1
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena HI, De Backer J, Mosquera LM, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications. Am J Hum Genet 2024; 111:2219-2231. [PMID: 39226896 PMCID: PMC11480851 DOI: 10.1016/j.ajhg.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, NE, USA
| | - Malenka M Bissell
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Julie De Backer
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Laura Muiño Mosquera
- Department of Cardiology and Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rodolfo Citro
- Cardiothoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Nawaz K, Alifah N, Hussain T, Hameed H, Ali H, Hamayun S, Mir A, Wahab A, Naeem M, Zakria M, Pakki E, Hasan N. From genes to therapy: A comprehensive exploration of congenital heart disease through the lens of genetics and emerging technologies. Curr Probl Cardiol 2024; 49:102726. [PMID: 38944223 DOI: 10.1016/j.cpcardiol.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Congenital heart disease (CHD) affects approximately 1 % of live births worldwide, making it the most common congenital anomaly in newborns. Recent advancements in genetics and genomics have significantly deepened our understanding of the genetics of CHDs. While the majority of CHD etiology remains unclear, evidence consistently indicates that genetics play a significant role in its development. CHD etiology holds promise for enhancing diagnosis and developing novel therapies to improve patient outcomes. In this review, we explore the contributions of both monogenic and polygenic factors of CHDs and highlight the transformative impact of emerging technologies on these fields. We also summarized the state-of-the-art techniques, including targeted next-generation sequencing (NGS), whole genome and whole exome sequencing (WGS, WES), single-cell RNA sequencing (scRNA-seq), human induced pluripotent stem cells (hiPSCs) and others, that have revolutionized our understanding of cardiovascular disease genetics both from diagnosis perspective and from disease mechanism perspective in children and young adults. These molecular diagnostic techniques have identified new genes and chromosomal regions involved in syndromic and non-syndromic CHD, enabling a more defined explanation of the underlying pathogenetic mechanisms. As our knowledge and technologies continue to evolve, they promise to enhance clinical outcomes and reduce the CHD burden worldwide.
Collapse
Affiliation(s)
- Khalid Nawaz
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Nur Alifah
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Hamza Hameed
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Haider Ali
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485, Punjab, Pakistan
| | - Awal Mir
- Department of Medical Laboratory Technology, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Punjab, Pakistan
| | - Mohammad Zakria
- Advanced Center for Genomic Technologies, Khyber Medical University, Peshawar, 25100, Khyber Pakhtunkhwa, Pakistan
| | - Ermina Pakki
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia
| | - Nurhasni Hasan
- Faculty of Pharmacy, Universitas Hasanuddin, Jl. Perintis Kemerdekaan Km 10, Makassar, 90245, Republic of Indonesia.
| |
Collapse
|
3
|
Viswanathan S, Sandeep Oza P, Bellad A, Uttarilli A. Conotruncal Heart Defects: A Narrative Review of Molecular Genetics, Genomics Research and Innovation. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:324-346. [PMID: 38986083 DOI: 10.1089/omi.2024.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Congenital heart defects (CHDs) are most prevalent cardiac defects that occur at birth, leading to significant neonatal mortality and morbidity, especially in the developing nations. Among the CHDs, conotruncal heart defects (CTDs) are particularly noteworthy, comprising a significant portion of congenital cardiac anomalies. While advances in imaging and surgical techniques have improved the diagnosis, prognosis, and management of CTDs, their molecular genetics and genomic substrates remain incompletely understood. This expert review covers the recent advances from January 2016 onward and examines the complexities surrounding the genetic etiologies, prevalence, embryology, diagnosis, and clinical management of CTDs. We also emphasize the known copy number variants and single nucleotide variants associated with CTDs, along with the current planetary health research efforts aimed at CTDs in large cohort studies. In all, this comprehensive narrative review of molecular genetics and genomics research and innovation on CTDs draws from and highlights selected works from around the world and offers new ideas for advances in CTD diagnosis, precision medicine interventions, and accurate assessment of prognosis and recurrence risks.
Collapse
Affiliation(s)
- Sruthi Viswanathan
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prachi Sandeep Oza
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anikha Bellad
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anusha Uttarilli
- Institute of Bioinformatics, Bengaluru, Bangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Zuo JY, Chen HX, Yang Q, Liu ZG, He GW. Tetralogy of Fallot: variants of MYH6 gene promoter and cellular functional analyses. Pediatr Res 2024; 96:338-346. [PMID: 38135727 DOI: 10.1038/s41390-023-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development. METHODS In 608 subjects, including 315 TOF patients, we investigated the MYH6 gene promoter variants and verified the effect on gene expression by using cellular functional experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analysis. RESULTS In the MYH6 gene promoter, 12 variants were identified from 608 subjects. Five variants were found only in patients with TOF and two of them (g.3384G>T and g.4518T>C) were novel. Electrophoretic mobility shift assay with three cell lines (HEK-293, HL-1, and H9C2) showed significant changes in the transcription factors bound by the promoter variants compared to the wild-type. Dual luciferase reporter showed that four of the five variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.05). CONCLUSIONS This study is the first to test the cellular function of variants in the promoter region of the MYH6 gene in patients with TOF, which provides new insights into the genetic basis of TOF and provides a basis for further study of the mechanism of TOF formation. IMPACT DNA from 608 human subjects was sequenced for MYH6 gene promoter region variants with five variants found only in TOF patients and two were novel. EMSA and dual luciferase reporter experiments in three cell lines found these variants pathological. Prediction by JASPAR database indicated that these variants alter the transcription factor binding sites. The study, for the first time, confirmed that there are variants at the MYH6 gene promoter region and these variants alter the cellular function. The variants found in this study suggest the possible pathological role in the formation of TOF.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Zhi-Gang Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| |
Collapse
|
5
|
Zuo JY, Chen HX, Yang Q, He GW. Variants of the promoter of MYH6 gene in congenital isolated and sporadic patent ductus arteriosus: case-control study and cellular functional analyses. Hum Mol Genet 2024; 33:884-893. [PMID: 38340456 DOI: 10.1093/hmg/ddae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Patent ductus arteriosus (PDA) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development, but the effect of variants in the MYH6 gene promoter on ductus arteriosus is unknown. DNA was extracted from blood samples of 721 subjects (428 patients with isolated and sporadic PDA and 293 healthy controls) and analyzed by sequencing for MYH6 gene promoter region variants. Cellular function experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analyses were performed to verify their effects on gene expression. In the MYH6 gene promoter, 11 variants were identified. Four variants were found only in patients with PDA and 2 of them (g.3434G>C and g.4524C>T) were novel. Electrophoretic mobility shift assay showed that the transcription factors bound by the promoter variants were significantly altered in comparison to the wild-type in all three cell lines. Dual luciferase reporter showed that all the 4 variants reduced the transcriptional activity of the MYH6 gene promoter (P < 0.05). Prediction of transcription factors bound by the variants indicated that these variants alter the transcription factor binding sites. These pathological alterations most likely affect the contraction of the smooth muscle of ductus arteriosus, leading to PDA. This study is the first to focus on variants at the promoter region of the MYH6 gene in PDA patients with cellular function tests. Therefore, this study provides new insights to understand the genetic basis and facilitates further studies on the mechanism of PDA formation.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, No. 61, the 3rd Ave, TEDA, Tianjin 300457, China
| |
Collapse
|
6
|
Wang L, Bu T, Wu X, Li L, Sun F, Cheng CY. Motor proteins, spermatogenesis and testis function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:381-445. [PMID: 38960481 DOI: 10.1016/bs.apcsb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The role of motor proteins in supporting intracellular transports of vesicles and organelles in mammalian cells has been known for decades. On the other hand, the function of motor proteins that support spermatogenesis is also well established since the deletion of motor protein genes leads to subfertility and/or infertility. Furthermore, mutations and genetic variations of motor protein genes affect fertility in men, but also a wide range of developmental defects in humans including multiple organs besides the testis. In this review, we seek to provide a summary of microtubule and actin-dependent motor proteins based on earlier and recent findings in the field. Since these two cytoskeletons are polarized structures, different motor proteins are being used to transport cargoes to different ends of these cytoskeletons. However, their involvement in germ cell transport across the blood-testis barrier (BTB) and the epithelium of the seminiferous tubules remains relatively unknown. It is based on recent findings in the field, we have provided a hypothetical model by which motor proteins are being used to support germ cell transport across the BTB and the seminiferous epithelium during the epithelial cycle of spermatogenesis. In our discussion, we have highlighted the areas of research that deserve attention to bridge the gap of research in relating the function of motor proteins to spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
7
|
Broberg M, Ampuja M, Jones S, Ojala T, Rahkonen O, Kivelä R, Priest J, Palotie A, Ollila HM, Helle E. Genome-wide association studies highlight novel risk loci for septal defects and left-sided congenital heart defects. BMC Genomics 2024; 25:256. [PMID: 38454350 PMCID: PMC10918883 DOI: 10.1186/s12864-024-10172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Congenital heart defects (CHD) are structural defects of the heart affecting approximately 1% of newborns. They exhibit low penetrance and non-Mendelian patterns of inheritance as varied and complex traits. While genetic factors are known to play an important role in the development of CHD, the specific genetics remain unknown for the majority of patients. To elucidate the underlying genetic risk, we performed a genome wide association study (GWAS) of CHDs in general and specific CHD subgroups using the FinnGen Release 10 (R10) (N > 393,000), followed by functional fine-mapping through eQTL and co-localization analyses using the GTEx database. RESULTS We discovered three genome-wide significant loci associated with general CHD. Two of them were located in chromosome 17: 17q21.32 (rs2316327, intronic: LRRC37A2, Odds ratio (OR) [95% Confidence Interval (CI)] = 1.17[1.12-1.23], p = 1.5 × 10-9) and 17q25.3 (rs1293973611, nearest: BAHCC1, OR[95%CI] = 4.48[2.80-7.17], p = 7.0 × 10-10), respectively, and in addition to general CHD, the rs1293973611 locus was associated with the septal defect subtype. The third locus was in band 1p21.2 (rs35046143, nearest: PALMD, OR[95%CI] = 1.15[1.09-1.21], p = 7.1 × 10-9), and it was associated with general CHD and left-sided lesions. In the subgroup analysis, two additional loci were associated with septal defects (rs75230966 and rs6824295), and one with left-sided lesions (rs1305393195). In the eQTL analysis the variants rs2316327 (general CHD), and rs75230966 (septal defects) both located in 17q21.32 (with a LD r2 of 0.41) were both predicted to significantly associate with the expression of WNT9B in the atrial appendage tissue category. This effect was further confirmed by co-localization analysis, which also implicated WNT3 expression in the atrial appendage. A meta-analysis of general CHD together with the UK Biobank (combined N = 881,678) provided a different genome-wide significant locus in LRRC37A2; rs16941382 (OR[95%CI] = 1.15[1.11-1.20], p = 1.5 × 10-9) which is in significant LD with rs2316327. CONCLUSIONS Our results of general CHD and different CHD subcategories identified a complex risk locus on chromosome 17 near BAHCC1 and LRRC37A2, interacting with the genes WNT9B, WNT3 and MYL4, may constitute potential novel CHD risk associated loci, warranting future experimental tests to determine their role.
