were used to measure levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8), Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Transforming Growth Factor alpha (TGF-α) and Vascular Endothelial Growth Factor (VEGF). IL-6 levels were also measured by an enzyme-linked immunosorbent assay. Real-time qPCR analyses were performed with primers for C3 (component 3), CFH (inhibits complement activation), CD59 (inhibitor of the complement membrane attack complex (MAC)) and CD55/DAF (accelerates decay of target complement target proteins). Results: The ARPE-19 cultures treated with B(e)p showed significantly increased ROS/RNS levels (P < 0.001), which were then partially reversed by 6 μM Antimycin A (19%, P = 0.03), but not affected by the other ROS/RNS inhibitors. The B(e)p treated cultures demonstrated increased levels of IL-6 (33%; P = 0.016) and GM-CSF (29%; P = 0.0001) compared to DMSO-equivalent controls, while the expression levels for components of the complement pathway (C3, CFH, CD59 and CD55/DAF) were not changed. Conclusion: The cytotoxic effects of B(e)p include elevated ROS/RNS levels along with pro-inflammatory IL-6 and GM-CSF proteins. Blocking the Qi site of cytochrome c reductase (complex III) with Antimycin A led to partial reduction in B(e)p induced ROS production. Our findings suggest that inhibitors for multiple pathways would be necessary to protect the retinal cells from B(e)p induced toxicity.
Collapse
Affiliation(s)
- M Fernanda Estrago-Franco
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Clinica Dres Estrago, Corrientes, Argentina
| | - M Tarek Moustafa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Ophthalmology Department, Minia University, Egypt
| | - Mohammad Riazi-Esfahani
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Eye Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashish U Sapkal
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Rhina Piche-Lopez
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - A Jayaprakash Patil
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Ashish Sharma
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA; Lotus Eye Care Hospital, Coimbatore, Tamil Nadu, India
| | - Payam Falatoonzadeh
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Marilyn Chwa
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | | | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
Abstract
Studies of human genetic disorders have traditionally followed a reductionist paradigm. Traits are defined as Mendelian or complex based on family pedigree and population data, whereas alleles are deemed rare, common, benign, or deleterious based on their population frequencies. The availability of exome and genome data, as well as gene and allele discovery for various conditions, is beginning to challenge classic definitions of genetic causality. Here, I discuss recent advances in our understanding of the overlap between rare and complex diseases and the context-dependent effect of both rare and common alleles that underscores the need for revising the traditional categorizations of genetic traits.
Collapse
Affiliation(s)
- Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
26
|
Cruz-Gonzalez F, Cabrillo-Estevez L, Rivero-Gutierrez V, Sanchez-Jara A, De Juan-Marcos L, Gonzalez-Sarmiento R. Influence of CFH, HTRA1 and ARMS2 polymorphisms in the response to intravitreal ranibizumab treatment for wet age-related macular degeneration in a Spanish population. Int J Ophthalmol 2016; 9:1304-9. [PMID: 27672596 DOI: 10.18240/ijo.2016.09.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/04/2015] [Indexed: 11/23/2022] Open
Abstract
AIM To determine whether gene polymorphisms of the major genetic risk loci for age-related macular degeneration (AMD): ARMS2 (rs10490923), the complement factor H (CFH) (rs1410996) and HTRA1 (rs11200638) influence the response to a treatment regimen with ranibizumab for exudative AMD. METHODS This study included 100 patients (100 eyes) with exudative AMD. Patients underwent a treatment with ranibizumab injections monthly during three months. Reinjections were made when the best corrected visual acuity (BCVA) decrease five letters (ETDRS) or central subfield retinal thickness gained 100 µm in optical coherence tomography image. Genotypes (rs10490923, rs1410996 and rs11200638) were analyzed using TaqMan probes or polymerase chain reaction-restricted fragment length polymorphisms analysis. RESULTS There were no statistically significant differences in allelic distribution of CFH (rs1410996), ARMS2 (rs10490923) and HTRA1 (rs11200638) polymorphisms regarding to response to ranibizumab treatment. CONCLUSION Ranibizumab treatment response is not related to CFH (rs1410996), ARMS2 (rs10490923) and HTRA1 (rs11200638) poymorphisms.
Collapse
Affiliation(s)
| | | | | | - Ana Sanchez-Jara
- Department of Ophthalmology, Hospital Universitario Salamanca, Salamanca 37007, Spain
| | | | | |
Collapse
|
27
|
Oliver VF, Jaffe AE, Song J, Wang G, Zhang P, Branham KE, Swaroop A, Eberhart CG, Zack DJ, Qian J, Merbs SL. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2016; 10:698-707. [PMID: 26067391 DOI: 10.1080/15592294.2015.1060388] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.