Collapse
Affiliation(s)
- Martin Broberg
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Ampuja
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Samuel Jones
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Tiina Ojala
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Otto Rahkonen
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Riikka Kivelä
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Wihuri Research Institute, 00290, Helsinki, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - James Priest
- School of Medicine, Stanford University, Stanford University, Stanford, CA, 94305, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014, Helsinki, Finland
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Emmi Helle
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Pediatric Cardiology, New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00029, Helsinki, Finland.
- , Haartmaninkatu 8, Helsinki, 00014, Finland.
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, 00271, Finland.
| |
Collapse
|
8
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
9
|
Mansoorshahi S, Yetman AT, Bissell MM, Kim YY, Michelena H, Hui DS, Caffarelli A, Andreassi MG, Foffa I, Guo D, Citro R, De Marco M, Tretter JT, Morris SA, Body SC, Chong JX, Bamshad MJ, Milewicz DM, Prakash SK. Whole Exome Sequencing Uncovers the Genetic Complexity of Bicuspid Aortic Valve in Families with Early Onset Complications. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302406. [PMID: 38370698 PMCID: PMC10871469 DOI: 10.1101/2024.02.07.24302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bicuspid Aortic Valve (BAV) is the most common adult congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that early onset complications of BAV (EBAV) are driven by specific impactful genetic variants. We analyzed whole exome sequences (WES) to identify rare coding variants that contribute to BAV disease in 215 EBAV families. Predicted pathogenic variants of causal genes were present in 111 EBAV families (51% of total), including genes that cause BAV (8%) or heritable thoracic aortic disease (HTAD, 17%). After appropriate filtration, we also identified 93 variants in 26 novel genes that are associated with autosomal dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants contribute to early onset complications of BAV disease.
Collapse
Affiliation(s)
- Sara Mansoorshahi
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska, Omaha, Nebraska
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Yuli Y Kim
- Division of Cardiovascular Medicine, The Hospital of the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hector Michelena
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center San Antonio, Texas
| | - Anthony Caffarelli
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California
| | - Maria G Andreassi
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Ilenia Foffa
- Consiglio Nazionale delle Richerche (CNR), Instituto di Fisiologia Clinica, Pisa, Italy
| | - Dongchuan Guo
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy
| | | | - Shaine A Morris
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, Massachusetts
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dianna M Milewicz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Wilsdon A, Loughna S. Human Genetics of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:57-75. [PMID: 38884704 DOI: 10.1007/978-3-031-44087-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Congenital heart diseases (or congenital heart defects/disorders; CHDs) are structural abnormalities of the heart and/or great vessels that are present at birth. CHDs include an extensive range of defects that may be minor and require no intervention or may be life-limiting and require complex surgery shortly after birth. This chapter reviews the current knowledge on the genetic causes of CHD.
Collapse
Affiliation(s)
- Anna Wilsdon
- School of Life Sciences, University of Nottingham, Nottingham, UK.
- Clinical Geneticist at Nottingham Clinical Genetics Department, Nottingham University Hospitals, City Hospital, Nottingham, UK.
| | - Siobhan Loughna
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Tambi R, Zehra B, Nandkishore S, Sharafat S, Kader F, Nassir N, Mohamed N, Ahmed A, Abdel Hameid R, Alasrawi S, Brueckner M, Kuebler WM, Chung WK, Alsheikh-Ali A, Di Donato RM, Uddin M, Berdiev BK. Single-cell reconstruction and mutation enrichment analysis identifies dysregulated cardiomyocyte and endothelial cells in congenital heart disease. Physiol Genomics 2023; 55:634-646. [PMID: 37811720 DOI: 10.1152/physiolgenomics.00070.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.
Collapse
Affiliation(s)
- Richa Tambi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Sharon Nandkishore
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shermin Sharafat
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Faiza Kader
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nesrin Mohamed
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Awab Ahmed
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Samah Alasrawi
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Al Jalila Children's Hospital, Dubai, United Arab Emirates
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Pediatrics, Yale University, New Haven, Connecticut, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wendy K Chung
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Alawi Alsheikh-Ali
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence Lab, GenomeArc Incorporated, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence Lab, GenomeArc Incorporated, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wu CK, Teng S, Bai F, Liao XB, Zhou XM, Liu QM, Xiao YC, Zhou SH. Changes of ubiquitylated proteins in atrial fibrillation associated with heart valve disease: proteomics in human left atrial appendage tissue. Front Cardiovasc Med 2023; 10:1198486. [PMID: 37701139 PMCID: PMC10493305 DOI: 10.3389/fcvm.2023.1198486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/14/2023] Open
Abstract
Background Correlations between posttranslational modifications and atrial fibrillation (AF) have been demonstrated in recent studies. However, it is still unclear whether and how ubiquitylated proteins relate to AF in the left atrial appendage of patients with AF and valvular heart disease. Methods Through LC-MS/MS analyses, we performed a study on tissues from eighteen subjects (9 with sinus rhythm and 9 with AF) who underwent cardiac valvular surgery. Specifically, we explored the ubiquitination profiles of left atrial appendage samples. Results In summary, after the quantification ratios for the upregulated and downregulated ubiquitination cutoff values were set at >1.5 and <1:1.5, respectively, a total of 271 sites in 162 proteins exhibiting upregulated ubiquitination and 467 sites in 156 proteins exhibiting downregulated ubiquitination were identified. The ubiquitylated proteins in the AF samples were enriched in proteins associated with ribosomes, hypertrophic cardiomyopathy (HCM), glycolysis, and endocytosis. Conclusions Our findings can be used to clarify differences in the ubiquitination levels of ribosome-related and HCM-related proteins, especially titin (TTN) and myosin heavy chain 6 (MYH6), in patients with AF, and therefore, regulating ubiquitination may be a feasible strategy for AF.
Collapse
Affiliation(s)
- Chen-Kai Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Teng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Min Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Ming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Chao Xiao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng-Hua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Kukshal P, Joshi RO, Kumar A, Ahamad S, Murthy PR, Sathe Y, Manohar K, Guhathakurta S, Chellappan S. Case-control association study of congenital heart disease from a tertiary paediatric cardiac centre from North India. BMC Pediatr 2023; 23:290. [PMID: 37322441 PMCID: PMC10268439 DOI: 10.1186/s12887-023-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Congenital Heart diseases (CHDs) account for 1/3rd of all congenital birth defects. Etiopathogenesis of CHDs remain elusive despite extensive investigations globally. Phenotypic heterogeneity witnessed in this developmental disorder reiterate gene-environment interactions with periconceptional factors as risk conferring; and genetic analysis of both sporadic and familial forms of CHD suggest its multigenic basis. Significant association of de novo and inherited variants have been observed. Approximately 1/5th of CHDs are documented in the ethnically distinct Indian population but genetic insights have been very limited. This pilot case-control based association study was undertaken to investigate the status of Caucasian SNPs in a north Indian cohort. METHOD A total of 306 CHD cases sub-classified into n = 198 acyanotic and n = 108 cyanotic types were recruited from a dedicated tertiary paediatric cardiac centre in Palwal, Haryana. 23 SNPs primarily prioritized from Genome-wide association studies (GWAS) on Caucasians were genotyped using Agena MassARRAY Technology and test of association was performed with adequately numbered controls. RESULTS Fifty percent of the studied SNPs were substantially associated in either allelic, genotypic or sub-phenotype categories validating their strong correlation with disease manifestation. Of note, strongest allelic association was observed for rs73118372 in CRELD1 (p < 0.0001) on Chr3, rs28711516 in MYH6 (p = 0.00083) and rs735712 in MYH7 (p = 0.0009) both on Chr 14 and were also significantly associated with acyanotic, and cyanotic categories separately. rs28711516 (p = 0.003) and rs735712 (p = 0.002) also showed genotypic association. Strongest association was observed with rs735712(p = 0.003) in VSD and maximum association was observed for ASD sub-phenotypes. CONCLUSIONS Caucasian findings were partly replicated in the north Indian population. The findings suggest the contribution of genetic, environmental and sociodemographic factors, warranting continued investigations in this study population.