Collapse
Key Words
- AMD, Age-related macular degeneration
- AMD-MMAP, Michigan, Mayo
- AREDS, Age-Related Eye Disease Study
- AREDS, and Pennsylvania
- DNA methylation
- DNAm, DNA methylation
- GA, geographic atrophy
- GWAS, genome-wide association study
- KEC, Kellogg Eye Center
- LCLs, lymphoblastoid cell lines
- NV, choroidal neovascularization
- RPE, retinal pigment epithelium
- age-related macular degeneration
- genome-wide methylation
- meQTL, methylation quantitative trait loci
- methyl-QTL
- peripheral blood leukocytes
- retina
Collapse
Affiliation(s)
- Verity F Oliver
- a Department of Ophthalmology; Johns Hopkins University; School of Medicine ; Baltimore , MD USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hirata FE, de Vasconcellos JPC, Medina FM, Rim PHH, Fulco EAM, de Melo MB. Association of LOC387715/ARMS2 (rs10490924) Gene Polymorphism with Age-Related Macular Degeneration in the Brazilian Population. Ophthalmic Genet 2016; 36:224-8. [PMID: 24372405 DOI: 10.3109/13816810.2013.867449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND An association between LOC387715/ARMS2 (rs10490924) gene polymorphism and AMD has been reported. The aim of this study was to evaluate whether this polymorphism is associated with AMD in a Brazilian cohort. MATERIALS AND METHODS In total, 126 unrelated AMD patients (mean age 74.17 ± 7.64) were compared with 86 healthy controls (mean age 71.82 ± 7.12). Study subjects were classified according to the International ARM Epidemiological Study Group definition for early and late-stage AMD. LOC387715/ARMS2 rs10490924 polymorphism was evaluated through polymerase chain reaction and direct sequencing. RESULTS The T allele frequency was significantly higher in AMD patients than in controls (39.6% compared to 20.3%). The odds ratio (OR) for AMD was 2.05 (95% CI 1.13-3.71) for heterozygotes (TG) and 8.32 (95% CI 2.30-45.99) for homozygotes (TT). CONCLUSIONS These results suggest that there is a contribution of the rs10490924 SNP of the LOC387715/ARMS2 gene to AMD susceptibility in this sample of the Brazilian population.
Collapse
Affiliation(s)
- Fabio Endo Hirata
- a Department of Ophthalmology, Faculty of Medical Sciences , University of Campinas - UNICAMP , Campinas , SP , Brazil and
| | | | | | | | | | | |
Collapse
|
29
|
Cruz-González F, Cabrillo Estévez L, Cañete Campos C, Sánchez-Jara Sánchez A, Juan Marcos L, González-Sarmiento R. The presence of CFH, HTRA1, ARMS2, VEGF-A and VEGF-R and the appearance of age-related macular degeneration sub-types. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2016; 91:177-83. [PMID: 26850328 DOI: 10.1016/j.oftal.2015.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To demonstrate the genetic influence in the onset of the different age-related macular disease (AMD) subtypes by analysing the genotype distribution of CFH, ARMS2, HTRA1, VEGF-A and VEGF-R polymorphisms in patients with neovascular and atrophic AMD. MATERIALS AND METHODS The study was conducted on 101 consecutive patients with AMD diagnosis (74 exudative, 27 atrophic) following Wisconsin international classification criteria. The CFH rs1410996, ARMS2 rs10940923, VEGF-A rs833061, rs699947, and VEGF-R rs2071559 polymorphisms were analysed using real time PCR with taqman probes, and HTRA1 rs112000638 using restriction endonucleases digestion. A study was made of the genotype distribution of the different polymorphisms in our group of patients with neovascular AMD and those with the atrophic type, and a comparison was made of the results for each one of the genes studied. RESULTS No statistically significant differences (P>.05) were found in the genotype distribution of the different polymorphisms between patients with neovascular AMD and patients with atrophic AMD in our population, although the "risk" genotypes tended to appear more frequently in patients with neovascular AMD, despite the lack of statistical significance. CONCLUSIONS Allelic variants of CFH, ARMS2, HTRA1, VEGF-A or VEGF-R genes are not associated with the different AMD subtypes. This suggests that, although the polymorphisms seem to be associated with the disease susceptibility, they are not involved in the onset of the different clinical variants of AMD. Further studies in different populations, and with a larger cohort of patients, are needed to confirm these results.
Collapse
Affiliation(s)
- F Cruz-González
- Servicio de Oftalmología, Hospital Universitario de Salamanca, Salamanca, España.
| | - L Cabrillo Estévez
- Servicio de Oftalmología, Instituto Salmantino de Oftalmología, Salamanca, España
| | - C Cañete Campos
- Servicio de Oftalmología, Hospital Universitario de Salamanca, Salamanca, España
| | | | - L Juan Marcos
- Servicio de Oftalmología, Hospital Universitario de Salamanca, Salamanca, España
| | - R González-Sarmiento
- Departamento de Medicina Molecular, Facultad de Medicina, Universidad de Salamanca, Salamanca, España
| |
Collapse
|
30
|
Hoffman JD, van Grinsven MJJP, Li C, Brantley M, McGrath J, Agarwal A, Scott WK, Schwartz SG, Kovach J, Pericak-Vance M, Sanchez CI, Haines JL. Genetic Association Analysis of Drusen Progression. Invest Ophthalmol Vis Sci 2016; 57:2225-31. [PMID: 27116550 PMCID: PMC4849854 DOI: 10.1167/iovs.15-18571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Age-related macular degeneration is a common form of vision loss affecting older adults. The etiology of AMD is multifactorial and is influenced by environmental and genetic risk factors. In this study, we examine how 19 common risk variants contribute to drusen progression, a hallmark of AMD pathogenesis. METHODS Exome chip data was made available through the International AMD Genomics Consortium (IAMDGC). Drusen quantification was carried out with color fundus photographs using an automated drusen detection and quantification algorithm. A genetic risk score (GRS) was calculated per subject by summing risk allele counts at 19 common genetic risk variants weighted by their respective effect sizes. Pathway analysis of drusen progression was carried out with the software package Pathway Analysis by Randomization Incorporating Structure. RESULTS We observed significant correlation with drusen baseline area and the GRS in the age-related eye disease study (AREDS) dataset (ρ = 0.175, P = 0.006). Measures of association were not statistically significant between drusen progression and the GRS (P = 0.54). Pathway analysis revealed the cell adhesion molecules pathway as the most highly significant pathway associated with drusen progression (corrected P = 0.02). CONCLUSIONS In this study, we explored the potential influence of known common AMD genetic risk factors on drusen progression. Our results from the GRS analysis showed association of increasing genetic burden (from 19 AMD associated loci) to baseline drusen load but not drusen progression in the AREDS dataset while pathway analysis suggests additional genetic contributors to AMD risk.
Collapse
Affiliation(s)
- Joshua D. Hoffman
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
| | | | - Chun Li
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States
| | - Milam Brantley
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - Josephine McGrath
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
| | - Anita Agarwal
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, United States
| | - William K. Scott
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Stephen G. Schwartz
- Ophthalmology, Bascom Palmer Eye Institute, Retina Center of Naples, Naples, Florida, United States
| | - Jaclyn Kovach
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Margaret Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Clara I. Sanchez
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jonathan L. Haines
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
31
|
Sergejeva O, Botov R, Liutkevičienė R, Kriaučiūnienė L. Genetic factors associated with the development of age-related macular degeneration. MEDICINA-LITHUANIA 2016; 52:79-88. [PMID: 27170480 DOI: 10.1016/j.medici.2016.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/01/2015] [Accepted: 02/13/2016] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) affects the macula and is the leading cause of significant and irreversible central visual loss. It is the most common cause of visual loss in people aged more than 60 years. This disease affects 2.5 million individuals in Europe. AMD is caused by both environmental and genetic factors. Numerous risk factors have been reported, but the pathogenesis of AMD is complex and fairly understood. Age, female gender, obesity, race, education status, family history, hyperopia, iris color, cigarette smoking, previous cataract surgery, history of cardiovascular and cerebrovascular disease, diabetes, sunlight exposure and many other factors have been shown to be associated with AMD development. Scientific evidence shows that genes may play a role in the development of nearly 3 out of 4 cases of this devastating eye disease. The genes that have been shown to be associated with AMD are genes encoding complement system components such as CFH, C2, C3, CFB, and other.
Collapse
Affiliation(s)
- Olga Sergejeva
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Roman Botov
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Liutkevičienė
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania; Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Loresa Kriaučiūnienė
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
32
|
Analysis of Genetic and Environmental Risk Factors and Their Interactions in Korean Patients with Age-Related Macular Degeneration. PLoS One 2015; 10:e0132771. [PMID: 26171855 PMCID: PMC4501798 DOI: 10.1371/journal.pone.0132771] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the association of genetic and environmental factors, and their interactions in Korean patients with exudative age-related macular degeneration (AMD). Methods A total of 314 robustly characterized exudative AMD patients, including 111 PCV (polypoidal choroidal vasculopathy) and 154 typical choroidal neovascularization (CNV), and 395 control subjects without any evidence of AMD were enrolled. Full ophthalmologic examinations including fluorescein angiography (FA), indocyanine green angiography (ICG) and optical coherence tomography (OCT) were done, according to which patients were divided into either PCV or typical CNV. Standardized questionnaires were used to collect information regarding underlying systemic diseases, dietary habits, smoking history and body mass index (BMI). A total of 86 SNPs from 31 candidate genes were analyzed. Genotype association and logistic regression analyses were done and stepwise regression models to best predict disease for each AMD subtype were constructed. Results Age, spherical equivalent, myopia, and ever smoking were associated with exudative AMD. Age, hypertension, hyperlipidemia, spherical equivalent, and myopia were risk factors for typical CNV, while increased education and ever smoking were significantly associated with PCV (p<.05 for all). Four SNPs, ARMS2/HTRA1 rs10490924, rs11200638, and rs2736911, and CFH rs800292, showed association with exudative AMD. Two of these SNPs, ARMS2/HTRA1 rs10490924 and rs11200638, showed significant association with typical CNV and PCV specifically. There were no significant interactions between environmental and genetic factors. The most predictive disease model for exudative AMD included age, spherical equivalent, smoking, CFH rs800292, and ARMS2 rs10490924 while that for typical CNV included age, hyperlipidemia, spherical equivalent, and ARMS2 rs10490924. Smoking, spherical equivalent, and ARMS2 rs10490924 were the most predictive variables for PCV. When comparing PCV cases to CNV cases, age, BMI, and education were the most predictive risk factors of PCV. Conclusions Only one locus, the ARMS2/HTRA1 was a significant genetic risk factor for Korean exudative AMD, including its subtypes, PCV and typical CNV. Stepwise regression revealed that CFH was important to risk of exudative AMD in general but not to any specific subtype. While increased education was a unique risk factor to PCV when compared to CNV, this association was independent of refractive error in this homogenous population from South Korea. No significant interactions between environmental and genetic risk factors were observed.