Collapse
Affiliation(s)
- Prachi Kukshal
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India.
| | - Radha O Joshi
- Present address Sri Sathya Sai Sanjeevani Research Foundation, Kharghar, Navi Mumbai- 410210, Maharashtra, India
| | - Ajay Kumar
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Shadab Ahamad
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Prabhatha Rashmi Murthy
- Sri Sathya Sai Sanjeevani Centre for Child Heart Care and Training in Paediatric Cardiac Skills, Navi Mumbai Maharashtra, India
| | - Yogesh Sathe
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Krishna Manohar
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India
| | - Soma Guhathakurta
- Sri Sathya Sai Sanjeevani Research Foundation, NH-2, Delhi-Mathura Highway, Baghola, Haryana, District Palwal, Pin- 121102, India
| | - Subramanian Chellappan
- Sri Sathya Sai Sanjeevani International Centre for Child Heart Care & Research, NH-2, Delhi-Mathura Highway, Baghola, District Palwal, Haryana, Pin 121102, India.
| |
Collapse
|
14
|
Yu M, Aguirre M, Jia M, Gjoni K, Cordova-Palomera A, Munger C, Amgalan D, Ma XR, Pereira A, Tcheandjieu C, Seidman C, Seidman J, Tristani-Firouzi M, Chung W, Goldmuntz E, Srivastava D, Loos RJ, Chami N, Cordell H, Dreßen M, Mueller-Myhsok B, Lahm H, Krane M, Pollard KS, Engreitz JM, Gagliano Taliun SA, Gelb BD, Priest JR. Oligogenic Architecture of Rare Noncoding Variants Distinguishes 4 Congenital Heart Disease Phenotypes. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:258-266. [PMID: 37026454 PMCID: PMC10330096 DOI: 10.1161/circgen.122.003968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Congenital heart disease (CHD) is highly heritable, but the power to identify inherited risk has been limited to analyses of common variants in small cohorts. METHODS We performed reimputation of 4 CHD cohorts (n=55 342) to the TOPMed reference panel (freeze 5), permitting meta-analysis of 14 784 017 variants including 6 035 962 rare variants of high imputation quality as validated by whole genome sequencing. RESULTS Meta-analysis identified 16 novel loci, including 12 rare variants, which displayed moderate or large effect sizes (median odds ratio, 3.02) for 4 separate CHD categories. Analyses of chromatin structure link 13 of the genome-wide significant loci to key genes in cardiac development; rs373447426 (minor allele frequency, 0.003 [odds ratio, 3.37 for Conotruncal heart disease]; P=1.49×10-8) is predicted to disrupt chromatin structure for 2 nearby genes BDH1 and DLG1 involved in Conotruncal development. A lead variant rs189203952 (minor allele frequency, 0.01 [odds ratio, 2.4 for left ventricular outflow tract obstruction]; P=1.46×10-8) is predicted to disrupt the binding sites of 4 transcription factors known to participate in cardiac development in the promoter of SPAG9. A tissue-specific model of chromatin conformation suggests that common variant rs78256848 (minor allele frequency, 0.11 [odds ratio, 1.4 for Conotruncal heart disease]; P=2.6×10-8) physically interacts with NCAM1 (PFDR=1.86×10-27), a neural adhesion molecule acting in cardiac development. Importantly, while each individual malformation displayed substantial heritability (observed h2 ranging from 0.26 for complex malformations to 0.37 for left ventricular outflow tract obstructive disease) the risk for different CHD malformations appeared to be separate, without genetic correlation measured by linkage disequilibrium score regression or regional colocalization. CONCLUSIONS We describe a set of rare noncoding variants conferring significant risk for individual heart malformations which are linked to genes governing cardiac development. These results illustrate that the oligogenic basis of CHD and significant heritability may be linked to rare variants outside protein-coding regions conferring substantial risk for individual categories of cardiac malformation.
Collapse
Affiliation(s)
- Mengyao Yu
- Dept of Pediatrics, Stanford Univ School of Medicine
| | - Matthew Aguirre
- Dept of Pediatrics, Stanford Univ School of Medicine
- Dept of Biomedical Data Science, Stanford Univ, Stanford CA
| | - Meiwen Jia
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Ketrin Gjoni
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | - Chad Munger
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - X Rosa Ma
- Dept of Genetics, Stanford Univ School of Medicine
| | | | - Catherine Tcheandjieu
- Dept of Pediatrics, Stanford Univ School of Medicine
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | | | - Wendy Chung
- Dept of Pediatrics, Columbia Univ, New York, NY
| | | | - Deepak Srivastava
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
| | | | | | - Heather Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle Univ, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Martina Dreßen
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Bertram Mueller-Myhsok
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry Munich, Munich, Germany
| | - Harald Lahm
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
| | - Markus Krane
- Dept of Cardiovascular Surgery, Division of Experimental Surgery, Institute Insure (Institute for Translational Cardiac Surgery), German Heart Center Munich & Technical Univ of Munich, School of Medicine & Health, Munich, Germany
- Dept of Cardiac Surgery, Yale School of Medicine, New Haven, CT
| | - Katherine S. Pollard
- Gladstone Institutes; Univ of California San Francisco, San Francisco CA
- Chan Zuckerberg Biohub, San Francisco
| | - Jesse M. Engreitz
- Dept of Genetics, Stanford Univ School of Medicine
- Basic Sciences and Engineering (BASE) Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, CA
| | - Sarah A. Gagliano Taliun
- Dept of Medicine & Dept of Neurosciences, Faculty of Medicine, Université de Montréal
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Bruce D. Gelb
- The Mindich Child Health & Development Institute at the Hess Center for Science & Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
15
|
Pinnaro CT, Beck CB, Major HJ, Darbro BW. CRELD1 variants are associated with bicuspid aortic valve in Turner syndrome. Hum Genet 2023; 142:523-530. [PMID: 36929416 PMCID: PMC10060348 DOI: 10.1007/s00439-023-02538-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Turner syndrome (TS) is a chromosomal disorder caused by complete or partial loss of the second sex chromosome and exhibits phenotypic heterogeneity, even after accounting for mosaicism and karyotypic variation. Congenital heart defects (CHD) are found in up to 45 percent of girls with TS and span a phenotypic continuum of obstructive left-sided lesions, with bicuspid aortic valve (BAV) being the most common. Several recent studies have demonstrated a genome-wide impact of X chromosome haploinsufficiency, including global hypomethylation and altered RNA expression. The presence of such broad changes to the TS epigenome and transcriptome led others to hypothesize that X chromosome haploinsufficiency sensitizes the TS genome, and several studies have demonstrated that a second genetic hit can modify disease susceptibility in TS. The objective of this study was to determine whether genetic variants in known heart developmental pathways act synergistically in this setting to increase the risk for CHD, specifically BAV, in TS. We analyzed 208 whole exomes from girls and women with TS and performed gene-based variant enrichment analysis and rare-variant association testing to identify variants associated with BAV in TS. Notably, rare variants in CRELD1 were significantly enriched in individuals with TS who had BAV compared to those with structurally normal hearts. CRELD1 is a protein that functions as a regulator of calcineurin/NFAT signaling, and rare variants in CRELD1 have been associated with both syndromic and non-syndromic CHD. This observation supports the hypothesis that genetic modifiers outside the X chromosome that lie in known heart development pathways may influence CHD risk in TS.
Collapse
Affiliation(s)
- Catherina T Pinnaro
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
| | - Chloe B Beck
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, 52242, USA
| | - Heather J Major
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA
| | - Benjamin W Darbro
- Stead Family Department of Pediatrics, University of Iowa, Iowa, IA, 52242, USA.
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa, IA, 52242, USA.
| |
Collapse
|
16
|
Shi HY, Xie MS, Guo YH, Yang CX, Gu JN, Qiao Q, Di RM, Qiu XB, Xu YJ, Yang YQ. VEZF1 loss-of-function mutation underlying familial dilated cardiomyopathy. Eur J Med Genet 2023; 66:104705. [PMID: 36657711 DOI: 10.1016/j.ejmg.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/17/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Dilated cardiomyopathy (DCM), characteristic of left ventricular or biventricular dilation with systolic dysfunction, is the most common form of cardiomyopathy, and a leading cause of heart failure and sudden cardiac death. Aggregating evidence highlights the underlying genetic basis of DCM, and mutations in over 100 genes have been causally linked to DCM. Nevertheless, due to pronounced genetic heterogeneity, the genetic defects underpinning DCM in most cases remain obscure. Hence, this study was sought to identify novel genetic determinants of DCM. In this investigation, whole-exome sequencing and bioinformatics analyses were conducted in a family suffering from DCM, and a novel heterozygous mutation in the VEZF1 gene (coding for a zinc finger-containing transcription factor critical for cardiovascular development and structural remodeling), NM_007146.3: c.490A > T; p.(Lys164*), was identified. The nonsense mutation was validated by Sanger sequencing and segregated with autosome-dominant DCM in the family with complete penetrance. The mutation was neither detected in another cohort of 200 unrelated DCM patients nor observed in 400 unrelated healthy individuals nor retrieved in the Single Nucleotide Polymorphism database, the Human Gene Mutation Database and the Genome Aggregation Database. Biological analyses by utilizing a dual-luciferase reporter assay system revealed that the mutant VEZF1 protein failed to transactivate the promoters of MYH7 and ET1, two genes that have been associated with DCM. The findings indicate VEZF1 as a new gene responsible for DCM, which provides novel insight into the molecular pathogenesis of DCM, implying potential implications for personalized precisive medical management of the patients affected with DCM.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Chou E, Pirruccello JP, Ellinor PT, Lindsay ME. Genetics and mechanisms of thoracic aortic disease. Nat Rev Cardiol 2023; 20:168-180. [PMID: 36131050 DOI: 10.1038/s41569-022-00763-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Aortic disease has many forms including aortic aneurysm and dissection, aortic coarctation or abnormalities in aortic function, such as loss of aortic distensibility. Genetic analysis in humans is one of the most important experimental approaches in uncovering disease mechanisms, but the relative infrequency of thoracic aortic disease compared with other cardiovascular conditions such as coronary artery disease has hindered large-scale identification of genetic associations. In the past decade, advances in machine learning technology coupled with large imaging datasets from biobank repositories have facilitated a rapid expansion in our capacity to measure and genotype aortic traits, resulting in the identification of dozens of genetic associations. In this Review, we describe the history of technological advances in genetic discovery and explain how newer technologies such as deep learning can rapidly define aortic traits at scale. Furthermore, we integrate novel genetic observations provided by these advances into our current biological understanding of thoracic aortic disease and describe how these new findings can contribute to strategies to prevent and treat aortic disease.