Collapse
|
33
|
Merle BMJ, Richard F, Benlian P, Puche N, Delcourt C, Souied EH. CFH Y402H and ARMS2 A69S Polymorphisms and Oral Supplementation with Docosahexaenoic Acid in Neovascular Age-Related Macular Degeneration Patients: The NAT2 Study. PLoS One 2015; 10:e0130816. [PMID: 26132079 PMCID: PMC4489493 DOI: 10.1371/journal.pone.0130816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
Purpose Genetic susceptibility could be modified by environmental factors and may also influence differential responses to treatments for age-related macular degeneration (AMD). We investigated whether genotype could influence response to docosahexaenoic acid (DHA)-supplementation in the occurrence of choroidal new vessels (CNV). Methods The Nutritional AMD Treatment 2 (NAT2) study was a randomized, placebo-controlled, double-blind, parallel, comparative study, including 250 patients aged 55 to 85 years with early lesions of age-related maculopathy, visual acuity better than 0.4 Logarithm of Minimum Angle of Resolution units in the study eye and neovascular AMD in the fellow eye. Patients were randomized at baseline to receive either 3 daily fish-oil capsules, each containing 280 mg DHA, 90 mg EPA and 2 mg Vitamin E, or placebo. Results Patients carrying the risk allele (C) for CFH Y402H had no statistically significant increased risk for developing CNV in the study eye (Hazard Ratio (HR)=0.97; 95% Confidence Interval (CI): 0.54-1.76 for heterozygous and HR=1.29; 95%CI: 0.69-2.40 for homozygous). Patients carrying the risk allele (T) for ARMS2 A69S had no statistically significant increased risk for developing CNV in the study eye (HR=1.68; 95%CI: 0.91-3.12) for heterozygous and HR=1.78; 95%CI: 0.90-3.52 for homozygous). A significant interaction was observed between CFH Y402H and DHA-supplementation (p=0.01). We showed a protective effect of DHA-supplementation among homozygous non-risk patients. Among these patients, occurrence of CNV was 38.2% in placebo group versus 16.7% in DHA group (p=0.008). Conclusions These results suggest that a genetic predisposition to AMD conferred by the CFH Y402H variant limits the benefit provided by DHA supplementation. Trial Registration ISRCTN registry 98246501
Collapse
Affiliation(s)
- Bénédicte M. J. Merle
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
- * E-mail:
| | - Florence Richard
- Université de Lille Nord de France, INSERM774 Institut Pasteur de Lille, Lille, France
- Université de Lille Nord de France, Lille, France
| | - Pascale Benlian
- CHRU de Lille, Lille, France
- APHP - Saint-Antoine Hospital, Endocrinology and Metabolic Disease Department, F75012 Paris, France
- Lille 2 University, School of Medicine, Department of Biochemistry and Molecular Biology, F-59045 Lille, France
| | - Nathalie Puche
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
| | - Cécile Delcourt
- INSERM, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
- Univ. Bordeaux, ISPED, F-33000 Bordeaux, France
| | - Eric H. Souied
- Ophthalmology Department, Hôpital Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
| |
Collapse
|
34
|
Joint Effect of CFH and ARMS2/HTRA1 Polymorphisms on Neovascular Age-Related Macular Degeneration in Chinese Population. J Ophthalmol 2015; 2015:821918. [PMID: 25883802 PMCID: PMC4389821 DOI: 10.1155/2015/821918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/10/2015] [Indexed: 12/03/2022] Open
Abstract
Purpose. The etiology of neovascular age-related macular degeneration (nAMD) cannot be completely explained by identified environmental risk factors or single-locus gene variants. This study was to explore the potential interactions among gene variants on nAMD in Chinese population.
Methods. 43 SNPs located in different genes were genotyped in 932 Chinese individuals (464 nAMD patients and 468 controls). We explored the potential interactions among gene variants using generalized multifactor dimensionality reduction (GMDR) algorithm and the method to measure the departure from the additivity model. Results. The joint effect that involved CFH rs1061170 and HTRA1 rs3793917 was shown statistically significant (P < 0.001) with the highest cross-validation consistency (10/10) and the best testing balanced accuracy (64.50%). In addition, based on the method to measure the departure from the additivity model, the synergy index (S) was 2.63 (1.09–6.38) and the attributable proportion due to interaction (AP) was 55.7% (21.4%–89.9%), which suggested that a common pathway may exist for these genes for nAMD. Those who carried CC for rs3793917 and TC/CC for rs1061170 were at the highest risk of nAMD (OR: 9.76, 95% CI: 4.65–20.51). Conclusions. Evidence that the joint effect that involved CFH and ARMS2/HTRA1 may contribute to the risk of neovascular AMD in Chinese population was obtained.
Collapse
|
35
|
Hao XF, Xie LK, Tang YZ, Xie WK, Zhang ZF, Qi YX, Xiao WZ, Zhang J. Association of complement factor H gene polymorphisms with age-related macular egeneration susceptibility. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3186-3191. [PMID: 26045838 PMCID: PMC4440147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study was aimed to confirm whether I62V and Y402H polymorphisms of complement factor H (CFH) were risk factors for age-related macular degeneration (AMD). METHOD 109 AMD patients and 165 AMD-free controls were enrolled in the study. The I62V and Y402H polymorphisms were analyzed by polymerase chain reaction-restriction fragment length of polymorphism (PCR-RFLP). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated by the X2 test to assess the relationship of I62V and Y402H polymorphisms with AMD risk. Analysis of haplotype and stratification by age and smoking status was conducted as well. RESULTS AA genotype and A allele of I62V polymorphism was significantly associated with increased risk for AMD (OR=3.75, 95% CI=1.70-8.30; OR=1.64, 95% CI=1.14-2.36). For Y402H polymorphism, CT genotype showed strong effects on the occurrence of AMD (OR=2.10, 95% CI=1.04-4.27). Moreover, C allele was also a risk factor for AMD (OR=1.95, 95% CI=1.02-3.72). The haplotypes analysis suggested that the risk for AT haplotype carriers was high, compared with GT haplotype (OR=3.91, 95% CI=2.58-5.94). In addition, we found that smoking status could affect the genotype distribution of Y402H polymorphism (P<0.05). CONCLUSIONS Our results revealed that CFH polymorphisms I62V and Y402H might be associated with the susceptibility to AMD in Chinese population.
Collapse
Affiliation(s)
- Xiao-Feng Hao
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Li-Ke Xie
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - You-Zhi Tang
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Wan-Kun Xie
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Zhi-Fang Zhang
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Yi-Xin Qi
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Wen-Zheng Xiao
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| | - Jing Zhang
- Eye Hospital of China Academy of Chinese Medical Sciences Beijing 100040, China
| |
Collapse
|
36
|
Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF. Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 2015; 45:1-29. [PMID: 25486088 PMCID: PMC4339497 DOI: 10.1016/j.preteyeres.2014.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022]
Abstract
Age-related macular degeneration (AMD) is a common and devastating disease that can result in severe visual dysfunction. Over the last decade, great progress has been made in identifying genetic variants that contribute to AMD, many of which lie in genes involved in the complement cascade. In this review we discuss the significance of complement activation in AMD, particularly with respect to the formation of the membrane attack complex in the aging choriocapillaris. We review the clinical, histological and biochemical data that indicate that vascular loss in the choroid occurs very early in the pathogenesis of AMD, and discuss the potential impact of vascular dropout on the retinal pigment epithelium, Bruch's membrane and the photoreceptor cells. Finally, we present a hypothesis for the pathogenesis of early AMD and consider the implications of this model on the development of new therapies.
Collapse
Affiliation(s)
- S Scott Whitmore
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Elliott H Sohn
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Kathleen R Chirco
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Arlene V Drack
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Edwin M Stone
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Budd A Tucker
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| | - Robert F Mullins
- The Stephen A. Wynn Institute for Vision Research, The University of Iowa, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa, United States
| |
Collapse
|
37
|
Kannarkat GT, Lee JK, Ramsey CP, Chung J, Chang J, Porter I, Oliver D, Shepherd K, Tansey MG. Age-related changes in regulator of G-protein signaling (RGS)-10 expression in peripheral and central immune cells may influence the risk for age-related degeneration. Neurobiol Aging 2015; 36:1982-93. [PMID: 25784210 DOI: 10.1016/j.neurobiolaging.2015.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 11/19/2022]
Abstract
Inflammation in the aging brain increases risk for neurodegenerative disease. In humans, the regulator of G-protein signaling-10 (RGS10) locus has been associated with age-related maculopathy. Chronic peripheral administration of lipopolysaccharide in the RGS10-null mice induces nigral dopaminergic (DA) degeneration, suggesting that RGS10 modulates neuroimmune interactions and may influence susceptibility to neurodegeneration. Because age is the strongest risk factor for neurodegenerative disease, we assessed whether RGS10 expression changes with age and whether aged RGS10-null mice have altered immune cell profiles. Loss of RGS10 in aged mice does not alter the regulation of nigral DA neurons but does alter B-cell, monocyte, microglial, and CD4+ T-cell populations and inflammatory cytokine levels in the cerebrospinal fluid. These results suggest that loss of RGS10 is associated with an age-dependent dysregulation of peripheral and central immune cells rather than dysregulation of DA neuron function.
Collapse
Affiliation(s)
- George T Kannarkat
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jae-Kyung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chenere P Ramsey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jaegwon Chung
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Isadora Porter
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Danielle Oliver
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kennie Shepherd
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
38
|
Restrepo NA, Mitchell SL, Goodloe RJ, Murdock DG, Haines JL, Crawford DC. Mitochondrial variation and the risk of age-related macular degeneration across diverse populations. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2015:243-254. [PMID: 25592585 PMCID: PMC4299880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Substantial progress has been made in identifying susceptibility variants for age-related macular degeneration (AMD). The majority of research to identify genetic variants associated with AMD has focused on nuclear genetic variation. While there is some evidence that mitochondrial genetic variation contributes to AMD susceptibility, to date, these studies have been limited to populations of European descent resulting in a lack of data in diverse populations. A major goal of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study is to describe the underlying genetic architecture of common, complex diseases across diverse populations. This present study sought to determine if mitochondrial genetic variation influences risk of AMD across diverse populations. We performed a genetic association study to investigate the contribution of mitochondrial DNA variation to AMD risk. We accessed samples from the National Health and Nutrition Examination Surveys, a U.S population-based, cross-sectional survey collected without regard to health status. AMD cases and controls were selected from the Third NHANES and NHANES 2007-2008 datasets which include non-Hispanic whites, non-Hispanic blacks, and Mexican Americans. AMD cases were defined as those > 60 years of age with early/late AMD, as determined by fundus photography. Targeted genotyping was performed for 63 mitochondrial SNPs and participants were then classified into mitochondrial haplogroups. We used logistic regression assuming a dominant genetic model adjusting for age, sex, body mass index, and smoking status (ever vs. never). Regressions and meta-analyses were performed for individual SNPs and mitochondrial haplogroups J, T, and U. We identified five SNPs associated with AMD in Mexican Americans at p < 0.05, including three located in the control region (mt16111, mt16362, and mt16319), one in MT-RNR2 (mt1736), and one in MT-ND4 (mt12007). No mitochondrial variant or haplogroup was significantly associated in non-Hispanic blacks or non- Hispanic whites in the final meta-analysis. This study provides further evidence that mitochondrial variation plays a role in susceptibility to AMD and contributes to the knowledge of the genetic architecture of AMD in Mexican Americans.