Collapse
Affiliation(s)
- Elizabeth Chou
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - James P Pirruccello
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mark E Lindsay
- Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1530] [Impact Index Per Article: 1530.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
19
|
Wang S, Chen H, Liu C, Wu M, Sun W, Liu S, Zheng Y, He W. Genetic variants, pathophysiological pathways, and oral anticoagulation in patients with hypertrophic cardiomyopathy and atrial fibrillation. Front Cardiovasc Med 2023; 10:1023394. [PMID: 37139132 PMCID: PMC10149704 DOI: 10.3389/fcvm.2023.1023394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Atrial fibrillation (AF) is commonly prevalent in patients with hypertrophic cardiomyopathy (HCM). However, whether the prevalence and incidence of AF are different between genotype-positive vs. genotype-negative patients with HCM remains controversial. Recent evidence has indicated that AF is often the first presentation of genetic HCM patients in the absence of a cardiomyopathy phenotype, implying the importance of genetic testing in this population with early-onset AF. However, the association of the identified sarcomere gene variants with HCM occurrence in the future remains unclear. How the identification of these cardiomyopathy gene variants should influence the use of anticoagulation therapy for a patient with early-onset AF is still undefined. In this review, we sought to assess the genetic variants, pathophysiological pathways, and oral anticoagulation in patients with HCM and AF.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chunju Liu
- Department ofClinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Mengxian Wu
- Department ofClinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenjian Liu
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zheng
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenfeng He
- Department of Medical Genetics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Correspondence: Wenfeng He
| |
Collapse
|
20
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
21
|
Richard MA, Patel J, Benjamin RH, Bircan E, Canon SJ, Marengo LK, Canfield MA, Agopian AJ, Lupo PJ, Nembhard WN. Prevalence and Clustering of Congenital Heart Defects Among Boys With Hypospadias. JAMA Netw Open 2022; 5:e2224152. [PMID: 35900762 PMCID: PMC9335139 DOI: 10.1001/jamanetworkopen.2022.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Hypospadias is a common birth defect of the male urinary tract that may be isolated or may co-occur with other structural malformations, including congenital heart defects (CHDs). The risk for co-occurring CHDs among boys with hypospadias remains unknown, which limits screening and genetic testing strategies. OBJECTIVE To characterize the risk of major CHDs among boys born with hypospadias. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study used data from population-based birth defect surveillance programs on all male infants born in 11 US states from January 1, 1995, to December 31, 2014. Statistical analysis was performed from September 2, 2020, to March 25, 2022. EXPOSURE Hypospadias. MAIN OUTCOMES AND MEASURES Demographic and diagnostic data were obtained from 2 active state-based birth defect surveillance programs for primary analyses, the Texas Birth Defects Registry and the Arkansas Reproductive Health Monitoring System, with validation among 9 additional states in the National Birth Defects Prevention Network (NBDPN). Birth defect diagnoses were identified using the British Pediatric Association coding for hypospadias (exposure) and major CHDs (primary outcomes). Maternal covariates and birth year were also abstracted from the vital records. Poisson regression was used to estimate adjusted prevalence ratios and 95% CIs for major CHDs within Texas and Arkansas and combined using inverse variance-weighted meta-analysis. Findings were validated using the NBDPN. RESULTS Among 3.7 million pregnancies in Texas and Arkansas, 1485 boys had hypospadias and a co-occurring CHD. Boys with hypospadias were 5.8 times (95% CI, 5.5-6.1) more likely to have a co-occurring CHD compared with boys without hypospadias. Associations were observed for every specific CHD analyzed among boys with hypospadias, occurred outside of chromosomal anomalies, and were validated in the NBDPN. An estimated 7.024% (95% CI, 7.020%-7.028%) of boys with hypospadias in Texas and 5.503% (95% CI, 5.495%-5.511%) of boys with hypospadias in Arkansas have a co-occurring CHD. In addition, hypospadias severity and maternal race and ethnicity were independently associated with the likelihood for hypospadias to co-occur with a CHD; boys in Texas with third-degree (ie, more severe) hypospadias were 2.7 times (95% CI, 2.2-3.4) more likely than boys with first-degree hypospadias to have a co-occurring CHD, with consistent estimates in Arkansas (odds ratio, 2.7; 95% CI, 1.4-5.3), and boys with hypospadias born to Hispanic mothers in Texas were 1.5 times (95% CI, 1.3-1.8) more likely to have a co-occurring CHD than boys with hypospadias born to non-Hispanic White mothers. CONCLUSIONS AND RELEVANCE In this cohort study, boys with hypospadias had a higher prevalence of CHDs than boys without hypospadias. These findings support the need for consideration of additional CHD screening programs for boys born with hypospadias.
Collapse
Affiliation(s)
| | - Jenil Patel
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Dallas
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Renata H. Benjamin
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Emine Bircan
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
| | - Stephen J. Canon
- Arkansas Children’s Hospital, Little Rock
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock
| | - Lisa K. Marengo
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin
| | - Mark A. Canfield
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Philip J. Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Wendy N. Nembhard
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|
22
|
Hsieh J, Becklin KL, Givens S, Komosa ER, Lloréns JEA, Kamdar F, Moriarity BS, Webber BR, Singh BN, Ogle BM. Myosin Heavy Chain Converter Domain Mutations Drive Early-Stage Changes in Extracellular Matrix Dynamics in Hypertrophic Cardiomyopathy. Front Cell Dev Biol 2022; 10:894635. [PMID: 35784482 PMCID: PMC9245526 DOI: 10.3389/fcell.2022.894635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
More than 60% of hypertrophic cardiomyopathy (HCM)-causing mutations are found in the gene loci encoding cardiac myosin-associated proteins including myosin heavy chain (MHC) and myosin binding protein C (MyBP-C). Moreover, patients with more than one independent HCM mutation may be at increased risk for more severe disease expression and adverse outcomes. However detailed mechanistic understanding, especially at early stages of disease progression, is limited. To identify early-stage HCM triggers, we generated single (MYH7 c.2167C > T [R723C] with a known pathogenic significance in the MHC converter domain) and double (MYH7 c.2167C > T [R723C]; MYH6 c.2173C > T [R725C] with unknown significance) myosin gene mutations in human induced pluripotent stem cells (hiPSCs) using a base-editing strategy. Cardiomyocytes (CMs) derived from hiPSCs with either single or double mutation exhibited phenotypic characteristics consistent with later-stage HCM including hypertrophy, multinucleation, altered calcium handling, metabolism, and arrhythmia. We then probed mutant CMs at time points prior to the detection of known HCM characteristics. We found MYH7/MYH6 dual mutation dysregulated extracellular matrix (ECM) remodeling, altered integrin expression, and interrupted cell-ECM adhesion by limiting the formation of focal adhesions. These results point to a new phenotypic feature of early-stage HCM and reveal novel therapeutic avenues aimed to delay or prohibit disease onset.
Collapse
Affiliation(s)
- Jeanne Hsieh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Sophie Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Elizabeth R. Komosa
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Juan E. Abrahante Lloréns
- University of Minnesota Informatics Institute (UMII), University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Bhairab N. Singh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Bhairab N. Singh, ; Brenda M. Ogle,
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Bhairab N. Singh, ; Brenda M. Ogle,
| |
Collapse
|
23
|
Bhatt AB, Lantin-Hermoso MR, Daniels CJ, Jaquiss R, Landis BJ, Marino BS, Rathod RH, Vincent RN, Keller BB, Villafane J. Isolated Coarctation of the Aorta: Current Concepts and Perspectives. Front Cardiovasc Med 2022; 9:817866. [PMID: 35694677 PMCID: PMC9174545 DOI: 10.3389/fcvm.2022.817866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Current management of isolated CoA, localized narrowing of the aortic arch in the absence of other congenital heart disease, is a success story with improved prenatal diagnosis, high survival and improved understanding of long-term complication. Isolated CoA has heterogenous presentations, complex etiologic mechanisms, and progressive pathophysiologic changes that influence outcome. End-to-end or extended end-to-end anastomosis are the favored surgical approaches for isolated CoA in infants and transcatheter intervention is favored for children and adults. Primary stent placement is the procedure of choice in larger children and adults. Most adults with treated isolated CoA thrive, have normal daily activities, and undergo successful childbirth. Fetal echocardiography is the cornerstone of prenatal counseling and genetic testing is recommended. Advanced 3D imaging identifies aortic complications and myocardial dysfunction and guides individualized therapies including re-intervention. Adult CHD program enrollment is recommended. Longer follow-up data are needed to determine the frequency and severity of aneurysm formation, myocardial dysfunction, and whether childhood lifestyle modifications reduce late-onset complications.
Collapse
Affiliation(s)
- Ami B. Bhatt
- Departments of Internal Medicine and Pediatrics and Division of Cardiology, Harvard Medical School, Boston, MA, United States
| | - Maria R. Lantin-Hermoso
- Section of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Curt J. Daniels
- Departments of Pediatrics and Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Robert Jaquiss
- Department of Cardiovascular and Thoracic Surgery and Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Benjamin John Landis
- Department of Pediatrics and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bradley S. Marino
- Department of Pediatric Cardiology, Cleveland Clinic Children's, Cleveland, OH, United States
| | - Rahul H. Rathod
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Robert N. Vincent
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Bradley B. Keller
- Cincinnati Children's Heart Institute and the Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Juan Villafane
- Cincinnati Children's Heart Institute and the Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
24
|
Anfinson M, Fitts RH, Lough JW, James JM, Simpson PM, Handler SS, Mitchell ME, Tomita-Mitchell A. Significance of α-Myosin Heavy Chain ( MYH6) Variants in Hypoplastic Left Heart Syndrome and Related Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:144. [PMID: 35621855 PMCID: PMC9147009 DOI: 10.3390/jcdd9050144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with complex genetic inheritance. HLHS segregates with other left ventricular outflow tract (LVOT) malformations in families, and can present as either an isolated phenotype or as a feature of a larger genetic disorder. The multifactorial etiology of HLHS makes it difficult to interpret the clinical significance of genetic variants. Specific genes have been implicated in HLHS, including rare, predicted damaging MYH6 variants that are present in >10% of HLHS patients, and which have been shown to be associated with decreased transplant-free survival in our previous studies. MYH6 (α-myosin heavy chain, α-MHC) variants have been reported in HLHS and numerous other CHDs, including LVOT malformations, and may provide a genetic link to these disorders. In this paper, we outline the MYH6 variants that have been identified, discuss how bioinformatic and functional studies can inform clinical decision making, and highlight the importance of genetic testing in HLHS.
Collapse
Affiliation(s)
- Melissa Anfinson
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.); (J.W.L.)
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA;
| | - John W. Lough
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (M.A.); (J.W.L.)
| | - Jeanne M. James
- Department of Pediatrics, Children’s Mercy, Kansas City, MO 64108, USA;
| | - Pippa M. Simpson
- Department of Pediatrics, Division of Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Stephanie S. Handler
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Michael E. Mitchell
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Surgery, Division of Congenital Heart Surgery, Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Aoy Tomita-Mitchell
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA; (S.S.H.); (M.E.M.)
- Department of Surgery, Division of Congenital Heart Surgery, Children’s Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
25
|
Theis JL, Olson TM. Whole Genome Sequencing in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2022; 9:jcdd9040117. [PMID: 35448093 PMCID: PMC9028226 DOI: 10.3390/jcdd9040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a genetically complex disorder. Whole genome sequencing enables comprehensive scrutiny of single nucleotide variants and small insertions/deletions, within both coding and regulatory regions of the genome, revolutionizing susceptibility-gene discovery research. Because millions of rare variants comprise an individual genome, identification of alleles linked to HLHS necessitates filtering algorithms based on various parameters, such as inheritance, enrichment, omics data, known genotype–phenotype associations, and predictive or experimental modeling. In this brief review, we highlight family and cohort-based strategies used to analyze whole genome sequencing datasets and identify HLHS candidate genes. Key findings include compound and digenic heterozygosity among several prioritized genes and genetic associations between HLHS and bicuspid aortic valve or cardiomyopathy. Together with findings of independent genomic investigations, MYH6 has emerged as a compelling disease gene for HLHS and other left-sided congenital heart diseases.
Collapse
Affiliation(s)
- Jeanne L. Theis
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
| | - Timothy M. Olson
- Cardiovascular Genetics Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
26
|
Rare and Common Variants Uncover the Role of the Atria in Coarctation of the Aorta. Genes (Basel) 2022; 13:genes13040636. [PMID: 35456442 PMCID: PMC9032275 DOI: 10.3390/genes13040636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Coarctation of the aorta (CoA) and bicuspid aortic valve (BAV) often cooccur and are genetically linked congenital heart defects (CHD). While CoA is thought to have a hemodynamic origin from ventricular dysfunction, we provide evidence pointing to atrial hemodynamics based on investigating the genetic etiology of CoA. Previous studies have shown a rare MYH6 variant in an Icelandic cohort, and two common deletions in the protocadherin α cluster (PCDHA delCNVs) are significantly associated with CoA and BAV. Here, analysis of a non-Icelandic white CHD cohort (n = 166) recovered rare MYH6 variants in 10.9% of CoA and 32.7% of BAV/CoA patients, yielding odds ratios of 18.6 (p = 2.5 × 10−7) and 20.5 (p = 7.4 × 10−5) for the respective association of MYH6 variants with CoA and BAV/CoA. In combination with the PCHDA delCNVs, they accounted for a third of CoA cases. Gene expression datasets for the human and mouse embryonic heart showed that both genes are predominantly expressed in the atria, not the ventricle. Moreover, cis-eQTLs analysis showed the PCHDA delCNV is associated with reduced atrial expression of PCHDA10, a gene in the delCNV interval. Together, these findings showed that PCDHA/MYH6 variants account for a substantial fraction of CoA cases. An atrial rather than ventricular hemodynamic model for CoA is indicated, consistent with the known early atrial functional dominance of the human embryonic heart.
Collapse
|
27
|
Wang Z, Qiao XH, Xu YJ, Liu XY, Huang RT, Xue S, Qiu HY, Yang YQ. SMAD1 Loss-of-Function Variant Responsible for Congenital Heart Disease. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9916325. [PMID: 35281600 PMCID: PMC8913148 DOI: 10.1155/2022/9916325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
As the most common form of developmental malformation affecting the heart and endothoracic great vessels, congenital heart disease (CHD) confers substantial morbidity and mortality as well as socioeconomic burden on humans globally. Aggregating convincing evidence highlights the genetic origin of CHD, and damaging variations in over 100 genes have been implicated with CHD. Nevertheless, the genetic basis underpinning CHD remains largely elusive. In this study, via whole-exosome sequencing analysis of a four-generation family inflicted with autosomal-dominant CHD, a heterozygous SMAD1 variation, NM_005900.3: c.264C > A; p.(Tyr88∗), was detected and validated by Sanger sequencing analysis to be in cosegregation with CHD in the whole family. The truncating variation was not observed in 362 unrelated healthy volunteers employed as control persons. Dual-luciferase reporter gene assay in cultured COS7 cells demonstrated that Tyr88∗-mutant SMAD1 failed to transactivate the genes TBX20 and NKX2.5, two already well-established CHD-causative genes. Additionally, the variation nullified the synergistic transcriptional activation between SMAD1 and MYOCD, another recognized CHD-causative gene. These data indicate SMAD1 as a new gene responsible for CHD, which provides new insight into the genetic mechanism underlying CHD, suggesting certain significance for genetic risk assessment and precise antenatal prevention of the family members inflicted with CHD.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hai-Yan Qiu
- Department of Pediatric Internal Medicine, Ningbo Women & Children's Hospital, Ningbo 315031, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
28
|
Abstract
The application of next-generation sequencing to study congenital heart disease (CHD) is increasingly providing new insights into the causes and mechanisms of this prevalent birth anomaly. Whole-exome sequencing analysis identifies damaging gene variants altering single or contiguous nucleotides that are assigned pathogenicity based on statistical analyses of families and cohorts with CHD, high expression in the developing heart and depletion of damaging protein-coding variants in the general population. Gene classes fulfilling these criteria are enriched in patients with CHD and extracardiac abnormalities, evidencing shared pathways in organogenesis. Developmental single-cell transcriptomic data demonstrate the expression of CHD-associated genes in particular cell lineages, and emerging insights indicate that genetic variants perturb multicellular interactions that are crucial for cardiogenesis. Whole-genome sequencing analyses extend these observations, identifying non-coding variants that influence the expression of genes associated with CHD and contribute to the estimated ~55% of unexplained cases of CHD. These approaches combined with the assessment of common and mosaic genetic variants have provided a more complete knowledge of the causes and mechanisms of CHD. Such advances provide knowledge to inform the clinical care of patients with CHD or other birth defects and deepen our understanding of the complexity of human development. In this Review, we highlight known and candidate CHD-associated human genes and discuss how the integration of advances in developmental biology research can provide new insights into the genetic contributions to CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Daniel Quiat
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
29
|
Sex-dependent deterioration of cardiac function and molecular alterations in age- and disease-associated RAGE overexpression. Mech Ageing Dev 2022; 203:111635. [DOI: 10.1016/j.mad.2022.111635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022]
|
30
|
Fu T, Chen M, Xu L, Gong J, Zheng J, Zhang F, Ji N. Association of the MYH6 Gene Polymorphism with the Risk of Atrial Fibrillation and Warfarin Anticoagulation Therapy. Genet Test Mol Biomarkers 2021; 25:590-599. [PMID: 34515533 DOI: 10.1089/gtmb.2021.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: To study the associations of single nucleotide polymorphisms (SNP) of the myosin heavy chain 6 (MYH6) gene with the risk of atrial fibrillation (AF) and warfarin anticoagulation therapy. Methods: Sanger sequencing was employed to analyze the genotypes of the MYH6 gene's rs28730771, rs365990, and rs2277473 loci in 243 AF patients and 243 non-AF patients (control group) selected according to the age and sex of AF patients at a 1:1 ratio. A multiple logistic regression analysis was used to analyze the risk factors in AF. SHEsis was adopted to analyze the association between rs28730771, rs365990, rs2277473 haplotypes and susceptibility to AF. The average weekly doses of warfarin administered to AF patients with different genotypes were compared. Results: The T allele at rs28730771 of the MYH6 gene (odds ratio [OR] = 2.82, 95% confidence interval [CI]: 1.73-4.59, p < 0.01), the G allele at rs365990 (OR = 1.65, 95% CI: 1.22-2.24, p < 0.01) and the T allele at rs2277473 (OR = 1.91, 95% CI: 1.25-2.91, p < 0.01) were significantly associated with an elevated risk of AF. The results of a logistic regression analysis demonstrated that hypertension, smoking, drinking, family history of stroke, as well as the genotypes at the rs28730771, rs365990, and rs2277473 loci were all risk factors in AF (p < 0.05). The CAG haplotype for the three SNPs was associated with a reduced risk of AF susceptibility (OR = 0.61, 95% CI: 0.46-0.81, p < 0.01), and the CGG haplotype was related to an increased risk of AF (OR = 1.49, 95% CI: 1.07-2.06, p = 0.02). The doses of warfarin used in AF patients with different genotypes at the MYH6 rs28730771, rs365990, and rs2277473 loci were significantly different (p < 0.05). Conclusion: The three SNPs (rs28730771, rs365990, and rs2277473) of the MYH6 gene loci were significantly associated with the risk of AF susceptibility and the dose of warfarin anticoagulant therapy.