Collapse
Affiliation(s)
- Nicole A Restrepo
- Center for Human Genetics Research, Vanderbilt University, 2215 Garland Avenue, 519 Light Hall, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Tsuchihashi T, Mori K, Horie-Inoue K, Okazaki Y, Awata T, Inoue S, Yoneya S. Prognostic phenotypic and genotypic factors associated with photodynamic therapy response in patients with age-related macular degeneration. Clin Ophthalmol 2014; 8:2471-8. [PMID: 25525324 PMCID: PMC4266424 DOI: 10.2147/opth.s71305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study aimed to demonstrate the phenotypic and genotypic factors associated with photodynamic therapy (PDT) for age-related macular degeneration (AMD). METHODS The study included 149 patients with exudative AMD treated by PDT. Eight phenotypic factors and ten genotypic factors for three single nucleotide polymorphisms (SNPs; rs800292, rs1061170, rs1410996) in the complement factor H (CFH) gene, rs 11200638-SNP in the high temperature requirement A-1 (HTRA1) gene, two SNPs (rs699947, rs2010963) in the vascular endothelial growth factor (VEGF) gene, and four SNPs (rs12948385, rs12150053, rs9913583, rs1136287) in the pigment epithelium-derived factor (PEDF) gene were evaluated. RESULTS A significant association with best-corrected visual acuity change was demonstrated in the greatest linear dimension, presence or absence of pigment epithelial detachment, and HTRA1-rs11200638 genotype statistically (P=3.67×10(-4), 1.95×10(-2), 1.24×10(-3), respectively). Best-corrected visual acuity in patients with AA genotype of HTRA1-rs11200638 significantly decreased compared with that in patients with GG genotype (P=1.33×10(-3)). Logistic regression analyses demonstrated HTRA1-rs11200638 genotype was most strongly associated with best-corrected visual acuity outcome from baseline at 12 months after photodynamic therapy (P=4.60×10(-3); odds ratio 2.363; 95% confidence interval 1.303-4.285). CONCLUSION The HTRA1-rs11200638 variant showed the most significant association. Therefore, this variant may be used as a prognostic factor to estimate the PDT response with significant predictive power.
Collapse
Affiliation(s)
- Takashi Tsuchihashi
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keisuke Mori
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Takuya Awata
- Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical University, Iruma, Saitama, Japan
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Iruma, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shin Yoneya
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Effects of aflibercept for ranibizumab-resistant neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 2014; 253:1471-7. [DOI: 10.1007/s00417-014-2838-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/16/2023] Open
|
41
|
Age-related macular degeneration: insights into inflammatory genes. J Ophthalmol 2014; 2014:582842. [PMID: 25478207 PMCID: PMC4247975 DOI: 10.1155/2014/582842] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/24/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease that affects approximately 8.7% of elderly people worldwide (>55 years old). AMD is characterized by a multifactorial aetiology that involves several genetic and environmental risk factors (genes, ageing, smoking, family history, dietary habits, oxidative stress, and hypertension). In particular, ageing and cigarette smoking (including oxidative compounds and reactive oxygen species) have been shown to significantly increase susceptibility to the disease. Furthermore, different genes (CFH, CFI, C2, C3, IL-6, IL-8, and ARMS2) that play a crucial role in the inflammatory pathway have been associated with AMD risk. Several genetic and molecular studies have indicated the participation of inflammatory molecules (cytokines and chemokines), immune cells (macrophages), and complement proteins in the development and progression of the disease. Taking into consideration the genetic and molecular background, this review highlights the genetic role of inflammatory genes involved in AMD pathogenesis and progression.
Collapse
|
42
|
Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention. Retina 2014; 34:423-41. [PMID: 24285245 DOI: 10.1097/iae.0000000000000036] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To address the most dynamic and current issues concerning human genetics, risk factors, pharmacoeconomics, and prevention regarding age-related macular degeneration. METHODS An online review of the database Pubmed and Ovid was performed, searching for the key words: age-related macular degeneration, AMD, pharmacoeconomics, risk factors, VEGF, prevention, genetics and their compound phrases. The search was limited to articles published since 1985 to date. All returned articles were carefully screened and their references were manually reviewed for additional relevant data. The webpage www.clinicaltrials.gov was also accessed in search of relevant research trials. RESULTS A total of 366 articles were reviewed, including 64 additional articles extracted from the references and 25 webpages and online databases from different institutions. At the end, only 244 references were included in this review. CONCLUSION Age-related macular degeneration is a complex multifactorial disease that has an uneven manifestation around the world but with one common denominator, it is increasing and spreading. The economic burden that this disease poses in developed nations will increase in the coming years. Effective preventive therapies need to be developed in the near future.
Collapse
|
43
|
Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 2014; 52:12-27. [PMID: 25319011 DOI: 10.3109/10408363.2014.968703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to cellular or molecular damage caused by reactive oxygen species, which especially occurs in age-related conditions as a result of an imbalance between the production of reactive oxygen species and the antioxidant defense response. Dry age-related macular degeneration (AMD) and exfoliation syndrome (XFS) are two common and complex age-related conditions that can cause irreversible vision loss. Two subtypes of AMD, which is the leading cause of blindness in the Western world, exist: the most prevalent dry type and the most severe wet type. Early dry AMD is characterized by formation of drusen, which are sub-retinal deposits, in the macular area and may progress to geographic atrophy with more dramatic manifestation. XFS is a systemic disorder of the extracellular matrix characterized by the accumulation of elastic fibrils that leads, in most cases, to glaucoma development with progressive and irreversible vision loss. Due to the aging population, the prevalence of these already-widespread conditions is increasing and is resulting in significant economic and psychological costs for individuals and for society. The exact composition of the abnormal drusen and XFS material as well as the mechanisms responsible for their production and accumulation still remain elusive, and consequently treatment for both diseases is lacking. However, recent epidemiologic, genetic and molecular studies support a major role for oxidative stress in both dry AMD and XFS development. Understanding the early molecular events in their pathogenesis and the exact role of oxidative stress may provide novel opportunities for therapeutic intervention for the prevention of progression to advanced disease.
Collapse
Affiliation(s)
- Dimitrios Chiras
- Department of Ophthalmology, University Hospital of Ioannina , Ioannina , Greece
| | | | | | | | | |
Collapse
|
44
|
Horie-Inoue K, Inoue S. Genomic aspects of age-related macular degeneration. Biochem Biophys Res Commun 2014; 452:263-75. [PMID: 25111812 DOI: 10.1016/j.bbrc.2014.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Age-related macular degeneration (AMD) is a major late-onset posterior eye disease that causes central vision to deteriorate among elderly populations. The predominant lesion of AMD is the macula, at the interface between the outer retina and the inner choroid. Recent advances in genetics have revealed that inflammatory and angiogenic pathways play critical roles in the pathophysiology of AMD. Genome-wide association studies have identified ARMS2/HTRA1 and CFH as major AMD susceptibility genes. Genetic studies for AMD will contribute to the prevention of central vision loss, the development of new treatment, and the maintenance of quality of vision for productive aging.
Collapse
Affiliation(s)
- Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan.
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Genome-wide association studies: getting to pathogenesis, the role of inflammation/complement in age-related macular degeneration. Cold Spring Harb Perspect Med 2014; 4:a017186. [PMID: 25213188 DOI: 10.1101/cshperspect.a017186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) is a chronic, degenerative, and significant cause of visual impairment and blindness in the elderly. Genetic and epidemiological studies have confirmed that AMD has a strong genetic component, which has encouraged the application of increasingly sophisticated genetic techniques to uncover the important underlying genetic variants. Although various genes and pathways have been implicated in the risk for AMD, complement activation has been emphasized repeatedly throughout the literature as having a major role both physiologically and genetically in susceptibility to and pathogenesis of this disease. This article explores the research efforts that brought about the discovery and characterization of the role of inflammatory and immune processes (specifically complement) in AMD. The focus herein is on the genetic evidence for the role of complement in AMD as supported specifically by genome-wide association (GWA) studies, which interrogate hundreds of thousands of variants across the genome in a hypothesis-free approach, and other genetic interrogation methods.
Collapse
|
46
|
Restrepo NA, Spencer KL, Goodloe R, Garrett TA, Heiss G, Bůžková P, Jorgensen N, Jensen RA, Matise TC, Hindorff LA, Klein BEK, Klein R, Wong TY, Cheng CY, Cornes BK, Tai ES, Ritchie MD, Haines JL, Crawford DC. Genetic determinants of age-related macular degeneration in diverse populations from the PAGE study. Invest Ophthalmol Vis Sci 2014; 55:6839-50. [PMID: 25205864 DOI: 10.1167/iovs.14-14246] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Substantial progress has been made in identifying susceptibility variants for AMD in European populations; however, few studies have been conducted to understand the role these variants play in AMD risk in diverse populations. The present study aims to examine AMD risk across diverse populations in known and suspected AMD complement factor and lipid-related loci. METHODS Targeted genotyping was performed across study sites for AMD and lipid trait-associated single nucleotide polymorphism (SNPs). Genetic association tests were performed at individual sites and then meta-analyzed using logistic regression assuming an additive genetic model stratified by self-described race/ethnicity. Participants included cases with early or late AMD and controls with no signs of AMD as determined by fundus photography. Populations included in this study were European Americans, African Americans, Mexican Americans, and Singaporeans from the Population Architecture using Genomics and Epidemiology (PAGE) study. RESULTS Index variants of AMD, rs1061170 (CFH) and rs10490924 (ARMS2), were associated with AMD at P=3.05×10(-8) and P=6.36×10(-6), respectively, in European Americans. In general, none of the major AMD index variants generalized to our non-European populations with the exception of rs10490924 in Mexican Americans at an uncorrected P value<0.05. Four lipid-associated SNPS (LPL rs328, TRIB1 rs6987702, CETP rs1800775, and KCTD10/MVK rs2338104) were associated with AMD in African Americans and Mexican Americans (P<0.05), but these associations did not survive strict corrections for multiple testing. CONCLUSIONS While most associations did not generalize in the non-European populations, variants within lipid-related genes were found to be associated with AMD. This study highlights the need for larger well-powered studies in non-European populations.
Collapse
Affiliation(s)
- Nicole A Restrepo
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
| | - Kylee L Spencer
- Department of Biology and Environmental Science, Heidelberg University, Tiffin, Ohio, United States
| | - Robert Goodloe
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
| | - Tiana A Garrett
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Neal Jorgensen
- Department of Biostatistics, University of Washington, Seattle, Washington, United States
| | - Richard A Jensen
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Barbara E K Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Tien Y Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Belinda K Cornes
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - E-Shyong Tai
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Marylyn D Ritchie
- Center for Systems Genomics, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Jonathan L Haines
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States
| | - Dana C Crawford
- Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, United States Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
47
|
Mansoor S, Gupta N, Falatoonzadeh P, Kuppermann BD, Kenney MC. 2-ethylpyridine, a cigarette smoke component, causes mitochondrial damage in human retinal pigment epithelial cells in vitro. Indian J Ophthalmol 2014; 62:16-22. [PMID: 24492497 PMCID: PMC3955065 DOI: 10.4103/0301-4738.126168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose: Our goal was to identify the cellular and molecular effects of 2-ethylpyridine (2-EP, a component of cigarette smoke) on human retinal pigment epithelial cells (ARPE-19) in vitro. Materials and Methods: ARPE-19 cells were exposed to varying concentrations of 2-EP. Cell viability (CV) was measured by a trypan blue dye exclusion assay. Caspase-3/7 and caspase-9 activities were measured by fluorochrome assays. The production of reactive oxygen/nitrogen species (ROS/RNS) was detected with a 2’,7’-dichlorodihydrofluorescein diacetate dye assay. The JC-1 assay was used to measure mitochondrial membrane potential (ΔΨm). Mitochondrial redox potential was measured using a RedoxSensor Red kit and mitochondria were evaluated with Mitotracker dye. Results: After 2-EP exposure, ARPE-19 cells showed significantly decreased CV, increased caspase-3/7 and caspase-9 activities, elevated ROS/RNS levels, decreased ΔΨm value and decreased redox fluorescence when compared with control samples. Conclusions: These results show that 2-EP treatment induced cell death by caspase-dependent apoptosis associated with an oxidative stress and mitochondrial dysfunction. These data represent a possible mechanism by which smoking contributes to age-related macular degeneration and other retinal diseases and identify mitochondria as a target for future therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - M C Kenney
- Gavin Herbert Eye Institute, School of Medicine; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA,
| |
Collapse
|
48
|
Cheung CMG, Wong TY. Is age-related macular degeneration a manifestation of systemic disease? New prospects for early intervention and treatment. J Intern Med 2014; 276:140-53. [PMID: 24581182 DOI: 10.1111/joim.12227] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Age-related macular degeneration (AMD) is a common vision-threatening condition affecting the elderly. AMD shares common risk factors and processes, including vascular and inflammatory pathways, with many systemic disorders. Associations have been reported between AMD and hypertension, cardiovascular disease, cerebrovascular disease, dyslipidaemia, chronic kidney disease and neurodegenerative disorders. An increasing amount of evidence suggests that individuals with AMD are also at risk of systemic diseases such as stroke. In this review, we summarize the latest evidence to support the notion that AMD is an ocular manifestation of systemic disease processes, and discuss the potential systemic side effects of ocular AMD therapy of which general physicians should be aware. Recent genetic discoveries and understanding of the pathogenic pathways in AMD in relation to systemic disorders are also highlighted.