Collapse
Affiliation(s)
- Ting Fu
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| | - Mengyan Chen
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| | - Lei Xu
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| | - Jianping Gong
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| | - Juanqing Zheng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| | - Fen Zhang
- Department of Cardiology, Jinhua People's Hospital, Jinhua, China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu, China
| |
Collapse
|
31
|
Jia H, Kang L, Ma Z, Lu S, Huang B, Wang C, Zou Y, Sun Y. MicroRNAs involve in bicuspid aortic aneurysm: pathogenesis and biomarkers. J Cardiothorac Surg 2021; 16:230. [PMID: 34384454 PMCID: PMC8359579 DOI: 10.1186/s13019-021-01613-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
The incidence of bicuspid aortic valves (BAV) is high in the whole population, BAV-related thoracic aortic aneurysm (TAA) is accompanied by many adverse vascular events. So far, there are two key points in dealing with BAV-related TAA. First is fully understanding on its pathogenesis. Second is optimizing surgical intervention time. This review aims to illustrate the potential role of miRNAs in both aspects, that is, how miRNAs are involved in the occurrence and progression of BAV-related TAA, and the feasibilities of miRNAs as biomarkers.
Collapse
Affiliation(s)
- Hao Jia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Zhen Ma
- Central Laboratory of Cardiovascular Institute, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Shuyang Lu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Ben Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| | - Yunzeng Zou
- Central Laboratory of Cardiovascular Institute, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 1069 Xietu Road, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
32
|
Teekakirikul P, Zhu W, Gabriel GC, Young CB, Williams K, Martin LJ, Hill JC, Richards T, Billaud M, Phillippi JA, Wang J, Wu Y, Tan T, Devine W, Lin JH, Bais AS, Klonowski J, de Bellaing AM, Saini A, Wang MX, Emerel L, Salamacha N, Wyman SK, Lee C, Li HS, Miron A, Zhang J, Xing J, McNamara DM, Fung E, Kirshbom P, Mahle W, Kochilas LK, He Y, Garg V, White P, McBride KL, Benson DW, Gleason TG, Mital S, Lo CW. Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of BAV and left-sided congenital heart disease. HGG ADVANCES 2021; 2:100037. [PMID: 34888534 PMCID: PMC8653519 DOI: 10.1016/j.xhgg.2021.100037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/21/2021] [Indexed: 11/11/2022] Open
Abstract
Bicuspid aortic valve (BAV) with ~1%-2% prevalence is the most common congenital heart defect (CHD). It frequently results in valve disease and aorta dilation and is a major cause of adult cardiac surgery. BAV is genetically linked to rare left-heart obstructions (left ventricular outflow tract obstructions [LVOTOs]), including hypoplastic left heart syndrome (HLHS) and coarctation of the aorta (CoA). Mouse and human studies indicate LVOTO is genetically heterogeneous with a complex genetic etiology. Homozygous mutation in the Pcdha protocadherin gene cluster in mice can cause BAV, and also HLHS and other LVOTO phenotypes when accompanied by a second mutation. Here we show two common deletion copy number variants (delCNVs) within the PCDHA gene cluster are associated with LVOTO. Analysis of 1,218 white individuals with LVOTO versus 463 disease-free local control individuals yielded odds ratios (ORs) at 1.47 (95% confidence interval [CI], 1.13-1.92; p = 4.2 × 10-3) for LVOTO, 1.47 (95% CI, 1.10-1.97; p = 0.01) for BAV, 6.13 (95% CI, 2.75-13.7; p = 9.7 × 10-6) for CoA, and 1.49 (95% CI, 1.07-2.08; p = 0.019) for HLHS. Increased OR was observed for all LVOTO phenotypes in homozygous or compound heterozygous PCDHA delCNV genotype comparison versus wild type. Analysis of an independent white cohort (381 affected individuals, 1,352 control individuals) replicated the PCDHA delCNV association with LVOTO. Generalizability of these findings is suggested by similar observations in Black and Chinese individuals with LVOTO. Analysis of Pcdha mutant mice showed reduced PCDHA expression at regions of cell-cell contact in aortic smooth muscle and cushion mesenchyme, suggesting potential mechanisms for BAV pathogenesis and aortopathy. Together, these findings indicate common variants causing PCDHA deficiency play a significant role in the genetic etiology of common and rare LVOTO-CHD.
Collapse
Affiliation(s)
- Polakit Teekakirikul
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Centre for Cardiovascular Genomics and Medicine, Division of Cardiology, and Division of Medical Sciences, Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenjuan Zhu
- Centre for Cardiovascular Genomics and Medicine, Division of Cardiology, and Division of Medical Sciences, Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - George C. Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cullen B. Young
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kylia Williams
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, and Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jennifer C. Hill
- Department of Cardiothoracic Surgery and Department of Bioengineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tara Richards
- Department of Cardiothoracic Surgery and Department of Bioengineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marie Billaud
- Department of Cardiothoracic Surgery and Department of Bioengineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie A. Phillippi
- Department of Cardiothoracic Surgery and Department of Bioengineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tuantuan Tan
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William Devine
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiuann-huey Lin
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abha S. Bais
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Klonowski
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Moreau de Bellaing
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatric Cardiology, Necker-Sick Children Hospital and University of Paris Descartes, Paris, France
| | - Ankur Saini
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael X. Wang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leonid Emerel
- Department of Cardiothoracic Surgery and Department of Bioengineering, McGowan Institute for Regenerative Medicine, and Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan Salamacha
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel K. Wyman
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carrie Lee
- Centre for Cardiovascular Genomics and Medicine, Division of Cardiology, and Division of Medical Sciences, Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hung Sing Li
- Centre for Cardiovascular Genomics and Medicine, Division of Cardiology, and Division of Medical Sciences, Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anastasia Miron
- Division of Cardiology, Labatt Family Heart Centre, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jingyu Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis M. McNamara
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Erik Fung
- Centre for Cardiovascular Genomics and Medicine, Division of Cardiology, and Division of Medical Sciences, Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
- Laboratory for Heart Failure and Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, CARE Programme, Lui Che Woo Institute of Innovative Medicine, and Gerald Choa Cardiac Research Centre, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Kirshbom
- Sanger Heart & Vascular Institute, Charlotte, NC, USA
| | - William Mahle
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Lazaros K. Kochilas
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Yihua He
- Department of Ultrasound, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Vidu Garg
- Center for Cardiovascular Research, The Heart Center, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Institute for Genomic Medicine, Center for Cardiovascular Research, Nationwide Children’s Hospital and Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Kim L. McBride
- Center for Cardiovascular Research, The Heart Center, Nationwide Children’s Hospital and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - D. Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas G. Gleason
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Seema Mital
- Division of Cardiology, Labatt Family Heart Centre, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M, Jin SC. Molecular Genetics and Complex Inheritance of Congenital Heart Disease. Genes (Basel) 2021; 12:1020. [PMID: 34209044 PMCID: PMC8307500 DOI: 10.3390/genes12071020] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
Congenital heart disease (CHD) is the most common congenital malformation and the leading cause of mortality therein. Genetic etiologies contribute to an estimated 90% of CHD cases, but so far, a molecular diagnosis remains unsolved in up to 55% of patients. Copy number variations and aneuploidy account for ~23% of cases overall, and high-throughput genomic technologies have revealed additional types of genetic variation in CHD. The first CHD risk genotypes identified through high-throughput sequencing were de novo mutations, many of which occur in chromatin modifying genes. Murine models of cardiogenesis further support the damaging nature of chromatin modifying CHD mutations. Transmitted mutations have also been identified through sequencing of population scale CHD cohorts, and many transmitted mutations are enriched in cilia genes and Notch or VEGF pathway genes. While we have come a long way in identifying the causes of CHD, more work is required to end the diagnostic odyssey for all CHD families. Complex genetic explanations of CHD are emerging but will require increasingly sophisticated analysis strategies applied to very large CHD cohorts before they can come to fruition in providing molecular diagnoses to genetically unsolved patients. In this review, we discuss the genetic architecture of CHD and biological pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- Nicholas S. Diab
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Syndi Barish
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Shujuan Zhao
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
| | - Garrett Allington
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Xiaobing Yu
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Computer Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Kristopher T. Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Martina Brueckner
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; (N.S.D.); (S.B.); (W.D.)