Collapse
Affiliation(s)
- C M G Cheung
- Singapore National Eye Center, Singapore City, Singapore; Singapore Eye Research Institute, Singapore City, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | | |
Collapse
|
49
|
The impact of the human genome project on complex disease. Genes (Basel) 2014; 5:518-35. [PMID: 25032678 PMCID: PMC4198915 DOI: 10.3390/genes5030518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 02/06/2023] Open
Abstract
In the decade that has passed since the initial release of the Human Genome, numerous advancements in science and technology within and beyond genetics and genomics have been encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in understanding three common, complex diseases: age-related macular degeneration (AMD), Alzheimer's disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible impact on the elucidation of the genetic architecture of disease. The approaches used in these diseases have been successfully applied to numerous other complex diseases. For example, the heritability of AMD was confirmed upon the release of the first genome-wide association study (GWAS) along with confirmatory reports that supported the findings of that state-of-the art method, thus setting the foundation for future GWAS in other heritable diseases. Following this seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next decade could very well hold the key to attaining this goal.
Collapse
|
50
|
Courtenay MD, Cade W, Schwartz SG, Kovach JL, Agarwal A, Wang G, Haines JL, Pericak-Vance MA, Scott WK. Set-based joint test of interaction between SNPs in the VEGF pathway and exogenous estrogen finds association with age-related macular degeneration. Invest Ophthalmol Vis Sci 2014; 55:IOVS-14-14494. [PMID: 25015356 PMCID: PMC4126792 DOI: 10.1167/iovs.14-14494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022] Open
Abstract
Purpose:Age-Related Macular Degeneration (AMD) is the leading cause of irreversible visual loss in developed countries. Its etiology includes genetic and environmental factors. Although VEGFA variants are associated with AMD, the joint action of variants within the VEGF pathway and their interaction with non-genetic factors has not been investigated. Methods:Affymetrix 6.0 chipsets were used to genotype 668,238 SNPs in 1,207 AMD cases and 686 controls. Environmental exposures were collected by questionnaire. A set-based test was conducted using the chi-square statistic at each SNP derived from Kraft's 2df joint test. Pathway and gene-based test statistics were calculated as the mean of all independent SNP statistics. Phenotype labels were permuted 10,000 times to generate an empirical p-value. Results: While a main effect of the VEGF pathway was not identified, the pathway was associated with neovascular AMD in women when accounting for birth control pill (BCP) use (P= 0.017). Analysis of VEGF's subpathways found that SNPs in the Proliferation subpathway were associated with neovascular AMD (P=0.029) when accounting for BCP use. Nominally significant genes within this subpathway were also observed. Stratification by BCP use revealed novel significant genetic effects in women who had taken BCPs. Conclusions: These results illustrate that some AMD genetic risk factors may only be revealed when considering complex relationships among risk factors. This shows the utility of exploring pathways of previously associated genes to find novel effects. It also demonstrates the importance of incorporating environmental exposures in tests of genetic association at the SNP, gene, or pathway level.
Collapse
Affiliation(s)
- Monique D Courtenay
- Human Genetics and Genomics, University of Miami Miller School Medicine, 1501 NW 10th Ave, Miami, FL, 33136, United States
| | - William Cade
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave, BRB-314 (M860), Miami, Florida, 33136, United States
| | - Stephen G Schwartz
- Ophthalmology, Bascom Palmer Eye Institute, Retina Center of Naples, 311 9th Street North, Naples, Florida, 34102, United States of America
| | - Jaclyn L Kovach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 311 9th St N, Naples, FL, 34102, United States of America
| | - Anita Agarwal
- VEI, Vanderbilt University, 2311 Pierce avenue, Nashville, Tennessee, 37232-8808, United States of America
| | - Gaofeng Wang
- Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue; BRB 525, Miami, Florida, 33136, United States
| | - Jonathan L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, 2-529 Wolstein Research Building, 2103 Cornell Road, Cleveland, Ohio, 44106, United States
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-314 (M860), Miami, Florida, 33136, United States of America
| | - Wiliam K Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10 Ave., Biomedical Research Building (BRB) # 414, Miami, Florida, 33136, United States
| |
Collapse
|