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sheng Chih Jin
- Department of Genetics, School of Medicine, Washington University, St. Louis, MO 63110, USA; (S.Z.); (X.Y.)
- Department of Pediatrics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
From Stem Cells to Populations-Using hiPSC, Next-Generation Sequencing, and GWAS to Explore the Genetic and Molecular Mechanisms of Congenital Heart Defects. Genes (Basel) 2021; 12:genes12060921. [PMID: 34208537 PMCID: PMC8235101 DOI: 10.3390/genes12060921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital heart defects (CHD) are developmental malformations affecting the heart and the great vessels. Early heart development requires temporally regulated crosstalk between multiple cell types, signaling pathways, and mechanical forces of early blood flow. While both genetic and environmental factors have been recognized to be involved, identifying causal genes in non-syndromic CHD has been difficult. While variants following Mendelian inheritance have been identified by linkage analysis in a few families with multiple affected members, the inheritance pattern in most familial cases is complex, with reduced penetrance and variable expressivity. Furthermore, most non-syndromic CHD are sporadic. Improved sequencing technologies and large biobank collections have enabled genome-wide association studies (GWAS) in non-syndromic CHD. The ability to generate human to create human induced pluripotent stem cells (hiPSC) and further differentiate them to organotypic cells enables further exploration of genotype–phenotype correlations in patient-derived cells. Here we review how these technologies can be used in unraveling the genetics and molecular mechanisms of heart development.
Collapse
|
35
|
Li M, Lyu C, Huang M, Do C, Tycko B, Lupo PJ, MacLeod SL, Randolph CE, Liu N, Witte JS, Hobbs CA. Mapping methylation quantitative trait loci in cardiac tissues nominates risk loci and biological pathways in congenital heart disease. BMC Genom Data 2021; 22:20. [PMID: 34112112 PMCID: PMC8194170 DOI: 10.1186/s12863-021-00975-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background Most congenital heart defects (CHDs) result from complex interactions among genetic susceptibilities, epigenetic modifications, and maternal environmental exposures. Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation will enhance our understanding of pathogenesis in this important type of congenital disorder. We investigated cis-acting effects of genetic single nucleotide polymorphisms (SNPs) on local DNA methylation patterns within 83 cardiac tissue samples and prioritized their contributions to CHD risk by leveraging results of CHD genome-wide association studies (GWAS) and their effects on cardiac gene expression. Results We identified 13,901 potential methylation quantitative trait loci (mQTLs) with a false discovery threshold of 5%. Further co-localization analyses and Mendelian randomization indicated that genetic variants near the HLA-DRB6 gene on chromosome 6 may contribute to CHD risk by regulating the methylation status of nearby CpG sites. Additional SNPs in genomic regions on chromosome 10 (TNKS2-AS1 gene) and chromosome 14 (LINC01629 gene) may simultaneously influence epigenetic and transcriptomic variations within cardiac tissues. Conclusions Our results support the hypothesis that genetic variants may influence the risk of CHDs through regulating the changes of DNA methylation and gene expression. Our results can serve as an important source of information that can be integrated with other genetic studies of heart diseases, especially CHDs. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00975-2.
Collapse
Affiliation(s)
- Ming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA.
| | - Chen Lyu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Manyan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - Catherine Do
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | - Benjamin Tycko
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ, 07110, USA
| | | | | | | | - Nianjun Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, 1025 E. Seventh Street, Bloomington, 47405, IN, USA
| | - John S Witte
- University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92123, USA
| |
Collapse
|
36
|
Thorolfsdottir RB, Sveinbjornsson G, Aegisdottir HM, Benonisdottir S, Stefansdottir L, Ivarsdottir EV, Halldorsson GH, Sigurdsson JK, Torp-Pedersen C, Weeke PE, Brunak S, Westergaard D, Pedersen OB, Sorensen E, Nielsen KR, Burgdorf KS, Banasik K, Brumpton B, Zhou W, Oddsson A, Tragante V, Hjorleifsson KE, Davidsson OB, Rajamani S, Jonsson S, Torfason B, Valgardsson AS, Thorgeirsson G, Frigge ML, Thorleifsson G, Norddahl GL, Helgadottir A, Gretarsdottir S, Sulem P, Jonsdottir I, Willer CJ, Hveem K, Bundgaard H, Ullum H, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. Genetic insight into sick sinus syndrome. Eur Heart J 2021; 42:1959-1971. [PMID: 36282123 PMCID: PMC8140484 DOI: 10.1093/eurheartj/ehaa1108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Aims The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. Methods and results We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10−20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). Conclusion We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jon K Sigurdsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Christian Torp-Pedersen
- Department of Clinical Research and Cardiology, Nordsjaelland Hospital, Dyrehavevej 29, Hillerød 3400, Denmark
| | - Peter E Weeke
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, Naestved 4700, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital North, Urbansgade 36, Aalborg 9000, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ben Brumpton
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, Trondheim 7030, Norway
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Asmundur Oddsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Kristjan E Hjorleifsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. MC 305-16, Pasadena, CA 91125, USA
| | | | | | - Stefan Jonsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Bjarni Torfason
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Atli S Valgardsson
- Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Michael L Frigge
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Anna Helgadottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA.,Department of Internal Medicine: Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 -5368, USA.,Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI 48109 -5618, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, Trondheim 7491, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway.,HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Forskningsveien 2, Levanger 7600, Norway
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.,Statens Serum Institut, Artillerivej 5, Copenhagen 2300, Denmark
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | | |
Collapse
|
37
|
Gu J, Chen X, Jin Y, Liu M, Xu Q, Liu X, Luo Z, Ling S, Liu N, Liu S. A Neonatal Mouse Model for Pressure Overload: Myocardial Response Corresponds to Severity. Front Cardiovasc Med 2021; 8:660246. [PMID: 34095250 PMCID: PMC8175619 DOI: 10.3389/fcvm.2021.660246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
The heart regeneration after apical resection and myocardial infarction in neonatal mice has been studied for years. However, the response of neonatal mouse heart under pressure overload is seldom explored. This study aimed to induce pressure overload in neonatal mice through a transverse aortic constriction (TAC) with different-gauge needles so as to investigate the effect of pressure overload on cardiomyocyte proliferation and hypertrophy in these mice. Myocardial hypertrophy was evaluated by echocardiographic, pathological, and molecular analyses. Cardiomyocyte proliferation was detected by immune-staining of phospho-histone H3, Ki67, and 5-bromo-2-deoxyuridine. Mild pressure overload induced with a 30-gauge needle stimulated cardiomyocyte proliferation, adaptive hypertrophy, and angiogenesis. The heart function was not hampered even 21 days after the surgery. Moderate pressure overload induced with a 32-gauge needle led to pathological myocardial hypertrophy, fibrosis, and heart failure 7 days after the surgery. The gene and protein expression levels of markers of hypertrophy and fibrosis increased in 32-gauge TAC group compared with that in sham and 30-gauge TAC groups. The mice barely survived after severe pressure overload induced with a 34-gauge needle. The findings of this study might provide new insights into cardiomyocyte proliferation and hypertrophy in neonatal mice under pressure overload.
Collapse
Affiliation(s)
- Jielei Gu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangshuo Jin
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Luo
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sisi Ling
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
39
|
Abstract
Congenital heart disease is the most common congenital defect observed in newborns. Within the spectrum of congenital heart disease are left‐sided obstructive lesions (LSOLs), which include hypoplastic left heart syndrome, aortic stenosis, bicuspid aortic valve, coarctation of the aorta, and interrupted aortic arch. These defects can arise in isolation or as a component of a defined syndrome; however, nonsyndromic defects are often observed in multiple family members and associated with high sibling recurrence risk. This clear evidence for a heritable basis has driven a lengthy search for disease‐causing variants that has uncovered both rare and common variants in genes that, when perturbed in cardiac development, can result in LSOLs. Despite advancements in genetic sequencing platforms and broadening use of exome sequencing, the currently accepted LSOL‐associated genes explain only 10% to 20% of patients. Further, the combinatorial effects of common and rare variants as a cause of LSOLs are emerging. In this review, we highlight the genes and variants associated with the different LSOLs and discuss the strengths and weaknesses of the present genetic associations. Furthermore, we discuss the research avenues needed to bridge the gaps in our current understanding of the genetic basis of nonsyndromic congenital heart disease.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC
| | - Andrew P Landstrom
- Division of Cardiology Department of Pediatrics Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
40
|
Theis JL, Hu JJ, Sundsbak RS, Evans JM, Bamlet WR, Qureshi MY, O'Leary PW, Olson TM. Genetic Association Between Hypoplastic Left Heart Syndrome and Cardiomyopathies. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 14:e003126. [PMID: 33325730 DOI: 10.1161/circgen.120.003126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) with risk of poor outcome has been linked to MYH6 variants, implicating overlap in genetic etiologies of structural and myopathic heart disease. METHODS Whole genome sequencing was performed in 197 probands with HLHS, 43 family members, and 813 controls. Data were filtered for rare, segregating variants in 3 index families comprised of an HLHS proband and relative(s) with cardiomyopathy. Whole genome sequencing data from cases and controls were compared for rare variant burden across 56 cardiomyopathy genes utilizing a weighted burden test approach, accounting for multiple testing using a Bonferroni correction. RESULTS A pathogenic MYBPC3 nonsense variant was identified in the first proband who underwent cardiac transplantation for diastolic heart failure, her father with left ventricular noncompaction, and 2 fourth-degree relatives with hypertrophic cardiomyopathy. A likely pathogenic RYR2 missense variant was identified in the second proband, a second-degree relative with aortic dilation, and a fourth-degree relative with dilated cardiomyopathy. A pathogenic RYR2 exon 3 in-frame deletion was identified in the third proband diagnosed with catecholaminergic polymorphic ventricular tachycardia and his father with left ventricular noncompaction and catecholaminergic polymorphic ventricular tachycardia. To further investigate HLHS-cardiomyopathy gene associations in cases versus controls, rare variant burden testing of 56 genes revealed enrichment in MYH6 (P=0.000068). Rare, predicted-damaging MYH6 variants were identified in 10% of probands in our cohort-4 with familial congenital heart disease, 4 with compound heterozygosity (3 with systolic ventricular dysfunction), and 4 with MYH6-FLNC synergistic heterozygosity. CONCLUSIONS Whole genome sequencing in multiplex families, proband-parent trios, and case-control cohorts revealed defects in cardiomyopathy-associated genes in patients with HLHS, which may portend impaired functional reserve of the single-ventricle circulation.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jessie J Hu
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Rhianna S Sundsbak
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., W.R.B.), Mayo Clinic, Rochester, MN
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (J.M.E., W.R.B.), Mayo Clinic, Rochester, MN
| | - M Yasir Qureshi
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Patrick W O'Leary
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory (J.L.T., R.S.S., T.M.O.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (J.J.H., M.Y.Q., P.W.O., T.M.O.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine (T.M.O.), Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Atrial fibrillation-a complex polygenetic disease. Eur J Hum Genet 2020; 29:1051-1060. [PMID: 33279945 PMCID: PMC8298566 DOI: 10.1038/s41431-020-00784-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of arrhythmia. Epidemiological studies have documented a substantial genetic component. More than 160 genes have been associated with AF during the last decades. Some of these were discovered by classical linkage studies while the majority relies on functional studies or genome-wide association studies. In this review, we will evaluate the genetic basis of AF and the role of both common and rare genetic variants in AF. Rare variants in multiple ion-channel genes as well as gap junction and transcription factor genes have been associated with AF. More recently, a growing body of evidence has implicated structural genes with AF. An increased burden of atrial fibrosis in AF patients compared with non-AF patients has also been reported. These findings challenge our traditional understanding of AF being an electrical disease. We will focus on several quantitative landmark papers, which are transforming our understanding of AF by implicating atrial cardiomyopathies in the pathogenesis. This new AF research field may enable better diagnostics and treatment in the future.
Collapse
|
42
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
43
|
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect, found in up to 2% of the population and associated with a 30% lifetime risk of complications. BAV is inherited as an autosomal dominant trait with incomplete penetrance and variable expressivity due to a complex genetic architecture that involves many interacting genes. In this review, we highlight the current state of knowledge about BAV genetics, principles and methods for BAV gene discovery, clinical applications of BAV genetics, and important future directions.
Collapse
|
44
|
van Wijngaarden AL, Hiemstra YL, Koopmann TT, Ruivenkamp CAL, Aten E, Schalij MJ, Bax JJ, Delgado V, Barge-Schaapveld DQCM, Ajmone Marsan N. Identification of known and unknown genes associated with mitral valve prolapse using an exome slice methodology. J Med Genet 2020; 57:843-850. [PMID: 32277046 DOI: 10.1136/jmedgenet-2019-106715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Although a familial distribution has been documented, the genetic aetiology of mitral valve prolapse (MVP) is largely unknown, with only four genes identified so far: FLNA, DCHS1, DZIP1 and PLD1. The aim of this study was to evaluate the genetic yield in known causative genes and to identify possible novel genes associated with MVP using a heart gene panel based on exome sequencing. METHODS Patients with MVP were referred for genetic counselling when a positive family history for MVP was reported and/or Barlow's disease was diagnosed. In total, 101 probands were included to identify potentially pathogenic variants in a set of 522 genes associated with cardiac development and/or diseases. RESULTS 97 (96%) probands were classified as Barlow's disease and 4 (4%) as fibroelastic deficiency. Only one patient (1%) had a likely pathogenic variant in the known causative genes (DCHS1). However, an interesting finding was that 10 probands (11%) had a variant that was classified as likely pathogenic in six different, mostly cardiomyopathy genes: DSP (1×), HCN4 (1×), MYH6 (1×), TMEM67 (1×), TRPS1 (1×) and TTN (5×). CONCLUSION Exome slice sequencing analysis performed in MVP probands reveals a low genetic yield in known causative genes but may expand the cardiac phenotype of other genes. This study suggests for the first time that also genes related to cardiomyopathy may be associated with MVP. This highlights the importance to screen these patients and their family for the presence of arrhythmias and of 'disproportionate' LV remodelling as compared with the severity of mitral regurgitation, unravelling a possible coexistent cardiomyopathy.
Collapse
Affiliation(s)
| | - Yasmine L Hiemstra
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Tamara T Koopmann
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Claudia A L Ruivenkamp
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Emmelien Aten
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Martin J Schalij
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Jeroen J Bax
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Victoria Delgado
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | - Nina Ajmone Marsan
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
45
|
Zheng KH, Tzolos E, Dweck MR. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiol Clin 2020; 38:1-12. [DOI: 10.1016/j.ccl.2019.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Yu X, Xia L, Jiang Q, Wei Y, Wei X, Cao S. Prevalence of Intracranial Aneurysm in Patients with Aortopathy: A Systematic Review with Meta-Analyses. J Stroke 2020; 22:76-86. [PMID: 32027793 PMCID: PMC7005354 DOI: 10.5853/jos.2019.01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Patients with aortic disease might have an increased risk of intracranial aneurysm (IA). We conducted this research to assess the prevalence of IA in patients with aortopathy, considering the impact of gender, age, and cardiovascular risk factors. METHODS We searched PubMed and Scopus from inception to August 2019 for epidemiological studies reporting the prevalence of IA in patients with aortopathy. Random-effect meta-analyses were performed to calculate the overall prevalence, and the effect of risk factors on the prevalence was also evaluated. Anatomical location of IAs in patients suffered from distinct aortic disease was extracted and further analyzed. RESULTS Thirteen cross-sectional studies involving 4,041 participants were included in this systematic review. We reported an estimated prevalence of 12% (95% confidence interval [CI], 9% to 14%) of IA in patients with aortopathy. The pooled prevalence of IA in patients with bicuspid aortic valve, coarctation of the aorta, aortic aneurysm, and aortic dissection was 8% (95% CI, 6% to 10%), 10% (95% CI, 7% to 14%), 12% (95% CI, 9% to 15%), and 23% (95% CI, 12% to 34%), respectively. Gender (female) and smoking are risk factors related to an increased risk of IA. The anatomical distribution of IAs was heterogeneously between participants with different aortic disease. CONCLUSIONS According to current epidemiological evidence, the prevalence of IA in patients with aortic disease is quadrupled compared to that in the general population, which suggests that an early IA screening should be considered among patients with aortic disease for timely diagnosis and treatment of IA.
Collapse
Affiliation(s)
- Xinyu Yu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Jiang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yupeng Wei
- Biological Science Department, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiyi Cao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Genetics of Congenital Heart Disease. Biomolecules 2019; 9:biom9120879. [PMID: 31888141 PMCID: PMC6995556 DOI: 10.3390/biom9120879] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that are important for heart development. Recent studies have shown genes encoding chromatin modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the development of new therapies to improve patient outcomes.
Collapse
|
48
|
Lupo PJ, Mitchell LE, Jenkins MM. Genome-wide association studies of structural birth defects: A review and commentary. Birth Defects Res 2019; 111:1329-1342. [PMID: 31654503 DOI: 10.1002/bdr2.1606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND While there is strong evidence that genetic risk factors play an important role in the etiologies of structural birth defects, compared to other diseases, there have been relatively few genome-wide association studies (GWAS) of these conditions. We reviewed the current landscape of GWAS conducted for birth defects, noting novel insights, and future directions. METHODS This article reviews the literature with regard to GWAS of structural birth defects. Key defects included in this review include oral clefts, congenital heart defects (CHDs), biliary atresia, pyloric stenosis, hypospadias, craniosynostosis, and clubfoot. Additionally, other issues related to GWAS are considered, including the assessment of polygenic risk scores and issues related to genetic ancestry, as well as utilizing genome-wide single nucleotide polymorphism array data to evaluate gene-environment interactions and Mendelian randomization. RESULTS For some birth defects, including oral clefts and CHDs, several novel susceptibility loci have been identified and replicated through GWAS, including 8q24 for oral clefts, DGKK for hypospadias, and 4p16 for CHDs. Relatively common birth defects for which there are currently no published GWAS include neural tube defects, anotia/microtia, anophthalmia/microphthalmia, gastroschisis, and omphalocele. CONCLUSIONS Overall, GWAS have been successful in identifying several novel susceptibility genes and genomic regions for structural birth defects. These findings have provided new insights into the etiologies of these phenotypes. However, GWAS have been underutilized for understanding the genetic etiologies of several birth defects.
Collapse
Affiliation(s)
- Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, Texas
| | - Laura E Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, Texas
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
49
|
Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun 2019; 10:4803. [PMID: 31641117 PMCID: PMC6805929 DOI: 10.1038/s41467-019-12682-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Features of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease. Aberrant morphology of the QRS complex in an electrocardiogram can be associated with cardiac morbidity and mortality. Here, the authors perform genome-wide association studies for ten measures of the QRS complex in 81,192 individuals and find 86 previously unreported loci that associate with at least one parameter.
Collapse
|
50
|
Wang Z, Song HM, Wang F, Zhao CM, Huang RT, Xue S, Li RG, Qiu XB, Xu YJ, Liu XY, Yang YQ. A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. Int Heart J 2019; 60:1113-1122. [DOI: 10.1536/ihj.18-685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Hao-Ming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|